1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <linux/uaccess.h> 100 101 #include "internal.h" 102 103 /* Internal flags */ 104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 106 107 static struct kmem_cache *policy_cache; 108 static struct kmem_cache *sn_cache; 109 110 /* Highest zone. An specific allocation for a zone below that is not 111 policied. */ 112 enum zone_type policy_zone = 0; 113 114 /* 115 * run-time system-wide default policy => local allocation 116 */ 117 static struct mempolicy default_policy = { 118 .refcnt = ATOMIC_INIT(1), /* never free it */ 119 .mode = MPOL_PREFERRED, 120 .flags = MPOL_F_LOCAL, 121 }; 122 123 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 124 125 struct mempolicy *get_task_policy(struct task_struct *p) 126 { 127 struct mempolicy *pol = p->mempolicy; 128 int node; 129 130 if (pol) 131 return pol; 132 133 node = numa_node_id(); 134 if (node != NUMA_NO_NODE) { 135 pol = &preferred_node_policy[node]; 136 /* preferred_node_policy is not initialised early in boot */ 137 if (pol->mode) 138 return pol; 139 } 140 141 return &default_policy; 142 } 143 144 static const struct mempolicy_operations { 145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 146 /* 147 * If read-side task has no lock to protect task->mempolicy, write-side 148 * task will rebind the task->mempolicy by two step. The first step is 149 * setting all the newly nodes, and the second step is cleaning all the 150 * disallowed nodes. In this way, we can avoid finding no node to alloc 151 * page. 152 * If we have a lock to protect task->mempolicy in read-side, we do 153 * rebind directly. 154 * 155 * step: 156 * MPOL_REBIND_ONCE - do rebind work at once 157 * MPOL_REBIND_STEP1 - set all the newly nodes 158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 159 */ 160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 161 enum mpol_rebind_step step); 162 } mpol_ops[MPOL_MAX]; 163 164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 165 { 166 return pol->flags & MPOL_MODE_FLAGS; 167 } 168 169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 170 const nodemask_t *rel) 171 { 172 nodemask_t tmp; 173 nodes_fold(tmp, *orig, nodes_weight(*rel)); 174 nodes_onto(*ret, tmp, *rel); 175 } 176 177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 178 { 179 if (nodes_empty(*nodes)) 180 return -EINVAL; 181 pol->v.nodes = *nodes; 182 return 0; 183 } 184 185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 186 { 187 if (!nodes) 188 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 189 else if (nodes_empty(*nodes)) 190 return -EINVAL; /* no allowed nodes */ 191 else 192 pol->v.preferred_node = first_node(*nodes); 193 return 0; 194 } 195 196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 197 { 198 if (nodes_empty(*nodes)) 199 return -EINVAL; 200 pol->v.nodes = *nodes; 201 return 0; 202 } 203 204 /* 205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 206 * any, for the new policy. mpol_new() has already validated the nodes 207 * parameter with respect to the policy mode and flags. But, we need to 208 * handle an empty nodemask with MPOL_PREFERRED here. 209 * 210 * Must be called holding task's alloc_lock to protect task's mems_allowed 211 * and mempolicy. May also be called holding the mmap_semaphore for write. 212 */ 213 static int mpol_set_nodemask(struct mempolicy *pol, 214 const nodemask_t *nodes, struct nodemask_scratch *nsc) 215 { 216 int ret; 217 218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 219 if (pol == NULL) 220 return 0; 221 /* Check N_MEMORY */ 222 nodes_and(nsc->mask1, 223 cpuset_current_mems_allowed, node_states[N_MEMORY]); 224 225 VM_BUG_ON(!nodes); 226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 227 nodes = NULL; /* explicit local allocation */ 228 else { 229 if (pol->flags & MPOL_F_RELATIVE_NODES) 230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 231 else 232 nodes_and(nsc->mask2, *nodes, nsc->mask1); 233 234 if (mpol_store_user_nodemask(pol)) 235 pol->w.user_nodemask = *nodes; 236 else 237 pol->w.cpuset_mems_allowed = 238 cpuset_current_mems_allowed; 239 } 240 241 if (nodes) 242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 243 else 244 ret = mpol_ops[pol->mode].create(pol, NULL); 245 return ret; 246 } 247 248 /* 249 * This function just creates a new policy, does some check and simple 250 * initialization. You must invoke mpol_set_nodemask() to set nodes. 251 */ 252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 253 nodemask_t *nodes) 254 { 255 struct mempolicy *policy; 256 257 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 259 260 if (mode == MPOL_DEFAULT) { 261 if (nodes && !nodes_empty(*nodes)) 262 return ERR_PTR(-EINVAL); 263 return NULL; 264 } 265 VM_BUG_ON(!nodes); 266 267 /* 268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 270 * All other modes require a valid pointer to a non-empty nodemask. 271 */ 272 if (mode == MPOL_PREFERRED) { 273 if (nodes_empty(*nodes)) { 274 if (((flags & MPOL_F_STATIC_NODES) || 275 (flags & MPOL_F_RELATIVE_NODES))) 276 return ERR_PTR(-EINVAL); 277 } 278 } else if (mode == MPOL_LOCAL) { 279 if (!nodes_empty(*nodes) || 280 (flags & MPOL_F_STATIC_NODES) || 281 (flags & MPOL_F_RELATIVE_NODES)) 282 return ERR_PTR(-EINVAL); 283 mode = MPOL_PREFERRED; 284 } else if (nodes_empty(*nodes)) 285 return ERR_PTR(-EINVAL); 286 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 287 if (!policy) 288 return ERR_PTR(-ENOMEM); 289 atomic_set(&policy->refcnt, 1); 290 policy->mode = mode; 291 policy->flags = flags; 292 293 return policy; 294 } 295 296 /* Slow path of a mpol destructor. */ 297 void __mpol_put(struct mempolicy *p) 298 { 299 if (!atomic_dec_and_test(&p->refcnt)) 300 return; 301 kmem_cache_free(policy_cache, p); 302 } 303 304 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 305 enum mpol_rebind_step step) 306 { 307 } 308 309 /* 310 * step: 311 * MPOL_REBIND_ONCE - do rebind work at once 312 * MPOL_REBIND_STEP1 - set all the newly nodes 313 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 314 */ 315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 316 enum mpol_rebind_step step) 317 { 318 nodemask_t tmp; 319 320 if (pol->flags & MPOL_F_STATIC_NODES) 321 nodes_and(tmp, pol->w.user_nodemask, *nodes); 322 else if (pol->flags & MPOL_F_RELATIVE_NODES) 323 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 324 else { 325 /* 326 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 327 * result 328 */ 329 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 330 nodes_remap(tmp, pol->v.nodes, 331 pol->w.cpuset_mems_allowed, *nodes); 332 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 333 } else if (step == MPOL_REBIND_STEP2) { 334 tmp = pol->w.cpuset_mems_allowed; 335 pol->w.cpuset_mems_allowed = *nodes; 336 } else 337 BUG(); 338 } 339 340 if (nodes_empty(tmp)) 341 tmp = *nodes; 342 343 if (step == MPOL_REBIND_STEP1) 344 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 345 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 346 pol->v.nodes = tmp; 347 else 348 BUG(); 349 350 if (!node_isset(current->il_next, tmp)) { 351 current->il_next = next_node_in(current->il_next, tmp); 352 if (current->il_next >= MAX_NUMNODES) 353 current->il_next = numa_node_id(); 354 } 355 } 356 357 static void mpol_rebind_preferred(struct mempolicy *pol, 358 const nodemask_t *nodes, 359 enum mpol_rebind_step step) 360 { 361 nodemask_t tmp; 362 363 if (pol->flags & MPOL_F_STATIC_NODES) { 364 int node = first_node(pol->w.user_nodemask); 365 366 if (node_isset(node, *nodes)) { 367 pol->v.preferred_node = node; 368 pol->flags &= ~MPOL_F_LOCAL; 369 } else 370 pol->flags |= MPOL_F_LOCAL; 371 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 372 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 373 pol->v.preferred_node = first_node(tmp); 374 } else if (!(pol->flags & MPOL_F_LOCAL)) { 375 pol->v.preferred_node = node_remap(pol->v.preferred_node, 376 pol->w.cpuset_mems_allowed, 377 *nodes); 378 pol->w.cpuset_mems_allowed = *nodes; 379 } 380 } 381 382 /* 383 * mpol_rebind_policy - Migrate a policy to a different set of nodes 384 * 385 * If read-side task has no lock to protect task->mempolicy, write-side 386 * task will rebind the task->mempolicy by two step. The first step is 387 * setting all the newly nodes, and the second step is cleaning all the 388 * disallowed nodes. In this way, we can avoid finding no node to alloc 389 * page. 390 * If we have a lock to protect task->mempolicy in read-side, we do 391 * rebind directly. 392 * 393 * step: 394 * MPOL_REBIND_ONCE - do rebind work at once 395 * MPOL_REBIND_STEP1 - set all the newly nodes 396 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 397 */ 398 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 399 enum mpol_rebind_step step) 400 { 401 if (!pol) 402 return; 403 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 404 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 405 return; 406 407 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 408 return; 409 410 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 411 BUG(); 412 413 if (step == MPOL_REBIND_STEP1) 414 pol->flags |= MPOL_F_REBINDING; 415 else if (step == MPOL_REBIND_STEP2) 416 pol->flags &= ~MPOL_F_REBINDING; 417 else if (step >= MPOL_REBIND_NSTEP) 418 BUG(); 419 420 mpol_ops[pol->mode].rebind(pol, newmask, step); 421 } 422 423 /* 424 * Wrapper for mpol_rebind_policy() that just requires task 425 * pointer, and updates task mempolicy. 