xref: /openbmc/linux/mm/mempolicy.c (revision 93dc544c)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95 
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
100 
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103 
104 /* Highest zone. An specific allocation for a zone below that is not
105    policied. */
106 enum zone_type policy_zone = 0;
107 
108 /*
109  * run-time system-wide default policy => local allocation
110  */
111 struct mempolicy default_policy = {
112 	.refcnt = ATOMIC_INIT(1), /* never free it */
113 	.mode = MPOL_PREFERRED,
114 	.flags = MPOL_F_LOCAL,
115 };
116 
117 static const struct mempolicy_operations {
118 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
119 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
120 } mpol_ops[MPOL_MAX];
121 
122 /* Check that the nodemask contains at least one populated zone */
123 static int is_valid_nodemask(const nodemask_t *nodemask)
124 {
125 	int nd, k;
126 
127 	/* Check that there is something useful in this mask */
128 	k = policy_zone;
129 
130 	for_each_node_mask(nd, *nodemask) {
131 		struct zone *z;
132 
133 		for (k = 0; k <= policy_zone; k++) {
134 			z = &NODE_DATA(nd)->node_zones[k];
135 			if (z->present_pages > 0)
136 				return 1;
137 		}
138 	}
139 
140 	return 0;
141 }
142 
143 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
144 {
145 	return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
146 }
147 
148 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
149 				   const nodemask_t *rel)
150 {
151 	nodemask_t tmp;
152 	nodes_fold(tmp, *orig, nodes_weight(*rel));
153 	nodes_onto(*ret, tmp, *rel);
154 }
155 
156 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
157 {
158 	if (nodes_empty(*nodes))
159 		return -EINVAL;
160 	pol->v.nodes = *nodes;
161 	return 0;
162 }
163 
164 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
165 {
166 	if (!nodes)
167 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
168 	else if (nodes_empty(*nodes))
169 		return -EINVAL;			/*  no allowed nodes */
170 	else
171 		pol->v.preferred_node = first_node(*nodes);
172 	return 0;
173 }
174 
175 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!is_valid_nodemask(nodes))
178 		return -EINVAL;
179 	pol->v.nodes = *nodes;
180 	return 0;
181 }
182 
183 /* Create a new policy */
184 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
185 				  nodemask_t *nodes)
186 {
187 	struct mempolicy *policy;
188 	nodemask_t cpuset_context_nmask;
189 	int ret;
190 
191 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
192 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
193 
194 	if (mode == MPOL_DEFAULT) {
195 		if (nodes && !nodes_empty(*nodes))
196 			return ERR_PTR(-EINVAL);
197 		return NULL;	/* simply delete any existing policy */
198 	}
199 	VM_BUG_ON(!nodes);
200 
201 	/*
202 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
203 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
204 	 * All other modes require a valid pointer to a non-empty nodemask.
205 	 */
206 	if (mode == MPOL_PREFERRED) {
207 		if (nodes_empty(*nodes)) {
208 			if (((flags & MPOL_F_STATIC_NODES) ||
209 			     (flags & MPOL_F_RELATIVE_NODES)))
210 				return ERR_PTR(-EINVAL);
211 			nodes = NULL;	/* flag local alloc */
212 		}
213 	} else if (nodes_empty(*nodes))
214 		return ERR_PTR(-EINVAL);
215 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
216 	if (!policy)
217 		return ERR_PTR(-ENOMEM);
218 	atomic_set(&policy->refcnt, 1);
219 	policy->mode = mode;
220 	policy->flags = flags;
221 
222 	if (nodes) {
223 		/*
224 		 * cpuset related setup doesn't apply to local allocation
225 		 */
226 		cpuset_update_task_memory_state();
227 		if (flags & MPOL_F_RELATIVE_NODES)
228 			mpol_relative_nodemask(&cpuset_context_nmask, nodes,
229 					       &cpuset_current_mems_allowed);
230 		else
231 			nodes_and(cpuset_context_nmask, *nodes,
232 				  cpuset_current_mems_allowed);
233 		if (mpol_store_user_nodemask(policy))
234 			policy->w.user_nodemask = *nodes;
235 		else
236 			policy->w.cpuset_mems_allowed =
237 						cpuset_mems_allowed(current);
238 	}
239 
240 	ret = mpol_ops[mode].create(policy,
241 				nodes ? &cpuset_context_nmask : NULL);
242 	if (ret < 0) {
243 		kmem_cache_free(policy_cache, policy);
244 		return ERR_PTR(ret);
245 	}
246 	return policy;
247 }
248 
249 /* Slow path of a mpol destructor. */
250 void __mpol_put(struct mempolicy *p)
251 {
252 	if (!atomic_dec_and_test(&p->refcnt))
253 		return;
254 	kmem_cache_free(policy_cache, p);
255 }
256 
257 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
258 {
259 }
260 
261 static void mpol_rebind_nodemask(struct mempolicy *pol,
262 				 const nodemask_t *nodes)
263 {
264 	nodemask_t tmp;
265 
266 	if (pol->flags & MPOL_F_STATIC_NODES)
267 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
268 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
269 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
270 	else {
271 		nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
272 			    *nodes);
273 		pol->w.cpuset_mems_allowed = *nodes;
274 	}
275 
276 	pol->v.nodes = tmp;
277 	if (!node_isset(current->il_next, tmp)) {
278 		current->il_next = next_node(current->il_next, tmp);
279 		if (current->il_next >= MAX_NUMNODES)
280 			current->il_next = first_node(tmp);
281 		if (current->il_next >= MAX_NUMNODES)
282 			current->il_next = numa_node_id();
283 	}
284 }
285 
286 static void mpol_rebind_preferred(struct mempolicy *pol,
287 				  const nodemask_t *nodes)
288 {
289 	nodemask_t tmp;
290 
291 	if (pol->flags & MPOL_F_STATIC_NODES) {
292 		int node = first_node(pol->w.user_nodemask);
293 
294 		if (node_isset(node, *nodes)) {
295 			pol->v.preferred_node = node;
296 			pol->flags &= ~MPOL_F_LOCAL;
297 		} else
298 			pol->flags |= MPOL_F_LOCAL;
299 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
300 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
301 		pol->v.preferred_node = first_node(tmp);
302 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
303 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
304 						   pol->w.cpuset_mems_allowed,
305 						   *nodes);
306 		pol->w.cpuset_mems_allowed = *nodes;
307 	}
308 }
309 
310 /* Migrate a policy to a different set of nodes */
311 static void mpol_rebind_policy(struct mempolicy *pol,
312 			       const nodemask_t *newmask)
313 {
314 	if (!pol)
315 		return;
316 	if (!mpol_store_user_nodemask(pol) &&
317 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
318 		return;
319 	mpol_ops[pol->mode].rebind(pol, newmask);
320 }
321 
322 /*
323  * Wrapper for mpol_rebind_policy() that just requires task
324  * pointer, and updates task mempolicy.
325  */
326 
327 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
328 {
329 	mpol_rebind_policy(tsk->mempolicy, new);
330 }
331 
332 /*
333  * Rebind each vma in mm to new nodemask.
334  *
335  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
336  */
337 
338 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
339 {
340 	struct vm_area_struct *vma;
341 
342 	down_write(&mm->mmap_sem);
343 	for (vma = mm->mmap; vma; vma = vma->vm_next)
344 		mpol_rebind_policy(vma->vm_policy, new);
345 	up_write(&mm->mmap_sem);
346 }
347 
348 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
349 	[MPOL_DEFAULT] = {
350 		.rebind = mpol_rebind_default,
351 	},
352 	[MPOL_INTERLEAVE] = {
353 		.create = mpol_new_interleave,
354 		.rebind = mpol_rebind_nodemask,
355 	},
356 	[MPOL_PREFERRED] = {
357 		.create = mpol_new_preferred,
358 		.rebind = mpol_rebind_preferred,
359 	},
360 	[MPOL_BIND] = {
361 		.create = mpol_new_bind,
362 		.rebind = mpol_rebind_nodemask,
363 	},
364 };
365 
366 static void gather_stats(struct page *, void *, int pte_dirty);
367 static void migrate_page_add(struct page *page, struct list_head *pagelist,
368 				unsigned long flags);
369 
370 /* Scan through pages checking if pages follow certain conditions. */
371 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
372 		unsigned long addr, unsigned long end,
373 		const nodemask_t *nodes, unsigned long flags,
374 		void *private)
375 {
376 	pte_t *orig_pte;
377 	pte_t *pte;
378 	spinlock_t *ptl;
379 
380 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
381 	do {
382 		struct page *page;
383 		int nid;
384 
385 		if (!pte_present(*pte))
386 			continue;
387 		page = vm_normal_page(vma, addr, *pte);
388 		if (!page)
389 			continue;
390 		/*
391 		 * The check for PageReserved here is important to avoid
392 		 * handling zero pages and other pages that may have been
393 		 * marked special by the system.
