xref: /openbmc/linux/mm/mempolicy.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the page's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_pages_required(struct page *page,
436 					struct queue_pages *qp)
437 {
438 	int nid = page_to_nid(page);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_pages_pmd() has three possible return values:
446  * 0 - pages are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing page was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct page *page;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	page = pmd_page(*pmd);
468 	if (is_huge_zero_page(page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_pages_pte_range() has three possible return values:
495  * 0 - pages are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct page *page;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_pages_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		page = vm_normal_page(vma, addr, *pte);
525 		if (!page || is_zone_device_page(page))
526 			continue;
527 		/*
528 		 * vm_normal_page() filters out zero pages, but there might
529 		 * still be PageReserved pages to skip, perhaps in a VDSO.
530 		 */
531 		if (PageReserved(page))
532 			continue;
533 		if (!queue_pages_required(page, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_page_add(page, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct page *page;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	page = pte_page(entry);
578 	if (!queue_pages_required(page, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced page and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced page but allow migrating pages which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 	if (flags & (MPOL_MF_MOVE_ALL) ||
603 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 		if (isolate_hugetlb(page, qp->pagelist) &&
605 			(flags & MPOL_MF_STRICT))
606 			/*
607 			 * Failed to isolate page but allow migrating pages
608 			 * which have been queued.
609 			 */
610 			ret = 1;
611 	}
612 unlock:
613 	spin_unlock(ptl);
614 #else
615 	BUG();
616 #endif
617 	return ret;
618 }
619 
620 #ifdef CONFIG_NUMA_BALANCING
621 /*
622  * This is used to mark a range of virtual addresses to be inaccessible.
623  * These are later cleared by a NUMA hinting fault. Depending on these
624  * faults, pages may be migrated for better NUMA placement.
625  *
626  * This is assuming that NUMA faults are handled using PROT_NONE. If
627  * an architecture makes a different choice, it will need further
628  * changes to the core.
629  */
630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 			unsigned long addr, unsigned long end)
632 {
633 	struct mmu_gather tlb;
634 	int nr_updated;
635 
636 	tlb_gather_mmu(&tlb, vma->vm_mm);
637 
638 	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
639 				       MM_CP_PROT_NUMA);
640 	if (nr_updated)
641 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642 
643 	tlb_finish_mmu(&tlb);
644 
645 	return nr_updated;
646 }
647 #else
648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 			unsigned long addr, unsigned long end)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654 
655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 				struct mm_walk *walk)
657 {
658 	struct vm_area_struct *next, *vma = walk->vma;
659 	struct queue_pages *qp = walk->private;
660 	unsigned long endvma = vma->vm_end;
661 	unsigned long flags = qp->flags;
662 
663 	/* range check first */
664 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 
666 	if (!qp->first) {
667 		qp->first = vma;
668 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 			(qp->start < vma->vm_start))
670 			/* hole at head side of range */
671 			return -EFAULT;
672 	}
673 	next = find_vma(vma->vm_mm, vma->vm_end);
674 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 		((vma->vm_end < qp->end) &&
676 		(!next || vma->vm_end < next->vm_start)))
677 		/* hole at middle or tail of range */
678 		return -EFAULT;
679 
680 	/*
681 	 * Need check MPOL_MF_STRICT to return -EIO if possible
682 	 * regardless of vma_migratable
683 	 */
684 	if (!vma_migratable(vma) &&
685 	    !(flags & MPOL_MF_STRICT))
686 		return 1;
687 
688 	if (endvma > end)
689 		endvma = end;
690 
691 	if (flags & MPOL_MF_LAZY) {
692 		/* Similar to task_numa_work, skip inaccessible VMAs */
693 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 			!(vma->vm_flags & VM_MIXEDMAP))
695 			change_prot_numa(vma, start, endvma);
696 		return 1;
697 	}
698 
699 	/* queue pages from current vma */
700 	if (flags & MPOL_MF_VALID)
701 		return 0;
702 	return 1;
703 }
704 
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 	.hugetlb_entry		= queue_pages_hugetlb,
707 	.pmd_entry		= queue_pages_pte_range,
708 	.test_walk		= queue_pages_test_walk,
709 };
710 
711 /*
712  * Walk through page tables and collect pages to be migrated.
713  *
714  * If pages found in a given range are on a set of nodes (determined by
715  * @nodes and @flags,) it's isolated and queued to the pagelist which is
716  * passed via @private.
717  *
718  * queue_pages_range() has three possible return values:
719  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
720  *     specified.
721  * 0 - queue pages successfully or no misplaced page.
722  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723  *         memory range specified by nodemask and maxnode points outside
724  *         your accessible address space (-EFAULT)
725  */
726 static int
727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 		nodemask_t *nodes, unsigned long flags,
729 		struct list_head *pagelist)
730 {
731 	int err;
732 	struct queue_pages qp = {
733 		.pagelist = pagelist,
734 		.flags = flags,
735 		.nmask = nodes,
736 		.start = start,
737 		.end = end,
738 		.first = NULL,
739 	};
740 
741 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
742 
743 	if (!qp.first)
744 		/* whole range in hole */
745 		err = -EFAULT;
746 
747 	return err;
748 }
749 
750 /*
751  * Apply policy to a single VMA
752  * This must be called with the mmap_lock held for writing.
753  */
754 static int vma_replace_policy(struct vm_area_struct *vma,
755 						struct mempolicy *pol)
756 {
757 	int err;
758 	struct mempolicy *old;
759 	struct mempolicy *new;
760 
761 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 		 vma->vm_ops, vma->vm_file,
764 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
765 
766 	new = mpol_dup(pol);
767 	if (IS_ERR(new))
768 		return PTR_ERR(new);
769 
770 	if (vma->vm_ops && vma->vm_ops->set_policy) {
771 		err = vma->vm_ops->set_policy(vma, new);
772 		if (err)
773 			goto err_out;
774 	}
775 
776 	old = vma->vm_policy;
777 	vma->vm_policy = new; /* protected by mmap_lock */
778 	mpol_put(old);
779 
780 	return 0;
781  err_out:
782 	mpol_put(new);
783 	return err;
784 }
785 
786 /* Step 2: apply policy to a range and do splits. */
787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 		       unsigned long end, struct mempolicy *new_pol)
789 {
790 	MA_STATE(mas, &mm->mm_mt, start - 1, start - 1);
791 	struct vm_area_struct *prev;
792 	struct vm_area_struct *vma;
793 	int err = 0;
794 	pgoff_t pgoff;
795 
796 	prev = mas_find_rev(&mas, 0);
797 	if (prev && (start < prev->vm_end))
798 		vma = prev;
799 	else
800 		vma = mas_next(&mas, end - 1);
801 
802 	for (; vma; vma = mas_next(&mas, end - 1)) {
803 		unsigned long vmstart = max(start, vma->vm_start);
804 		unsigned long vmend = min(end, vma->vm_end);
805 
806 		if (mpol_equal(vma_policy(vma), new_pol))
807 			goto next;
808 
809 		pgoff = vma->vm_pgoff +
810 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 				 vma->anon_vma, vma->vm_file, pgoff,
813 				 new_pol, vma->vm_userfaultfd_ctx,
814 				 anon_vma_name(vma));
815 		if (prev) {
816 			/* vma_merge() invalidated the mas */
817 			mas_pause(&mas);
818 			vma = prev;
819 			goto replace;
820 		}
821 		if (vma->vm_start != vmstart) {
822 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
823 			if (err)
824 				goto out;
825 			/* split_vma() invalidated the mas */
826 			mas_pause(&mas);
827 		}
828 		if (vma->vm_end != vmend) {
829 			err = split_vma(vma->vm_mm, vma, vmend, 0);
830 			if (err)
831 				goto out;
832 			/* split_vma() invalidated the mas */
833 			mas_pause(&mas);
834 		}
835 replace:
836 		err = vma_replace_policy(vma, new_pol);
837 		if (err)
838 			goto out;
839 next:
840 		prev = vma;
841 	}
842 
843 out:
844 	return err;
845 }
846 
847 /* Set the process memory policy */
848 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
849 			     nodemask_t *nodes)
850 {
851 	struct mempolicy *new, *old;
852 	NODEMASK_SCRATCH(scratch);
853 	int ret;
854 
855 	if (!scratch)
856 		return -ENOMEM;
857 
858 	new = mpol_new(mode, flags, nodes);
859 	if (IS_ERR(new)) {
860 		ret = PTR_ERR(new);
861 		goto out;
862 	}
863 
864 	task_lock(current);
865 	ret = mpol_set_nodemask(new, nodes, scratch);
866 	if (ret) {
867 		task_unlock(current);
868 		mpol_put(new);
869 		goto out;
870 	}
871 
872 	old = current->mempolicy;
873 	current->mempolicy = new;
874 	if (new && new->mode == MPOL_INTERLEAVE)
875 		current->il_prev = MAX_NUMNODES-1;
876 	task_unlock(current);
877 	mpol_put(old);
878 	ret = 0;
879 out:
880 	NODEMASK_SCRATCH_FREE(scratch);
881 	return ret;
882 }
883 
884 /*
885  * Return nodemask for policy for get_mempolicy() query
886  *
887  * Called with task's alloc_lock held
888  */
889 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
890 {
891 	nodes_clear(*nodes);
892 	if (p == &default_policy)
893 		return;
894 
895 	switch (p->mode) {
896 	case MPOL_BIND:
897 	case MPOL_INTERLEAVE:
898 	case MPOL_PREFERRED:
899 	case MPOL_PREFERRED_MANY:
900 		*nodes = p->nodes;
901 		break;
902 	case MPOL_LOCAL:
903 		/* return empty node mask for local allocation */
904 		break;
905 	default:
906 		BUG();
907 	}
908 }
909 
910 static int lookup_node(struct mm_struct *mm, unsigned long addr)
911 {
912 	struct page *p = NULL;
913 	int ret;
914 
915 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
916 	if (ret > 0) {
917 		ret = page_to_nid(p);
918 		put_page(p);
919 	}
920 	return ret;
921 }
922 
923 /* Retrieve NUMA policy */
924 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
925 			     unsigned long addr, unsigned long flags)
926 {
927 	int err;
928 	struct mm_struct *mm = current->mm;
929 	struct vm_area_struct *vma = NULL;
930 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
931 
932 	if (flags &
933 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
934 		return -EINVAL;
935 
936 	if (flags & MPOL_F_MEMS_ALLOWED) {
937 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
938 			return -EINVAL;
939 		*policy = 0;	/* just so it's initialized */
940 		task_lock(current);
941 		*nmask  = cpuset_current_mems_allowed;
942 		task_unlock(current);
943 		return 0;
944 	}
945 
946 	if (flags & MPOL_F_ADDR) {
947 		/*
948 		 * Do NOT fall back to task policy if the
949 		 * vma/shared policy at addr is NULL.  We
950 		 * want to return MPOL_DEFAULT in this case.