426 * 427 * Called with task's alloc_lock held. 428 */ 429 430 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 431 enum mpol_rebind_step step) 432 { 433 mpol_rebind_policy(tsk->mempolicy, new, step); 434 } 435 436 /* 437 * Rebind each vma in mm to new nodemask. 438 * 439 * Call holding a reference to mm. Takes mm->mmap_sem during call. 440 */ 441 442 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 443 { 444 struct vm_area_struct *vma; 445 446 down_write(&mm->mmap_sem); 447 for (vma = mm->mmap; vma; vma = vma->vm_next) 448 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 449 up_write(&mm->mmap_sem); 450 } 451 452 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 453 [MPOL_DEFAULT] = { 454 .rebind = mpol_rebind_default, 455 }, 456 [MPOL_INTERLEAVE] = { 457 .create = mpol_new_interleave, 458 .rebind = mpol_rebind_nodemask, 459 }, 460 [MPOL_PREFERRED] = { 461 .create = mpol_new_preferred, 462 .rebind = mpol_rebind_preferred, 463 }, 464 [MPOL_BIND] = { 465 .create = mpol_new_bind, 466 .rebind = mpol_rebind_nodemask, 467 }, 468 }; 469 470 static void migrate_page_add(struct page *page, struct list_head *pagelist, 471 unsigned long flags); 472 473 struct queue_pages { 474 struct list_head *pagelist; 475 unsigned long flags; 476 nodemask_t *nmask; 477 struct vm_area_struct *prev; 478 }; 479 480 /* 481 * Scan through pages checking if pages follow certain conditions, 482 * and move them to the pagelist if they do. 483 */ 484 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 485 unsigned long end, struct mm_walk *walk) 486 { 487 struct vm_area_struct *vma = walk->vma; 488 struct page *page; 489 struct queue_pages *qp = walk->private; 490 unsigned long flags = qp->flags; 491 int nid, ret; 492 pte_t *pte; 493 spinlock_t *ptl; 494 495 if (pmd_trans_huge(*pmd)) { 496 ptl = pmd_lock(walk->mm, pmd); 497 if (pmd_trans_huge(*pmd)) { 498 page = pmd_page(*pmd); 499 if (is_huge_zero_page(page)) { 500 spin_unlock(ptl); 501 __split_huge_pmd(vma, pmd, addr, false, NULL); 502 } else { 503 get_page(page); 504 spin_unlock(ptl); 505 lock_page(page); 506 ret = split_huge_page(page); 507 unlock_page(page); 508 put_page(page); 509 if (ret) 510 return 0; 511 } 512 } else { 513 spin_unlock(ptl); 514 } 515 } 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 retry: 520 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 nid = page_to_nid(page); 534 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 535 continue; 536 if (PageTransCompound(page)) { 537 get_page(page); 538 pte_unmap_unlock(pte, ptl); 539 lock_page(page); 540 ret = split_huge_page(page); 541 unlock_page(page); 542 put_page(page); 543 /* Failed to split -- skip. */ 544 if (ret) { 545 pte = pte_offset_map_lock(walk->mm, pmd, 546 addr, &ptl); 547 continue; 548 } 549 goto retry; 550 } 551 552 migrate_page_add(page, qp->pagelist, flags); 553 } 554 pte_unmap_unlock(pte - 1, ptl); 555 cond_resched(); 556 return 0; 557 } 558 559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 560 unsigned long addr, unsigned long end, 561 struct mm_walk *walk) 562 { 563 #ifdef CONFIG_HUGETLB_PAGE 564 struct queue_pages *qp = walk->private; 565 unsigned long flags = qp->flags; 566 int nid; 567 struct page *page; 568 spinlock_t *ptl; 569 pte_t entry; 570 571 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 572 entry = huge_ptep_get(pte); 573 if (!pte_present(entry)) 574 goto unlock; 575 page = pte_page(entry); 576 nid = page_to_nid(page); 577 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 578 goto unlock; 579 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 580 if (flags & (MPOL_MF_MOVE_ALL) || 581 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 582 isolate_huge_page(page, qp->pagelist); 583 unlock: 584 spin_unlock(ptl); 585 #else 586 BUG(); 587 #endif 588 return 0; 589 } 590 591 #ifdef CONFIG_NUMA_BALANCING 592 /* 593 * This is used to mark a range of virtual addresses to be inaccessible. 594 * These are later cleared by a NUMA hinting fault. Depending on these 595 * faults, pages may be migrated for better NUMA placement. 596 * 597 * This is assuming that NUMA faults are handled using PROT_NONE. If 598 * an architecture makes a different choice, it will need further 599 * changes to the core. 600 */ 601 unsigned long change_prot_numa(struct vm_area_struct *vma, 602 unsigned long addr, unsigned long end) 603 { 604 int nr_updated; 605 606 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 607 if (nr_updated) 608 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 609 610 return nr_updated; 611 } 612 #else 613 static unsigned long change_prot_numa(struct vm_area_struct *vma, 614 unsigned long addr, unsigned long end) 615 { 616 return 0; 617 } 618 #endif /* CONFIG_NUMA_BALANCING */ 619 620 static int queue_pages_test_walk(unsigned long start, unsigned long end, 621 struct mm_walk *walk) 622 { 623 struct vm_area_struct *vma = walk->vma; 624 struct queue_pages *qp = walk->private; 625 unsigned long endvma = vma->vm_end; 626 unsigned long flags = qp->flags; 627 628 if (!vma_migratable(vma)) 629 return 1; 630 631 if (endvma > end) 632 endvma = end; 633 if (vma->vm_start > start) 634 start = vma->vm_start; 635 636 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 637 if (!vma->vm_next && vma->vm_end < end) 638 return -EFAULT; 639 if (qp->prev && qp->prev->vm_end < vma->vm_start) 640 return -EFAULT; 641 } 642 643 qp->prev = vma; 644 645 if (flags & MPOL_MF_LAZY) { 646 /* Similar to task_numa_work, skip inaccessible VMAs */ 647 if (!is_vm_hugetlb_page(vma) && 648 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 649 !(vma->vm_flags & VM_MIXEDMAP)) 650 change_prot_numa(vma, start, endvma); 651 return 1; 652 } 653 654 /* queue pages from current vma */ 655 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 656 return 0; 657 return 1; 658 } 659 660 /* 661 * Walk through page tables and collect pages to be migrated. 662 * 663 * If pages found in a given range are on a set of nodes (determined by 664 * @nodes and @flags,) it's isolated and queued to the pagelist which is 665 * passed via @private.) 666 */ 667 static int 668 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 669 nodemask_t *nodes, unsigned long flags, 670 struct list_head *pagelist) 671 { 672 struct queue_pages qp = { 673 .pagelist = pagelist, 674 .flags = flags, 675 .nmask = nodes, 676 .prev = NULL, 677 }; 678 struct mm_walk queue_pages_walk = { 679 .hugetlb_entry = queue_pages_hugetlb, 680 .pmd_entry = queue_pages_pte_range, 681 .test_walk = queue_pages_test_walk, 682 .mm = mm, 683 .private = &qp, 684 }; 685 686 return walk_page_range(start, end, &queue_pages_walk); 687 } 688 689 /* 690 * Apply policy to a single VMA 691 * This must be called with the mmap_sem held for writing. 692 */ 693 static int vma_replace_policy(struct vm_area_struct *vma, 694 struct mempolicy *pol) 695 { 696 int err; 697 struct mempolicy *old; 698 struct mempolicy *new; 699 700 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 701 vma->vm_start, vma->vm_end, vma->vm_pgoff, 702 vma->vm_ops, vma->vm_file, 703 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 704 705 new = mpol_dup(pol); 706 if (IS_ERR(new)) 707 return PTR_ERR(new); 708 709 if (vma->vm_ops && vma->vm_ops->set_policy) { 710 err = vma->vm_ops->set_policy(vma, new); 711 if (err) 712 goto err_out; 713 } 714 715 old = vma->vm_policy; 716 vma->vm_policy = new; /* protected by mmap_sem */ 717 mpol_put(old); 718 719 return 0; 720 err_out: 721 mpol_put(new); 722 return err; 723 } 724 725 /* Step 2: apply policy to a range and do splits. */ 726 static int mbind_range(struct mm_struct *mm, unsigned long start, 727 unsigned long end, struct mempolicy *new_pol) 728 { 729 struct vm_area_struct *next; 730 struct vm_area_struct *prev; 731 struct vm_area_struct *vma; 732 int err = 0; 733 pgoff_t pgoff; 734 unsigned long vmstart; 735 unsigned long vmend; 736 737 vma = find_vma(mm, start); 738 if (!vma || vma->vm_start > start) 739 return -EFAULT; 740 741 prev = vma->vm_prev; 742 if (start > vma->vm_start) 743 prev = vma; 744 745 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 746 next = vma->vm_next; 747 vmstart = max(start, vma->vm_start); 748 vmend = min(end, vma->vm_end); 749 750 if (mpol_equal(vma_policy(vma), new_pol)) 751 continue; 752 753 pgoff = vma->vm_pgoff + 754 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 755 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 756 vma->anon_vma, vma->vm_file, pgoff, 757 new_pol, vma->vm_userfaultfd_ctx); 758 if (prev) { 759 vma = prev; 760 next = vma->vm_next; 761 if (mpol_equal(vma_policy(vma), new_pol)) 762 continue; 763 /* vma_merge() joined vma && vma->next, case 8 */ 764 goto replace; 765 } 766 if (vma->vm_start != vmstart) { 767 err = split_vma(vma->vm_mm, vma, vmstart, 1); 768 if (err) 769 goto out; 770 } 771 if (vma->vm_end != vmend) { 772 err = split_vma(vma->vm_mm, vma, vmend, 0); 773 if (err) 774 goto out; 775 } 776 replace: 777 err = vma_replace_policy(vma, new_pol); 778 if (err) 779 goto out; 780 } 781 782 out: 783 return err; 784 } 785 786 /* Set the process memory policy */ 787 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 788 nodemask_t *nodes) 789 { 790 struct mempolicy *new, *old; 791 NODEMASK_SCRATCH(scratch); 792 int ret; 793 794 if (!scratch) 795 return -ENOMEM; 796 797 new = mpol_new(mode, flags, nodes); 798 if (IS_ERR(new)) { 799 ret = PTR_ERR(new); 800 goto out; 801 } 802 803 task_lock(current); 804 ret = mpol_set_nodemask(new, nodes, scratch); 805 if (ret) { 806 task_unlock(current); 807 mpol_put(new); 808 goto out; 809 } 810 old = current->mempolicy; 811 current->mempolicy = new; 812 if (new && new->mode == MPOL_INTERLEAVE && 813 nodes_weight(new->v.nodes)) 814 current->il_next = first_node(new->v.nodes); 815 task_unlock(current); 816 mpol_put(old); 817 ret = 0; 818 out: 819 NODEMASK_SCRATCH_FREE(scratch); 820 return ret; 821 } 822 823 /* 824 * Return nodemask for policy for get_mempolicy() query 825 * 826 * Called with task's alloc_lock held 827 */ 828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 829 { 830 nodes_clear(*nodes); 831 if (p == &default_policy) 832 return; 833 834 switch (p->mode) { 835 case MPOL_BIND: 836 /* Fall through */ 837 case MPOL_INTERLEAVE: 838 *nodes = p->v.nodes; 839 break; 840 case MPOL_PREFERRED: 841 if (!