394 		 *
395 		 * If the PageReserved would not be checked here then f.e.
396 		 * the location of the zero page could have an influence
397 		 * on MPOL_MF_STRICT, zero pages would be counted for
398 		 * the per node stats, and there would be useless attempts
399 		 * to put zero pages on the migration list.
400 		 */
401 		if (PageReserved(page))
402 			continue;
403 		nid = page_to_nid(page);
404 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
405 			continue;
406 
407 		if (flags & MPOL_MF_STATS)
408 			gather_stats(page, private, pte_dirty(*pte));
409 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
410 			migrate_page_add(page, private, flags);
411 		else
412 			break;
413 	} while (pte++, addr += PAGE_SIZE, addr != end);
414 	pte_unmap_unlock(orig_pte, ptl);
415 	return addr != end;
416 }
417 
418 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
419 		unsigned long addr, unsigned long end,
420 		const nodemask_t *nodes, unsigned long flags,
421 		void *private)
422 {
423 	pmd_t *pmd;
424 	unsigned long next;
425 
426 	pmd = pmd_offset(pud, addr);
427 	do {
428 		next = pmd_addr_end(addr, end);
429 		if (pmd_none_or_clear_bad(pmd))
430 			continue;
431 		if (check_pte_range(vma, pmd, addr, next, nodes,
432 				    flags, private))
433 			return -EIO;
434 	} while (pmd++, addr = next, addr != end);
435 	return 0;
436 }
437 
438 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
439 		unsigned long addr, unsigned long end,
440 		const nodemask_t *nodes, unsigned long flags,
441 		void *private)
442 {
443 	pud_t *pud;
444 	unsigned long next;
445 
446 	pud = pud_offset(pgd, addr);
447 	do {
448 		next = pud_addr_end(addr, end);
449 		if (pud_none_or_clear_bad(pud))
450 			continue;
451 		if (check_pmd_range(vma, pud, addr, next, nodes,
452 				    flags, private))
453 			return -EIO;
454 	} while (pud++, addr = next, addr != end);
455 	return 0;
456 }
457 
458 static inline int check_pgd_range(struct vm_area_struct *vma,
459 		unsigned long addr, unsigned long end,
460 		const nodemask_t *nodes, unsigned long flags,
461 		void *private)
462 {
463 	pgd_t *pgd;
464 	unsigned long next;
465 
466 	pgd = pgd_offset(vma->vm_mm, addr);
467 	do {
468 		next = pgd_addr_end(addr, end);
469 		if (pgd_none_or_clear_bad(pgd))
470 			continue;
471 		if (check_pud_range(vma, pgd, addr, next, nodes,
472 				    flags, private))
473 			return -EIO;
474 	} while (pgd++, addr = next, addr != end);
475 	return 0;
476 }
477 
478 /*
479  * Check if all pages in a range are on a set of nodes.
480  * If pagelist != NULL then isolate pages from the LRU and
481  * put them on the pagelist.
482  */
483 static struct vm_area_struct *
484 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
485 		const nodemask_t *nodes, unsigned long flags, void *private)
486 {
487 	int err;
488 	struct vm_area_struct *first, *vma, *prev;
489 
490 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
491 
492 		err = migrate_prep();
493 		if (err)
494 			return ERR_PTR(err);
495 	}
496 
497 	first = find_vma(mm, start);
498 	if (!first)
499 		return ERR_PTR(-EFAULT);
500 	prev = NULL;
501 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
502 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
503 			if (!vma->vm_next && vma->vm_end < end)
504 				return ERR_PTR(-EFAULT);
505 			if (prev && prev->vm_end < vma->vm_start)
506 				return ERR_PTR(-EFAULT);
507 		}
508 		if (!is_vm_hugetlb_page(vma) &&
509 		    ((flags & MPOL_MF_STRICT) ||
510 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
511 				vma_migratable(vma)))) {
512 			unsigned long endvma = vma->vm_end;
513 
514 			if (endvma > end)
515 				endvma = end;
516 			if (vma->vm_start > start)
517 				start = vma->vm_start;
518 			err = check_pgd_range(vma, start, endvma, nodes,
519 						flags, private);
520 			if (err) {
521 				first = ERR_PTR(err);
522 				break;
523 			}
524 		}
525 		prev = vma;
526 	}
527 	return first;
528 }
529 
530 /* Apply policy to a single VMA */
531 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
532 {
533 	int err = 0;
534 	struct mempolicy *old = vma->vm_policy;
535 
536 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
537 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
538 		 vma->vm_ops, vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
540 
541 	if (vma->vm_ops && vma->vm_ops->set_policy)
542 		err = vma->vm_ops->set_policy(vma, new);
543 	if (!err) {
544 		mpol_get(new);
545 		vma->vm_policy = new;
546 		mpol_put(old);
547 	}
548 	return err;
549 }
550 
551 /* Step 2: apply policy to a range and do splits. */
552 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
553 		       unsigned long end, struct mempolicy *new)
554 {
555 	struct vm_area_struct *next;
556 	int err;
557 
558 	err = 0;
559 	for (; vma && vma->vm_start < end; vma = next) {
560 		next = vma->vm_next;
561 		if (vma->vm_start < start)
562 			err = split_vma(vma->vm_mm, vma, start, 1);
563 		if (!err && vma->vm_end > end)
564 			err = split_vma(vma->vm_mm, vma, end, 0);
565 		if (!err)
566 			err = policy_vma(vma, new);
567 		if (err)
568 			break;
569 	}
570 	return err;
571 }
572 
573 /*
574  * Update task->flags PF_MEMPOLICY bit: set iff non-default
575  * mempolicy.  Allows more rapid checking of this (combined perhaps
576  * with other PF_* flag bits) on memory allocation hot code paths.
577  *
578  * If called from outside this file, the task 'p' should -only- be
579  * a newly forked child not yet visible on the task list, because
580  * manipulating the task flags of a visible task is not safe.
581  *
582  * The above limitation is why this routine has the funny name
583  * mpol_fix_fork_child_flag().
584  *
585  * It is also safe to call this with a task pointer of current,
586  * which the static wrapper mpol_set_task_struct_flag() does,
587  * for use within this file.
588  */
589 
590 void mpol_fix_fork_child_flag(struct task_struct *p)
591 {
592 	if (p->mempolicy)
593 		p->flags |= PF_MEMPOLICY;
594 	else
595 		p->flags &= ~PF_MEMPOLICY;
596 }
597 
598 static void mpol_set_task_struct_flag(void)
599 {
600 	mpol_fix_fork_child_flag(current);
601 }
602 
603 /* Set the process memory policy */
604 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
605 			     nodemask_t *nodes)
606 {
607 	struct mempolicy *new;
608 	struct mm_struct *mm = current->mm;
609 
610 	new = mpol_new(mode, flags, nodes);
611 	if (IS_ERR(new))
612 		return PTR_ERR(new);
613 
614 	/*
615 	 * prevent changing our mempolicy while show_numa_maps()
616 	 * is using it.
617 	 * Note:  do_set_mempolicy() can be called at init time
618 	 * with no 'mm'.
619 	 */
620 	if (mm)
621 		down_write(&mm->mmap_sem);
622 	mpol_put(current->mempolicy);
623 	current->mempolicy = new;
624 	mpol_set_task_struct_flag();
625 	if (new && new->mode == MPOL_INTERLEAVE &&
626 	    nodes_weight(new->v.nodes))
627 		current->il_next = first_node(new->v.nodes);
628 	if (mm)
629 		up_write(&mm->mmap_sem);
630 
631 	return 0;
632 }
633 
634 /*
635  * Return nodemask for policy for get_mempolicy() query
636  */
637 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
638 {
639 	nodes_clear(*nodes);
640 	if (p == &default_policy)
641 		return;
642 
643 	switch (p->mode) {
644 	case MPOL_BIND:
645 		/* Fall through */
646 	case MPOL_INTERLEAVE:
647 		*nodes = p->v.nodes;
648 		break;
649 	case MPOL_PREFERRED:
650 		if (!(p->flags & MPOL_F_LOCAL))
651 			node_set(p->v.preferred_node, *nodes);
652 		/* else return empty node mask for local allocation */
653 		break;
654 	default:
655 		BUG();
656 	}
657 }
658 
659 static int lookup_node(struct mm_struct *mm, unsigned long addr)
660 {
661 	struct page *p;
662 	int err;
663 
664 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
665 	if (err >= 0) {
666 		err = page_to_nid(p);
667 		put_page(p);
668 	}
669 	return err;
670 }
671 
672 /* Retrieve NUMA policy */
673 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
674 			     unsigned long addr, unsigned long flags)
675 {
676 	int err;
677 	struct mm_struct *mm = current->mm;
678 	struct vm_area_struct *vma = NULL;
679 	struct mempolicy *pol = current->mempolicy;
680 
681 	cpuset_update_task_memory_state();
682 	if (flags &
683 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
684 		return -EINVAL;
685 
686 	if (flags & MPOL_F_MEMS_ALLOWED) {
687 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
688 			return -EINVAL;
689 		*policy = 0;	/* just so it's initialized */
690 		*nmask  = cpuset_current_mems_allowed;
691 		return 0;
692 	}
693 
694 	if (flags & MPOL_F_ADDR) {
695 		/*
696 		 * Do NOT fall back to task policy if the
697 		 * vma/shared policy at addr is NULL.  We
698 		 * want to return MPOL_DEFAULT in this case.
