xref: /openbmc/linux/mm/mempolicy.c (revision 9f380456)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 	int err = 0;
614 	struct mempolicy *old = vma->vm_policy;
615 
616 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 		 vma->vm_ops, vma->vm_file,
619 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620 
621 	if (vma->vm_ops && vma->vm_ops->set_policy)
622 		err = vma->vm_ops->set_policy(vma, new);
623 	if (!err) {
624 		mpol_get(new);
625 		vma->vm_policy = new;
626 		mpol_put(old);
627 	}
628 	return err;
629 }
630 
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 		       unsigned long end, struct mempolicy *new_pol)
634 {
635 	struct vm_area_struct *next;
636 	struct vm_area_struct *prev;
637 	struct vm_area_struct *vma;
638 	int err = 0;
639 	pgoff_t pgoff;
640 	unsigned long vmstart;
641 	unsigned long vmend;
642 
643 	vma = find_vma(mm, start);
644 	if (!vma || vma->vm_start > start)
645 		return -EFAULT;
646 
647 	prev = vma->vm_prev;
648 	if (start > vma->vm_start)
649 		prev = vma;
650 
651 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 		next = vma->vm_next;
653 		vmstart = max(start, vma->vm_start);
654 		vmend   = min(end, vma->vm_end);
655 
656 		if (mpol_equal(vma_policy(vma), new_pol))
657 			continue;
658 
659 		pgoff = vma->vm_pgoff +
660 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 				  vma->anon_vma, vma->vm_file, pgoff,
663 				  new_pol);
664 		if (prev) {
665 			vma = prev;
666 			next = vma->vm_next;
667 			continue;
668 		}
669 		if (vma->vm_start != vmstart) {
670 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 			if (err)
672 				goto out;
673 		}
674 		if (vma->vm_end != vmend) {
675 			err = split_vma(vma->vm_mm, vma, vmend, 0);
676 			if (err)
677 				goto out;
678 		}
679 		err = policy_vma(vma, new_pol);
680 		if (err)
681 			goto out;
682 	}
683 
684  out:
685 	return err;
686 }
687 
688 /*
689  * Update task->flags PF_MEMPOLICY bit: set iff non-default
690  * mempolicy.  Allows more rapid checking of this (combined perhaps
691  * with other PF_* flag bits) on memory allocation hot code paths.
692  *
693  * If called from outside this file, the task 'p' should -only- be
694  * a newly forked child not yet visible on the task list, because
695  * manipulating the task flags of a visible task is not safe.
696  *
697  * The above limitation is why this routine has the funny name
698  * mpol_fix_fork_child_flag().
699  *
700  * It is also safe to call this with a task pointer of current,
701  * which the static wrapper mpol_set_task_struct_flag() does,
702  * for use within this file.
703  */
704 
705 void mpol_fix_fork_child_flag(struct task_struct *p)
706 {
707 	if (p->mempolicy)
708 		p->flags |= PF_MEMPOLICY;
709 	else
710 		p->flags &= ~PF_MEMPOLICY;
711 }
712 
713 static void mpol_set_task_struct_flag(void)
714 {
715 	mpol_fix_fork_child_flag(current);
716 }
717 
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 			     nodemask_t *nodes)
721 {
722 	struct mempolicy *new, *old;
723 	struct mm_struct *mm = current->mm;
724 	NODEMASK_SCRATCH(scratch);
725 	int ret;
726 
727 	if (!scratch)
728 		return -ENOMEM;
729 
730 	new = mpol_new(mode, flags, nodes);
731 	if (IS_ERR(new)) {
732 		ret = PTR_ERR(new);
733 		goto out;
734 	}
735 	/*
736 	 * prevent changing our mempolicy while show_numa_maps()
737 	 * is using it.
738 	 * Note:  do_set_mempolicy() can be called at init time
739 	 * with no 'mm'.
740 	 */
741 	if (mm)
742 		down_write(&mm->mmap_sem);
743 	task_lock(current);
744 	ret = mpol_set_nodemask(new, nodes, scratch);
745 	if (ret) {
746 		task_unlock(current);
747 		if (mm)
748 			up_write(&mm->mmap_sem);
749 		mpol_put(new);
750 		goto out;
751 	}
752 	old = current->mempolicy;
753 	current->mempolicy = new;
754 	mpol_set_task_struct_flag();
755 	if (new && new->mode == MPOL_INTERLEAVE &&
756 	    nodes_weight(new->v.nodes))
757 		current->il_next = first_node(new->v.nodes);
758 	task_unlock(current);
759 	if (mm)
760 		up_write(&mm->mmap_sem);
761 
762 	mpol_put(old);
763 	ret = 0;
764 out:
765 	NODEMASK_SCRATCH_FREE(scratch);
766 	return ret;
767 }
768 
769 /*
770  * Return nodemask for policy for get_mempolicy() query
771  *
772  * Called with task's alloc_lock held
773  */
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
775 {
776 	nodes_clear(*nodes);
777 	if (p == &default_policy)
778 		return;
779 
780 	switch (p->mode) {
781 	case MPOL_BIND:
782 		/* Fall through */
783 	case MPOL_INTERLEAVE:
784 		*nodes = p->v.nodes;
785 		break;
786 	case MPOL_PREFERRED:
787 		if (!(p->flags & MPOL_F_LOCAL))
788 			node_set(p->v.preferred_node, *nodes);
789 		/* else return empty node mask for local allocation */
790 		break;
791 	default:
792 		BUG();
793 	}
794 }
795 
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
797 {
798 	struct page *p;
799 	int err;
800 
801 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 	if (err >= 0) {
803 		err = page_to_nid(p);
804 		put_page(p);
805 	}
806 	return err;
807 }
808 
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 			     unsigned long addr, unsigned long flags)
812 {
813 	int err;
814 	struct mm_struct *mm = current->mm;
815 	struct vm_area_struct *vma = NULL;
816 	struct mempolicy *pol = current->mempolicy;
817 
818 	if (flags &
819 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 		return -EINVAL;
821 
822 	if (flags & MPOL_F_MEMS_ALLOWED) {
823 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 			return -EINVAL;
825 		*policy = 0;	/* just so it's initialized */
826 		task_lock(current);
827 		*nmask  = cpuset_current_mems_allowed;
828 		task_unlock(current);
829 		return 0;
830 	}
831 
832 	if (flags & MPOL_F_ADDR) {
833 		/*
834 		 * Do NOT fall back to task policy if the
835 		 * vma/shared policy at addr is NULL.  We
836 		 * want to return MPOL_DEFAULT in this case.
837 		 */
838 		down_read(&mm->mmap_sem);
839 		vma = find_vma_intersection(mm, addr, addr+1);
840 		if (!vma) {
841 			up_read(&mm->mmap_sem);
842 			return -EFAULT;
843 		}
844 		if (vma->vm_ops && vma->vm_ops->get_policy)
845 			pol = vma->vm_ops->get_policy(vma, addr);
846 		else
847 			pol = vma->vm_policy;
848 	} else if (addr)
849 		return -EINVAL;
850 
851 	if (!pol)
852 		pol = &default_policy;	/* indicates default behavior */
853 
854 	if (flags & MPOL_F_NODE) {
855 		if (flags & MPOL_F_ADDR) {
856 			err = lookup_node(mm, addr);
857 			if (err < 0)
858 				goto out;
859 			*policy = err;
860 		} else if (pol == current->mempolicy &&
861 				pol->mode == MPOL_INTERLEAVE) {
862 			*policy = current->il_next;
863 		} else {
864 			err = -EINVAL;
865 			goto out;
866 		}
867 	} else {
868 		*policy = pol == &default_policy ? MPOL_DEFAULT :
869 						pol->mode;
870 		/*
871 		 * Internal mempolicy flags must be masked off before exposing
872 		 * the policy to userspace.