951 		 */
952 		mmap_read_lock(mm);
953 		vma = vma_lookup(mm, addr);
954 		if (!vma) {
955 			mmap_read_unlock(mm);
956 			return -EFAULT;
957 		}
958 		if (vma->vm_ops && vma->vm_ops->get_policy)
959 			pol = vma->vm_ops->get_policy(vma, addr);
960 		else
961 			pol = vma->vm_policy;
962 	} else if (addr)
963 		return -EINVAL;
964 
965 	if (!pol)
966 		pol = &default_policy;	/* indicates default behavior */
967 
968 	if (flags & MPOL_F_NODE) {
969 		if (flags & MPOL_F_ADDR) {
970 			/*
971 			 * Take a refcount on the mpol, because we are about to
972 			 * drop the mmap_lock, after which only "pol" remains
973 			 * valid, "vma" is stale.
974 			 */
975 			pol_refcount = pol;
976 			vma = NULL;
977 			mpol_get(pol);
978 			mmap_read_unlock(mm);
979 			err = lookup_node(mm, addr);
980 			if (err < 0)
981 				goto out;
982 			*policy = err;
983 		} else if (pol == current->mempolicy &&
984 				pol->mode == MPOL_INTERLEAVE) {
985 			*policy = next_node_in(current->il_prev, pol->nodes);
986 		} else {
987 			err = -EINVAL;
988 			goto out;
989 		}
990 	} else {
991 		*policy = pol == &default_policy ? MPOL_DEFAULT :
992 						pol->mode;
993 		/*
994 		 * Internal mempolicy flags must be masked off before exposing
995 		 * the policy to userspace.
996 		 */
997 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
998 	}
999 
1000 	err = 0;
1001 	if (nmask) {
1002 		if (mpol_store_user_nodemask(pol)) {
1003 			*nmask = pol->w.user_nodemask;
1004 		} else {
1005 			task_lock(current);
1006 			get_policy_nodemask(pol, nmask);
1007 			task_unlock(current);
1008 		}
1009 	}
1010 
1011  out:
1012 	mpol_cond_put(pol);
1013 	if (vma)
1014 		mmap_read_unlock(mm);
1015 	if (pol_refcount)
1016 		mpol_put(pol_refcount);
1017 	return err;
1018 }
1019 
1020 #ifdef CONFIG_MIGRATION
1021 /*
1022  * page migration, thp tail pages can be passed.
1023  */
1024 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1025 				unsigned long flags)
1026 {
1027 	struct page *head = compound_head(page);
1028 	/*
1029 	 * Avoid migrating a page that is shared with others.
1030 	 */
1031 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1032 		if (!isolate_lru_page(head)) {
1033 			list_add_tail(&head->lru, pagelist);
1034 			mod_node_page_state(page_pgdat(head),
1035 				NR_ISOLATED_ANON + page_is_file_lru(head),
1036 				thp_nr_pages(head));
1037 		} else if (flags & MPOL_MF_STRICT) {
1038 			/*
1039 			 * Non-movable page may reach here.  And, there may be
1040 			 * temporary off LRU pages or non-LRU movable pages.
1041 			 * Treat them as unmovable pages since they can't be
1042 			 * isolated, so they can't be moved at the moment.  It
1043 			 * should return -EIO for this case too.
1044 			 */
1045 			return -EIO;
1046 		}
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Migrate pages from one node to a target node.
1054  * Returns error or the number of pages not migrated.
1055  */
1056 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1057 			   int flags)
1058 {
1059 	nodemask_t nmask;
1060 	struct vm_area_struct *vma;
1061 	LIST_HEAD(pagelist);
1062 	int err = 0;
1063 	struct migration_target_control mtc = {
1064 		.nid = dest,
1065 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1066 	};
1067 
1068 	nodes_clear(nmask);
1069 	node_set(source, nmask);
1070 
1071 	/*
1072 	 * This does not "check" the range but isolates all pages that
1073 	 * need migration.  Between passing in the full user address
1074 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1075 	 */
1076 	vma = find_vma(mm, 0);
1077 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1078 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1079 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1080 
1081 	if (!list_empty(&pagelist)) {
1082 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1083 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1084 		if (err)
1085 			putback_movable_pages(&pagelist);
1086 	}
1087 
1088 	return err;
1089 }
1090 
1091 /*
1092  * Move pages between the two nodesets so as to preserve the physical
1093  * layout as much as possible.
1094  *
1095  * Returns the number of page that could not be moved.
1096  */
1097 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1098 		     const nodemask_t *to, int flags)
1099 {
1100 	int busy = 0;
1101 	int err = 0;
1102 	nodemask_t tmp;
1103 
1104 	lru_cache_disable();
1105 
1106 	mmap_read_lock(mm);
1107 
1108 	/*
1109 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1110 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1111 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1112 	 * The pair of nodemasks 'to' and 'from' define the map.
1113 	 *
1114 	 * If no pair of bits is found that way, fallback to picking some
1115 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1116 	 * 'source' and 'dest' bits are the same, this represents a node
1117 	 * that will be migrating to itself, so no pages need move.
1118 	 *
1119 	 * If no bits are left in 'tmp', or if all remaining bits left
1120 	 * in 'tmp' correspond to the same bit in 'to', return false
1121 	 * (nothing left to migrate).
1122 	 *
1123 	 * This lets us pick a pair of nodes to migrate between, such that
1124 	 * if possible the dest node is not already occupied by some other
1125 	 * source node, minimizing the risk of overloading the memory on a
1126 	 * node that would happen if we migrated incoming memory to a node
1127 	 * before migrating outgoing memory source that same node.
1128 	 *
1129 	 * A single scan of tmp is sufficient.  As we go, we remember the
1130 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1131 	 * that not only moved, but what's better, moved to an empty slot
1132 	 * (d is not set in tmp), then we break out then, with that pair.
1133 	 * Otherwise when we finish scanning from_tmp, we at least have the
1134 	 * most recent <s, d> pair that moved.  If we get all the way through
1135 	 * the scan of tmp without finding any node that moved, much less
1136 	 * moved to an empty node, then there is nothing left worth migrating.