699 		 */
700 		down_read(&mm->mmap_sem);
701 		vma = find_vma_intersection(mm, addr, addr+1);
702 		if (!vma) {
703 			up_read(&mm->mmap_sem);
704 			return -EFAULT;
705 		}
706 		if (vma->vm_ops && vma->vm_ops->get_policy)
707 			pol = vma->vm_ops->get_policy(vma, addr);
708 		else
709 			pol = vma->vm_policy;
710 	} else if (addr)
711 		return -EINVAL;
712 
713 	if (!pol)
714 		pol = &default_policy;	/* indicates default behavior */
715 
716 	if (flags & MPOL_F_NODE) {
717 		if (flags & MPOL_F_ADDR) {
718 			err = lookup_node(mm, addr);
719 			if (err < 0)
720 				goto out;
721 			*policy = err;
722 		} else if (pol == current->mempolicy &&
723 				pol->mode == MPOL_INTERLEAVE) {
724 			*policy = current->il_next;
725 		} else {
726 			err = -EINVAL;
727 			goto out;
728 		}
729 	} else {
730 		*policy = pol == &default_policy ? MPOL_DEFAULT :
731 						pol->mode;
732 		/*
733 		 * Internal mempolicy flags must be masked off before exposing
734 		 * the policy to userspace.
735 		 */
736 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
737 	}
738 
739 	if (vma) {
740 		up_read(&current->mm->mmap_sem);
741 		vma = NULL;
742 	}
743 
744 	err = 0;
745 	if (nmask)
746 		get_policy_nodemask(pol, nmask);
747 
748  out:
749 	mpol_cond_put(pol);
750 	if (vma)
751 		up_read(&current->mm->mmap_sem);
752 	return err;
753 }
754 
755 #ifdef CONFIG_MIGRATION
756 /*
757  * page migration
758  */
759 static void migrate_page_add(struct page *page, struct list_head *pagelist,
760 				unsigned long flags)
761 {
762 	/*
763 	 * Avoid migrating a page that is shared with others.
764 	 */
765 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
766 		isolate_lru_page(page, pagelist);
767 }
768 
769 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
770 {
771 	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
772 }
773 
774 /*
775  * Migrate pages from one node to a target node.
776  * Returns error or the number of pages not migrated.
777  */
778 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
779 			   int flags)
780 {
781 	nodemask_t nmask;
782 	LIST_HEAD(pagelist);
783 	int err = 0;
784 
785 	nodes_clear(nmask);
786 	node_set(source, nmask);
787 
788 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
789 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
790 
791 	if (!list_empty(&pagelist))
792 		err = migrate_pages(&pagelist, new_node_page, dest);
793 
794 	return err;
795 }
796 
797 /*
798  * Move pages between the two nodesets so as to preserve the physical
799  * layout as much as possible.
800  *
801  * Returns the number of page that could not be moved.
802  */
803 int do_migrate_pages(struct mm_struct *mm,
804 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
805 {
806 	LIST_HEAD(pagelist);
807 	int busy = 0;
808 	int err = 0;
809 	nodemask_t tmp;
810 
811 	down_read(&mm->mmap_sem);
812 
813 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
814 	if (err)
815 		goto out;
816 
817 /*
818  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
819  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
820  * bit in 'tmp', and return that <source, dest> pair for migration.
821  * The pair of nodemasks 'to' and 'from' define the map.
822  *
823  * If no pair of bits is found that way, fallback to picking some
824  * pair of 'source' and 'dest' bits that are not the same.  If the
825  * 'source' and 'dest' bits are the same, this represents a node
826  * that will be migrating to itself, so no pages need move.
827  *
828  * If no bits are left in 'tmp', or if all remaining bits left
829  * in 'tmp' correspond to the same bit in 'to', return false
830  * (nothing left to migrate).
831  *
832  * This lets us pick a pair of nodes to migrate between, such that
833  * if possible the dest node is not already occupied by some other
834  * source node, minimizing the risk of overloading the memory on a
835  * node that would happen if we migrated incoming memory to a node
836  * before migrating outgoing memory source that same node.
837  *
838  * A single scan of tmp is sufficient.  As we go, we remember the
839  * most recent <s, d> pair that moved (s != d).  If we find a pair
840  * that not only moved, but what's better, moved to an empty slot
841  * (d is not set in tmp), then we break out then, with that pair.
842  * Otherwise when we finish scannng from_tmp, we at least have the
843  * most recent <s, d> pair that moved.  If we get all the way through
844  * the scan of tmp without finding any node that moved, much less
845  * moved to an empty node, then there is nothing left worth migrating.
846  */
847 
848 	tmp = *from_nodes;
849 	while (!nodes_empty(tmp)) {
850 		int s,d;
851 		int source = -1;
852 		int dest = 0;
853 
854 		for_each_node_mask(s, tmp) {
855 			d = node_remap(s, *from_nodes, *to_nodes);
856 			if (s == d)
857 				continue;
858 
859 			source = s;	/* Node moved. Memorize */
860 			dest = d;
861 
862 			/* dest not in remaining from nodes? */
863 			if (!node_isset(dest, tmp))
864 				break;
865 		}
866 		if (source == -1)
867 			break;
868 
869 		node_clear(source, tmp);
870 		err = migrate_to_node(mm, source, dest, flags);
871 		if (err > 0)
872 			busy += err;
873 		if (err < 0)
874 			break;
875 	}
876 out:
877 	up_read(&mm->mmap_sem);
878 	if (err < 0)
879 		return err;
880 	return busy;
881 
882 }
883 
884 /*
885  * Allocate a new page for page migration based on vma policy.
886  * Start assuming that page is mapped by vma pointed to by @private.
887  * Search forward from there, if not.  N.B., this assumes that the
888  * list of pages handed to migrate_pages()--which is how we get here--
889  * is in virtual address order.
890  */
891 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
892 {
893 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
894 	unsigned long uninitialized_var(address);
895 
896 	while (vma) {
897 		address = page_address_in_vma(page, vma);
898 		if (address != -EFAULT)
899 			break;
900 		vma = vma->vm_next;
901 	}
902 
903 	/*
904 	 * if !vma, alloc_page_vma() will use task or system default policy
905 	 */
906 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
907 }
908 #else
909 
910 static void migrate_page_add(struct page *page, struct list_head *pagelist,
911 				unsigned long flags)
912 {
913 }
914 
915 int do_migrate_pages(struct mm_struct *mm,
916 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
917 {
918 	return -ENOSYS;
919 }
920 
921 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
922 {
923 	return NULL;
924 }
925 #endif
926 
927 static long do_mbind(unsigned long start, unsigned long len,
928 		     unsigned short mode, unsigned short mode_flags,
929 		     nodemask_t *nmask, unsigned long flags)
930 {
931 	struct vm_area_struct *vma;
932 	struct mm_struct *mm = current->mm;
933 	struct mempolicy *new;
934 	unsigned long end;
935 	int err;
936 	LIST_HEAD(pagelist);
937 
938 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
939 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
940 		return -EINVAL;
941 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
942 		return -EPERM;
943 
944 	if (start & ~PAGE_MASK)
945 		return -EINVAL;
946 
947 	if (mode == MPOL_DEFAULT)
948 		flags &= ~MPOL_MF_STRICT;
949 
950 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
951 	end = start + len;
952 
953 	if (end < start)
954 		return -EINVAL;
955 	if (end == start)
956 		return 0;
957 
958 	new = mpol_new(mode, mode_flags, nmask);
959 	if (IS_ERR(new))
960 		return PTR_ERR(new);
961 
962 	/*
963 	 * If we are using the default policy then operation
964 	 * on discontinuous address spaces is okay after all
965 	 */
966 	if (!new)
967 		flags |= MPOL_MF_DISCONTIG_OK;
968 
969 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
970 		 start, start + len, mode, mode_flags,
971 		 nmask ? nodes_addr(*nmask)[0] : -1);
972 
973 	down_write(&mm->mmap_sem);
974 	vma = check_range(mm, start, end, nmask,
975 			  flags | MPOL_MF_INVERT, &pagelist);
976 
977 	err = PTR_ERR(vma);
978 	if (!IS_ERR(vma)) {
979 		int nr_failed = 0;
980 
981 		err = mbind_range(vma, start, end, new);
982 
983 		if (!list_empty(&pagelist))
984 			nr_failed = migrate_pages(&pagelist, new_vma_page,
985 						(unsigned long)vma);
986 
987 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
988 			err = -EIO;
989 	}
990 
991 	up_write(&mm->mmap_sem);
992 	mpol_put(new);
993 	return err;
994 }
995 
996 /*
997  * User space interface with variable sized bitmaps for nodelists.