873 		 */
874 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
875 	}
876 
877 	if (vma) {
878 		up_read(&current->mm->mmap_sem);
879 		vma = NULL;
880 	}
881 
882 	err = 0;
883 	if (nmask) {
884 		if (mpol_store_user_nodemask(pol)) {
885 			*nmask = pol->w.user_nodemask;
886 		} else {
887 			task_lock(current);
888 			get_policy_nodemask(pol, nmask);
889 			task_unlock(current);
890 		}
891 	}
892 
893  out:
894 	mpol_cond_put(pol);
895 	if (vma)
896 		up_read(&current->mm->mmap_sem);
897 	return err;
898 }
899 
900 #ifdef CONFIG_MIGRATION
901 /*
902  * page migration
903  */
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 				unsigned long flags)
906 {
907 	/*
908 	 * Avoid migrating a page that is shared with others.
909 	 */
910 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 		if (!isolate_lru_page(page)) {
912 			list_add_tail(&page->lru, pagelist);
913 			inc_zone_page_state(page, NR_ISOLATED_ANON +
914 					    page_is_file_cache(page));
915 		}
916 	}
917 }
918 
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
920 {
921 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
922 }
923 
924 /*
925  * Migrate pages from one node to a target node.
926  * Returns error or the number of pages not migrated.
927  */
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 			   int flags)
930 {
931 	nodemask_t nmask;
932 	LIST_HEAD(pagelist);
933 	int err = 0;
934 	struct vm_area_struct *vma;
935 
936 	nodes_clear(nmask);
937 	node_set(source, nmask);
938 
939 	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 	if (IS_ERR(vma))
942 		return PTR_ERR(vma);
943 
944 	if (!list_empty(&pagelist)) {
945 		err = migrate_pages(&pagelist, new_node_page, dest,
946 							false, MIGRATE_SYNC);
947 		if (err)
948 			putback_lru_pages(&pagelist);
949 	}
950 
951 	return err;
952 }
953 
954 /*
955  * Move pages between the two nodesets so as to preserve the physical
956  * layout as much as possible.
957  *
958  * Returns the number of page that could not be moved.
959  */
960 int do_migrate_pages(struct mm_struct *mm,
961 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
962 {
963 	int busy = 0;
964 	int err;
965 	nodemask_t tmp;
966 
967 	err = migrate_prep();
968 	if (err)
969 		return err;
970 
971 	down_read(&mm->mmap_sem);
972 
973 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
974 	if (err)
975 		goto out;
976 
977 	/*
978 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
980 	 * bit in 'tmp', and return that <source, dest> pair for migration.
981 	 * The pair of nodemasks 'to' and 'from' define the map.
982 	 *
983 	 * If no pair of bits is found that way, fallback to picking some
984 	 * pair of 'source' and 'dest' bits that are not the same.  If the
985 	 * 'source' and 'dest' bits are the same, this represents a node
986 	 * that will be migrating to itself, so no pages need move.
987 	 *
988 	 * If no bits are left in 'tmp', or if all remaining bits left
989 	 * in 'tmp' correspond to the same bit in 'to', return false
990 	 * (nothing left to migrate).
991 	 *
992 	 * This lets us pick a pair of nodes to migrate between, such that
993 	 * if possible the dest node is not already occupied by some other
994 	 * source node, minimizing the risk of overloading the memory on a
995 	 * node that would happen if we migrated incoming memory to a node
996 	 * before migrating outgoing memory source that same node.
997 	 *
998 	 * A single scan of tmp is sufficient.  As we go, we remember the
999 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1000 	 * that not only moved, but what's better, moved to an empty slot
1001 	 * (d is not set in tmp), then we break out then, with that pair.
1002 	 * Otherwise when we finish scanning from_tmp, we at least have the
1003 	 * most recent <s, d> pair that moved.  If we get all the way through
1004 	 * the scan of tmp without finding any node that moved, much less
1005 	 * moved to an empty node, then there is nothing left worth migrating.
1006 	 */
1007 
1008 	tmp = *from_nodes;
1009 	while (!nodes_empty(tmp)) {
1010 		int s,d;
1011 		int source = -1;
1012 		int dest = 0;
1013 
1014 		for_each_node_mask(s, tmp) {
1015 			d = node_remap(s, *from_nodes, *to_nodes);
1016 			if (s == d)
1017 				continue;
1018 
1019 			source = s;	/* Node moved. Memorize */
1020 			dest = d;
1021 
1022 			/* dest not in remaining from nodes? */
1023 			if (!node_isset(dest, tmp))
1024 				break;
1025 		}
1026 		if (source == -1)
1027 			break;
1028 
1029 		node_clear(source, tmp);
1030 		err = migrate_to_node(mm, source, dest, flags);
1031 		if (err > 0)
1032 			busy += err;
1033 		if (err < 0)
1034 			break;
1035 	}
1036 out:
1037 	up_read(&mm->mmap_sem);
1038 	if (err < 0)
1039 		return err;
1040 	return busy;
1041 
1042 }
1043 
1044 /*
1045  * Allocate a new page for page migration based on vma policy.
1046  * Start assuming that page is mapped by vma pointed to by @private.
1047  * Search forward from there, if not.  N.B., this assumes that the
1048  * list of pages handed to migrate_pages()--which is how we get here--
1049  * is in virtual address order.