(p->flags & MPOL_F_LOCAL)) 842 node_set(p->v.preferred_node, *nodes); 843 /* else return empty node mask for local allocation */ 844 break; 845 default: 846 BUG(); 847 } 848 } 849 850 static int lookup_node(unsigned long addr) 851 { 852 struct page *p; 853 int err; 854 855 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 856 if (err >= 0) { 857 err = page_to_nid(p); 858 put_page(p); 859 } 860 return err; 861 } 862 863 /* Retrieve NUMA policy */ 864 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 865 unsigned long addr, unsigned long flags) 866 { 867 int err; 868 struct mm_struct *mm = current->mm; 869 struct vm_area_struct *vma = NULL; 870 struct mempolicy *pol = current->mempolicy; 871 872 if (flags & 873 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 874 return -EINVAL; 875 876 if (flags & MPOL_F_MEMS_ALLOWED) { 877 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 878 return -EINVAL; 879 *policy = 0; /* just so it's initialized */ 880 task_lock(current); 881 *nmask = cpuset_current_mems_allowed; 882 task_unlock(current); 883 return 0; 884 } 885 886 if (flags & MPOL_F_ADDR) { 887 /* 888 * Do NOT fall back to task policy if the 889 * vma/shared policy at addr is NULL. We 890 * want to return MPOL_DEFAULT in this case. 891 */ 892 down_read(&mm->mmap_sem); 893 vma = find_vma_intersection(mm, addr, addr+1); 894 if (!vma) { 895 up_read(&mm->mmap_sem); 896 return -EFAULT; 897 } 898 if (vma->vm_ops && vma->vm_ops->get_policy) 899 pol = vma->vm_ops->get_policy(vma, addr); 900 else 901 pol = vma->vm_policy; 902 } else if (addr) 903 return -EINVAL; 904 905 if (!pol) 906 pol = &default_policy; /* indicates default behavior */ 907 908 if (flags & MPOL_F_NODE) { 909 if (flags & MPOL_F_ADDR) { 910 err = lookup_node(addr); 911 if (err < 0) 912 goto out; 913 *policy = err; 914 } else if (pol == current->mempolicy && 915 pol->mode == MPOL_INTERLEAVE) { 916 *policy = current->il_next; 917 } else { 918 err = -EINVAL; 919 goto out; 920 } 921 } else { 922 *policy = pol == &default_policy ? MPOL_DEFAULT : 923 pol->mode; 924 /* 925 * Internal mempolicy flags must be masked off before exposing 926 * the policy to userspace. 927 */ 928 *policy |= (pol->flags & MPOL_MODE_FLAGS); 929 } 930 931 if (vma) { 932 up_read(¤t->mm->mmap_sem); 933 vma = NULL; 934 } 935 936 err = 0; 937 if (nmask) { 938 if (mpol_store_user_nodemask(pol)) { 939 *nmask = pol->w.user_nodemask; 940 } else { 941 task_lock(current); 942 get_policy_nodemask(pol, nmask); 943 task_unlock(current); 944 } 945 } 946 947 out: 948 mpol_cond_put(pol); 949 if (vma) 950 up_read(¤t->mm->mmap_sem); 951 return err; 952 } 953 954 #ifdef CONFIG_MIGRATION 955 /* 956 * page migration 957 */ 958 static void migrate_page_add(struct page *page, struct list_head *pagelist, 959 unsigned long flags) 960 { 961 /* 962 * Avoid migrating a page that is shared with others. 963 */ 964 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 965 if (!isolate_lru_page(page)) { 966 list_add_tail(&page->lru, pagelist); 967 inc_node_page_state(page, NR_ISOLATED_ANON + 968 page_is_file_cache(page)); 969 } 970 } 971 } 972 973 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 974 { 975 if (PageHuge(page)) 976 return alloc_huge_page_node(page_hstate(compound_head(page)), 977 node); 978 else 979 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 980 __GFP_THISNODE, 0); 981 } 982 983 /* 984 * Migrate pages from one node to a target node. 985 * Returns error or the number of pages not migrated. 986 */ 987 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 988 int flags) 989 { 990 nodemask_t nmask; 991 LIST_HEAD(pagelist); 992 int err = 0; 993 994 nodes_clear(nmask); 995 node_set(source, nmask); 996 997 /* 998 * This does not "check" the range but isolates all pages that 999 * need migration. Between passing in the full user address 1000 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1001 */ 1002 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1003 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1004 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1005 1006 if (!list_empty(&pagelist)) { 1007 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1008 MIGRATE_SYNC, MR_SYSCALL); 1009 if (err) 1010 putback_movable_pages(&pagelist); 1011 } 1012 1013 return err; 1014 } 1015 1016 /* 1017 * Move pages between the two nodesets so as to preserve the physical 1018 * layout as much as possible. 1019 * 1020 * Returns the number of page that could not be moved. 1021 */ 1022 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1023 const nodemask_t *to, int flags) 1024 { 1025 int busy = 0; 1026 int err; 1027 nodemask_t tmp; 1028 1029 err = migrate_prep(); 1030 if (err) 1031 return err; 1032 1033 down_read(&mm->mmap_sem); 1034 1035 /* 1036 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1037 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1038 * bit in 'tmp', and return that <source, dest> pair for migration. 1039 * The pair of nodemasks 'to' and 'from' define the map. 1040 * 1041 * If no pair of bits is found that way, fallback to picking some 1042 * pair of 'source' and 'dest' bits that are not the same. If the 1043 * 'source' and 'dest' bits are the same, this represents a node 1044 * that will be migrating to itself, so no pages need move. 1045 * 1046 * If no bits are left in 'tmp', or if all remaining bits left 1047 * in 'tmp' correspond to the same bit in 'to', return false 1048 * (nothing left to migrate). 1049 * 1050 * This lets us pick a pair of nodes to migrate between, such that 1051 * if possible the dest node is not already occupied by some other 1052 * source node, minimizing the risk of overloading the memory on a 1053 * node that would happen if we migrated incoming memory to a node 1054 * before migrating outgoing memory source that same node. 1055 * 1056 * A single scan of tmp is sufficient. As we go, we remember the 1057 * most recent <s, d> pair that moved (s != d). If we find a pair 1058 * that not only moved, but what's better, moved to an empty slot 1059 * (d is not set in tmp), then we break out then, with that pair. 1060 * Otherwise when we finish scanning from_tmp, we at least have the 1061 * most recent <s, d> pair that moved. If we get all the way through 1062 * the scan of tmp without finding any node that moved, much less 1063 * moved to an empty node, then there is nothing left worth migrating. 1064 */ 1065 1066 tmp = *from; 1067 while (!nodes_empty(tmp)) { 1068 int s,d; 1069 int source = NUMA_NO_NODE; 1070 int dest = 0; 1071 1072 for_each_node_mask(s, tmp) { 1073 1074 /* 1075 * do_migrate_pages() tries to maintain the relative 1076 * node relationship of the pages established between 1077 * threads and memory areas. 1078 * 1079 * However if the number of source nodes is not equal to 1080 * the number of destination nodes we can not preserve 1081 * this node relative relationship. In that case, skip 1082 * copying memory from a node that is in the destination 1083 * mask. 1084 * 1085 * Example: [2,3,4] -> [3,4,5] moves everything. 1086 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1087 */ 1088 1089 if ((nodes_weight(*from) != nodes_weight(*to)) && 1090 (node_isset(s, *to))) 1091 continue; 1092 1093 d = node_remap(s, *from, *to); 1094 if (s == d) 1095 continue; 1096 1097 source = s; /* Node moved. Memorize */ 1098 dest = d; 1099 1100 /* dest not in remaining from nodes? */ 1101 if (!node_isset(dest, tmp)) 1102 break; 1103 } 1104 if (source == NUMA_NO_NODE) 1105 break; 1106 1107 node_clear(source, tmp); 1108 err = migrate_to_node(mm, source, dest, flags); 1109 if (err > 0) 1110 busy += err; 1111 if (err < 0) 1112 break; 1113 } 1114 up_read(&mm->mmap_sem); 1115 if (err < 0) 1116 return err; 1117 return busy; 1118 1119 } 1120 1121 /* 1122 * Allocate a new page for page migration based on vma policy. 1123 * Start by assuming the page is mapped by the same vma as contains @start. 1124 * Search forward from there, if not. N.B., this assumes that the 1125 * list of pages handed to migrate_pages()--which is how we get here-- 1126 * is in virtual address order. 