998  */
999 
1000 /* Copy a node mask from user space. */
1001 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1002 		     unsigned long maxnode)
1003 {
1004 	unsigned long k;
1005 	unsigned long nlongs;
1006 	unsigned long endmask;
1007 
1008 	--maxnode;
1009 	nodes_clear(*nodes);
1010 	if (maxnode == 0 || !nmask)
1011 		return 0;
1012 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1013 		return -EINVAL;
1014 
1015 	nlongs = BITS_TO_LONGS(maxnode);
1016 	if ((maxnode % BITS_PER_LONG) == 0)
1017 		endmask = ~0UL;
1018 	else
1019 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1020 
1021 	/* When the user specified more nodes than supported just check
1022 	   if the non supported part is all zero. */
1023 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1024 		if (nlongs > PAGE_SIZE/sizeof(long))
1025 			return -EINVAL;
1026 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1027 			unsigned long t;
1028 			if (get_user(t, nmask + k))
1029 				return -EFAULT;
1030 			if (k == nlongs - 1) {
1031 				if (t & endmask)
1032 					return -EINVAL;
1033 			} else if (t)
1034 				return -EINVAL;
1035 		}
1036 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1037 		endmask = ~0UL;
1038 	}
1039 
1040 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1041 		return -EFAULT;
1042 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1043 	return 0;
1044 }
1045 
1046 /* Copy a kernel node mask to user space */
1047 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1048 			      nodemask_t *nodes)
1049 {
1050 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1051 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1052 
1053 	if (copy > nbytes) {
1054 		if (copy > PAGE_SIZE)
1055 			return -EINVAL;
1056 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1057 			return -EFAULT;
1058 		copy = nbytes;
1059 	}
1060 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1061 }
1062 
1063 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1064 			unsigned long mode,
1065 			unsigned long __user *nmask, unsigned long maxnode,
1066 			unsigned flags)
1067 {
1068 	nodemask_t nodes;
1069 	int err;
1070 	unsigned short mode_flags;
1071 
1072 	mode_flags = mode & MPOL_MODE_FLAGS;
1073 	mode &= ~MPOL_MODE_FLAGS;
1074 	if (mode >= MPOL_MAX)
1075 		return -EINVAL;
1076 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1077 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1078 		return -EINVAL;
1079 	err = get_nodes(&nodes, nmask, maxnode);
1080 	if (err)
1081 		return err;
1082 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1083 }
1084 
1085 /* Set the process memory policy */
1086 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1087 		unsigned long maxnode)
1088 {
1089 	int err;
1090 	nodemask_t nodes;
1091 	unsigned short flags;
1092 
1093 	flags = mode & MPOL_MODE_FLAGS;
1094 	mode &= ~MPOL_MODE_FLAGS;
1095 	if ((unsigned int)mode >= MPOL_MAX)
1096 		return -EINVAL;
1097 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1098 		return -EINVAL;
1099 	err = get_nodes(&nodes, nmask, maxnode);
1100 	if (err)
1101 		return err;
1102 	return do_set_mempolicy(mode, flags, &nodes);
1103 }
1104 
1105 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1106 		const unsigned long __user *old_nodes,
1107 		const unsigned long __user *new_nodes)
1108 {
1109 	struct mm_struct *mm;
1110 	struct task_struct *task;
1111 	nodemask_t old;
1112 	nodemask_t new;
1113 	nodemask_t task_nodes;
1114 	int err;
1115 
1116 	err = get_nodes(&old, old_nodes, maxnode);
1117 	if (err)
1118 		return err;
1119 
1120 	err = get_nodes(&new, new_nodes, maxnode);
1121 	if (err)
1122 		return err;
1123 
1124 	/* Find the mm_struct */
1125 	read_lock(&tasklist_lock);
1126 	task = pid ? find_task_by_vpid(pid) : current;
1127 	if (!task) {
1128 		read_unlock(&tasklist_lock);
1129 		return -ESRCH;
1130 	}
1131 	mm = get_task_mm(task);
1132 	read_unlock(&tasklist_lock);
1133 
1134 	if (!mm)
1135 		return -EINVAL;
1136 
1137 	/*
1138 	 * Check if this process has the right to modify the specified
1139 	 * process. The right exists if the process has administrative
1140 	 * capabilities, superuser privileges or the same
1141 	 * userid as the target process.
1142 	 */
1143 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1144 	    (current->uid != task->suid) && (current->uid != task->uid) &&
1145 	    !capable(CAP_SYS_NICE)) {
1146 		err = -EPERM;
1147 		goto out;
1148 	}
1149 
1150 	task_nodes = cpuset_mems_allowed(task);
1151 	/* Is the user allowed to access the target nodes? */
1152 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1153 		err = -EPERM;
1154 		goto out;
1155 	}
1156 
1157 	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1158 		err = -EINVAL;
1159 		goto out;
1160 	}
1161 
1162 	err = security_task_movememory(task);
1163 	if (err)
1164 		goto out;
1165 
1166 	err = do_migrate_pages(mm, &old, &new,
1167 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1168 out:
1169 	mmput(mm);
1170 	return err;
1171 }
1172 
1173 
1174 /* Retrieve NUMA policy */
1175 asmlinkage long sys_get_mempolicy(int __user *policy,
1176 				unsigned long __user *nmask,
1177 				unsigned long maxnode,
1178 				unsigned long addr, unsigned long flags)
1179 {
1180 	int err;
1181 	int uninitialized_var(pval);
1182 	nodemask_t nodes;
1183 
1184 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1185 		return -EINVAL;
1186 
1187 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1188 
1189 	if (err)
1190 		return err;
1191 
1192 	if (policy && put_user(pval, policy))
1193 		return -EFAULT;
1194 
1195 	if (nmask)
1196 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1197 
1198 	return err;
1199 }
1200 
1201 #ifdef CONFIG_COMPAT
1202 
1203 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1204 				     compat_ulong_t __user *nmask,
1205 				     compat_ulong_t maxnode,
1206 				     compat_ulong_t addr, compat_ulong_t flags)
1207 {
1208 	long err;
1209 	unsigned long __user *nm = NULL;
1210 	unsigned long nr_bits, alloc_size;
1211 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1212 
1213 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1214 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1215 
1216 	if (nmask)
1217 		nm = compat_alloc_user_space(alloc_size);
1218 
1219 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1220 
1221 	if (!err && nmask) {
1222 		err = copy_from_user(bm, nm, alloc_size);
1223 		/* ensure entire bitmap is zeroed */
1224 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1225 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1226 	}
1227 
1228 	return err;
1229 }
1230 
1231 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1232 				     compat_ulong_t maxnode)
1233 {
1234 	long err = 0;
1235 	unsigned long __user *nm = NULL;
1236 	unsigned long nr_bits, alloc_size;
1237 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1238 
1239 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1240 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1241 
1242 	if (nmask) {
1243 		err = compat_get_bitmap(bm, nmask, nr_bits);
1244 		nm = compat_alloc_user_space(alloc_size);
1245 		err |= copy_to_user(nm, bm, alloc_size);
1246 	}
1247 
1248 	if (err)
1249 		return -EFAULT;
1250 
1251 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1252 }
1253 
1254 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1255 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1256 			     compat_ulong_t maxnode, compat_ulong_t flags)
1257 {
1258 	long err = 0;
1259 	unsigned long __user *nm = NULL;
1260 	unsigned long nr_bits, alloc_size;
1261 	nodemask_t bm;
1262 
1263 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1264 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1265 
1266 	if (nmask) {
1267 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1268 		nm = compat_alloc_user_space(alloc_size);
1269 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1270 	}
1271 
1272 	if (err)
1273 		return -EFAULT;
1274 
1275 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1276 }
1277 
1278 #endif
1279 
1280 /*
1281  * get_vma_policy(@task, @vma, @addr)
1282  * @task - task for fallback if vma policy == default
1283  * @vma   - virtual memory area whose policy is sought
1284  * @addr  - address in @vma for shared policy lookup
1285  *
1286  * Returns effective policy for a VMA at specified address.