1050  */
1051 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1052 {
1053 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054 	unsigned long uninitialized_var(address);
1055 
1056 	while (vma) {
1057 		address = page_address_in_vma(page, vma);
1058 		if (address != -EFAULT)
1059 			break;
1060 		vma = vma->vm_next;
1061 	}
1062 
1063 	/*
1064 	 * if !vma, alloc_page_vma() will use task or system default policy
1065 	 */
1066 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1067 }
1068 #else
1069 
1070 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071 				unsigned long flags)
1072 {
1073 }
1074 
1075 int do_migrate_pages(struct mm_struct *mm,
1076 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1077 {
1078 	return -ENOSYS;
1079 }
1080 
1081 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1082 {
1083 	return NULL;
1084 }
1085 #endif
1086 
1087 static long do_mbind(unsigned long start, unsigned long len,
1088 		     unsigned short mode, unsigned short mode_flags,
1089 		     nodemask_t *nmask, unsigned long flags)
1090 {
1091 	struct vm_area_struct *vma;
1092 	struct mm_struct *mm = current->mm;
1093 	struct mempolicy *new;
1094 	unsigned long end;
1095 	int err;
1096 	LIST_HEAD(pagelist);
1097 
1098 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100 		return -EINVAL;
1101 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102 		return -EPERM;
1103 
1104 	if (start & ~PAGE_MASK)
1105 		return -EINVAL;
1106 
1107 	if (mode == MPOL_DEFAULT)
1108 		flags &= ~MPOL_MF_STRICT;
1109 
1110 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 	end = start + len;
1112 
1113 	if (end < start)
1114 		return -EINVAL;
1115 	if (end == start)
1116 		return 0;
1117 
1118 	new = mpol_new(mode, mode_flags, nmask);
1119 	if (IS_ERR(new))
1120 		return PTR_ERR(new);
1121 
1122 	/*
1123 	 * If we are using the default policy then operation
1124 	 * on discontinuous address spaces is okay after all
1125 	 */
1126 	if (!new)
1127 		flags |= MPOL_MF_DISCONTIG_OK;
1128 
1129 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130 		 start, start + len, mode, mode_flags,
1131 		 nmask ? nodes_addr(*nmask)[0] : -1);
1132 
1133 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1134 
1135 		err = migrate_prep();
1136 		if (err)
1137 			goto mpol_out;
1138 	}
1139 	{
1140 		NODEMASK_SCRATCH(scratch);
1141 		if (scratch) {
1142 			down_write(&mm->mmap_sem);
1143 			task_lock(current);
1144 			err = mpol_set_nodemask(new, nmask, scratch);
1145 			task_unlock(current);
1146 			if (err)
1147 				up_write(&mm->mmap_sem);
1148 		} else
1149 			err = -ENOMEM;
1150 		NODEMASK_SCRATCH_FREE(scratch);
1151 	}
1152 	if (err)
1153 		goto mpol_out;
1154 
1155 	vma = check_range(mm, start, end, nmask,
1156 			  flags | MPOL_MF_INVERT, &pagelist);
1157 
1158 	err = PTR_ERR(vma);
1159 	if (!IS_ERR(vma)) {
1160 		int nr_failed = 0;
1161 
1162 		err = mbind_range(mm, start, end, new);
1163 
1164 		if (!list_empty(&pagelist)) {
1165 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1166 						(unsigned long)vma,
1167 						false, true);
1168 			if (nr_failed)
1169 				putback_lru_pages(&pagelist);
1170 		}
1171 
1172 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173 			err = -EIO;
1174 	} else
1175 		putback_lru_pages(&pagelist);
1176 
1177 	up_write(&mm->mmap_sem);
1178  mpol_out:
1179 	mpol_put(new);
1180 	return err;
1181 }
1182 
1183 /*
1184  * User space interface with variable sized bitmaps for nodelists.
1185  */
1186 
1187 /* Copy a node mask from user space. */
1188 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189 		     unsigned long maxnode)
1190 {
1191 	unsigned long k;
1192 	unsigned long nlongs;
1193 	unsigned long endmask;
1194 
1195 	--maxnode;
1196 	nodes_clear(*nodes);
1197 	if (maxnode == 0 || !nmask)
1198 		return 0;
1199 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200 		return -EINVAL;
1201 
1202 	nlongs = BITS_TO_LONGS(maxnode);
1203 	if ((maxnode % BITS_PER_LONG) == 0)
1204 		endmask = ~0UL;
1205 	else
1206 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1207 
1208 	/* When the user specified more nodes than supported just check
1209 	   if the non supported part is all zero. */
1210 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211 		if (nlongs > PAGE_SIZE/sizeof(long))
1212 			return -EINVAL;
1213 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214 			unsigned long t;
1215 			if (get_user(t, nmask + k))
1216 				return -EFAULT;
1217 			if (k == nlongs - 1) {
1218 				if (t & endmask)
1219 					return -EINVAL;
1220 			} else if (t)
1221 				return -EINVAL;
1222 		}
1223 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224 		endmask = ~0UL;
1225 	}
1226 
1227 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228 		return -EFAULT;
1229 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1230 	return 0;
1231 }
1232 
1233 /* Copy a kernel node mask to user space */
1234 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235 			      nodemask_t *nodes)
1236 {
1237 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1239 
1240 	if (copy > nbytes) {
1241 		if (copy > PAGE_SIZE)
1242 			return -EINVAL;
1243 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244 			return -EFAULT;
1245 		copy = nbytes;
1246 	}
1247 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1248 }
1249 
1250 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251 		unsigned long, mode, unsigned long __user *, nmask,
1252 		unsigned long, maxnode, unsigned, flags)
1253 {
1254 	nodemask_t nodes;
1255 	int err;
1256 	unsigned short mode_flags;
1257 
1258 	mode_flags = mode & MPOL_MODE_FLAGS;
1259 	mode &= ~MPOL_MODE_FLAGS;
1260 	if (mode >= MPOL_MAX)
1261 		return -EINVAL;
1262 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1264 		return -EINVAL;
1265 	err = get_nodes(&nodes, nmask, maxnode);
1266 	if (err)
1267 		return err;
1268 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1269 }
1270 
1271 /* Set the process memory policy */
1272 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273 		unsigned long, maxnode)
1274 {
1275 	int err;
1276 	nodemask_t nodes;
1277 	unsigned short flags;
1278 
1279 	flags = mode & MPOL_MODE_FLAGS;
1280 	mode &= ~MPOL_MODE_FLAGS;
1281 	if ((unsigned int)mode >= MPOL_MAX)
1282 		return -EINVAL;
1283 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284 		return -EINVAL;
1285 	err = get_nodes(&nodes, nmask, maxnode);
1286 	if (err)
1287 		return err;
1288 	return do_set_mempolicy(mode, flags, &nodes);
1289 }
1290 
1291 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292 		const unsigned long __user *, old_nodes,
1293 		const unsigned long __user *, new_nodes)
1294 {
1295 	const struct cred *cred = current_cred(), *tcred;
1296 	struct mm_struct *mm = NULL;
1297 	struct task_struct *task;
1298 	nodemask_t task_nodes;
1299 	int err;
1300 	nodemask_t *old;
1301 	nodemask_t *new;
1302 	NODEMASK_SCRATCH(scratch);
1303 
1304 	if (!scratch)
1305 		return -ENOMEM;
1306 
1307 	old = &scratch->mask1;
1308 	new = &scratch->mask2;
1309 
1310 	err = get_nodes(old, old_nodes, maxnode);
1311 	if (err)
1312 		goto out;
1313 
1314 	err = get_nodes(new, new_nodes, maxnode);
1315 	if (err)
1316 		goto out;
1317 
1318 	/* Find the mm_struct */
1319 	rcu_read_lock();
1320 	task = pid ? find_task_by_vpid(pid) : current;
1321 	if (!task) {
1322 		rcu_read_unlock();
1323 		err = -ESRCH;
1324 		goto out;
1325 	}
1326 	get_task_struct(task);
1327 
1328 	err = -EINVAL;
1329 
1330 	/*
1331 	 * Check if this process has the right to modify the specified
1332 	 * process. The right exists if the process has administrative
1333 	 * capabilities, superuser privileges or the same
1334 	 * userid as the target process.