1127 */ 1128 static struct page *new_page(struct page *page, unsigned long start, int **x) 1129 { 1130 struct vm_area_struct *vma; 1131 unsigned long uninitialized_var(address); 1132 1133 vma = find_vma(current->mm, start); 1134 while (vma) { 1135 address = page_address_in_vma(page, vma); 1136 if (address != -EFAULT) 1137 break; 1138 vma = vma->vm_next; 1139 } 1140 1141 if (PageHuge(page)) { 1142 BUG_ON(!vma); 1143 return alloc_huge_page_noerr(vma, address, 1); 1144 } 1145 /* 1146 * if !vma, alloc_page_vma() will use task or system default policy 1147 */ 1148 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1149 } 1150 #else 1151 1152 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1153 unsigned long flags) 1154 { 1155 } 1156 1157 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1158 const nodemask_t *to, int flags) 1159 { 1160 return -ENOSYS; 1161 } 1162 1163 static struct page *new_page(struct page *page, unsigned long start, int **x) 1164 { 1165 return NULL; 1166 } 1167 #endif 1168 1169 static long do_mbind(unsigned long start, unsigned long len, 1170 unsigned short mode, unsigned short mode_flags, 1171 nodemask_t *nmask, unsigned long flags) 1172 { 1173 struct mm_struct *mm = current->mm; 1174 struct mempolicy *new; 1175 unsigned long end; 1176 int err; 1177 LIST_HEAD(pagelist); 1178 1179 if (flags & ~(unsigned long)MPOL_MF_VALID) 1180 return -EINVAL; 1181 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1182 return -EPERM; 1183 1184 if (start & ~PAGE_MASK) 1185 return -EINVAL; 1186 1187 if (mode == MPOL_DEFAULT) 1188 flags &= ~MPOL_MF_STRICT; 1189 1190 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1191 end = start + len; 1192 1193 if (end < start) 1194 return -EINVAL; 1195 if (end == start) 1196 return 0; 1197 1198 new = mpol_new(mode, mode_flags, nmask); 1199 if (IS_ERR(new)) 1200 return PTR_ERR(new); 1201 1202 if (flags & MPOL_MF_LAZY) 1203 new->flags |= MPOL_F_MOF; 1204 1205 /* 1206 * If we are using the default policy then operation 1207 * on discontinuous address spaces is okay after all 1208 */ 1209 if (!new) 1210 flags |= MPOL_MF_DISCONTIG_OK; 1211 1212 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1213 start, start + len, mode, mode_flags, 1214 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1215 1216 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1217 1218 err = migrate_prep(); 1219 if (err) 1220 goto mpol_out; 1221 } 1222 { 1223 NODEMASK_SCRATCH(scratch); 1224 if (scratch) { 1225 down_write(&mm->mmap_sem); 1226 task_lock(current); 1227 err = mpol_set_nodemask(new, nmask, scratch); 1228 task_unlock(current); 1229 if (err) 1230 up_write(&mm->mmap_sem); 1231 } else 1232 err = -ENOMEM; 1233 NODEMASK_SCRATCH_FREE(scratch); 1234 } 1235 if (err) 1236 goto mpol_out; 1237 1238 err = queue_pages_range(mm, start, end, nmask, 1239 flags | MPOL_MF_INVERT, &pagelist); 1240 if (!err) 1241 err = mbind_range(mm, start, end, new); 1242 1243 if (!err) { 1244 int nr_failed = 0; 1245 1246 if (!list_empty(&pagelist)) { 1247 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1248 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1249 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1250 if (nr_failed) 1251 putback_movable_pages(&pagelist); 1252 } 1253 1254 if (nr_failed && (flags & MPOL_MF_STRICT)) 1255 err = -EIO; 1256 } else 1257 putback_movable_pages(&pagelist); 1258 1259 up_write(&mm->mmap_sem); 1260 mpol_out: 1261 mpol_put(new); 1262 return err; 1263 } 1264 1265 /* 1266 * User space interface with variable sized bitmaps for nodelists. 1267 */ 1268 1269 /* Copy a node mask from user space. */ 1270 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1271 unsigned long maxnode) 1272 { 1273 unsigned long k; 1274 unsigned long nlongs; 1275 unsigned long endmask; 1276 1277 --maxnode; 1278 nodes_clear(*nodes); 1279 if (maxnode == 0 || !nmask) 1280 return 0; 1281 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1282 return -EINVAL; 1283 1284 nlongs = BITS_TO_LONGS(maxnode); 1285 if ((maxnode % BITS_PER_LONG) == 0) 1286 endmask = ~0UL; 1287 else 1288 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1289 1290 /* When the user specified more nodes than supported just check 1291 if the non supported part is all zero. */ 1292 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1293 if (nlongs > PAGE_SIZE/sizeof(long)) 1294 return -EINVAL; 1295 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1296 unsigned long t; 1297 if (get_user(t, nmask + k)) 1298 return -EFAULT; 1299 if (k == nlongs - 1) { 1300 if (t & endmask) 1301 return -EINVAL; 1302 } else if (t) 1303 return -EINVAL; 1304 } 1305 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1306 endmask = ~0UL; 1307 } 1308 1309 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1310 return -EFAULT; 1311 nodes_addr(*nodes)[nlongs-1] &= endmask; 1312 return 0; 1313 } 1314 1315 /* Copy a kernel node mask to user space */ 1316 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1317 nodemask_t *nodes) 1318 { 1319 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1320 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1321 1322 if (copy > nbytes) { 1323 if (copy > PAGE_SIZE) 1324 return -EINVAL; 1325 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1326 return -EFAULT; 1327 copy = nbytes; 1328 } 1329 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1330 } 1331 1332 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1333 unsigned long, mode, const unsigned long __user *, nmask, 1334 unsigned long, maxnode, unsigned, flags) 1335 { 1336 nodemask_t nodes; 1337 int err; 1338 unsigned short mode_flags; 1339 1340 mode_flags = mode & MPOL_MODE_FLAGS; 1341 mode &= ~MPOL_MODE_FLAGS; 1342 if (mode >= MPOL_MAX) 1343 return -EINVAL; 1344 if ((mode_flags & MPOL_F_STATIC_NODES) && 1345 (mode_flags & MPOL_F_RELATIVE_NODES)) 1346 return -EINVAL; 1347 err = get_nodes(&nodes, nmask, maxnode); 1348 if (err) 1349 return err; 1350 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1351 } 1352 1353 /* Set the process memory policy */ 1354 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1355 unsigned long, maxnode) 1356 { 1357 int err; 1358 nodemask_t nodes; 1359 unsigned short flags; 1360 1361 flags = mode & MPOL_MODE_FLAGS; 1362 mode &= ~MPOL_MODE_FLAGS; 1363 if ((unsigned int)mode >= MPOL_MAX) 1364 return -EINVAL; 1365 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1366 return -EINVAL; 1367 err = get_nodes(&nodes, nmask, maxnode); 1368 if (err) 1369 return err; 1370 return do_set_mempolicy(mode, flags, &nodes); 1371 } 1372 1373 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1374 const unsigned long __user *, old_nodes, 1375 const unsigned long __user *, new_nodes) 1376 { 1377 const struct cred *cred = current_cred(), *tcred; 1378 struct mm_struct *mm = NULL; 1379 struct task_struct *task; 1380 nodemask_t task_nodes; 1381 int err; 1382 nodemask_t *old; 1383 nodemask_t *new; 1384 NODEMASK_SCRATCH(scratch); 1385 1386 if (!scratch) 1387 return -ENOMEM; 1388 1389 old = &scratch->mask1; 1390 new = &scratch->mask2; 1391 1392 err = get_nodes(old, old_nodes, maxnode); 1393 if (err) 1394 goto out; 1395 1396 err = get_nodes(new, new_nodes, maxnode); 1397 if (err) 1398 goto out; 1399 1400 /* Find the mm_struct */ 1401 rcu_read_lock(); 1402 task = pid ? find_task_by_vpid(pid) : current; 1403 if (!task) { 1404 rcu_read_unlock(); 1405 err = -ESRCH; 1406 goto out; 1407 } 1408 get_task_struct(task); 1409 1410 err = -EINVAL; 1411 1412 /* 1413 * Check if this process has the right to modify the specified 1414 * process. The right exists if the process has administrative 1415 * capabilities, superuser privileges or the same 1416 * userid as the target process. 1417 */ 1418 tcred = __task_cred(task); 1419 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1420 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1421 !capable(CAP_SYS_NICE)) { 1422 rcu_read_unlock(); 1423 err = -EPERM; 1424 goto out_put; 1425 } 1426 rcu_read_unlock(); 1427 1428 task_nodes = cpuset_mems_allowed(task); 1429 /* Is the user allowed to access the target nodes? */ 1430 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1431 err = -EPERM; 1432 goto out_put; 1433 } 1434 1435 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1436 err = -EINVAL; 1437 goto out_put; 1438 } 1439 1440 err = security_task_movememory(task); 1441 if (err) 1442 goto out_put; 1443 1444 mm = get_task_mm(task); 1445 put_task_struct(task); 1446 1447 if (!mm) { 1448 err = -EINVAL; 1449 goto out; 1450 } 1451 1452 err = do_migrate_pages(mm, old, new, 1453 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1454 1455 mmput(mm); 1456 out: 1457 NODEMASK_SCRATCH_FREE(scratch); 1458 1459 return err; 1460 1461 out_put: 1462 put_task_struct(task); 1463 goto out; 1464 1465 } 1466 1467 1468 /* Retrieve NUMA policy */ 1469 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1470 unsigned long __user *, nmask, unsigned long, maxnode, 1471 unsigned long, addr, unsigned long, flags) 1472 { 1473 int err; 1474 int uninitialized_var(pval); 1475 nodemask_t nodes; 1476 1477 if (nmask != NULL && maxnode < MAX_NUMNODES) 1478 return -EINVAL; 1479 1480 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1481 1482 if (err) 1483 return err; 1484 1485 if (policy && put_user(pval, policy)) 1486 return -EFAULT; 1487 1488 if (nmask) 1489 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1490 1491 return err; 1492 } 1493 1494 #ifdef CONFIG_COMPAT 1495 1496 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1497 compat_ulong_t __user *, nmask, 1498 compat_ulong_t, maxnode, 1499 compat_ulong_t, addr, compat_ulong_t, flags) 1500 { 1501 long err; 1502 unsigned long __user *nm = NULL; 1503 unsigned long nr_bits, alloc_size; 1504 DECLARE_BITMAP(bm, MAX_NUMNODES); 1505 1506 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1507 