1137 	 */
1138 
1139 	tmp = *from;
1140 	while (!nodes_empty(tmp)) {
1141 		int s, d;
1142 		int source = NUMA_NO_NODE;
1143 		int dest = 0;
1144 
1145 		for_each_node_mask(s, tmp) {
1146 
1147 			/*
1148 			 * do_migrate_pages() tries to maintain the relative
1149 			 * node relationship of the pages established between
1150 			 * threads and memory areas.
1151                          *
1152 			 * However if the number of source nodes is not equal to
1153 			 * the number of destination nodes we can not preserve
1154 			 * this node relative relationship.  In that case, skip
1155 			 * copying memory from a node that is in the destination
1156 			 * mask.
1157 			 *
1158 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1159 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1160 			 */
1161 
1162 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1163 						(node_isset(s, *to)))
1164 				continue;
1165 
1166 			d = node_remap(s, *from, *to);
1167 			if (s == d)
1168 				continue;
1169 
1170 			source = s;	/* Node moved. Memorize */
1171 			dest = d;
1172 
1173 			/* dest not in remaining from nodes? */
1174 			if (!node_isset(dest, tmp))
1175 				break;
1176 		}
1177 		if (source == NUMA_NO_NODE)
1178 			break;
1179 
1180 		node_clear(source, tmp);
1181 		err = migrate_to_node(mm, source, dest, flags);
1182 		if (err > 0)
1183 			busy += err;
1184 		if (err < 0)
1185 			break;
1186 	}
1187 	mmap_read_unlock(mm);
1188 
1189 	lru_cache_enable();
1190 	if (err < 0)
1191 		return err;
1192 	return busy;
1193 
1194 }
1195 
1196 /*
1197  * Allocate a new page for page migration based on vma policy.
1198  * Start by assuming the page is mapped by the same vma as contains @start.
1199  * Search forward from there, if not.  N.B., this assumes that the
1200  * list of pages handed to migrate_pages()--which is how we get here--
1201  * is in virtual address order.
1202  */
1203 static struct page *new_page(struct page *page, unsigned long start)
1204 {
1205 	struct folio *dst, *src = page_folio(page);
1206 	struct vm_area_struct *vma;
1207 	unsigned long address;
1208 	VMA_ITERATOR(vmi, current->mm, start);
1209 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1210 
1211 	for_each_vma(vmi, vma) {
1212 		address = page_address_in_vma(page, vma);
1213 		if (address != -EFAULT)
1214 			break;
1215 	}
1216 
1217 	if (folio_test_hugetlb(src))
1218 		return alloc_huge_page_vma(page_hstate(&src->page),
1219 				vma, address);
1220 
1221 	if (folio_test_large(src))
1222 		gfp = GFP_TRANSHUGE;
1223 
1224 	/*
1225 	 * if !vma, vma_alloc_folio() will use task or system default policy
1226 	 */
1227 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1228 			folio_test_large(src));
1229 	return &dst->page;
1230 }
1231 #else
1232 
1233 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1234 				unsigned long flags)
1235 {
1236 	return -EIO;
1237 }
1238 
1239 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1240 		     const nodemask_t *to, int flags)
1241 {
1242 	return -ENOSYS;
1243 }
1244 
1245 static struct page *new_page(struct page *page, unsigned long start)
1246 {
1247 	return NULL;
1248 }
1249 #endif
1250 
1251 static long do_mbind(unsigned long start, unsigned long len,
1252 		     unsigned short mode, unsigned short mode_flags,
1253 		     nodemask_t *nmask, unsigned long flags)
1254 {
1255 	struct mm_struct *mm = current->mm;
1256 	struct mempolicy *new;
1257 	unsigned long end;
1258 	int err;
1259 	int ret;
1260 	LIST_HEAD(pagelist);
1261 
1262 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1263 		return -EINVAL;
1264 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1265 		return -EPERM;
1266 
1267 	if (start & ~PAGE_MASK)
1268 		return -EINVAL;
1269 
1270 	if (mode == MPOL_DEFAULT)
1271 		flags &= ~MPOL_MF_STRICT;
1272 
1273 	len = PAGE_ALIGN(len);
1274 	end = start + len;
1275 
1276 	if (end < start)
1277 		return -EINVAL;
1278 	if (end == start)
1279 		return 0;
1280 
1281 	new = mpol_new(mode, mode_flags, nmask);
1282 	if (IS_ERR(new))
1283 		return PTR_ERR(new);
1284 
1285 	if (flags & MPOL_MF_LAZY)
1286 		new->flags |= MPOL_F_MOF;
1287 
1288 	/*
1289 	 * If we are using the default policy then operation
1290 	 * on discontinuous address spaces is okay after all
1291 	 */
1292 	if (!new)
1293 		flags |= MPOL_MF_DISCONTIG_OK;
1294 
1295 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1296 		 start, start + len, mode, mode_flags,
1297 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1298 
1299 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1300 
1301 		lru_cache_disable();
1302 	}
1303 	{
1304 		NODEMASK_SCRATCH(scratch);
1305 		if (scratch) {
1306 			mmap_write_lock(mm);
1307 			err = mpol_set_nodemask(new, nmask, scratch);
1308 			if (err)
1309 				mmap_write_unlock(mm);
1310 		} else
1311 			err = -ENOMEM;
1312 		NODEMASK_SCRATCH_FREE(scratch);
1313 	}
1314 	if (err)
1315 		goto mpol_out;
1316 
1317 	ret = queue_pages_range(mm, start, end, nmask,
1318 			  flags | MPOL_MF_INVERT, &pagelist);
1319 
1320 	if (ret < 0) {
1321 		err = ret;
1322 		goto up_out;
1323 	}
1324 
1325 	err = mbind_range(mm, start, end, new);
1326 
1327 	if (!err) {
1328 		int nr_failed = 0;
1329 
1330 		if (!list_empty(&pagelist)) {
1331 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1332 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1333 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1334 			if (nr_failed)
1335 				putback_movable_pages(&pagelist);
1336 		}
1337 
1338 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1339 			err = -EIO;
1340 	} else {
1341 up_out:
1342 		if (!list_empty(&pagelist))
1343 			putback_movable_pages(&pagelist);
1344 	}
1345 
1346 	mmap_write_unlock(mm);
1347 mpol_out:
1348 	mpol_put(new);
1349 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1350 		lru_cache_enable();
1351 	return err;
1352 }
1353 
1354 /*
1355  * User space interface with variable sized bitmaps for nodelists.
1356  */
1357 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1358 		      unsigned long maxnode)
1359 {
1360 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1361 	int ret;
1362 
1363 	if (in_compat_syscall())
1364 		ret = compat_get_bitmap(mask,
1365 					(const compat_ulong_t __user *)nmask,
1366 					maxnode);
1367 	else
1368 		ret = copy_from_user(mask, nmask,
1369 				     nlongs * sizeof(unsigned long));
1370 
1371 	if (ret)
1372 		return -EFAULT;
1373 
1374 	if (maxnode % BITS_PER_LONG)
1375 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1376 
1377 	return 0;
1378 }
1379 
1380 /* Copy a node mask from user space. */
1381 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1382 		     unsigned long maxnode)
1383 {
1384 	--maxnode;
1385 	nodes_clear(*nodes);
1386 	if (maxnode == 0 || !nmask)
1387 		return 0;
1388 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1389 		return -EINVAL;
1390 
1391 	/*
1392 	 * When the user specified more nodes than supported just check
1393 	 * if the non supported part is all zero, one word at a time,
1394 	 * starting at the end.