1287  * Falls back to @task or system default policy, as necessary.
1288  * Current or other task's task mempolicy and non-shared vma policies
1289  * are protected by the task's mmap_sem, which must be held for read by
1290  * the caller.
1291  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1292  * count--added by the get_policy() vm_op, as appropriate--to protect against
1293  * freeing by another task.  It is the caller's responsibility to free the
1294  * extra reference for shared policies.
1295  */
1296 static struct mempolicy *get_vma_policy(struct task_struct *task,
1297 		struct vm_area_struct *vma, unsigned long addr)
1298 {
1299 	struct mempolicy *pol = task->mempolicy;
1300 
1301 	if (vma) {
1302 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1303 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1304 									addr);
1305 			if (vpol)
1306 				pol = vpol;
1307 		} else if (vma->vm_policy)
1308 			pol = vma->vm_policy;
1309 	}
1310 	if (!pol)
1311 		pol = &default_policy;
1312 	return pol;
1313 }
1314 
1315 /*
1316  * Return a nodemask representing a mempolicy for filtering nodes for
1317  * page allocation
1318  */
1319 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1320 {
1321 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1322 	if (unlikely(policy->mode == MPOL_BIND) &&
1323 			gfp_zone(gfp) >= policy_zone &&
1324 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1325 		return &policy->v.nodes;
1326 
1327 	return NULL;
1328 }
1329 
1330 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1331 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1332 {
1333 	int nd = numa_node_id();
1334 
1335 	switch (policy->mode) {
1336 	case MPOL_PREFERRED:
1337 		if (!(policy->flags & MPOL_F_LOCAL))
1338 			nd = policy->v.preferred_node;
1339 		break;
1340 	case MPOL_BIND:
1341 		/*
1342 		 * Normally, MPOL_BIND allocations are node-local within the
1343 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1344 		 * current node is part of the mask, we use the zonelist for
1345 		 * the first node in the mask instead.
1346 		 */
1347 		if (unlikely(gfp & __GFP_THISNODE) &&
1348 				unlikely(!node_isset(nd, policy->v.nodes)))
1349 			nd = first_node(policy->v.nodes);
1350 		break;
1351 	case MPOL_INTERLEAVE: /* should not happen */
1352 		break;
1353 	default:
1354 		BUG();
1355 	}
1356 	return node_zonelist(nd, gfp);
1357 }
1358 
1359 /* Do dynamic interleaving for a process */
1360 static unsigned interleave_nodes(struct mempolicy *policy)
1361 {
1362 	unsigned nid, next;
1363 	struct task_struct *me = current;
1364 
1365 	nid = me->il_next;
1366 	next = next_node(nid, policy->v.nodes);
1367 	if (next >= MAX_NUMNODES)
1368 		next = first_node(policy->v.nodes);
1369 	if (next < MAX_NUMNODES)
1370 		me->il_next = next;
1371 	return nid;
1372 }
1373 
1374 /*
1375  * Depending on the memory policy provide a node from which to allocate the
1376  * next slab entry.
1377  * @policy must be protected by freeing by the caller.  If @policy is
1378  * the current task's mempolicy, this protection is implicit, as only the
1379  * task can change it's policy.  The system default policy requires no
1380  * such protection.
1381  */
1382 unsigned slab_node(struct mempolicy *policy)
1383 {
1384 	if (!policy || policy->flags & MPOL_F_LOCAL)
1385 		return numa_node_id();
1386 
1387 	switch (policy->mode) {
1388 	case MPOL_PREFERRED:
1389 		/*
1390 		 * handled MPOL_F_LOCAL above
1391 		 */
1392 		return policy->v.preferred_node;
1393 
1394 	case MPOL_INTERLEAVE:
1395 		return interleave_nodes(policy);
1396 
1397 	case MPOL_BIND: {
1398 		/*
1399 		 * Follow bind policy behavior and start allocation at the
1400 		 * first node.
1401 		 */
1402 		struct zonelist *zonelist;
1403 		struct zone *zone;
1404 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1405 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1406 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1407 							&policy->v.nodes,
1408 							&zone);
1409 		return zone->node;
1410 	}
1411 
1412 	default:
1413 		BUG();
1414 	}
1415 }
1416 
1417 /* Do static interleaving for a VMA with known offset. */
1418 static unsigned offset_il_node(struct mempolicy *pol,
1419 		struct vm_area_struct *vma, unsigned long off)
1420 {
1421 	unsigned nnodes = nodes_weight(pol->v.nodes);
1422 	unsigned target;
1423 	int c;
1424 	int nid = -1;
1425 
1426 	if (!nnodes)
1427 		return numa_node_id();
1428 	target = (unsigned int)off % nnodes;
1429 	c = 0;
1430 	do {
1431 		nid = next_node(nid, pol->v.nodes);
1432 		c++;
1433 	} while (c <= target);
1434 	return nid;
1435 }
1436 
1437 /* Determine a node number for interleave */
1438 static inline unsigned interleave_nid(struct mempolicy *pol,
1439 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1440 {
1441 	if (vma) {
1442 		unsigned long off;
1443 
1444 		/*
1445 		 * for small pages, there is no difference between
1446 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1447 		 * for huge pages, since vm_pgoff is in units of small
1448 		 * pages, we need to shift off the always 0 bits to get
1449 		 * a useful offset.
1450 		 */
1451 		BUG_ON(shift < PAGE_SHIFT);
1452 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1453 		off += (addr - vma->vm_start) >> shift;
1454 		return offset_il_node(pol, vma, off);
1455 	} else
1456 		return interleave_nodes(pol);
1457 }
1458 
1459 #ifdef CONFIG_HUGETLBFS
1460 /*
1461  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1462  * @vma = virtual memory area whose policy is sought
1463  * @addr = address in @vma for shared policy lookup and interleave policy
1464  * @gfp_flags = for requested zone
1465  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1466  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1467  *
1468  * Returns a zonelist suitable for a huge page allocation and a pointer
1469  * to the struct mempolicy for conditional unref after allocation.
1470  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1471  * @nodemask for filtering the zonelist.
1472  */
1473 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1474 				gfp_t gfp_flags, struct mempolicy **mpol,
1475 				nodemask_t **nodemask)
1476 {
1477 	struct zonelist *zl;
1478 
1479 	*mpol = get_vma_policy(current, vma, addr);
1480 	*nodemask = NULL;	/* assume !MPOL_BIND */
1481 
1482 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1483 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1484 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1485 	} else {
1486 		zl = policy_zonelist(gfp_flags, *mpol);
1487 		if ((*mpol)->mode == MPOL_BIND)
1488 			*nodemask = &(*mpol)->v.nodes;
1489 	}
1490 	return zl;
1491 }
1492 #endif
1493 
1494 /* Allocate a page in interleaved policy.
1495    Own path because it needs to do special accounting. */
1496 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1497 					unsigned nid)
1498 {
1499 	struct zonelist *zl;
1500 	struct page *page;
1501 
1502 	zl = node_zonelist(nid, gfp);
1503 	page = __alloc_pages(gfp, order, zl);
1504 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1505 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1506 	return page;
1507 }
1508 
1509 /**
1510  * 	alloc_page_vma	- Allocate a page for a VMA.
1511  *
1512  * 	@gfp:
1513  *      %GFP_USER    user allocation.
1514  *      %GFP_KERNEL  kernel allocations,
1515  *      %GFP_HIGHMEM highmem/user allocations,
1516  *      %GFP_FS      allocation should not call back into a file system.
1517  *      %GFP_ATOMIC  don't sleep.
1518  *
1519  * 	@vma:  Pointer to VMA or NULL if not available.
1520  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1521  *
1522  * 	This function allocates a page from the kernel page pool and applies
1523  *	a NUMA policy associated with the VMA or the current process.
1524  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1525  *	mm_struct of the VMA to prevent it from going away. Should be used for
1526  *	all allocations for pages that will be mapped into
1527  * 	user space. Returns NULL when no page can be allocated.