1335 	 */
1336 	tcred = __task_cred(task);
1337 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1338 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1339 	    !capable(CAP_SYS_NICE)) {
1340 		rcu_read_unlock();
1341 		err = -EPERM;
1342 		goto out_put;
1343 	}
1344 	rcu_read_unlock();
1345 
1346 	task_nodes = cpuset_mems_allowed(task);
1347 	/* Is the user allowed to access the target nodes? */
1348 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1349 		err = -EPERM;
1350 		goto out_put;
1351 	}
1352 
1353 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1354 		err = -EINVAL;
1355 		goto out_put;
1356 	}
1357 
1358 	err = security_task_movememory(task);
1359 	if (err)
1360 		goto out_put;
1361 
1362 	mm = get_task_mm(task);
1363 	put_task_struct(task);
1364 
1365 	if (!mm) {
1366 		err = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	err = do_migrate_pages(mm, old, new,
1371 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1372 
1373 	mmput(mm);
1374 out:
1375 	NODEMASK_SCRATCH_FREE(scratch);
1376 
1377 	return err;
1378 
1379 out_put:
1380 	put_task_struct(task);
1381 	goto out;
1382 
1383 }
1384 
1385 
1386 /* Retrieve NUMA policy */
1387 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1388 		unsigned long __user *, nmask, unsigned long, maxnode,
1389 		unsigned long, addr, unsigned long, flags)
1390 {
1391 	int err;
1392 	int uninitialized_var(pval);
1393 	nodemask_t nodes;
1394 
1395 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1396 		return -EINVAL;
1397 
1398 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1399 
1400 	if (err)
1401 		return err;
1402 
1403 	if (policy && put_user(pval, policy))
1404 		return -EFAULT;
1405 
1406 	if (nmask)
1407 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1408 
1409 	return err;
1410 }
1411 
1412 #ifdef CONFIG_COMPAT
1413 
1414 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1415 				     compat_ulong_t __user *nmask,
1416 				     compat_ulong_t maxnode,
1417 				     compat_ulong_t addr, compat_ulong_t flags)
1418 {
1419 	long err;
1420 	unsigned long __user *nm = NULL;
1421 	unsigned long nr_bits, alloc_size;
1422 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1423 
1424 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1425 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1426 
1427 	if (nmask)
1428 		nm = compat_alloc_user_space(alloc_size);
1429 
1430 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1431 
1432 	if (!err && nmask) {
1433 		unsigned long copy_size;
1434 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1435 		err = copy_from_user(bm, nm, copy_size);
1436 		/* ensure entire bitmap is zeroed */
1437 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1438 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1439 	}
1440 
1441 	return err;
1442 }
1443 
1444 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1445 				     compat_ulong_t maxnode)
1446 {
1447 	long err = 0;
1448 	unsigned long __user *nm = NULL;
1449 	unsigned long nr_bits, alloc_size;
1450 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1451 
1452 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1453 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1454 
1455 	if (nmask) {
1456 		err = compat_get_bitmap(bm, nmask, nr_bits);
1457 		nm = compat_alloc_user_space(alloc_size);
1458 		err |= copy_to_user(nm, bm, alloc_size);
1459 	}
1460 
1461 	if (err)
1462 		return -EFAULT;
1463 
1464 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1465 }
1466 
1467 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1468 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1469 			     compat_ulong_t maxnode, compat_ulong_t flags)
1470 {
1471 	long err = 0;
1472 	unsigned long __user *nm = NULL;
1473 	unsigned long nr_bits, alloc_size;
1474 	nodemask_t bm;
1475 
1476 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1477 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1478 
1479 	if (nmask) {
1480 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1481 		nm = compat_alloc_user_space(alloc_size);
1482 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1483 	}
1484 
1485 	if (err)
1486 		return -EFAULT;
1487 
1488 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1489 }
1490 
1491 #endif
1492 
1493 /*
1494  * get_vma_policy(@task, @vma, @addr)
1495  * @task - task for fallback if vma policy == default
1496  * @vma   - virtual memory area whose policy is sought
1497  * @addr  - address in @vma for shared policy lookup
1498  *
1499  * Returns effective policy for a VMA at specified address.
1500  * Falls back to @task or system default policy, as necessary.
1501  * Current or other task's task mempolicy and non-shared vma policies
1502  * are protected by the task's mmap_sem, which must be held for read by
1503  * the caller.
1504  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1505  * count--added by the get_policy() vm_op, as appropriate--to protect against
1506  * freeing by another task.  It is the caller's responsibility to free the
1507  * extra reference for shared policies.
1508  */
1509 struct mempolicy *get_vma_policy(struct task_struct *task,
1510 		struct vm_area_struct *vma, unsigned long addr)
1511 {
1512 	struct mempolicy *pol = task->mempolicy;
1513 
1514 	if (vma) {
1515 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1516 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1517 									addr);
1518 			if (vpol)
1519 				pol = vpol;
1520 		} else if (vma->vm_policy)
1521 			pol = vma->vm_policy;
1522 	}
1523 	if (!pol)
1524 		pol = &default_policy;
1525 	return pol;
1526 }
1527 
1528 /*
1529  * Return a nodemask representing a mempolicy for filtering nodes for
1530  * page allocation
1531  */
1532 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1533 {
1534 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1535 	if (unlikely(policy->mode == MPOL_BIND) &&
1536 			gfp_zone(gfp) >= policy_zone &&
1537 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1538 		return &policy->v.nodes;
1539 
1540 	return NULL;
1541 }
1542 
1543 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1544 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1545 	int nd)
1546 {
1547 	switch (policy->mode) {
1548 	case MPOL_PREFERRED:
1549 		if (!(policy->flags & MPOL_F_LOCAL))
1550 			nd = policy->v.preferred_node;
1551 		break;
1552 	case MPOL_BIND:
1553 		/*
1554 		 * Normally, MPOL_BIND allocations are node-local within the
1555 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1556 		 * current node isn't part of the mask, we use the zonelist for
1557 		 * the first node in the mask instead.
1558 		 */
1559 		if (unlikely(gfp & __GFP_THISNODE) &&
1560 				unlikely(!node_isset(nd, policy->v.nodes)))
1561 			nd = first_node(policy->v.nodes);
1562 		break;
1563 	default:
1564 		BUG();
1565 	}
1566 	return node_zonelist(nd, gfp);
1567 }
1568 
1569 /* Do dynamic interleaving for a process */
1570 static unsigned interleave_nodes(struct mempolicy *policy)
1571 {
1572 	unsigned nid, next;
1573 	struct task_struct *me = current;
1574 
1575 	nid = me->il_next;
1576 	next = next_node(nid, policy->v.nodes);
1577 	if (next >= MAX_NUMNODES)
1578 		next = first_node(policy->v.nodes);
1579 	if (next < MAX_NUMNODES)
1580 		me->il_next = next;
1581 	return nid;
1582 }
1583 
1584 /*
1585  * Depending on the memory policy provide a node from which to allocate the
1586  * next slab entry.
1587  * @policy must be protected by freeing by the caller.  If @policy is
1588  * the current task's mempolicy, this protection is implicit, as only the
1589  * task can change it's policy.  The system default policy requires no
1590  * such protection.
1591  */
1592 unsigned slab_node(struct mempolicy *policy)
1593 {
1594 	if (!policy || policy->flags & MPOL_F_LOCAL)
1595 		return numa_node_id();
1596 
1597 	switch (policy->mode) {
1598 	case MPOL_PREFERRED:
1599 		/*
1600 		 * handled MPOL_F_LOCAL above
1601 		 */
1602 		return policy->v.preferred_node;
1603 
1604 	case MPOL_INTERLEAVE:
1605 		return interleave_nodes(policy);
1606 
1607 	case MPOL_BIND: {
1608 		/*
1609 		 * Follow bind policy behavior and start allocation at the
1610 		 * first node.
1611 		 */
1612 		struct zonelist *zonelist;
1613 		struct zone *zone;
1614 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1615 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1616 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1617 							&policy->v.nodes,
1618 							&zone);
1619 		return zone ? zone->node : numa_node_id();
1620 	}
1621 
1622 	default:
1623 		BUG();
1624 	}
1625 }
1626 
1627 /* Do static interleaving for a VMA with known offset. */
1628 static unsigned offset_il_node(struct mempolicy *pol,
1629 		struct vm_area_struct *vma, unsigned long off)
1630 {
1631 	unsigned nnodes = nodes_weight(pol->v.nodes);
1632 	unsigned target;
1633 	int c;
1634 	int nid = -1;
1635 
1636 	if (!nnodes)
1637 		return numa_node_id();
1638 	target = (unsigned int)off % nnodes;
1639 	c = 0;
1640 	do {
1641 		nid = next_node(nid, pol->v.nodes);
1642 		c++;
1643 	} while (c <= target);
1644 	return nid;
1645 }
1646 
1647 /* Determine a node number for interleave */
1648 static inline unsigned interleave_nid(struct mempolicy *pol,
1649 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1650 {
1651 	if (vma) {
1652 		unsigned long off;
1653 
1654 		/*
1655 		 * for small pages, there is no difference between
1656 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1657 		 * for huge pages, since vm_pgoff is in units of small
1658 		 * pages, we need to shift off the always 0 bits to get
1659 		 * a useful offset.