1395 	 */
1396 	while (maxnode > MAX_NUMNODES) {
1397 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1398 		unsigned long t;
1399 
1400 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1401 			return -EFAULT;
1402 
1403 		if (maxnode - bits >= MAX_NUMNODES) {
1404 			maxnode -= bits;
1405 		} else {
1406 			maxnode = MAX_NUMNODES;
1407 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1408 		}
1409 		if (t)
1410 			return -EINVAL;
1411 	}
1412 
1413 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1414 }
1415 
1416 /* Copy a kernel node mask to user space */
1417 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1418 			      nodemask_t *nodes)
1419 {
1420 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1421 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1422 	bool compat = in_compat_syscall();
1423 
1424 	if (compat)
1425 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1426 
1427 	if (copy > nbytes) {
1428 		if (copy > PAGE_SIZE)
1429 			return -EINVAL;
1430 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1431 			return -EFAULT;
1432 		copy = nbytes;
1433 		maxnode = nr_node_ids;
1434 	}
1435 
1436 	if (compat)
1437 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1438 					 nodes_addr(*nodes), maxnode);
1439 
1440 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1441 }
1442 
1443 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1444 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1445 {
1446 	*flags = *mode & MPOL_MODE_FLAGS;
1447 	*mode &= ~MPOL_MODE_FLAGS;
1448 
1449 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1450 		return -EINVAL;
1451 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1452 		return -EINVAL;
1453 	if (*flags & MPOL_F_NUMA_BALANCING) {
1454 		if (*mode != MPOL_BIND)
1455 			return -EINVAL;
1456 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1457 	}
1458 	return 0;
1459 }
1460 
1461 static long kernel_mbind(unsigned long start, unsigned long len,
1462 			 unsigned long mode, const unsigned long __user *nmask,
1463 			 unsigned long maxnode, unsigned int flags)
1464 {
1465 	unsigned short mode_flags;
1466 	nodemask_t nodes;
1467 	int lmode = mode;
1468 	int err;
1469 
1470 	start = untagged_addr(start);
1471 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1472 	if (err)
1473 		return err;
1474 
1475 	err = get_nodes(&nodes, nmask, maxnode);
1476 	if (err)
1477 		return err;
1478 
1479 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1480 }
1481 
1482 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1483 		unsigned long, home_node, unsigned long, flags)
1484 {
1485 	struct mm_struct *mm = current->mm;
1486 	struct vm_area_struct *vma;
1487 	struct mempolicy *new;
1488 	unsigned long vmstart;
1489 	unsigned long vmend;
1490 	unsigned long end;
1491 	int err = -ENOENT;
1492 	VMA_ITERATOR(vmi, mm, start);
1493 
1494 	start = untagged_addr(start);
1495 	if (start & ~PAGE_MASK)
1496 		return -EINVAL;
1497 	/*
1498 	 * flags is used for future extension if any.
1499 	 */
1500 	if (flags != 0)
1501 		return -EINVAL;
1502 
1503 	/*
1504 	 * Check home_node is online to avoid accessing uninitialized
1505 	 * NODE_DATA.
1506 	 */
1507 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1508 		return -EINVAL;
1509 
1510 	len = PAGE_ALIGN(len);
1511 	end = start + len;
1512 
1513 	if (end < start)
1514 		return -EINVAL;
1515 	if (end == start)
1516 		return 0;
1517 	mmap_write_lock(mm);
1518 	for_each_vma_range(vmi, vma, end) {
1519 		vmstart = max(start, vma->vm_start);
1520 		vmend   = min(end, vma->vm_end);
1521 		new = mpol_dup(vma_policy(vma));
1522 		if (IS_ERR(new)) {
1523 			err = PTR_ERR(new);
1524 			break;
1525 		}
1526 		/*
1527 		 * Only update home node if there is an existing vma policy
1528 		 */
1529 		if (!new)
1530 			continue;
1531 
1532 		/*
1533 		 * If any vma in the range got policy other than MPOL_BIND
1534 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1535 		 * the home node for vmas we already updated before.
1536 		 */
1537 		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1538 			err = -EOPNOTSUPP;
1539 			break;
1540 		}
1541 
1542 		new->home_node = home_node;
1543 		err = mbind_range(mm, vmstart, vmend, new);
1544 		mpol_put(new);
1545 		if (err)
1546 			break;
1547 	}
1548 	mmap_write_unlock(mm);
1549 	return err;
1550 }
1551 
1552 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1553 		unsigned long, mode, const unsigned long __user *, nmask,
1554 		unsigned long, maxnode, unsigned int, flags)
1555 {
1556 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1557 }
1558 
1559 /* Set the process memory policy */
1560 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1561 				 unsigned long maxnode)
1562 {
1563 	unsigned short mode_flags;
1564 	nodemask_t nodes;
1565 	int lmode = mode;
1566 	int err;
1567 
1568 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1569 	if (err)
1570 		return err;
1571 
1572 	err = get_nodes(&nodes, nmask, maxnode);
1573 	if (err)
1574 		return err;
1575 
1576 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1577 }
1578 
1579 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1580 		unsigned long, maxnode)
1581 {
1582 	return kernel_set_mempolicy(mode, nmask, maxnode);
1583 }
1584 
1585 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1586 				const unsigned long __user *old_nodes,
1587 				const unsigned long __user *new_nodes)
1588 {
1589 	struct mm_struct *mm = NULL;
1590 	struct task_struct *task;
1591 	nodemask_t task_nodes;
1592 	int err;
1593 	nodemask_t *old;
1594 	nodemask_t *new;
1595 	NODEMASK_SCRATCH(scratch);
1596 
1597 	if (!scratch)
1598 		return -ENOMEM;
1599 
1600 	old = &scratch->mask1;
1601 	new = &scratch->mask2;
1602 
1603 	err = get_nodes(old, old_nodes, maxnode);
1604 	if (err)
1605 		goto out;
1606 
1607 	err = get_nodes(new, new_nodes, maxnode);
1608 	if (err)
1609 		goto out;
1610 
1611 	/* Find the mm_struct */
1612 	rcu_read_lock();
1613 	task = pid ? find_task_by_vpid(pid) : current;
1614 	if (!task) {
1615 		rcu_read_unlock();
1616 		err = -ESRCH;
1617 		goto out;
1618 	}
1619 	get_task_struct(task);
1620 
1621 	err = -EINVAL;
1622 
1623 	/*
1624 	 * Check if this process has the right to modify the specified process.
1625 	 * Use the regular "ptrace_may_access()" checks.
1626 	 */
1627 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1628 		rcu_read_unlock();
1629 		err = -EPERM;
1630 		goto out_put;
1631 	}
1632 	rcu_read_unlock();
1633 
1634 	task_nodes = cpuset_mems_allowed(task);
1635 	/* Is the user allowed to access the target nodes? */
1636 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1637 		err = -EPERM;
1638 		goto out_put;
1639 	}
1640 
1641 	task_nodes = cpuset_mems_allowed(current);
1642 	nodes_and(*new, *new, task_nodes);
1643 	if (nodes_empty(*new))
1644 		goto out_put;
1645 
1646 	err = security_task_movememory(task);
1647 	if (err)
1648 		goto out_put;
1649 
1650 	mm = get_task_mm(task);
1651 	put_task_struct(task);
1652 
1653 	if (!mm) {
1654 		err = -EINVAL;
1655 		goto out;
1656 	}
1657 
1658 	err = do_migrate_pages(mm, old, new,
1659 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1660 
1661 	mmput(mm);
1662 out:
1663 	NODEMASK_SCRATCH_FREE(scratch);
1664 
1665 	return err;
1666 
1667 out_put:
1668 	put_task_struct(task);
1669 	goto out;
1670 
1671 }
1672 
1673 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1674 		const unsigned long __user *, old_nodes,
1675 		const unsigned long __user *, new_nodes)
1676 {
1677 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1678 }
1679 
1680 
1681 /* Retrieve NUMA policy */
1682 static int kernel_get_mempolicy(int __user *policy,
1683 				unsigned long __user *nmask,
1684 				unsigned long maxnode,
1685 				unsigned long addr,
1686 				unsigned long flags)
1687 {
1688 	int err;
1689 	int pval;
1690 	nodemask_t nodes;
1691 
1692 	if (nmask != NULL && maxnode < nr_node_ids)
1693 		return -EINVAL;
1694 
1695 	addr = untagged_addr(addr);
1696 
1697 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1698 
1699 	if (err)
1700 		return err;
1701 
1702 	if (policy && put_user(pval, policy))
1703 		return -EFAULT;
1704 
1705 	if (nmask)
1706 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1707 
1708 	return err;
1709 }
1710 
1711 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1712 		unsigned long __user *, nmask, unsigned long, maxnode,
1713 		unsigned long, addr, unsigned long, flags)
1714 {
1715 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1716 }
1717 
1718 bool vma_migratable(struct vm_area_struct *vma)
1719 {
1720 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1721 		return false;
1722 
1723 	/*
1724 	 * DAX device mappings require predictable access latency, so avoid
1725 	 * incurring periodic faults.