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1508 1509 if (nmask) 1510 nm = compat_alloc_user_space(alloc_size); 1511 1512 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1513 1514 if (!err && nmask) { 1515 unsigned long copy_size; 1516 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1517 err = copy_from_user(bm, nm, copy_size); 1518 /* ensure entire bitmap is zeroed */ 1519 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1520 err |= compat_put_bitmap(nmask, bm, nr_bits); 1521 } 1522 1523 return err; 1524 } 1525 1526 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1527 compat_ulong_t, maxnode) 1528 { 1529 long err = 0; 1530 unsigned long __user *nm = NULL; 1531 unsigned long nr_bits, alloc_size; 1532 DECLARE_BITMAP(bm, MAX_NUMNODES); 1533 1534 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1535 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1536 1537 if (nmask) { 1538 err = compat_get_bitmap(bm, nmask, nr_bits); 1539 nm = compat_alloc_user_space(alloc_size); 1540 err |= copy_to_user(nm, bm, alloc_size); 1541 } 1542 1543 if (err) 1544 return -EFAULT; 1545 1546 return sys_set_mempolicy(mode, nm, nr_bits+1); 1547 } 1548 1549 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1550 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1551 compat_ulong_t, maxnode, compat_ulong_t, flags) 1552 { 1553 long err = 0; 1554 unsigned long __user *nm = NULL; 1555 unsigned long nr_bits, alloc_size; 1556 nodemask_t bm; 1557 1558 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1559 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1560 1561 if (nmask) { 1562 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1563 nm = compat_alloc_user_space(alloc_size); 1564 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1565 } 1566 1567 if (err) 1568 return -EFAULT; 1569 1570 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1571 } 1572 1573 #endif 1574 1575 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1576 unsigned long addr) 1577 { 1578 struct mempolicy *pol = NULL; 1579 1580 if (vma) { 1581 if (vma->vm_ops && vma->vm_ops->get_policy) { 1582 pol = vma->vm_ops->get_policy(vma, addr); 1583 } else if (vma->vm_policy) { 1584 pol = vma->vm_policy; 1585 1586 /* 1587 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1588 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1589 * count on these policies which will be dropped by 1590 * mpol_cond_put() later 1591 */ 1592 if (mpol_needs_cond_ref(pol)) 1593 mpol_get(pol); 1594 } 1595 } 1596 1597 return pol; 1598 } 1599 1600 /* 1601 * get_vma_policy(@vma, @addr) 1602 * @vma: virtual memory area whose policy is sought 1603 * @addr: address in @vma for shared policy lookup 1604 * 1605 * Returns effective policy for a VMA at specified address. 1606 * Falls back to current->mempolicy or system default policy, as necessary. 1607 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1608 * count--added by the get_policy() vm_op, as appropriate--to protect against 1609 * freeing by another task. It is the caller's responsibility to free the 1610 * extra reference for shared policies. 1611 */ 1612 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1613 unsigned long addr) 1614 { 1615 struct mempolicy *pol = __get_vma_policy(vma, addr); 1616 1617 if (!pol) 1618 pol = get_task_policy(current); 1619 1620 return pol; 1621 } 1622 1623 bool vma_policy_mof(struct vm_area_struct *vma) 1624 { 1625 struct mempolicy *pol; 1626 1627 if (vma->vm_ops && vma->vm_ops->get_policy) { 1628 bool ret = false; 1629 1630 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1631 if (pol && (pol->flags & MPOL_F_MOF)) 1632 ret = true; 1633 mpol_cond_put(pol); 1634 1635 return ret; 1636 } 1637 1638 pol = vma->vm_policy; 1639 if (!pol) 1640 pol = get_task_policy(current); 1641 1642 return pol->flags & MPOL_F_MOF; 1643 } 1644 1645 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1646 { 1647 enum zone_type dynamic_policy_zone = policy_zone; 1648 1649 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1650 1651 /* 1652 * if policy->v.nodes has movable memory only, 1653 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1654 * 1655 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1656 * so if the following test faile, it implies 1657 * policy->v.nodes has movable memory only. 1658 */ 1659 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1660 dynamic_policy_zone = ZONE_MOVABLE; 1661 1662 return zone >= dynamic_policy_zone; 1663 } 1664 1665 /* 1666 * Return a nodemask representing a mempolicy for filtering nodes for 1667 * page allocation 1668 */ 1669 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1670 { 1671 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1672 if (unlikely(policy->mode == MPOL_BIND) && 1673 apply_policy_zone(policy, gfp_zone(gfp)) && 1674 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1675 return &policy->v.nodes; 1676 1677 return NULL; 1678 } 1679 1680 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1681 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1682 int nd) 1683 { 1684 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1685 nd = policy->v.preferred_node; 1686 else { 1687 /* 1688 * __GFP_THISNODE shouldn't even be used with the bind policy 1689 * because we might easily break the expectation to stay on the 1690 * requested node and not break the policy. 1691 */ 1692 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1693 } 1694 1695 return node_zonelist(nd, gfp); 1696 } 1697 1698 /* Do dynamic interleaving for a process */ 1699 static unsigned interleave_nodes(struct mempolicy *policy) 1700 { 1701 unsigned nid, next; 1702 struct task_struct *me = current; 1703 1704 nid = me->il_next; 1705 next = next_node_in(nid, policy->v.nodes); 1706 if (next < MAX_NUMNODES) 1707 me->il_next = next; 1708 return nid; 1709 } 1710 1711 /* 1712 * Depending on the memory policy provide a node from which to allocate the 1713 * next slab entry. 1714 */ 1715 unsigned int mempolicy_slab_node(void) 1716 { 1717 struct mempolicy *policy; 1718 int node = numa_mem_id(); 1719 1720 if (in_interrupt()) 1721 return node; 1722 1723 policy = current->mempolicy; 1724 if (!policy || policy->flags & MPOL_F_LOCAL) 1725 return node; 1726 1727 switch (policy->mode) { 1728 case MPOL_PREFERRED: 1729 /* 1730 * handled MPOL_F_LOCAL above 1731 */ 1732 return policy->v.preferred_node; 1733 1734 case MPOL_INTERLEAVE: 1735 return interleave_nodes(policy); 1736 1737 case MPOL_BIND: { 1738 struct zoneref *z; 1739 1740 /* 1741 * Follow bind policy behavior and start allocation at the 1742 * first node. 1743 */ 1744 struct zonelist *zonelist; 1745 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1746 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1747 z = first_zones_zonelist(zonelist, highest_zoneidx, 1748 &policy->v.nodes); 1749 return z->zone ? z->zone->node : node; 1750 } 1751 1752 default: 1753 BUG(); 1754 } 1755 } 1756 1757 /* 1758 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1759 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1760 * number of present nodes. 1761 */ 1762 static unsigned offset_il_node(struct mempolicy *pol, 1763 struct vm_area_struct *vma, unsigned long n) 1764 { 1765 unsigned nnodes = nodes_weight(pol->v.nodes); 1766 unsigned target; 1767 int i; 1768 int nid; 1769 1770 if (!nnodes) 1771 return numa_node_id(); 1772 target = (unsigned int)n % nnodes; 1773 nid = first_node(pol->v.nodes); 1774 for (i = 0; i < target; i++) 1775 nid = next_node(nid, pol->v.nodes); 1776 return nid; 1777 } 1778 1779 /* Determine a node number for interleave */ 1780 static inline unsigned interleave_nid(struct mempolicy *pol, 1781 struct vm_area_struct *vma, unsigned long addr, int shift) 1782 { 1783 if (vma) { 1784 unsigned long off; 1785 1786 /* 1787 * for small pages, there is no difference between 1788 * shift and PAGE_SHIFT, so the bit-shift is safe. 1789 * for huge pages, since vm_pgoff is in units of small 1790 * pages, we need to shift off the always 0 bits to get 1791 * a useful offset. 1792 */ 1793 BUG_ON(shift < PAGE_SHIFT); 1794 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1795 off += (addr - vma->vm_start) >> shift; 1796 return offset_il_node(pol, vma, off); 1797 } else 1798 return interleave_nodes(pol); 1799 } 1800 1801 #ifdef CONFIG_HUGETLBFS 1802 /* 1803 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1804 * @vma: virtual memory area whose policy is sought 1805 * @addr: address in @vma for shared policy lookup and interleave policy 1806 * @gfp_flags: for requested zone 1807 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1808 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1809 * 1810 * Returns a zonelist suitable for a huge page allocation and a pointer 1811 * to the struct mempolicy for conditional unref after allocation. 1812 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1813 * @nodemask for filtering the zonelist. 