1528  *
1529  *	Should be called with the mm_sem of the vma hold.
1530  */
1531 struct page *
1532 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1533 {
1534 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1535 	struct zonelist *zl;
1536 
1537 	cpuset_update_task_memory_state();
1538 
1539 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1540 		unsigned nid;
1541 
1542 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1543 		mpol_cond_put(pol);
1544 		return alloc_page_interleave(gfp, 0, nid);
1545 	}
1546 	zl = policy_zonelist(gfp, pol);
1547 	if (unlikely(mpol_needs_cond_ref(pol))) {
1548 		/*
1549 		 * slow path: ref counted shared policy
1550 		 */
1551 		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1552 						zl, policy_nodemask(gfp, pol));
1553 		__mpol_put(pol);
1554 		return page;
1555 	}
1556 	/*
1557 	 * fast path:  default or task policy
1558 	 */
1559 	return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1560 }
1561 
1562 /**
1563  * 	alloc_pages_current - Allocate pages.
1564  *
1565  *	@gfp:
1566  *		%GFP_USER   user allocation,
1567  *      	%GFP_KERNEL kernel allocation,
1568  *      	%GFP_HIGHMEM highmem allocation,
1569  *      	%GFP_FS     don't call back into a file system.
1570  *      	%GFP_ATOMIC don't sleep.
1571  *	@order: Power of two of allocation size in pages. 0 is a single page.
1572  *
1573  *	Allocate a page from the kernel page pool.  When not in
1574  *	interrupt context and apply the current process NUMA policy.
1575  *	Returns NULL when no page can be allocated.
1576  *
1577  *	Don't call cpuset_update_task_memory_state() unless
1578  *	1) it's ok to take cpuset_sem (can WAIT), and
1579  *	2) allocating for current task (not interrupt).
1580  */
1581 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1582 {
1583 	struct mempolicy *pol = current->mempolicy;
1584 
1585 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1586 		cpuset_update_task_memory_state();
1587 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1588 		pol = &default_policy;
1589 
1590 	/*
1591 	 * No reference counting needed for current->mempolicy
1592 	 * nor system default_policy
1593 	 */
1594 	if (pol->mode == MPOL_INTERLEAVE)
1595 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1596 	return __alloc_pages_nodemask(gfp, order,
1597 			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1598 }
1599 EXPORT_SYMBOL(alloc_pages_current);
1600 
1601 /*
1602  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1603  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1604  * with the mems_allowed returned by cpuset_mems_allowed().  This
1605  * keeps mempolicies cpuset relative after its cpuset moves.  See
1606  * further kernel/cpuset.c update_nodemask().
1607  */
1608 
1609 /* Slow path of a mempolicy duplicate */
1610 struct mempolicy *__mpol_dup(struct mempolicy *old)
1611 {
1612 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1613 
1614 	if (!new)
1615 		return ERR_PTR(-ENOMEM);
1616 	if (current_cpuset_is_being_rebound()) {
1617 		nodemask_t mems = cpuset_mems_allowed(current);
1618 		mpol_rebind_policy(old, &mems);
1619 	}
1620 	*new = *old;
1621 	atomic_set(&new->refcnt, 1);
1622 	return new;
1623 }
1624 
1625 /*
1626  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1627  * eliminate the * MPOL_F_* flags that require conditional ref and
1628  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1629  * after return.  Use the returned value.
1630  *
1631  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1632  * policy lookup, even if the policy needs/has extra ref on lookup.
1633  * shmem_readahead needs this.
1634  */
1635 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1636 						struct mempolicy *frompol)
1637 {
1638 	if (!mpol_needs_cond_ref(frompol))
1639 		return frompol;
1640 
1641 	*tompol = *frompol;
1642 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1643 	__mpol_put(frompol);
1644 	return tompol;
1645 }
1646 
1647 static int mpol_match_intent(const struct mempolicy *a,
1648 			     const struct mempolicy *b)
1649 {
1650 	if (a->flags != b->flags)
1651 		return 0;
1652 	if (!mpol_store_user_nodemask(a))
1653 		return 1;
1654 	return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1655 }
1656 
1657 /* Slow path of a mempolicy comparison */
1658 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1659 {
1660 	if (!a || !b)
1661 		return 0;
1662 	if (a->mode != b->mode)
1663 		return 0;
1664 	if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1665 		return 0;
1666 	switch (a->mode) {
1667 	case MPOL_BIND:
1668 		/* Fall through */
1669 	case MPOL_INTERLEAVE:
1670 		return nodes_equal(a->v.nodes, b->v.nodes);
1671 	case MPOL_PREFERRED:
1672 		return a->v.preferred_node == b->v.preferred_node &&
1673 			a->flags == b->flags;
1674 	default:
1675 		BUG();
1676 		return 0;
1677 	}
1678 }
1679 
1680 /*
1681  * Shared memory backing store policy support.
1682  *
1683  * Remember policies even when nobody has shared memory mapped.
1684  * The policies are kept in Red-Black tree linked from the inode.
1685  * They are protected by the sp->lock spinlock, which should be held
1686  * for any accesses to the tree.
1687  */
1688 
1689 /* lookup first element intersecting start-end */
1690 /* Caller holds sp->lock */
1691 static struct sp_node *
1692 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1693 {
1694 	struct rb_node *n = sp->root.rb_node;
1695 
1696 	while (n) {
1697 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1698 
1699 		if (start >= p->end)
1700 			n = n->rb_right;
1701 		else if (end <= p->start)
1702 			n = n->rb_left;
1703 		else
1704 			break;
1705 	}
1706 	if (!n)
1707 		return NULL;
1708 	for (;;) {
1709 		struct sp_node *w = NULL;
1710 		struct rb_node *prev = rb_prev(n);
1711 		if (!prev)
1712 			break;
1713 		w = rb_entry(prev, struct sp_node, nd);
1714 		if (w->end <= start)
1715 			break;
1716 		n = prev;
1717 	}
1718 	return rb_entry(n, struct sp_node, nd);
1719 }
1720 
1721 /* Insert a new shared policy into the list. */
1722 /* Caller holds sp->lock */
1723 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1724 {
1725 	struct rb_node **p = &sp->root.rb_node;
1726 	struct rb_node *parent = NULL;
1727 	struct sp_node *nd;
1728 
1729 	while (*p) {
1730 		parent = *p;
1731 		nd = rb_entry(parent, struct sp_node, nd);
1732 		if (new->start < nd->start)
1733 			p = &(*p)->rb_left;
1734 		else if (new->end > nd->end)
1735 			p = &(*p)->rb_right;
1736 		else
1737 			BUG();
1738 	}
1739 	rb_link_node(&new->nd, parent, p);
1740 	rb_insert_color(&new->nd, &sp->root);
1741 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1742 		 new->policy ? new->policy->mode : 0);
1743 }
1744 
1745 /* Find shared policy intersecting idx */
1746 struct mempolicy *
1747 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1748 {
1749 	struct mempolicy *pol = NULL;
1750 	struct sp_node *sn;
1751 
1752 	if (!sp->root.rb_node)
1753 		return NULL;
1754 	spin_lock(&sp->lock);
1755 	sn = sp_lookup(sp, idx, idx+1);
1756 	if (sn) {
1757 		mpol_get(sn->policy);
1758 		pol = sn->policy;
1759 	}
1760 	spin_unlock(&sp->lock);
1761 	return pol;
1762 }
1763 
1764 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1765 {
1766 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1767 	rb_erase(&n->nd, &sp->root);
1768 	mpol_put(n->policy);
1769 	kmem_cache_free(sn_cache, n);
1770 }
1771 
1772 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1773 				struct mempolicy *pol)
1774 {
1775 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1776 
1777 	if (!n)
1778 		return NULL;
1779 	n->start = start;
1780 	n->end = end;
1781 	mpol_get(pol);
1782 	pol->flags |= MPOL_F_SHARED;	/* for unref */
1783 	n->policy = pol;
1784 	return n;
1785 }
1786 
1787 /* Replace a policy range. */
1788 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1789 				 unsigned long end, struct sp_node *new)
1790 {
1791 	struct sp_node *n, *new2 = NULL;
1792 
1793 restart:
1794 	spin_lock(&sp->lock);
1795 	n = sp_lookup(sp, start, end);
1796 	/* Take care of old policies in the same range. */
1797 	while (n && n->start < end) {
1798 		struct rb_node *next = rb_next(&n->nd);
1799 		if (n->start >= start) {
1800 			if (n->end <= end)
1801 				sp_delete(sp, n);
1802 			else
1803 				n->start = end;
1804 		} else {
1805 			/* Old policy spanning whole new range. */
1806 			if (n->end > end) {
1807 				if (!new2) {
1808 					spin_unlock(&sp->lock);
1809 					new2 = sp_alloc(end, n->end, n->policy);
1810 					if (!new2)
1811 						return -ENOMEM;
1812 					goto restart;
1813 				}
1814 				n->end = start;
1815 				sp_insert(sp, new2);
1816 				new2 = NULL;
1817 				break;
1818 			} else
1819 				n->end = start;
1820 		}
1821 		if (!next)
1822 			break;
1823 		n = rb_entry(next, struct sp_node, nd);
1824 	}
1825 	if (new)
1826 		sp_insert(sp, new);
1827 	spin_unlock(&sp->lock);
1828 	if (new2) {
1829 		mpol_put(new2->policy);
1830 		kmem_cache_free(sn_cache, new2);
1831 	}
1832 	return 0;
1833 }
1834 
1835 /**
1836  * mpol_shared_policy_init - initialize shared policy for inode
1837  * @sp: pointer to inode shared policy
1838  * @mpol:  struct mempolicy to install
1839  *
1840  * Install non-NULL @mpol in inode's shared policy rb-tree.