1726 	 */
1727 	if (vma_is_dax(vma))
1728 		return false;
1729 
1730 	if (is_vm_hugetlb_page(vma) &&
1731 		!hugepage_migration_supported(hstate_vma(vma)))
1732 		return false;
1733 
1734 	/*
1735 	 * Migration allocates pages in the highest zone. If we cannot
1736 	 * do so then migration (at least from node to node) is not
1737 	 * possible.
1738 	 */
1739 	if (vma->vm_file &&
1740 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1741 			< policy_zone)
1742 		return false;
1743 	return true;
1744 }
1745 
1746 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1747 						unsigned long addr)
1748 {
1749 	struct mempolicy *pol = NULL;
1750 
1751 	if (vma) {
1752 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1753 			pol = vma->vm_ops->get_policy(vma, addr);
1754 		} else if (vma->vm_policy) {
1755 			pol = vma->vm_policy;
1756 
1757 			/*
1758 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1759 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1760 			 * count on these policies which will be dropped by
1761 			 * mpol_cond_put() later
1762 			 */
1763 			if (mpol_needs_cond_ref(pol))
1764 				mpol_get(pol);
1765 		}
1766 	}
1767 
1768 	return pol;
1769 }
1770 
1771 /*
1772  * get_vma_policy(@vma, @addr)
1773  * @vma: virtual memory area whose policy is sought
1774  * @addr: address in @vma for shared policy lookup
1775  *
1776  * Returns effective policy for a VMA at specified address.
1777  * Falls back to current->mempolicy or system default policy, as necessary.
1778  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1779  * count--added by the get_policy() vm_op, as appropriate--to protect against
1780  * freeing by another task.  It is the caller's responsibility to free the
1781  * extra reference for shared policies.
1782  */
1783 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1784 						unsigned long addr)
1785 {
1786 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1787 
1788 	if (!pol)
1789 		pol = get_task_policy(current);
1790 
1791 	return pol;
1792 }
1793 
1794 bool vma_policy_mof(struct vm_area_struct *vma)
1795 {
1796 	struct mempolicy *pol;
1797 
1798 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1799 		bool ret = false;
1800 
1801 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1802 		if (pol && (pol->flags & MPOL_F_MOF))
1803 			ret = true;
1804 		mpol_cond_put(pol);
1805 
1806 		return ret;
1807 	}
1808 
1809 	pol = vma->vm_policy;
1810 	if (!pol)
1811 		pol = get_task_policy(current);
1812 
1813 	return pol->flags & MPOL_F_MOF;
1814 }
1815 
1816 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1817 {
1818 	enum zone_type dynamic_policy_zone = policy_zone;
1819 
1820 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1821 
1822 	/*
1823 	 * if policy->nodes has movable memory only,
1824 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1825 	 *
1826 	 * policy->nodes is intersect with node_states[N_MEMORY].
1827 	 * so if the following test fails, it implies
1828 	 * policy->nodes has movable memory only.
1829 	 */
1830 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1831 		dynamic_policy_zone = ZONE_MOVABLE;
1832 
1833 	return zone >= dynamic_policy_zone;
1834 }
1835 
1836 /*
1837  * Return a nodemask representing a mempolicy for filtering nodes for
1838  * page allocation
1839  */
1840 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1841 {
1842 	int mode = policy->mode;
1843 
1844 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1845 	if (unlikely(mode == MPOL_BIND) &&
1846 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1847 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1848 		return &policy->nodes;
1849 
1850 	if (mode == MPOL_PREFERRED_MANY)
1851 		return &policy->nodes;
1852 
1853 	return NULL;
1854 }
1855 
1856 /*
1857  * Return the  preferred node id for 'prefer' mempolicy, and return
1858  * the given id for all other policies.
1859  *
1860  * policy_node() is always coupled with policy_nodemask(), which
1861  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1862  */
1863 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1864 {
1865 	if (policy->mode == MPOL_PREFERRED) {
1866 		nd = first_node(policy->nodes);
1867 	} else {
1868 		/*
1869 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1870 		 * because we might easily break the expectation to stay on the
1871 		 * requested node and not break the policy.
1872 		 */
1873 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1874 	}
1875 
1876 	if ((policy->mode == MPOL_BIND ||
1877 	     policy->mode == MPOL_PREFERRED_MANY) &&
1878 	    policy->home_node != NUMA_NO_NODE)
1879 		return policy->home_node;
1880 
1881 	return nd;
1882 }
1883 
1884 /* Do dynamic interleaving for a process */
1885 static unsigned interleave_nodes(struct mempolicy *policy)
1886 {
1887 	unsigned next;
1888 	struct task_struct *me = current;
1889 
1890 	next = next_node_in(me->il_prev, policy->nodes);
1891 	if (next < MAX_NUMNODES)
1892 		me->il_prev = next;
1893 	return next;
1894 }
1895 
1896 /*
1897  * Depending on the memory policy provide a node from which to allocate the
1898  * next slab entry.
1899  */
1900 unsigned int mempolicy_slab_node(void)
1901 {
1902 	struct mempolicy *policy;
1903 	int node = numa_mem_id();
1904 
1905 	if (!in_task())
1906 		return node;
1907 
1908 	policy = current->mempolicy;
1909 	if (!policy)
1910 		return node;
1911 
1912 	switch (policy->mode) {
1913 	case MPOL_PREFERRED:
1914 		return first_node(policy->nodes);
1915 
1916 	case MPOL_INTERLEAVE:
1917 		return interleave_nodes(policy);
1918 
1919 	case MPOL_BIND:
1920 	case MPOL_PREFERRED_MANY:
1921 	{
1922 		struct zoneref *z;
1923 
1924 		/*
1925 		 * Follow bind policy behavior and start allocation at the
1926 		 * first node.
1927 		 */
1928 		struct zonelist *zonelist;
1929 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1930 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1931 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1932 							&policy->nodes);
1933 		return z->zone ? zone_to_nid(z->zone) : node;
1934 	}
1935 	case MPOL_LOCAL:
1936 		return node;
1937 
1938 	default:
1939 		BUG();
1940 	}
1941 }
1942 
1943 /*
1944  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1945  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1946  * number of present nodes.
1947  */
1948 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1949 {
1950 	nodemask_t nodemask = pol->nodes;
1951 	unsigned int target, nnodes;
1952 	int i;
1953 	int nid;
1954 	/*
1955 	 * The barrier will stabilize the nodemask in a register or on
1956 	 * the stack so that it will stop changing under the code.
1957 	 *
1958 	 * Between first_node() and next_node(), pol->nodes could be changed
1959 	 * by other threads. So we put pol->nodes in a local stack.
1960 	 */
1961 	barrier();
1962 
1963 	nnodes = nodes_weight(nodemask);
1964 	if (!nnodes)
1965 		return numa_node_id();
1966 	target = (unsigned int)n % nnodes;
1967 	nid = first_node(nodemask);
1968 	for (i = 0; i < target; i++)
1969 		nid = next_node(nid, nodemask);
1970 	return nid;
1971 }
1972 
1973 /* Determine a node number for interleave */
1974 static inline unsigned interleave_nid(struct mempolicy *pol,
1975 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1976 {
1977 	if (vma) {
1978 		unsigned long off;
1979 
1980 		/*
1981 		 * for small pages, there is no difference between
1982 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1983 		 * for huge pages, since vm_pgoff is in units of small
1984 		 * pages, we need to shift off the always 0 bits to get
1985 		 * a useful offset.
1986 		 */
1987 		BUG_ON(shift < PAGE_SHIFT);
1988 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1989 		off += (addr - vma->vm_start) >> shift;
1990 		return offset_il_node(pol, off);
1991 	} else
1992 		return interleave_nodes(pol);
1993 }
1994 
1995 #ifdef CONFIG_HUGETLBFS
1996 /*
1997  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1998  * @vma: virtual memory area whose policy is sought
1999  * @addr: address in @vma for shared policy lookup and interleave policy
2000  * @gfp_flags: for requested zone
2001  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2002  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2003  *
2004  * Returns a nid suitable for a huge page allocation and a pointer
2005  * to the struct mempolicy for conditional unref after allocation.
2006  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2007  * to the mempolicy's @nodemask for filtering the zonelist.