1814 * 1815 * Must be protected by read_mems_allowed_begin() 1816 */ 1817 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1818 gfp_t gfp_flags, struct mempolicy **mpol, 1819 nodemask_t **nodemask) 1820 { 1821 struct zonelist *zl; 1822 1823 *mpol = get_vma_policy(vma, addr); 1824 *nodemask = NULL; /* assume !MPOL_BIND */ 1825 1826 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1827 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1828 huge_page_shift(hstate_vma(vma))), gfp_flags); 1829 } else { 1830 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1831 if ((*mpol)->mode == MPOL_BIND) 1832 *nodemask = &(*mpol)->v.nodes; 1833 } 1834 return zl; 1835 } 1836 1837 /* 1838 * init_nodemask_of_mempolicy 1839 * 1840 * If the current task's mempolicy is "default" [NULL], return 'false' 1841 * to indicate default policy. Otherwise, extract the policy nodemask 1842 * for 'bind' or 'interleave' policy into the argument nodemask, or 1843 * initialize the argument nodemask to contain the single node for 1844 * 'preferred' or 'local' policy and return 'true' to indicate presence 1845 * of non-default mempolicy. 1846 * 1847 * We don't bother with reference counting the mempolicy [mpol_get/put] 1848 * because the current task is examining it's own mempolicy and a task's 1849 * mempolicy is only ever changed by the task itself. 1850 * 1851 * N.B., it is the caller's responsibility to free a returned nodemask. 1852 */ 1853 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1854 { 1855 struct mempolicy *mempolicy; 1856 int nid; 1857 1858 if (!(mask && current->mempolicy)) 1859 return false; 1860 1861 task_lock(current); 1862 mempolicy = current->mempolicy; 1863 switch (mempolicy->mode) { 1864 case MPOL_PREFERRED: 1865 if (mempolicy->flags & MPOL_F_LOCAL) 1866 nid = numa_node_id(); 1867 else 1868 nid = mempolicy->v.preferred_node; 1869 init_nodemask_of_node(mask, nid); 1870 break; 1871 1872 case MPOL_BIND: 1873 /* Fall through */ 1874 case MPOL_INTERLEAVE: 1875 *mask = mempolicy->v.nodes; 1876 break; 1877 1878 default: 1879 BUG(); 1880 } 1881 task_unlock(current); 1882 1883 return true; 1884 } 1885 #endif 1886 1887 /* 1888 * mempolicy_nodemask_intersects 1889 * 1890 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1891 * policy. Otherwise, check for intersection between mask and the policy 1892 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1893 * policy, always return true since it may allocate elsewhere on fallback. 1894 * 1895 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1896 */ 1897 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1898 const nodemask_t *mask) 1899 { 1900 struct mempolicy *mempolicy; 1901 bool ret = true; 1902 1903 if (!mask) 1904 return ret; 1905 task_lock(tsk); 1906 mempolicy = tsk->mempolicy; 1907 if (!mempolicy) 1908 goto out; 1909 1910 switch (mempolicy->mode) { 1911 case MPOL_PREFERRED: 1912 /* 1913 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1914 * allocate from, they may fallback to other nodes when oom. 1915 * Thus, it's possible for tsk to have allocated memory from 1916 * nodes in mask. 1917 */ 1918 break; 1919 case MPOL_BIND: 1920 case MPOL_INTERLEAVE: 1921 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1922 break; 1923 default: 1924 BUG(); 1925 } 1926 out: 1927 task_unlock(tsk); 1928 return ret; 1929 } 1930 1931 /* Allocate a page in interleaved policy. 1932 Own path because it needs to do special accounting. */ 1933 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1934 unsigned nid) 1935 { 1936 struct zonelist *zl; 1937 struct page *page; 1938 1939 zl = node_zonelist(nid, gfp); 1940 page = __alloc_pages(gfp, order, zl); 1941 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1942 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1943 return page; 1944 } 1945 1946 /** 1947 * alloc_pages_vma - Allocate a page for a VMA. 1948 * 1949 * @gfp: 1950 * %GFP_USER user allocation. 1951 * %GFP_KERNEL kernel allocations, 1952 * %GFP_HIGHMEM highmem/user allocations, 1953 * %GFP_FS allocation should not call back into a file system. 1954 * %GFP_ATOMIC don't sleep. 1955 * 1956 * @order:Order of the GFP allocation. 1957 * @vma: Pointer to VMA or NULL if not available. 1958 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1959 * @node: Which node to prefer for allocation (modulo policy). 1960 * @hugepage: for hugepages try only the preferred node if possible 1961 * 1962 * This function allocates a page from the kernel page pool and applies 1963 * a NUMA policy associated with the VMA or the current process. 1964 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1965 * mm_struct of the VMA to prevent it from going away. Should be used for 1966 * all allocations for pages that will be mapped into user space. Returns 1967 * NULL when no page can be allocated. 1968 */ 1969 struct page * 1970 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1971 unsigned long addr, int node, bool hugepage) 1972 { 1973 struct mempolicy *pol; 1974 struct page *page; 1975 unsigned int cpuset_mems_cookie; 1976 struct zonelist *zl; 1977 nodemask_t *nmask; 1978 1979 retry_cpuset: 1980 pol = get_vma_policy(vma, addr); 1981 cpuset_mems_cookie = read_mems_allowed_begin(); 1982 1983 if (pol->mode == MPOL_INTERLEAVE) { 1984 unsigned nid; 1985 1986 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1987 mpol_cond_put(pol); 1988 page = alloc_page_interleave(gfp, order, nid); 1989 goto out; 1990 } 1991 1992 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1993 int hpage_node = node; 1994 1995 /* 1996 * For hugepage allocation and non-interleave policy which 1997 * allows the current node (or other explicitly preferred 1998 * node) we only try to allocate from the current/preferred 1999 * node and don't fall back to other nodes, as the cost of 2000 * remote accesses would likely offset THP benefits. 2001 * 2002 * If the policy is interleave, or does not allow the current 2003 * node in its nodemask, we allocate the standard way. 2004 */ 2005 if (pol->mode == MPOL_PREFERRED && 2006 !(pol->flags & MPOL_F_LOCAL)) 2007 hpage_node = pol->v.preferred_node; 2008 2009 nmask = policy_nodemask(gfp, pol); 2010 if (!nmask || node_isset(hpage_node, *nmask)) { 2011 mpol_cond_put(pol); 2012 page = __alloc_pages_node(hpage_node, 2013 gfp | __GFP_THISNODE, order); 2014 goto out; 2015 } 2016 } 2017 2018 nmask = policy_nodemask(gfp, pol); 2019 zl = policy_zonelist(gfp, pol, node); 2020 mpol_cond_put(pol); 2021 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2022 out: 2023 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2024 goto retry_cpuset; 2025 return page; 2026 } 2027 2028 /** 2029 * alloc_pages_current - Allocate pages. 2030 * 2031 * @gfp: 2032 * %GFP_USER user allocation, 2033 * %GFP_KERNEL kernel allocation, 2034 * %GFP_HIGHMEM highmem allocation, 2035 * %GFP_FS don't call back into a file system. 2036 * %GFP_ATOMIC don't sleep. 2037 * @order: Power of two of allocation size in pages. 0 is a single page. 2038 * 2039 * Allocate a page from the kernel page pool. When not in 2040 * interrupt context and apply the current process NUMA policy. 2041 * Returns NULL when no page can be allocated. 2042 * 2043 * Don't call cpuset_update_task_memory_state() unless 2044 * 1) it's ok to take cpuset_sem (can WAIT), and 2045 * 2) allocating for current task (not interrupt). 2046 */ 2047 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2048 { 2049 struct mempolicy *pol = &default_policy; 2050 struct page *page; 2051 unsigned int cpuset_mems_cookie; 2052 2053 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2054 pol = get_task_policy(current); 2055 2056 retry_cpuset: 2057 cpuset_mems_cookie = read_mems_allowed_begin(); 2058 2059 /* 2060 * No reference counting needed for current->mempolicy 2061 * nor system default_policy 2062 */ 2063 if (pol->mode == MPOL_INTERLEAVE) 2064 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2065 else 2066 page = __alloc_pages_nodemask(gfp, order, 2067 policy_zonelist(gfp, pol, numa_node_id()), 2068 policy_nodemask(gfp, pol)); 2069 2070 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2071 goto retry_cpuset; 2072 2073 return page; 2074 } 2075 EXPORT_SYMBOL(alloc_pages_current); 2076 2077 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2078 { 2079 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2080 2081 if (IS_ERR(pol)) 2082 return PTR_ERR(pol); 2083 dst->vm_policy = pol; 2084 return 0; 2085 } 2086 2087 /* 2088 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2089 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2090 * with the mems_allowed returned by cpuset_mems_allowed(). This 2091 * keeps mempolicies cpuset relative after its cpuset moves. See 2092 * further kernel/cpuset.c update_nodemask(). 2093 * 2094 * current's mempolicy may be rebinded by the other task(the task that changes 2095 * cpuset's mems), so we needn't do rebind work for current task. 2096 */ 2097 2098 /* Slow path of a mempolicy duplicate */ 2099 struct mempolicy *__mpol_dup(struct mempolicy *old) 2100 { 2101 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2102 2103 if (!new) 2104 return ERR_PTR(-ENOMEM); 2105 2106 /* task's mempolicy is protected by alloc_lock */ 2107 if (old == current->mempolicy) { 2108 task_lock(current); 2109 *new = *old; 2110 task_unlock(current); 2111 } else 2112 *new = *old; 2113 2114 if (current_cpuset_is_being_rebound()) { 2115 nodemask_t mems = cpuset_mems_allowed(current); 2116 if (new->flags & MPOL_F_REBINDING) 2117 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2118 else 2119 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2120 } 2121 atomic_set(&new->refcnt, 1); 2122 return new; 2123 } 2124 2125 /* Slow path of a mempolicy comparison */ 2126 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2127 { 2128 if (!a || !b) 2129 return false; 2130 if (a->mode != b->mode) 2131 return false; 2132 if (a->flags != b->flags) 2133 return false; 2134 if (mpol_store_user_nodemask(a)) 2135 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2136 return false; 2137 2138 switch (a->mode) { 2139 case MPOL_BIND: 2140 /* Fall through */ 2141 case MPOL_INTERLEAVE: 2142 return !!nodes_equal(a->v.nodes, b->v.nodes); 2143 case MPOL_PREFERRED: 2144 return a->v.preferred_node == b->v.preferred_node; 2145 default: 2146 BUG(); 2147 return false; 2148 } 2149 } 2150 2151 /* 2152 * Shared memory backing store policy support. 