1841  * On entry, the current task has a reference on a non-NULL @mpol.
1842  * This must be released on exit.
1843  */
1844 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1845 {
1846 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
1847 	spin_lock_init(&sp->lock);
1848 
1849 	if (mpol) {
1850 		struct vm_area_struct pvma;
1851 		struct mempolicy *new;
1852 
1853 		/* contextualize the tmpfs mount point mempolicy */
1854 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1855 		mpol_put(mpol);	/* drop our ref on sb mpol */
1856 		if (IS_ERR(new))
1857 			return;		/* no valid nodemask intersection */
1858 
1859 		/* Create pseudo-vma that contains just the policy */
1860 		memset(&pvma, 0, sizeof(struct vm_area_struct));
1861 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
1862 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1863 		mpol_put(new);			/* drop initial ref */
1864 	}
1865 }
1866 
1867 int mpol_set_shared_policy(struct shared_policy *info,
1868 			struct vm_area_struct *vma, struct mempolicy *npol)
1869 {
1870 	int err;
1871 	struct sp_node *new = NULL;
1872 	unsigned long sz = vma_pages(vma);
1873 
1874 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1875 		 vma->vm_pgoff,
1876 		 sz, npol ? npol->mode : -1,
1877 		 npol ? npol->flags : -1,
1878 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1879 
1880 	if (npol) {
1881 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1882 		if (!new)
1883 			return -ENOMEM;
1884 	}
1885 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1886 	if (err && new)
1887 		kmem_cache_free(sn_cache, new);
1888 	return err;
1889 }
1890 
1891 /* Free a backing policy store on inode delete. */
1892 void mpol_free_shared_policy(struct shared_policy *p)
1893 {
1894 	struct sp_node *n;
1895 	struct rb_node *next;
1896 
1897 	if (!p->root.rb_node)
1898 		return;
1899 	spin_lock(&p->lock);
1900 	next = rb_first(&p->root);
1901 	while (next) {
1902 		n = rb_entry(next, struct sp_node, nd);
1903 		next = rb_next(&n->nd);
1904 		rb_erase(&n->nd, &p->root);
1905 		mpol_put(n->policy);
1906 		kmem_cache_free(sn_cache, n);
1907 	}
1908 	spin_unlock(&p->lock);
1909 }
1910 
1911 /* assumes fs == KERNEL_DS */
1912 void __init numa_policy_init(void)
1913 {
1914 	nodemask_t interleave_nodes;
1915 	unsigned long largest = 0;
1916 	int nid, prefer = 0;
1917 
1918 	policy_cache = kmem_cache_create("numa_policy",
1919 					 sizeof(struct mempolicy),
1920 					 0, SLAB_PANIC, NULL);
1921 
1922 	sn_cache = kmem_cache_create("shared_policy_node",
1923 				     sizeof(struct sp_node),
1924 				     0, SLAB_PANIC, NULL);
1925 
1926 	/*
1927 	 * Set interleaving policy for system init. Interleaving is only
1928 	 * enabled across suitably sized nodes (default is >= 16MB), or
1929 	 * fall back to the largest node if they're all smaller.
1930 	 */
1931 	nodes_clear(interleave_nodes);
1932 	for_each_node_state(nid, N_HIGH_MEMORY) {
1933 		unsigned long total_pages = node_present_pages(nid);
1934 
1935 		/* Preserve the largest node */
1936 		if (largest < total_pages) {
1937 			largest = total_pages;
1938 			prefer = nid;
1939 		}
1940 
1941 		/* Interleave this node? */
1942 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1943 			node_set(nid, interleave_nodes);
1944 	}
1945 
1946 	/* All too small, use the largest */
1947 	if (unlikely(nodes_empty(interleave_nodes)))
1948 		node_set(prefer, interleave_nodes);
1949 
1950 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1951 		printk("numa_policy_init: interleaving failed\n");
1952 }
1953 
1954 /* Reset policy of current process to default */
1955 void numa_default_policy(void)
1956 {
1957 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1958 }
1959 
1960 /*
1961  * Parse and format mempolicy from/to strings
1962  */
1963 
1964 /*
1965  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
1966  * Used only for mpol_parse_str() and mpol_to_str()
1967  */
1968 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1969 static const char * const policy_types[] =
1970 	{ "default", "prefer", "bind", "interleave", "local" };
1971 
1972 
1973 #ifdef CONFIG_TMPFS
1974 /**
1975  * mpol_parse_str - parse string to mempolicy
1976  * @str:  string containing mempolicy to parse
1977  * @mpol:  pointer to struct mempolicy pointer, returned on success.
1978  * @no_context:  flag whether to "contextualize" the mempolicy
1979  *
1980  * Format of input:
1981  *	<mode>[=<flags>][:<nodelist>]
1982  *
1983  * if @no_context is true, save the input nodemask in w.user_nodemask in
1984  * the returned mempolicy.  This will be used to "clone" the mempolicy in
1985  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
1986  * mount option.  Note that if 'static' or 'relative' mode flags were
1987  * specified, the input nodemask will already have been saved.  Saving
1988  * it again is redundant, but safe.
1989  *
1990  * On success, returns 0, else 1
1991  */
1992 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
1993 {
1994 	struct mempolicy *new = NULL;
1995 	unsigned short uninitialized_var(mode);
1996 	unsigned short uninitialized_var(mode_flags);
1997 	nodemask_t nodes;
1998 	char *nodelist = strchr(str, ':');
1999 	char *flags = strchr(str, '=');
2000 	int i;
2001 	int err = 1;
2002 
2003 	if (nodelist) {
2004 		/* NUL-terminate mode or flags string */
2005 		*nodelist++ = '\0';
2006 		if (nodelist_parse(nodelist, nodes))
2007 			goto out;
2008 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2009 			goto out;
2010 	} else
2011 		nodes_clear(nodes);
2012 
2013 	if (flags)
2014 		*flags++ = '\0';	/* terminate mode string */
2015 
2016 	for (i = 0; i <= MPOL_LOCAL; i++) {
2017 		if (!strcmp(str, policy_types[i])) {
2018 			mode = i;
2019 			break;
2020 		}
2021 	}
2022 	if (i > MPOL_LOCAL)
2023 		goto out;
2024 
2025 	switch (mode) {
2026 	case MPOL_PREFERRED:
2027 		/*
2028 		 * Insist on a nodelist of one node only
2029 		 */
2030 		if (nodelist) {
2031 			char *rest = nodelist;
2032 			while (isdigit(*rest))
2033 				rest++;
2034 			if (!*rest)
2035 				err = 0;
2036 		}
2037 		break;
2038 	case MPOL_INTERLEAVE:
2039 		/*
2040 		 * Default to online nodes with memory if no nodelist
2041 		 */
2042 		if (!nodelist)
2043 			nodes = node_states[N_HIGH_MEMORY];
2044 		err = 0;
2045 		break;
2046 	case MPOL_LOCAL:
2047 		/*
2048 		 * Don't allow a nodelist;  mpol_new() checks flags
2049 		 */
2050 		if (nodelist)
2051 			goto out;
2052 		mode = MPOL_PREFERRED;
2053 		break;
2054 
2055 	/*
2056 	 * case MPOL_BIND:    mpol_new() enforces non-empty nodemask.