2008  *
2009  * Must be protected by read_mems_allowed_begin()
2010  */
2011 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2012 				struct mempolicy **mpol, nodemask_t **nodemask)
2013 {
2014 	int nid;
2015 	int mode;
2016 
2017 	*mpol = get_vma_policy(vma, addr);
2018 	*nodemask = NULL;
2019 	mode = (*mpol)->mode;
2020 
2021 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2022 		nid = interleave_nid(*mpol, vma, addr,
2023 					huge_page_shift(hstate_vma(vma)));
2024 	} else {
2025 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2026 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2027 			*nodemask = &(*mpol)->nodes;
2028 	}
2029 	return nid;
2030 }
2031 
2032 /*
2033  * init_nodemask_of_mempolicy
2034  *
2035  * If the current task's mempolicy is "default" [NULL], return 'false'
2036  * to indicate default policy.  Otherwise, extract the policy nodemask
2037  * for 'bind' or 'interleave' policy into the argument nodemask, or
2038  * initialize the argument nodemask to contain the single node for
2039  * 'preferred' or 'local' policy and return 'true' to indicate presence
2040  * of non-default mempolicy.
2041  *
2042  * We don't bother with reference counting the mempolicy [mpol_get/put]
2043  * because the current task is examining it's own mempolicy and a task's
2044  * mempolicy is only ever changed by the task itself.
2045  *
2046  * N.B., it is the caller's responsibility to free a returned nodemask.
2047  */
2048 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2049 {
2050 	struct mempolicy *mempolicy;
2051 
2052 	if (!(mask && current->mempolicy))
2053 		return false;
2054 
2055 	task_lock(current);
2056 	mempolicy = current->mempolicy;
2057 	switch (mempolicy->mode) {
2058 	case MPOL_PREFERRED:
2059 	case MPOL_PREFERRED_MANY:
2060 	case MPOL_BIND:
2061 	case MPOL_INTERLEAVE:
2062 		*mask = mempolicy->nodes;
2063 		break;
2064 
2065 	case MPOL_LOCAL:
2066 		init_nodemask_of_node(mask, numa_node_id());
2067 		break;
2068 
2069 	default:
2070 		BUG();
2071 	}
2072 	task_unlock(current);
2073 
2074 	return true;
2075 }
2076 #endif
2077 
2078 /*
2079  * mempolicy_in_oom_domain
2080  *
2081  * If tsk's mempolicy is "bind", check for intersection between mask and
2082  * the policy nodemask. Otherwise, return true for all other policies
2083  * including "interleave", as a tsk with "interleave" policy may have
2084  * memory allocated from all nodes in system.
2085  *
2086  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2087  */
2088 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2089 					const nodemask_t *mask)
2090 {
2091 	struct mempolicy *mempolicy;
2092 	bool ret = true;
2093 
2094 	if (!mask)
2095 		return ret;
2096 
2097 	task_lock(tsk);
2098 	mempolicy = tsk->mempolicy;
2099 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2100 		ret = nodes_intersects(mempolicy->nodes, *mask);
2101 	task_unlock(tsk);
2102 
2103 	return ret;
2104 }
2105 
2106 /* Allocate a page in interleaved policy.
2107    Own path because it needs to do special accounting. */
2108 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2109 					unsigned nid)
2110 {
2111 	struct page *page;
2112 
2113 	page = __alloc_pages(gfp, order, nid, NULL);
2114 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2115 	if (!static_branch_likely(&vm_numa_stat_key))
2116 		return page;
2117 	if (page && page_to_nid(page) == nid) {
2118 		preempt_disable();
2119 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2120 		preempt_enable();
2121 	}
2122 	return page;
2123 }
2124 
2125 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2126 						int nid, struct mempolicy *pol)
2127 {
2128 	struct page *page;
2129 	gfp_t preferred_gfp;
2130 
2131 	/*
2132 	 * This is a two pass approach. The first pass will only try the
2133 	 * preferred nodes but skip the direct reclaim and allow the
2134 	 * allocation to fail, while the second pass will try all the
2135 	 * nodes in system.
2136 	 */
2137 	preferred_gfp = gfp | __GFP_NOWARN;
2138 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2139 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2140 	if (!page)
2141 		page = __alloc_pages(gfp, order, nid, NULL);
2142 
2143 	return page;
2144 }
2145 
2146 /**
2147  * vma_alloc_folio - Allocate a folio for a VMA.
2148  * @gfp: GFP flags.
2149  * @order: Order of the folio.
2150  * @vma: Pointer to VMA or NULL if not available.
2151  * @addr: Virtual address of the allocation.  Must be inside @vma.
2152  * @hugepage: For hugepages try only the preferred node if possible.
2153  *
2154  * Allocate a folio for a specific address in @vma, using the appropriate
2155  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2156  * of the mm_struct of the VMA to prevent it from going away.  Should be
2157  * used for all allocations for folios that will be mapped into user space.
2158  *
2159  * Return: The folio on success or NULL if allocation fails.
2160  */
2161 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2162 		unsigned long addr, bool hugepage)
2163 {
2164 	struct mempolicy *pol;
2165 	int node = numa_node_id();
2166 	struct folio *folio;
2167 	int preferred_nid;
2168 	nodemask_t *nmask;
2169 
2170 	pol = get_vma_policy(vma, addr);
2171 
2172 	if (pol->mode == MPOL_INTERLEAVE) {
2173 		struct page *page;
2174 		unsigned nid;
2175 
2176 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2177 		mpol_cond_put(pol);
2178 		gfp |= __GFP_COMP;
2179 		page = alloc_page_interleave(gfp, order, nid);
2180 		if (page && order > 1)
2181 			prep_transhuge_page(page);
2182 		folio = (struct folio *)page;
2183 		goto out;
2184 	}
2185 
2186 	if (pol->mode == MPOL_PREFERRED_MANY) {
2187 		struct page *page;
2188 
2189 		node = policy_node(gfp, pol, node);
2190 		gfp |= __GFP_COMP;
2191 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2192 		mpol_cond_put(pol);
2193 		if (page && order > 1)
2194 			prep_transhuge_page(page);
2195 		folio = (struct folio *)page;
2196 		goto out;
2197 	}
2198 
2199 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2200 		int hpage_node = node;
2201 
2202 		/*
2203 		 * For hugepage allocation and non-interleave policy which
2204 		 * allows the current node (or other explicitly preferred
2205 		 * node) we only try to allocate from the current/preferred
2206 		 * node and don't fall back to other nodes, as the cost of
2207 		 * remote accesses would likely offset THP benefits.
2208 		 *
2209 		 * If the policy is interleave or does not allow the current
2210 		 * node in its nodemask, we allocate the standard way.
2211 		 */
2212 		if (pol->mode == MPOL_PREFERRED)
2213 			hpage_node = first_node(pol->nodes);
2214 
2215 		nmask = policy_nodemask(gfp, pol);
2216 		if (!nmask || node_isset(hpage_node, *nmask)) {
2217 			mpol_cond_put(pol);
2218 			/*
2219 			 * First, try to allocate THP only on local node, but
2220 			 * don't reclaim unnecessarily, just compact.
2221 			 */
2222 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2223 					__GFP_NORETRY, order, hpage_node);
2224 
2225 			/*
2226 			 * If hugepage allocations are configured to always
2227 			 * synchronous compact or the vma has been madvised
2228 			 * to prefer hugepage backing, retry allowing remote
2229 			 * memory with both reclaim and compact as well.
2230 			 */
2231 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2232 				folio = __folio_alloc(gfp, order, hpage_node,
2233 						      nmask);
2234 
2235 			goto out;
2236 		}
2237 	}
2238 
2239 	nmask = policy_nodemask(gfp, pol);
2240 	preferred_nid = policy_node(gfp, pol, node);
2241 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2242 	mpol_cond_put(pol);
2243 out:
2244 	return folio;
2245 }
2246 EXPORT_SYMBOL(vma_alloc_folio);
2247 
2248 /**
2249  * alloc_pages - Allocate pages.
2250  * @gfp: GFP flags.
2251  * @order: Power of two of number of pages to allocate.
2252  *
2253  * Allocate 1 << @order contiguous pages.  The physical address of the
2254  * first page is naturally aligned (eg an order-3 allocation will be aligned
2255  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2256  * process is honoured when in process context.
2257  *
2258  * Context: Can be called from any context, providing the appropriate GFP
2259  * flags are used.
2260  * Return: The page on success or NULL if allocation fails.