1660 		 */
1661 		BUG_ON(shift < PAGE_SHIFT);
1662 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1663 		off += (addr - vma->vm_start) >> shift;
1664 		return offset_il_node(pol, vma, off);
1665 	} else
1666 		return interleave_nodes(pol);
1667 }
1668 
1669 /*
1670  * Return the bit number of a random bit set in the nodemask.
1671  * (returns -1 if nodemask is empty)
1672  */
1673 int node_random(const nodemask_t *maskp)
1674 {
1675 	int w, bit = -1;
1676 
1677 	w = nodes_weight(*maskp);
1678 	if (w)
1679 		bit = bitmap_ord_to_pos(maskp->bits,
1680 			get_random_int() % w, MAX_NUMNODES);
1681 	return bit;
1682 }
1683 
1684 #ifdef CONFIG_HUGETLBFS
1685 /*
1686  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1687  * @vma = virtual memory area whose policy is sought
1688  * @addr = address in @vma for shared policy lookup and interleave policy
1689  * @gfp_flags = for requested zone
1690  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1691  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1692  *
1693  * Returns a zonelist suitable for a huge page allocation and a pointer
1694  * to the struct mempolicy for conditional unref after allocation.
1695  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1696  * @nodemask for filtering the zonelist.
1697  *
1698  * Must be protected by get_mems_allowed()
1699  */
1700 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1701 				gfp_t gfp_flags, struct mempolicy **mpol,
1702 				nodemask_t **nodemask)
1703 {
1704 	struct zonelist *zl;
1705 
1706 	*mpol = get_vma_policy(current, vma, addr);
1707 	*nodemask = NULL;	/* assume !MPOL_BIND */
1708 
1709 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1710 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1711 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1712 	} else {
1713 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1714 		if ((*mpol)->mode == MPOL_BIND)
1715 			*nodemask = &(*mpol)->v.nodes;
1716 	}
1717 	return zl;
1718 }
1719 
1720 /*
1721  * init_nodemask_of_mempolicy
1722  *
1723  * If the current task's mempolicy is "default" [NULL], return 'false'
1724  * to indicate default policy.  Otherwise, extract the policy nodemask
1725  * for 'bind' or 'interleave' policy into the argument nodemask, or
1726  * initialize the argument nodemask to contain the single node for
1727  * 'preferred' or 'local' policy and return 'true' to indicate presence
1728  * of non-default mempolicy.
1729  *
1730  * We don't bother with reference counting the mempolicy [mpol_get/put]
1731  * because the current task is examining it's own mempolicy and a task's
1732  * mempolicy is only ever changed by the task itself.
1733  *
1734  * N.B., it is the caller's responsibility to free a returned nodemask.
1735  */
1736 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1737 {
1738 	struct mempolicy *mempolicy;
1739 	int nid;
1740 
1741 	if (!(mask && current->mempolicy))
1742 		return false;
1743 
1744 	task_lock(current);
1745 	mempolicy = current->mempolicy;
1746 	switch (mempolicy->mode) {
1747 	case MPOL_PREFERRED:
1748 		if (mempolicy->flags & MPOL_F_LOCAL)
1749 			nid = numa_node_id();
1750 		else
1751 			nid = mempolicy->v.preferred_node;
1752 		init_nodemask_of_node(mask, nid);
1753 		break;
1754 
1755 	case MPOL_BIND:
1756 		/* Fall through */
1757 	case MPOL_INTERLEAVE:
1758 		*mask =  mempolicy->v.nodes;
1759 		break;
1760 
1761 	default:
1762 		BUG();
1763 	}
1764 	task_unlock(current);
1765 
1766 	return true;
1767 }
1768 #endif
1769 
1770 /*
1771  * mempolicy_nodemask_intersects
1772  *
1773  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1774  * policy.  Otherwise, check for intersection between mask and the policy
1775  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1776  * policy, always return true since it may allocate elsewhere on fallback.
1777  *
1778  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1779  */
1780 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1781 					const nodemask_t *mask)
1782 {
1783 	struct mempolicy *mempolicy;
1784 	bool ret = true;
1785 
1786 	if (!mask)
1787 		return ret;
1788 	task_lock(tsk);
1789 	mempolicy = tsk->mempolicy;
1790 	if (!mempolicy)
1791 		goto out;
1792 
1793 	switch (mempolicy->mode) {
1794 	case MPOL_PREFERRED:
1795 		/*
1796 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1797 		 * allocate from, they may fallback to other nodes when oom.
1798 		 * Thus, it's possible for tsk to have allocated memory from
1799 		 * nodes in mask.
1800 		 */
1801 		break;
1802 	case MPOL_BIND:
1803 	case MPOL_INTERLEAVE:
1804 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1805 		break;
1806 	default:
1807 		BUG();
1808 	}
1809 out:
1810 	task_unlock(tsk);
1811 	return ret;
1812 }
1813 
1814 /* Allocate a page in interleaved policy.
1815    Own path because it needs to do special accounting. */
1816 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1817 					unsigned nid)
1818 {
1819 	struct zonelist *zl;
1820 	struct page *page;
1821 
1822 	zl = node_zonelist(nid, gfp);
1823 	page = __alloc_pages(gfp, order, zl);
1824 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1825 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1826 	return page;
1827 }
1828 
1829 /**
1830  * 	alloc_pages_vma	- Allocate a page for a VMA.
1831  *
1832  * 	@gfp:
1833  *      %GFP_USER    user allocation.
1834  *      %GFP_KERNEL  kernel allocations,
1835  *      %GFP_HIGHMEM highmem/user allocations,
1836  *      %GFP_FS      allocation should not call back into a file system.
1837  *      %GFP_ATOMIC  don't sleep.
1838  *
1839  *	@order:Order of the GFP allocation.
1840  * 	@vma:  Pointer to VMA or NULL if not available.
1841  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1842  *
1843  * 	This function allocates a page from the kernel page pool and applies
1844  *	a NUMA policy associated with the VMA or the current process.
1845  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1846  *	mm_struct of the VMA to prevent it from going away. Should be used for
1847  *	all allocations for pages that will be mapped into
1848  * 	user space. Returns NULL when no page can be allocated.
1849  *
1850  *	Should be called with the mm_sem of the vma hold.