2057 	 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2058 	 */
2059 	}
2060 
2061 	mode_flags = 0;
2062 	if (flags) {
2063 		/*
2064 		 * Currently, we only support two mutually exclusive
2065 		 * mode flags.
2066 		 */
2067 		if (!strcmp(flags, "static"))
2068 			mode_flags |= MPOL_F_STATIC_NODES;
2069 		else if (!strcmp(flags, "relative"))
2070 			mode_flags |= MPOL_F_RELATIVE_NODES;
2071 		else
2072 			err = 1;
2073 	}
2074 
2075 	new = mpol_new(mode, mode_flags, &nodes);
2076 	if (IS_ERR(new))
2077 		err = 1;
2078 	else if (no_context)
2079 		new->w.user_nodemask = nodes;	/* save for contextualization */
2080 
2081 out:
2082 	/* Restore string for error message */
2083 	if (nodelist)
2084 		*--nodelist = ':';
2085 	if (flags)
2086 		*--flags = '=';
2087 	if (!err)
2088 		*mpol = new;
2089 	return err;
2090 }
2091 #endif /* CONFIG_TMPFS */
2092 
2093 /**
2094  * mpol_to_str - format a mempolicy structure for printing
2095  * @buffer:  to contain formatted mempolicy string
2096  * @maxlen:  length of @buffer
2097  * @pol:  pointer to mempolicy to be formatted
2098  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2099  *
2100  * Convert a mempolicy into a string.
2101  * Returns the number of characters in buffer (if positive)
2102  * or an error (negative)
2103  */
2104 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2105 {
2106 	char *p = buffer;
2107 	int l;
2108 	nodemask_t nodes;
2109 	unsigned short mode;
2110 	unsigned short flags = pol ? pol->flags : 0;
2111 
2112 	/*
2113 	 * Sanity check:  room for longest mode, flag and some nodes
2114 	 */
2115 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2116 
2117 	if (!pol || pol == &default_policy)
2118 		mode = MPOL_DEFAULT;
2119 	else
2120 		mode = pol->mode;
2121 
2122 	switch (mode) {
2123 	case MPOL_DEFAULT:
2124 		nodes_clear(nodes);
2125 		break;
2126 
2127 	case MPOL_PREFERRED:
2128 		nodes_clear(nodes);
2129 		if (flags & MPOL_F_LOCAL)
2130 			mode = MPOL_LOCAL;	/* pseudo-policy */
2131 		else
2132 			node_set(pol->v.preferred_node, nodes);
2133 		break;
2134 
2135 	case MPOL_BIND:
2136 		/* Fall through */
2137 	case MPOL_INTERLEAVE:
2138 		if (no_context)
2139 			nodes = pol->w.user_nodemask;
2140 		else
2141 			nodes = pol->v.nodes;
2142 		break;
2143 
2144 	default:
2145 		BUG();
2146 	}
2147 
2148 	l = strlen(policy_types[mode]);
2149 	if (buffer + maxlen < p + l + 1)
2150 		return -ENOSPC;
2151 
2152 	strcpy(p, policy_types[mode]);
2153 	p += l;
2154 
2155 	if (flags & MPOL_MODE_FLAGS) {
2156 		if (buffer + maxlen < p + 2)
2157 			return -ENOSPC;
2158 		*p++ = '=';
2159 
2160 		/*
2161 		 * Currently, the only defined flags are mutually exclusive
2162 		 */
2163 		if (flags & MPOL_F_STATIC_NODES)
2164 			p += snprintf(p, buffer + maxlen - p, "static");
2165 		else if (flags & MPOL_F_RELATIVE_NODES)
2166 			p += snprintf(p, buffer + maxlen - p, "relative");
2167 	}
2168 
2169 	if (!nodes_empty(nodes)) {
2170 		if (buffer + maxlen < p + 2)
2171 			return -ENOSPC;
2172 		*p++ = ':';
2173 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2174 	}
2175 	return p - buffer;
2176 }
2177 
2178 struct numa_maps {
2179 	unsigned long pages;
2180 	unsigned long anon;
2181 	unsigned long active;
2182 	unsigned long writeback;
2183 	unsigned long mapcount_max;
2184 	unsigned long dirty;
2185 	unsigned long swapcache;
2186 	unsigned long node[MAX_NUMNODES];
2187 };
2188 
2189 static void gather_stats(struct page *page, void *private, int pte_dirty)
2190 {
2191 	struct numa_maps *md = private;
2192 	int count = page_mapcount(page);
2193 
2194 	md->pages++;
2195 	if (pte_dirty || PageDirty(page))
2196 		md->dirty++;
2197 
2198 	if (PageSwapCache(page))
2199 		md->swapcache++;
2200 
2201 	if (PageActive(page))
2202 		md->active++;
2203 
2204 	if (PageWriteback(page))
2205 		md->writeback++;
2206 
2207 	if (PageAnon(page))
2208 		md->anon++;
2209 
2210 	if (count > md->mapcount_max)
2211 		md->mapcount_max = count;
2212 
2213 	md->node[page_to_nid(page)]++;
2214 }
2215 
2216 #ifdef CONFIG_HUGETLB_PAGE
2217 static void check_huge_range(struct vm_area_struct *vma,
2218 		unsigned long start, unsigned long end,
2219 		struct numa_maps *md)
2220 {
2221 	unsigned long addr;
2222 	struct page *page;
2223 	struct hstate *h = hstate_vma(vma);
2224 	unsigned long sz = huge_page_size(h);
2225 
2226 	for (addr = start; addr < end; addr += sz) {
2227 		pte_t *ptep = huge_pte_offset(vma->vm_mm,
2228 						addr & huge_page_mask(h));
2229 		pte_t pte;
2230 
2231 		if (!ptep)
2232 			continue;
2233 
2234 		pte = *ptep;
2235 		if (pte_none(pte))
2236 			continue;
2237 
2238 		page = pte_page(pte);
2239 		if (!page)
2240 			continue;
2241 
2242 		gather_stats(page, md, pte_dirty(*ptep));
2243 	}
2244 }
2245 #else
2246 static inline void check_huge_range(struct vm_area_struct *vma,
2247 		unsigned long start, unsigned long end,
2248 		struct numa_maps *md)
2249 {
2250 }
2251 #endif
2252 
2253 /*
2254  * Display pages allocated per node and memory policy via /proc.
2255  */
2256 int show_numa_map(struct seq_file *m, void *v)
2257 {
2258 	struct proc_maps_private *priv = m->private;
2259 	struct vm_area_struct *vma = v;
2260 	struct numa_maps *md;
2261 	struct file *file = vma->vm_file;
2262 	struct mm_struct *mm = vma->vm_mm;
2263 	struct mempolicy *pol;
2264 	int n;
2265 	char buffer[50];
2266 
2267 	if (!mm)
2268 		return 0;
2269 
2270 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2271 	if (!md)
2272 		return 0;
2273 
2274 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2275 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2276 	mpol_cond_put(pol);
2277 
2278 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2279 
2280 	if (file) {
2281 		seq_printf(m, " file=");
2282 		seq_path(m, &file->f_path, "\n\t= ");
2283 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2284 		seq_printf(m, " heap");
2285 	} else if (vma->vm_start <= mm->start_stack &&
2286 			vma->vm_end >= mm->start_stack) {
2287 		seq_printf(m, " stack");
2288 	}
2289 
2290 	if (is_vm_hugetlb_page(vma)) {
2291 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2292 		seq_printf(m, " huge");
2293 	} else {
2294 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2295 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2296 	}
2297 
2298 	if (!md->pages)
2299 		goto out;
2300 
2301 	if (md->anon)
2302 		seq_printf(m," anon=%lu",md->anon);
2303 
2304 	if (md->dirty)
2305 		seq_printf(m," dirty=%lu",md->dirty);
2306 
2307 	if (md->pages != md->anon && md->pages != md->dirty)
2308 		seq_printf(m, " mapped=%lu", md->pages);
2309 
2310 	if (md->mapcount_max > 1)
2311 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2312 
2313 	if (md->swapcache)
2314 		seq_printf(m," swapcache=%lu", md->swapcache);
2315 
2316 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2317 		seq_printf(m," active=%lu", md->active);
2318 
2319 	if (md->writeback)
2320 		seq_printf(m," writeback=%lu", md->writeback);
2321 
2322 	for_each_node_state(n, N_HIGH_MEMORY)
2323 		if (md->node[n])
2324 			seq_printf(m, " N%d=%lu", n, md->node[n]);
2325 out:
2326 	seq_putc(m, '\n');
2327 	kfree(md);
2328 
2329 	if (m->count < m->size)
2330 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2331 	return 0;
2332 }
2333