2153 * 2154 * Remember policies even when nobody has shared memory mapped. 2155 * The policies are kept in Red-Black tree linked from the inode. 2156 * They are protected by the sp->lock rwlock, which should be held 2157 * for any accesses to the tree. 2158 */ 2159 2160 /* 2161 * lookup first element intersecting start-end. Caller holds sp->lock for 2162 * reading or for writing 2163 */ 2164 static struct sp_node * 2165 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2166 { 2167 struct rb_node *n = sp->root.rb_node; 2168 2169 while (n) { 2170 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2171 2172 if (start >= p->end) 2173 n = n->rb_right; 2174 else if (end <= p->start) 2175 n = n->rb_left; 2176 else 2177 break; 2178 } 2179 if (!n) 2180 return NULL; 2181 for (;;) { 2182 struct sp_node *w = NULL; 2183 struct rb_node *prev = rb_prev(n); 2184 if (!prev) 2185 break; 2186 w = rb_entry(prev, struct sp_node, nd); 2187 if (w->end <= start) 2188 break; 2189 n = prev; 2190 } 2191 return rb_entry(n, struct sp_node, nd); 2192 } 2193 2194 /* 2195 * Insert a new shared policy into the list. Caller holds sp->lock for 2196 * writing. 2197 */ 2198 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2199 { 2200 struct rb_node **p = &sp->root.rb_node; 2201 struct rb_node *parent = NULL; 2202 struct sp_node *nd; 2203 2204 while (*p) { 2205 parent = *p; 2206 nd = rb_entry(parent, struct sp_node, nd); 2207 if (new->start < nd->start) 2208 p = &(*p)->rb_left; 2209 else if (new->end > nd->end) 2210 p = &(*p)->rb_right; 2211 else 2212 BUG(); 2213 } 2214 rb_link_node(&new->nd, parent, p); 2215 rb_insert_color(&new->nd, &sp->root); 2216 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2217 new->policy ? new->policy->mode : 0); 2218 } 2219 2220 /* Find shared policy intersecting idx */ 2221 struct mempolicy * 2222 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2223 { 2224 struct mempolicy *pol = NULL; 2225 struct sp_node *sn; 2226 2227 if (!sp->root.rb_node) 2228 return NULL; 2229 read_lock(&sp->lock); 2230 sn = sp_lookup(sp, idx, idx+1); 2231 if (sn) { 2232 mpol_get(sn->policy); 2233 pol = sn->policy; 2234 } 2235 read_unlock(&sp->lock); 2236 return pol; 2237 } 2238 2239 static void sp_free(struct sp_node *n) 2240 { 2241 mpol_put(n->policy); 2242 kmem_cache_free(sn_cache, n); 2243 } 2244 2245 /** 2246 * mpol_misplaced - check whether current page node is valid in policy 2247 * 2248 * @page: page to be checked 2249 * @vma: vm area where page mapped 2250 * @addr: virtual address where page mapped 2251 * 2252 * Lookup current policy node id for vma,addr and "compare to" page's 2253 * node id. 2254 * 2255 * Returns: 2256 * -1 - not misplaced, page is in the right node 2257 * node - node id where the page should be 2258 * 2259 * Policy determination "mimics" alloc_page_vma(). 2260 * Called from fault path where we know the vma and faulting address. 2261 */ 2262 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2263 { 2264 struct mempolicy *pol; 2265 struct zoneref *z; 2266 int curnid = page_to_nid(page); 2267 unsigned long pgoff; 2268 int thiscpu = raw_smp_processor_id(); 2269 int thisnid = cpu_to_node(thiscpu); 2270 int polnid = -1; 2271 int ret = -1; 2272 2273 BUG_ON(!vma); 2274 2275 pol = get_vma_policy(vma, addr); 2276 if (!(pol->flags & MPOL_F_MOF)) 2277 goto out; 2278 2279 switch (pol->mode) { 2280 case MPOL_INTERLEAVE: 2281 BUG_ON(addr >= vma->vm_end); 2282 BUG_ON(addr < vma->vm_start); 2283 2284 pgoff = vma->vm_pgoff; 2285 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2286 polnid = offset_il_node(pol, vma, pgoff); 2287 break; 2288 2289 case MPOL_PREFERRED: 2290 if (pol->flags & MPOL_F_LOCAL) 2291 polnid = numa_node_id(); 2292 else 2293 polnid = pol->v.preferred_node; 2294 break; 2295 2296 case MPOL_BIND: 2297 2298 /* 2299 * allows binding to multiple nodes. 2300 * use current page if in policy nodemask, 2301 * else select nearest allowed node, if any. 2302 * If no allowed nodes, use current [!misplaced]. 2303 */ 2304 if (node_isset(curnid, pol->v.nodes)) 2305 goto out; 2306 z = first_zones_zonelist( 2307 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2308 gfp_zone(GFP_HIGHUSER), 2309 &pol->v.nodes); 2310 polnid = z->zone->node; 2311 break; 2312 2313 default: 2314 BUG(); 2315 } 2316 2317 /* Migrate the page towards the node whose CPU is referencing it */ 2318 if (pol->flags & MPOL_F_MORON) { 2319 polnid = thisnid; 2320 2321 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2322 goto out; 2323 } 2324 2325 if (curnid != polnid) 2326 ret = polnid; 2327 out: 2328 mpol_cond_put(pol); 2329 2330 return ret; 2331 } 2332 2333 /* 2334 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2335 * dropped after task->mempolicy is set to NULL so that any allocation done as 2336 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2337 * policy. 2338 */ 2339 void mpol_put_task_policy(struct task_struct *task) 2340 { 2341 struct mempolicy *pol; 2342 2343 task_lock(task); 2344 pol = task->mempolicy; 2345 task->mempolicy = NULL; 2346 task_unlock(task); 2347 mpol_put(pol); 2348 } 2349 2350 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2351 { 2352 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2353 rb_erase(&n->nd, &sp->root); 2354 sp_free(n); 2355 } 2356 2357 static void sp_node_init(struct sp_node *node, unsigned long start, 2358 unsigned long end, struct mempolicy *pol) 2359 { 2360 node->start = start; 2361 node->end = end; 2362 node->policy = pol; 2363 } 2364 2365 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2366 struct mempolicy *pol) 2367 { 2368 struct sp_node *n; 2369 struct mempolicy *newpol; 2370 2371 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2372 if (!n) 2373 return NULL; 2374 2375 newpol = mpol_dup(pol); 2376 if (IS_ERR(newpol)) { 2377 kmem_cache_free(sn_cache, n); 2378 return NULL; 2379 } 2380 newpol->flags |= MPOL_F_SHARED; 2381 sp_node_init(n, start, end, newpol); 2382 2383 return n; 2384 } 2385 2386 /* Replace a policy range. */ 2387 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2388 unsigned long end, struct sp_node *new) 2389 { 2390 struct sp_node *n; 2391 struct sp_node *n_new = NULL; 2392 struct mempolicy *mpol_new = NULL; 2393 int ret = 0; 2394 2395 restart: 2396 write_lock(&sp->lock); 2397 n = sp_lookup(sp, start, end); 2398 /* Take care of old policies in the same range. */ 2399 while (n && n->start < end) { 2400 struct rb_node *next = rb_next(&n->nd); 2401 if (n->start >= start) { 2402 if (n->end <= end) 2403 sp_delete(sp, n); 2404 else 2405 n->start = end; 2406 } else { 2407 /* Old policy spanning whole new range. */ 2408 if (n->end > end) { 2409 if (!n_new) 2410 goto alloc_new; 2411 2412 *mpol_new = *n->policy; 2413 atomic_set(&mpol_new->refcnt, 1); 2414 sp_node_init(n_new, end, n->end, mpol_new); 2415 n->end = start; 2416 sp_insert(sp, n_new); 2417 n_new = NULL; 2418 mpol_new = NULL; 2419 break; 2420 } else 2421 n->end = start; 2422 } 2423 if (!next) 2424 break; 2425 n = rb_entry(next, struct sp_node, nd); 2426 } 2427 if (new) 2428 sp_insert(sp, new); 2429 write_unlock(&sp->lock); 2430 ret = 0; 2431 2432 err_out: 2433 if (mpol_new) 2434 mpol_put(mpol_new); 2435 if (n_new) 2436 kmem_cache_free(sn_cache, n_new); 2437 2438 return ret; 2439 2440 alloc_new: 2441 write_unlock(&sp->lock); 2442 ret = -ENOMEM; 2443 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2444 if (!n_new) 2445 goto err_out; 2446 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2447 if (!mpol_new) 2448 goto err_out; 2449 goto restart; 2450 } 2451 2452 /** 2453 * mpol_shared_policy_init - initialize shared policy for inode 2454 * @sp: pointer to inode shared policy 2455 * @mpol: struct mempolicy to install 2456 * 2457 * Install non-NULL @mpol in inode's shared policy rb-tree. 2458 * On entry, the current task has a reference on a non-NULL @mpol. 2459 * This must be released on exit. 2460 * This is called at get_inode() calls and we can use GFP_KERNEL. 