1851  */
1852 struct page *
1853 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1854 		unsigned long addr, int node)
1855 {
1856 	struct mempolicy *pol;
1857 	struct zonelist *zl;
1858 	struct page *page;
1859 	unsigned int cpuset_mems_cookie;
1860 
1861 retry_cpuset:
1862 	pol = get_vma_policy(current, vma, addr);
1863 	cpuset_mems_cookie = get_mems_allowed();
1864 
1865 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1866 		unsigned nid;
1867 
1868 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1869 		mpol_cond_put(pol);
1870 		page = alloc_page_interleave(gfp, order, nid);
1871 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1872 			goto retry_cpuset;
1873 
1874 		return page;
1875 	}
1876 	zl = policy_zonelist(gfp, pol, node);
1877 	if (unlikely(mpol_needs_cond_ref(pol))) {
1878 		/*
1879 		 * slow path: ref counted shared policy
1880 		 */
1881 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1882 						zl, policy_nodemask(gfp, pol));
1883 		__mpol_put(pol);
1884 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1885 			goto retry_cpuset;
1886 		return page;
1887 	}
1888 	/*
1889 	 * fast path:  default or task policy
1890 	 */
1891 	page = __alloc_pages_nodemask(gfp, order, zl,
1892 				      policy_nodemask(gfp, pol));
1893 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1894 		goto retry_cpuset;
1895 	return page;
1896 }
1897 
1898 /**
1899  * 	alloc_pages_current - Allocate pages.
1900  *
1901  *	@gfp:
1902  *		%GFP_USER   user allocation,
1903  *      	%GFP_KERNEL kernel allocation,
1904  *      	%GFP_HIGHMEM highmem allocation,
1905  *      	%GFP_FS     don't call back into a file system.
1906  *      	%GFP_ATOMIC don't sleep.
1907  *	@order: Power of two of allocation size in pages. 0 is a single page.
1908  *
1909  *	Allocate a page from the kernel page pool.  When not in
1910  *	interrupt context and apply the current process NUMA policy.
1911  *	Returns NULL when no page can be allocated.
1912  *
1913  *	Don't call cpuset_update_task_memory_state() unless
1914  *	1) it's ok to take cpuset_sem (can WAIT), and
1915  *	2) allocating for current task (not interrupt).
1916  */
1917 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1918 {
1919 	struct mempolicy *pol = current->mempolicy;
1920 	struct page *page;
1921 	unsigned int cpuset_mems_cookie;
1922 
1923 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1924 		pol = &default_policy;
1925 
1926 retry_cpuset:
1927 	cpuset_mems_cookie = get_mems_allowed();
1928 
1929 	/*
1930 	 * No reference counting needed for current->mempolicy
1931 	 * nor system default_policy
1932 	 */
1933 	if (pol->mode == MPOL_INTERLEAVE)
1934 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1935 	else
1936 		page = __alloc_pages_nodemask(gfp, order,
1937 				policy_zonelist(gfp, pol, numa_node_id()),
1938 				policy_nodemask(gfp, pol));
1939 
1940 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1941 		goto retry_cpuset;
1942 
1943 	return page;
1944 }
1945 EXPORT_SYMBOL(alloc_pages_current);
1946 
1947 /*
1948  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1949  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1950  * with the mems_allowed returned by cpuset_mems_allowed().  This
1951  * keeps mempolicies cpuset relative after its cpuset moves.  See
1952  * further kernel/cpuset.c update_nodemask().
1953  *
1954  * current's mempolicy may be rebinded by the other task(the task that changes
1955  * cpuset's mems), so we needn't do rebind work for current task.
1956  */
1957 
1958 /* Slow path of a mempolicy duplicate */
1959 struct mempolicy *__mpol_dup(struct mempolicy *old)
1960 {
1961 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1962 
1963 	if (!new)
1964 		return ERR_PTR(-ENOMEM);
1965 
1966 	/* task's mempolicy is protected by alloc_lock */
1967 	if (old == current->mempolicy) {
1968 		task_lock(current);
1969 		*new = *old;
1970 		task_unlock(current);
1971 	} else
1972 		*new = *old;
1973 
1974 	rcu_read_lock();
1975 	if (current_cpuset_is_being_rebound()) {
1976 		nodemask_t mems = cpuset_mems_allowed(current);
1977 		if (new->flags & MPOL_F_REBINDING)
1978 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1979 		else
1980 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1981 	}
1982 	rcu_read_unlock();
1983 	atomic_set(&new->refcnt, 1);
1984 	return new;
1985 }
1986 
1987 /*
1988  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1989  * eliminate the * MPOL_F_* flags that require conditional ref and
1990  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1991  * after return.  Use the returned value.
1992  *
1993  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1994  * policy lookup, even if the policy needs/has extra ref on lookup.
1995  * shmem_readahead needs this.
1996  */
1997 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1998 						struct mempolicy *frompol)
1999 {
2000 	if (!mpol_needs_cond_ref(frompol))
2001 		return frompol;
2002 
2003 	*tompol = *frompol;
2004 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2005 	__mpol_put(frompol);
2006 	return tompol;
2007 }
2008 
2009 /* Slow path of a mempolicy comparison */
2010 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2011 {
2012 	if (!a || !b)
2013 		return false;
2014 	if (a->mode != b->mode)
2015 		return false;
2016 	if (a->flags != b->flags)
2017 		return false;
2018 	if (mpol_store_user_nodemask(a))
2019 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2020 			return false;
2021 
2022 	switch (a->mode) {
2023 	case MPOL_BIND:
2024 		/* Fall through */
2025 	case MPOL_INTERLEAVE:
2026 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2027 	case MPOL_PREFERRED:
2028 		return a->v.preferred_node == b->v.preferred_node;
2029 	default:
2030 		BUG();
2031 		return false;
2032 	}
2033 }
2034 
2035 /*
2036  * Shared memory backing store policy support.
2037  *
2038  * Remember policies even when nobody has shared memory mapped.
2039  * The policies are kept in Red-Black tree linked from the inode.
2040  * They are protected by the sp->lock spinlock, which should be held
2041  * for any accesses to the tree.