2261  */
2262 struct page *alloc_pages(gfp_t gfp, unsigned order)
2263 {
2264 	struct mempolicy *pol = &default_policy;
2265 	struct page *page;
2266 
2267 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2268 		pol = get_task_policy(current);
2269 
2270 	/*
2271 	 * No reference counting needed for current->mempolicy
2272 	 * nor system default_policy
2273 	 */
2274 	if (pol->mode == MPOL_INTERLEAVE)
2275 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2276 	else if (pol->mode == MPOL_PREFERRED_MANY)
2277 		page = alloc_pages_preferred_many(gfp, order,
2278 				  policy_node(gfp, pol, numa_node_id()), pol);
2279 	else
2280 		page = __alloc_pages(gfp, order,
2281 				policy_node(gfp, pol, numa_node_id()),
2282 				policy_nodemask(gfp, pol));
2283 
2284 	return page;
2285 }
2286 EXPORT_SYMBOL(alloc_pages);
2287 
2288 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2289 {
2290 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2291 
2292 	if (page && order > 1)
2293 		prep_transhuge_page(page);
2294 	return (struct folio *)page;
2295 }
2296 EXPORT_SYMBOL(folio_alloc);
2297 
2298 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2299 		struct mempolicy *pol, unsigned long nr_pages,
2300 		struct page **page_array)
2301 {
2302 	int nodes;
2303 	unsigned long nr_pages_per_node;
2304 	int delta;
2305 	int i;
2306 	unsigned long nr_allocated;
2307 	unsigned long total_allocated = 0;
2308 
2309 	nodes = nodes_weight(pol->nodes);
2310 	nr_pages_per_node = nr_pages / nodes;
2311 	delta = nr_pages - nodes * nr_pages_per_node;
2312 
2313 	for (i = 0; i < nodes; i++) {
2314 		if (delta) {
2315 			nr_allocated = __alloc_pages_bulk(gfp,
2316 					interleave_nodes(pol), NULL,
2317 					nr_pages_per_node + 1, NULL,
2318 					page_array);
2319 			delta--;
2320 		} else {
2321 			nr_allocated = __alloc_pages_bulk(gfp,
2322 					interleave_nodes(pol), NULL,
2323 					nr_pages_per_node, NULL, page_array);
2324 		}
2325 
2326 		page_array += nr_allocated;
2327 		total_allocated += nr_allocated;
2328 	}
2329 
2330 	return total_allocated;
2331 }
2332 
2333 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2334 		struct mempolicy *pol, unsigned long nr_pages,
2335 		struct page **page_array)
2336 {
2337 	gfp_t preferred_gfp;
2338 	unsigned long nr_allocated = 0;
2339 
2340 	preferred_gfp = gfp | __GFP_NOWARN;
2341 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2342 
2343 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2344 					   nr_pages, NULL, page_array);
2345 
2346 	if (nr_allocated < nr_pages)
2347 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2348 				nr_pages - nr_allocated, NULL,
2349 				page_array + nr_allocated);
2350 	return nr_allocated;
2351 }
2352 
2353 /* alloc pages bulk and mempolicy should be considered at the
2354  * same time in some situation such as vmalloc.
2355  *
2356  * It can accelerate memory allocation especially interleaving
2357  * allocate memory.
2358  */
2359 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2360 		unsigned long nr_pages, struct page **page_array)
2361 {
2362 	struct mempolicy *pol = &default_policy;
2363 
2364 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2365 		pol = get_task_policy(current);
2366 
2367 	if (pol->mode == MPOL_INTERLEAVE)
2368 		return alloc_pages_bulk_array_interleave(gfp, pol,
2369 							 nr_pages, page_array);
2370 
2371 	if (pol->mode == MPOL_PREFERRED_MANY)
2372 		return alloc_pages_bulk_array_preferred_many(gfp,
2373 				numa_node_id(), pol, nr_pages, page_array);
2374 
2375 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2376 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2377 				  page_array);
2378 }
2379 
2380 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2381 {
2382 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2383 
2384 	if (IS_ERR(pol))
2385 		return PTR_ERR(pol);
2386 	dst->vm_policy = pol;
2387 	return 0;
2388 }
2389 
2390 /*
2391  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2392  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2393  * with the mems_allowed returned by cpuset_mems_allowed().  This
2394  * keeps mempolicies cpuset relative after its cpuset moves.  See
2395  * further kernel/cpuset.c update_nodemask().
2396  *
2397  * current's mempolicy may be rebinded by the other task(the task that changes
2398  * cpuset's mems), so we needn't do rebind work for current task.
2399  */
2400 
2401 /* Slow path of a mempolicy duplicate */
2402 struct mempolicy *__mpol_dup(struct mempolicy *old)
2403 {
2404 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2405 
2406 	if (!new)
2407 		return ERR_PTR(-ENOMEM);
2408 
2409 	/* task's mempolicy is protected by alloc_lock */
2410 	if (old == current->mempolicy) {
2411 		task_lock(current);
2412 		*new = *old;
2413 		task_unlock(current);
2414 	} else
2415 		*new = *old;
2416 
2417 	if (current_cpuset_is_being_rebound()) {
2418 		nodemask_t mems = cpuset_mems_allowed(current);
2419 		mpol_rebind_policy(new, &mems);
2420 	}
2421 	atomic_set(&new->refcnt, 1);
2422 	return new;
2423 }
2424 
2425 /* Slow path of a mempolicy comparison */
2426 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2427 {
2428 	if (!a || !b)
2429 		return false;
2430 	if (a->mode != b->mode)
2431 		return false;
2432 	if (a->flags != b->flags)
2433 		return false;
2434 	if (a->home_node != b->home_node)
2435 		return false;
2436 	if (mpol_store_user_nodemask(a))
2437 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2438 			return false;
2439 
2440 	switch (a->mode) {
2441 	case MPOL_BIND:
2442 	case MPOL_INTERLEAVE:
2443 	case MPOL_PREFERRED:
2444 	case MPOL_PREFERRED_MANY:
2445 		return !!nodes_equal(a->nodes, b->nodes);
2446 	case MPOL_LOCAL:
2447 		return true;
2448 	default:
2449 		BUG();
2450 		return false;
2451 	}
2452 }
2453 
2454 /*
2455  * Shared memory backing store policy support.
2456  *
2457  * Remember policies even when nobody has shared memory mapped.
2458  * The policies are kept in Red-Black tree linked from the inode.
2459  * They are protected by the sp->lock rwlock, which should be held
2460  * for any accesses to the tree.
2461  */
2462 
2463 /*
2464  * lookup first element intersecting start-end.  Caller holds sp->lock for
2465  * reading or for writing
2466  */
2467 static struct sp_node *
2468 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2469 {
2470 	struct rb_node *n = sp->root.rb_node;
2471 
2472 	while (n) {
2473 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2474 
2475 		if (start >= p->end)
2476 			n = n->rb_right;
2477 		else if (end <= p->start)
2478 			n = n->rb_left;
2479 		else
2480 			break;
2481 	}
2482 	if (!n)
2483 		return NULL;
2484 	for (;;) {
2485 		struct sp_node *w = NULL;
2486 		struct rb_node *prev = rb_prev(n);
2487 		if (!prev)
2488 			break;
2489 		w = rb_entry(prev, struct sp_node, nd);
2490 		if (w->end <= start)
2491 			break;
2492 		n = prev;
2493 	}
2494 	return rb_entry(n, struct sp_node, nd);
2495 }
2496 
2497 /*
2498  * Insert a new shared policy into the list.  Caller holds sp->lock for
2499  * writing.
2500  */
2501 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2502 {
2503 	struct rb_node **p = &sp->root.rb_node;
2504 	struct rb_node *parent = NULL;
2505 	struct sp_node *nd;
2506 
2507 	while (*p) {
2508 		parent = *p;
2509 		nd = rb_entry(parent, struct sp_node, nd);
2510 		if (new->start < nd->start)
2511 			p = &(*p)->rb_left;
2512 		else if (new->end > nd->end)
2513 			p = &(*p)->rb_right;
2514 		else
2515 			BUG();
2516 	}
2517 	rb_link_node(&new->nd, parent, p);
2518 	rb_insert_color(&new->nd, &sp->root);
2519 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2520 		 new->policy ? new->policy->mode : 0);
2521 }
2522 
2523 /* Find shared policy intersecting idx */
2524 struct mempolicy *
2525 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2526 {
2527 	struct mempolicy *pol = NULL;
2528 	struct sp_node *sn;
2529 
2530 	if (!sp->root.rb_node)
2531 		return NULL;
2532 	read_lock(&sp->lock);
2533 	sn = sp_lookup(sp, idx, idx+1);
2534 	if (sn) {
2535 		mpol_get(sn->policy);
2536 		pol = sn->policy;
2537 	}
2538 	read_unlock(&sp->lock);
2539 	return pol;
2540 }
2541 
2542 static void sp_free(struct sp_node *n)
2543 {
2544 	mpol_put(n->policy);
2545 	kmem_cache_free(sn_cache, n);
2546 }
2547 
2548 /**
2549  * mpol_misplaced - check whether current page node is valid in policy
2550  *
2551  * @page: page to be checked
2552  * @vma: vm area where page mapped
2553  * @addr: virtual address where page mapped
2554  *
2555  * Lookup current policy node id for vma,addr and "compare to" page's
2556  * node id.  Policy determination "mimics" alloc_page_vma().