2461 */ 2462 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2463 { 2464 int ret; 2465 2466 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2467 rwlock_init(&sp->lock); 2468 2469 if (mpol) { 2470 struct vm_area_struct pvma; 2471 struct mempolicy *new; 2472 NODEMASK_SCRATCH(scratch); 2473 2474 if (!scratch) 2475 goto put_mpol; 2476 /* contextualize the tmpfs mount point mempolicy */ 2477 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2478 if (IS_ERR(new)) 2479 goto free_scratch; /* no valid nodemask intersection */ 2480 2481 task_lock(current); 2482 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2483 task_unlock(current); 2484 if (ret) 2485 goto put_new; 2486 2487 /* Create pseudo-vma that contains just the policy */ 2488 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2489 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2490 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2491 2492 put_new: 2493 mpol_put(new); /* drop initial ref */ 2494 free_scratch: 2495 NODEMASK_SCRATCH_FREE(scratch); 2496 put_mpol: 2497 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2498 } 2499 } 2500 2501 int mpol_set_shared_policy(struct shared_policy *info, 2502 struct vm_area_struct *vma, struct mempolicy *npol) 2503 { 2504 int err; 2505 struct sp_node *new = NULL; 2506 unsigned long sz = vma_pages(vma); 2507 2508 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2509 vma->vm_pgoff, 2510 sz, npol ? npol->mode : -1, 2511 npol ? npol->flags : -1, 2512 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2513 2514 if (npol) { 2515 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2516 if (!new) 2517 return -ENOMEM; 2518 } 2519 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2520 if (err && new) 2521 sp_free(new); 2522 return err; 2523 } 2524 2525 /* Free a backing policy store on inode delete. */ 2526 void mpol_free_shared_policy(struct shared_policy *p) 2527 { 2528 struct sp_node *n; 2529 struct rb_node *next; 2530 2531 if (!p->root.rb_node) 2532 return; 2533 write_lock(&p->lock); 2534 next = rb_first(&p->root); 2535 while (next) { 2536 n = rb_entry(next, struct sp_node, nd); 2537 next = rb_next(&n->nd); 2538 sp_delete(p, n); 2539 } 2540 write_unlock(&p->lock); 2541 } 2542 2543 #ifdef CONFIG_NUMA_BALANCING 2544 static int __initdata numabalancing_override; 2545 2546 static void __init check_numabalancing_enable(void) 2547 { 2548 bool numabalancing_default = false; 2549 2550 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2551 numabalancing_default = true; 2552 2553 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2554 if (numabalancing_override) 2555 set_numabalancing_state(numabalancing_override == 1); 2556 2557 if (num_online_nodes() > 1 && !numabalancing_override) { 2558 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2559 numabalancing_default ? "Enabling" : "Disabling"); 2560 set_numabalancing_state(numabalancing_default); 2561 } 2562 } 2563 2564 static int __init setup_numabalancing(char *str) 2565 { 2566 int ret = 0; 2567 if (!str) 2568 goto out; 2569 2570 if (!strcmp(str, "enable")) { 2571 numabalancing_override = 1; 2572 ret = 1; 2573 } else if (!strcmp(str, "disable")) { 2574 numabalancing_override = -1; 2575 ret = 1; 2576 } 2577 out: 2578 if (!ret) 2579 pr_warn("Unable to parse numa_balancing=\n"); 2580 2581 return ret; 2582 } 2583 __setup("numa_balancing=", setup_numabalancing); 2584 #else 2585 static inline void __init check_numabalancing_enable(void) 2586 { 2587 } 2588 #endif /* CONFIG_NUMA_BALANCING */ 2589 2590 /* assumes fs == KERNEL_DS */ 2591 void __init numa_policy_init(void) 2592 { 2593 nodemask_t interleave_nodes; 2594 unsigned long largest = 0; 2595 int nid, prefer = 0; 2596 2597 policy_cache = kmem_cache_create("numa_policy", 2598 sizeof(struct mempolicy), 2599 0, SLAB_PANIC, NULL); 2600 2601 sn_cache = kmem_cache_create("shared_policy_node", 2602 sizeof(struct sp_node), 2603 0, SLAB_PANIC, NULL); 2604 2605 for_each_node(nid) { 2606 preferred_node_policy[nid] = (struct mempolicy) { 2607 .refcnt = ATOMIC_INIT(1), 2608 .mode = MPOL_PREFERRED, 2609 .flags = MPOL_F_MOF | MPOL_F_MORON, 2610 .v = { .preferred_node = nid, }, 2611 }; 2612 } 2613 2614 /* 2615 * Set interleaving policy for system init. Interleaving is only 2616 * enabled across suitably sized nodes (default is >= 16MB), or 2617 * fall back to the largest node if they're all smaller. 2618 */ 2619 nodes_clear(interleave_nodes); 2620 for_each_node_state(nid, N_MEMORY) { 2621 unsigned long total_pages = node_present_pages(nid); 2622 2623 /* Preserve the largest node */ 2624 if (largest < total_pages) { 2625 largest = total_pages; 2626 prefer = nid; 2627 } 2628 2629 /* Interleave this node? */ 2630 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2631 node_set(nid, interleave_nodes); 2632 } 2633 2634 /* All too small, use the largest */ 2635 if (unlikely(nodes_empty(interleave_nodes))) 2636 node_set(prefer, interleave_nodes); 2637 2638 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2639 pr_err("%s: interleaving failed\n", __func__); 2640 2641 check_numabalancing_enable(); 2642 } 2643 2644 /* Reset policy of current process to default */ 2645 void numa_default_policy(void) 2646 { 2647 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2648 } 2649 2650 /* 2651 * Parse and format mempolicy from/to strings 2652 */ 2653 2654 /* 2655 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2656 */ 2657 static const char * const policy_modes[] = 2658 { 2659 [MPOL_DEFAULT] = "default", 2660 [MPOL_PREFERRED] = "prefer", 2661 [MPOL_BIND] = "bind", 2662 [MPOL_INTERLEAVE] = "interleave", 2663 [MPOL_LOCAL] = "local", 2664 }; 2665 2666 2667 #ifdef CONFIG_TMPFS 2668 /** 2669 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2670 * @str: string containing mempolicy to parse 2671 * @mpol: pointer to struct mempolicy pointer, returned on success. 2672 * 2673 * Format of input: 2674 * <mode>[=<flags>][:<nodelist>] 2675 * 2676 * On success, returns 0, else 1 2677 */ 2678 int mpol_parse_str(char *str, struct mempolicy **mpol) 2679 { 2680 struct mempolicy *new = NULL; 2681 unsigned short mode; 2682 unsigned short mode_flags; 2683 nodemask_t nodes; 2684 char *nodelist = strchr(str, ':'); 2685 char *flags = strchr(str, '='); 2686 int err = 1; 2687 2688 if (nodelist) { 2689 /* NUL-terminate mode or flags string */ 2690 *nodelist++ = '\0'; 2691 if (nodelist_parse(nodelist, nodes)) 2692 goto out; 2693 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2694 goto out; 2695 } else 2696 nodes_clear(nodes); 2697 2698 if (flags) 2699 *flags++ = '\0'; /* terminate mode string */ 2700 2701 for (mode = 0; mode < MPOL_MAX; mode++) { 2702 if (!strcmp(str, policy_modes[mode])) { 2703 break; 2704 } 2705 } 2706 if (mode >= MPOL_MAX) 2707 goto out; 2708 2709 switch (mode) { 2710 case MPOL_PREFERRED: 2711 /* 2712 * Insist on a nodelist of one node only 2713 */ 2714 if (nodelist) { 2715 char *rest = nodelist; 2716 while (isdigit(*rest)) 2717 rest++; 2718 if (*rest) 2719 goto out; 2720 } 2721 break; 2722 case MPOL_INTERLEAVE: 2723 /* 2724 * Default to online nodes with memory if no nodelist 2725 */ 2726 if (!nodelist) 2727 nodes = node_states[N_MEMORY]; 2728 break; 2729 case MPOL_LOCAL: 2730 /* 2731 * Don't allow a nodelist; mpol_new() checks flags 2732 */ 2733 if (nodelist) 2734 goto out; 2735 mode = MPOL_PREFERRED; 2736 break; 2737 case MPOL_DEFAULT: 2738 /* 2739 * Insist on a empty nodelist 2740 */ 2741 if (!nodelist) 2742 err = 0; 2743 goto out; 2744 case MPOL_BIND: 2745 /* 2746 * Insist on a nodelist 2747 */ 2748 if (!nodelist) 2749 goto out; 2750 } 2751 2752 mode_flags = 0; 2753 if (flags) { 2754 /* 2755 * Currently, we only support two mutually exclusive 2756 * mode flags. 2757 */ 2758 if (!strcmp(flags, "static")) 2759 mode_flags |= MPOL_F_STATIC_NODES; 2760 else if (!strcmp(flags, "relative")) 2761 mode_flags |= MPOL_F_RELATIVE_NODES; 2762 else 2763 goto out; 2764 } 2765 2766 new = mpol_new(mode, mode_flags, &nodes); 2767 if (IS_ERR(new)) 2768 goto out; 2769 2770 /* 2771 * Save nodes for mpol_to_str() to show the tmpfs mount options 2772 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2773 */ 2774 if (mode != MPOL_PREFERRED) 2775 new->v.nodes = nodes; 2776 else if (nodelist) 2777 new->v.preferred_node = first_node(nodes); 2778 else 2779 new->flags |= MPOL_F_LOCAL; 2780 2781 /* 2782 * Save nodes for contextualization: this will be used to "clone" 2783 * the mempolicy in a specific context [cpuset] at a later time. 2784 */ 2785 new->w.user_nodemask = nodes; 2786 2787 err = 0; 2788 2789 out: 2790 /* Restore string for error message */ 2791 if (nodelist) 2792 *--nodelist = ':'; 2793 if (flags) 2794 *--flags = '='; 2795 if (!err) 2796 *mpol = new; 2797 return err; 2798 } 2799 #endif /* CONFIG_TMPFS */ 2800 2801 /** 2802 * mpol_to_str - format a mempolicy structure for printing 2803 * @buffer: to contain formatted mempolicy string 2804 * @maxlen: length of @buffer 2805 * @pol: pointer to mempolicy to be formatted 2806 * 2807 * Convert @pol into a string. If @buffer is too short, truncate the string. 2808 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2809 * longest flag, "relative", and to display at least a few node ids. 2810 */ 2811 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2812 { 2813 char *p = buffer; 2814 nodemask_t nodes = NODE_MASK_NONE; 2815 unsigned short mode = MPOL_DEFAULT; 2816 unsigned short flags = 0; 2817 2818 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2819 mode = pol->mode; 2820 flags = pol->flags; 2821 } 2822 2823 switch (mode) { 2824 case MPOL_DEFAULT: 2825 break; 2826 case MPOL_PREFERRED: 2827 if (flags & MPOL_F_LOCAL) 2828 mode = MPOL_LOCAL; 2829 else 2830 node_set(pol->v.preferred_node, nodes); 2831 break; 2832 case MPOL_BIND: 2833 case MPOL_INTERLEAVE: 2834 nodes = pol->v.nodes; 2835 break; 2836 default: 2837 WARN_ON_ONCE(1); 2838 snprintf(p, maxlen, "unknown"); 2839 return; 2840 } 2841 2842 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2843 2844 if (flags & MPOL_MODE_FLAGS) { 2845 p += snprintf(p, buffer + maxlen - p, "="); 2846 2847 /* 2848 * Currently, the only defined flags are mutually exclusive 2849 */ 2850 if (flags & MPOL_F_STATIC_NODES) 2851 p += snprintf(p, buffer + maxlen - p, "static"); 2852 else if (flags & MPOL_F_RELATIVE_NODES) 2853 p += snprintf(p, buffer + maxlen - p, "relative"); 2854 } 2855 2856 if (!nodes_empty(nodes)) 2857 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2858 nodemask_pr_args(&nodes)); 2859 } 2860