2042  */
2043 
2044 /* lookup first element intersecting start-end */
2045 /* Caller holds sp->lock */
2046 static struct sp_node *
2047 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2048 {
2049 	struct rb_node *n = sp->root.rb_node;
2050 
2051 	while (n) {
2052 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2053 
2054 		if (start >= p->end)
2055 			n = n->rb_right;
2056 		else if (end <= p->start)
2057 			n = n->rb_left;
2058 		else
2059 			break;
2060 	}
2061 	if (!n)
2062 		return NULL;
2063 	for (;;) {
2064 		struct sp_node *w = NULL;
2065 		struct rb_node *prev = rb_prev(n);
2066 		if (!prev)
2067 			break;
2068 		w = rb_entry(prev, struct sp_node, nd);
2069 		if (w->end <= start)
2070 			break;
2071 		n = prev;
2072 	}
2073 	return rb_entry(n, struct sp_node, nd);
2074 }
2075 
2076 /* Insert a new shared policy into the list. */
2077 /* Caller holds sp->lock */
2078 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2079 {
2080 	struct rb_node **p = &sp->root.rb_node;
2081 	struct rb_node *parent = NULL;
2082 	struct sp_node *nd;
2083 
2084 	while (*p) {
2085 		parent = *p;
2086 		nd = rb_entry(parent, struct sp_node, nd);
2087 		if (new->start < nd->start)
2088 			p = &(*p)->rb_left;
2089 		else if (new->end > nd->end)
2090 			p = &(*p)->rb_right;
2091 		else
2092 			BUG();
2093 	}
2094 	rb_link_node(&new->nd, parent, p);
2095 	rb_insert_color(&new->nd, &sp->root);
2096 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2097 		 new->policy ? new->policy->mode : 0);
2098 }
2099 
2100 /* Find shared policy intersecting idx */
2101 struct mempolicy *
2102 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2103 {
2104 	struct mempolicy *pol = NULL;
2105 	struct sp_node *sn;
2106 
2107 	if (!sp->root.rb_node)
2108 		return NULL;
2109 	spin_lock(&sp->lock);
2110 	sn = sp_lookup(sp, idx, idx+1);
2111 	if (sn) {
2112 		mpol_get(sn->policy);
2113 		pol = sn->policy;
2114 	}
2115 	spin_unlock(&sp->lock);
2116 	return pol;
2117 }
2118 
2119 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2120 {
2121 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2122 	rb_erase(&n->nd, &sp->root);
2123 	mpol_put(n->policy);
2124 	kmem_cache_free(sn_cache, n);
2125 }
2126 
2127 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2128 				struct mempolicy *pol)
2129 {
2130 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2131 
2132 	if (!n)
2133 		return NULL;
2134 	n->start = start;
2135 	n->end = end;
2136 	mpol_get(pol);
2137 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2138 	n->policy = pol;
2139 	return n;
2140 }
2141 
2142 /* Replace a policy range. */
2143 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2144 				 unsigned long end, struct sp_node *new)
2145 {
2146 	struct sp_node *n, *new2 = NULL;
2147 
2148 restart:
2149 	spin_lock(&sp->lock);
2150 	n = sp_lookup(sp, start, end);
2151 	/* Take care of old policies in the same range. */
2152 	while (n && n->start < end) {
2153 		struct rb_node *next = rb_next(&n->nd);
2154 		if (n->start >= start) {
2155 			if (n->end <= end)
2156 				sp_delete(sp, n);
2157 			else
2158 				n->start = end;
2159 		} else {
2160 			/* Old policy spanning whole new range. */
2161 			if (n->end > end) {
2162 				if (!new2) {
2163 					spin_unlock(&sp->lock);
2164 					new2 = sp_alloc(end, n->end, n->policy);
2165 					if (!new2)
2166 						return -ENOMEM;
2167 					goto restart;
2168 				}
2169 				n->end = start;
2170 				sp_insert(sp, new2);
2171 				new2 = NULL;
2172 				break;
2173 			} else
2174 				n->end = start;
2175 		}
2176 		if (!next)
2177 			break;
2178 		n = rb_entry(next, struct sp_node, nd);
2179 	}
2180 	if (new)
2181 		sp_insert(sp, new);
2182 	spin_unlock(&sp->lock);
2183 	if (new2) {
2184 		mpol_put(new2->policy);
2185 		kmem_cache_free(sn_cache, new2);
2186 	}
2187 	return 0;
2188 }
2189 
2190 /**
2191  * mpol_shared_policy_init - initialize shared policy for inode
2192  * @sp: pointer to inode shared policy
2193  * @mpol:  struct mempolicy to install
2194  *
2195  * Install non-NULL @mpol in inode's shared policy rb-tree.
2196  * On entry, the current task has a reference on a non-NULL @mpol.
2197  * This must be released on exit.
2198  * This is called at get_inode() calls and we can use GFP_KERNEL.
2199  */
2200 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2201 {
2202 	int ret;
2203 
2204 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2205 	spin_lock_init(&sp->lock);
2206 
2207 	if (mpol) {
2208 		struct vm_area_struct pvma;
2209 		struct mempolicy *new;
2210 		NODEMASK_SCRATCH(scratch);
2211 
2212 		if (!scratch)
2213 			goto put_mpol;
2214 		/* contextualize the tmpfs mount point mempolicy */
2215 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2216 		if (IS_ERR(new))
2217 			goto free_scratch; /* no valid nodemask intersection */
2218 
2219 		task_lock(current);
2220 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2221 		task_unlock(current);
2222 		if (ret)
2223 			goto put_new;
2224 
2225 		/* Create pseudo-vma that contains just the policy */
2226 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2227 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2228 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2229 
2230 put_new:
2231 		mpol_put(new);			/* drop initial ref */
2232 free_scratch:
2233 		NODEMASK_SCRATCH_FREE(scratch);
2234 put_mpol:
2235 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2236 	}
2237 }
2238 
2239 int mpol_set_shared_policy(struct shared_policy *info,
2240 			struct vm_area_struct *vma, struct mempolicy *npol)
2241 {
2242 	int err;
2243 	struct sp_node *new = NULL;
2244 	unsigned long sz = vma_pages(vma);
2245 
2246 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2247 		 vma->vm_pgoff,
2248 		 sz, npol ? npol->mode : -1,
2249 		 npol ? npol->flags : -1,
2250 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2251 
2252 	if (npol) {
2253 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2254 		if (!new)
2255 			return -ENOMEM;
2256 	}
2257 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2258 	if (err && new)
2259 		kmem_cache_free(sn_cache, new);
2260 	return err;
2261 }
2262 
2263 /* Free a backing policy store on inode delete. */
2264 void mpol_free_shared_policy(struct shared_policy *p)
2265 {
2266 	struct sp_node *n;
2267 	struct rb_node *next;
2268 
2269 	if (!p->root.rb_node)
2270 		return;
2271 	spin_lock(&p->lock);
2272 	next = rb_first(&p->root);
2273 	while (next) {
2274 		n = rb_entry(next, struct sp_node, nd);
2275 		next = rb_next(&n->nd);
2276 		rb_erase(&n->nd, &p->root);
2277 		mpol_put(n->policy);
2278 		kmem_cache_free(sn_cache, n);
2279 	}
2280 	spin_unlock(&p->lock);
2281 }
2282 
2283 /* assumes fs == KERNEL_DS */
2284 void __init numa_policy_init(void)
2285 {
2286 	nodemask_t interleave_nodes;
2287 	unsigned long largest = 0;
2288 	int nid, prefer = 0;
2289 
2290 	policy_cache = kmem_cache_create("numa_policy",
2291 					 sizeof(struct mempolicy),
2292 					 0, SLAB_PANIC, NULL);
2293 
2294 	sn_cache = kmem_cache_create("shared_policy_node",
2295 				     sizeof(struct sp_node),
2296 				     0, SLAB_PANIC, NULL);
2297 
2298 	/*
2299 	 * Set interleaving policy for system init. Interleaving is only
2300 	 * enabled across suitably sized nodes (default is >= 16MB), or
2301 	 * fall back to the largest node if they're all smaller.
2302 	 */
2303 	nodes_clear(interleave_nodes);
2304 	for_each_node_state(nid, N_HIGH_MEMORY) {
2305 		unsigned long total_pages = node_present_pages(nid);
2306 
2307 		/* Preserve the largest node */
2308 		if (largest < total_pages) {
2309 			largest = total_pages;
2310 			prefer = nid;
2311 		}
2312 
2313 		/* Interleave this node? */
2314 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2315 			node_set(nid, interleave_nodes);
2316 	}
2317 
2318 	/* All too small, use the largest */
2319 	if (unlikely(nodes_empty(interleave_nodes)))
2320 		node_set(prefer, interleave_nodes);
2321 
2322 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2323 		printk("numa_policy_init: interleaving failed\n");
2324 }
2325 
2326 /* Reset policy of current process to default */
2327 void numa_default_policy(void)
2328 {
2329 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2330 }
2331 
2332 /*
2333  * Parse and format mempolicy from/to strings
2334  */
2335 
2336 /*
2337  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2338  * Used only for mpol_parse_str() and mpol_to_str()
2339  */
2340 #define MPOL_LOCAL MPOL_MAX
2341 static const char * const policy_modes[] =
2342 {
2343 	[MPOL_DEFAULT]    = "default",
2344 	[MPOL_PREFERRED]  = "prefer",
2345 	[MPOL_BIND]       = "bind",
2346 	[MPOL_INTERLEAVE] = "interleave",
2347 	[MPOL_LOCAL]      = "local"
2348 };
2349 
2350 
2351 #ifdef CONFIG_TMPFS
2352 /**
2353  * mpol_parse_str - parse string to mempolicy
2354  * @str:  string containing mempolicy to parse
2355  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2356  * @no_context:  flag whether to "contextualize" the mempolicy
2357  *
2358  * Format of input:
2359  *	<mode>[=<flags>][:<nodelist>]
2360  *
2361  * if @no_context is true, save the input nodemask in w.user_nodemask in
2362  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2363  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2364  * mount option.  Note that if 'static' or 'relative' mode flags were
2365  * specified, the input nodemask will already have been saved.  Saving
2366  * it again is redundant, but safe.
2367  *
2368  * On success, returns 0, else 1
2369  */
2370 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2371 {
2372 	struct mempolicy *new = NULL;
2373 	unsigned short mode;
2374 	unsigned short uninitialized_var(mode_flags);
2375 	nodemask_t nodes;
2376 	char *nodelist = strchr(str, ':');
2377 	char *flags = strchr(str, '=');
2378 	int err = 1;
2379 
2380 	if (nodelist) {
2381 		/* NUL-terminate mode or flags string */
2382 		*nodelist++ = '\0';
2383 		if (nodelist_parse(nodelist, nodes))
2384 			goto out;
2385 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2386 			goto out;
2387 	} else
2388 		nodes_clear(nodes);
2389 
2390 	if (flags)
2391 		*flags++ = '\0';	/* terminate mode string */
2392 
2393 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2394 		if (!strcmp(str, policy_modes[mode])) {
2395 			break;
2396 		}
2397 	}
2398 	if (mode > MPOL_LOCAL)
2399 		goto out;
2400 
2401 	switch (mode) {
2402 	case MPOL_PREFERRED:
2403 		/*
2404 		 * Insist on a nodelist of one node only
2405 		 */
2406 		if (nodelist) {
2407 			char *rest = nodelist;
2408 			while (isdigit(*rest))
2409 				rest++;
2410 			if (*rest)
2411 				goto out;
2412 		}
2413 		break;
2414 	case MPOL_INTERLEAVE:
2415 		/*
2416 		 * Default to online nodes with memory if no nodelist
2417 		 */
2418 		if (!nodelist)
2419 			nodes = node_states[N_HIGH_MEMORY];
2420 		break;
2421 	case MPOL_LOCAL:
2422 		/*
2423 		 * Don't allow a nodelist;  mpol_new() checks flags
2424 		 */
2425 		if (nodelist)
2426 			goto out;
2427 		mode = MPOL_PREFERRED;
2428 		break;
2429 	case MPOL_DEFAULT:
2430 		/*
2431 		 * Insist on a empty nodelist
2432 		 */
2433 		if (!nodelist)
2434 			err = 0;
2435 		goto out;
2436 	case MPOL_BIND:
2437 		/*
2438 		 * Insist on a nodelist
2439 		 */
2440 		if (!nodelist)
2441 			goto out;
2442 	}
2443 
2444 	mode_flags = 0;
2445 	if (flags) {
2446 		/*
2447 		 * Currently, we only support two mutually exclusive
2448 		 * mode flags.
2449 		 */
2450 		if (!strcmp(flags, "static"))
2451 			mode_flags |= MPOL_F_STATIC_NODES;
2452 		else if (!strcmp(flags, "relative"))
2453 			mode_flags |= MPOL_F_RELATIVE_NODES;
2454 		else
2455 			goto out;
2456 	}
2457 
2458 	new = mpol_new(mode, mode_flags, &nodes);
2459 	if (IS_ERR(new))
2460 		goto out;
2461 
2462 	if (no_context) {
2463 		/* save for contextualization */
2464 		new->w.user_nodemask = nodes;
2465 	} else {
2466 		int ret;
2467 		NODEMASK_SCRATCH(scratch);
2468 		if (scratch) {
2469 			task_lock(current);
2470 			ret = mpol_set_nodemask(new, &nodes, scratch);
2471 			task_unlock(current);
2472 		} else
2473 			ret = -ENOMEM;
2474 		NODEMASK_SCRATCH_FREE(scratch);
2475 		if (ret) {
2476 			mpol_put(new);
2477 			goto out;
2478 		}
2479 	}
2480 	err = 0;
2481 
2482 out:
2483 	/* Restore string for error message */
2484 	if (nodelist)
2485 		*--nodelist = ':';
2486 	if (flags)
2487 		*--flags = '=';
2488 	if (!err)
2489 		*mpol = new;
2490 	return err;
2491 }
2492 #endif /* CONFIG_TMPFS */
2493 
2494 /**
2495  * mpol_to_str - format a mempolicy structure for printing
2496  * @buffer:  to contain formatted mempolicy string
2497  * @maxlen:  length of @buffer
2498  * @pol:  pointer to mempolicy to be formatted
2499  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2500  *
2501  * Convert a mempolicy into a string.
2502  * Returns the number of characters in buffer (if positive)
2503  * or an error (negative)
2504  */
2505 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2506 {
2507 	char *p = buffer;
2508 	int l;
2509 	nodemask_t nodes;
2510 	unsigned short mode;
2511 	unsigned short flags = pol ? pol->flags : 0;
2512 
2513 	/*
2514 	 * Sanity check:  room for longest mode, flag and some nodes
2515 	 */
2516 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2517 
2518 	if (!pol || pol == &default_policy)
2519 		mode = MPOL_DEFAULT;
2520 	else
2521 		mode = pol->mode;
2522 
2523 	switch (mode) {
2524 	case MPOL_DEFAULT:
2525 		nodes_clear(nodes);
2526 		break;
2527 
2528 	case MPOL_PREFERRED:
2529 		nodes_clear(nodes);
2530 		if (flags & MPOL_F_LOCAL)
2531 			mode = MPOL_LOCAL;	/* pseudo-policy */
2532 		else
2533 			node_set(pol->v.preferred_node, nodes);
2534 		break;
2535 
2536 	case MPOL_BIND:
2537 		/* Fall through */
2538 	case MPOL_INTERLEAVE:
2539 		if (no_context)
2540 			nodes = pol->w.user_nodemask;
2541 		else
2542 			nodes = pol->v.nodes;
2543 		break;
2544 
2545 	default:
2546 		BUG();
2547 	}
2548 
2549 	l = strlen(policy_modes[mode]);
2550 	if (buffer + maxlen < p + l + 1)
2551 		return -ENOSPC;
2552 
2553 	strcpy(p, policy_modes[mode]);
2554 	p += l;
2555 
2556 	if (flags & MPOL_MODE_FLAGS) {
2557 		if (buffer + maxlen < p + 2)
2558 			return -ENOSPC;
2559 		*p++ = '=';
2560 
2561 		/*
2562 		 * Currently, the only defined flags are mutually exclusive
2563 		 */
2564 		if (flags & MPOL_F_STATIC_NODES)
2565 			p += snprintf(p, buffer + maxlen - p, "static");
2566 		else if (flags & MPOL_F_RELATIVE_NODES)
2567 			p += snprintf(p, buffer + maxlen - p, "relative");
2568 	}
2569 
2570 	if (!nodes_empty(nodes)) {
2571 		if (buffer + maxlen < p + 2)
2572 			return -ENOSPC;
2573 		*p++ = ':';
2574 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2575 	}
2576 	return p - buffer;
2577 }
2578