2557  * Called from fault path where we know the vma and faulting address.
2558  *
2559  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2560  * policy, or a suitable node ID to allocate a replacement page from.
2561  */
2562 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2563 {
2564 	struct mempolicy *pol;
2565 	struct zoneref *z;
2566 	int curnid = page_to_nid(page);
2567 	unsigned long pgoff;
2568 	int thiscpu = raw_smp_processor_id();
2569 	int thisnid = cpu_to_node(thiscpu);
2570 	int polnid = NUMA_NO_NODE;
2571 	int ret = NUMA_NO_NODE;
2572 
2573 	pol = get_vma_policy(vma, addr);
2574 	if (!(pol->flags & MPOL_F_MOF))
2575 		goto out;
2576 
2577 	switch (pol->mode) {
2578 	case MPOL_INTERLEAVE:
2579 		pgoff = vma->vm_pgoff;
2580 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2581 		polnid = offset_il_node(pol, pgoff);
2582 		break;
2583 
2584 	case MPOL_PREFERRED:
2585 		if (node_isset(curnid, pol->nodes))
2586 			goto out;
2587 		polnid = first_node(pol->nodes);
2588 		break;
2589 
2590 	case MPOL_LOCAL:
2591 		polnid = numa_node_id();
2592 		break;
2593 
2594 	case MPOL_BIND:
2595 		/* Optimize placement among multiple nodes via NUMA balancing */
2596 		if (pol->flags & MPOL_F_MORON) {
2597 			if (node_isset(thisnid, pol->nodes))
2598 				break;
2599 			goto out;
2600 		}
2601 		fallthrough;
2602 
2603 	case MPOL_PREFERRED_MANY:
2604 		/*
2605 		 * use current page if in policy nodemask,
2606 		 * else select nearest allowed node, if any.
2607 		 * If no allowed nodes, use current [!misplaced].
2608 		 */
2609 		if (node_isset(curnid, pol->nodes))
2610 			goto out;
2611 		z = first_zones_zonelist(
2612 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2613 				gfp_zone(GFP_HIGHUSER),
2614 				&pol->nodes);
2615 		polnid = zone_to_nid(z->zone);
2616 		break;
2617 
2618 	default:
2619 		BUG();
2620 	}
2621 
2622 	/* Migrate the page towards the node whose CPU is referencing it */
2623 	if (pol->flags & MPOL_F_MORON) {
2624 		polnid = thisnid;
2625 
2626 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2627 			goto out;
2628 	}
2629 
2630 	if (curnid != polnid)
2631 		ret = polnid;
2632 out:
2633 	mpol_cond_put(pol);
2634 
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2640  * dropped after task->mempolicy is set to NULL so that any allocation done as
2641  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2642  * policy.
2643  */
2644 void mpol_put_task_policy(struct task_struct *task)
2645 {
2646 	struct mempolicy *pol;
2647 
2648 	task_lock(task);
2649 	pol = task->mempolicy;
2650 	task->mempolicy = NULL;
2651 	task_unlock(task);
2652 	mpol_put(pol);
2653 }
2654 
2655 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2656 {
2657 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2658 	rb_erase(&n->nd, &sp->root);
2659 	sp_free(n);
2660 }
2661 
2662 static void sp_node_init(struct sp_node *node, unsigned long start,
2663 			unsigned long end, struct mempolicy *pol)
2664 {
2665 	node->start = start;
2666 	node->end = end;
2667 	node->policy = pol;
2668 }
2669 
2670 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2671 				struct mempolicy *pol)
2672 {
2673 	struct sp_node *n;
2674 	struct mempolicy *newpol;
2675 
2676 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2677 	if (!n)
2678 		return NULL;
2679 
2680 	newpol = mpol_dup(pol);
2681 	if (IS_ERR(newpol)) {
2682 		kmem_cache_free(sn_cache, n);
2683 		return NULL;
2684 	}
2685 	newpol->flags |= MPOL_F_SHARED;
2686 	sp_node_init(n, start, end, newpol);
2687 
2688 	return n;
2689 }
2690 
2691 /* Replace a policy range. */
2692 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2693 				 unsigned long end, struct sp_node *new)
2694 {
2695 	struct sp_node *n;
2696 	struct sp_node *n_new = NULL;
2697 	struct mempolicy *mpol_new = NULL;
2698 	int ret = 0;
2699 
2700 restart:
2701 	write_lock(&sp->lock);
2702 	n = sp_lookup(sp, start, end);
2703 	/* Take care of old policies in the same range. */
2704 	while (n && n->start < end) {
2705 		struct rb_node *next = rb_next(&n->nd);
2706 		if (n->start >= start) {
2707 			if (n->end <= end)
2708 				sp_delete(sp, n);
2709 			else
2710 				n->start = end;
2711 		} else {
2712 			/* Old policy spanning whole new range. */
2713 			if (n->end > end) {
2714 				if (!n_new)
2715 					goto alloc_new;
2716 
2717 				*mpol_new = *n->policy;
2718 				atomic_set(&mpol_new->refcnt, 1);
2719 				sp_node_init(n_new, end, n->end, mpol_new);
2720 				n->end = start;
2721 				sp_insert(sp, n_new);
2722 				n_new = NULL;
2723 				mpol_new = NULL;
2724 				break;
2725 			} else
2726 				n->end = start;
2727 		}
2728 		if (!next)
2729 			break;
2730 		n = rb_entry(next, struct sp_node, nd);
2731 	}
2732 	if (new)
2733 		sp_insert(sp, new);
2734 	write_unlock(&sp->lock);
2735 	ret = 0;
2736 
2737 err_out:
2738 	if (mpol_new)
2739 		mpol_put(mpol_new);
2740 	if (n_new)
2741 		kmem_cache_free(sn_cache, n_new);
2742 
2743 	return ret;
2744 
2745 alloc_new:
2746 	write_unlock(&sp->lock);
2747 	ret = -ENOMEM;
2748 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2749 	if (!n_new)
2750 		goto err_out;
2751 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2752 	if (!mpol_new)
2753 		goto err_out;
2754 	atomic_set(&mpol_new->refcnt, 1);
2755 	goto restart;
2756 }
2757 
2758 /**
2759  * mpol_shared_policy_init - initialize shared policy for inode
2760  * @sp: pointer to inode shared policy
2761  * @mpol:  struct mempolicy to install
2762  *
2763  * Install non-NULL @mpol in inode's shared policy rb-tree.
2764  * On entry, the current task has a reference on a non-NULL @mpol.
2765  * This must be released on exit.
2766  * This is called at get_inode() calls and we can use GFP_KERNEL.
2767  */
2768 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2769 {
2770 	int ret;
2771 
2772 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2773 	rwlock_init(&sp->lock);
2774 
2775 	if (mpol) {
2776 		struct vm_area_struct pvma;
2777 		struct mempolicy *new;
2778 		NODEMASK_SCRATCH(scratch);
2779 
2780 		if (!scratch)
2781 			goto put_mpol;
2782 		/* contextualize the tmpfs mount point mempolicy */
2783 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2784 		if (IS_ERR(new))
2785 			goto free_scratch; /* no valid nodemask intersection */
2786 
2787 		task_lock(current);
2788 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2789 		task_unlock(current);
2790 		if (ret)
2791 			goto put_new;
2792 
2793 		/* Create pseudo-vma that contains just the policy */
2794 		vma_init(&pvma, NULL);
2795 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2796 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2797 
2798 put_new:
2799 		mpol_put(new);			/* drop initial ref */
2800 free_scratch:
2801 		NODEMASK_SCRATCH_FREE(scratch);
2802 put_mpol:
2803 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2804 	}
2805 }
2806 
2807 int mpol_set_shared_policy(struct shared_policy *info,
2808 			struct vm_area_struct *vma, struct mempolicy *npol)
2809 {
2810 	int err;
2811 	struct sp_node *new = NULL;
2812 	unsigned long sz = vma_pages(vma);
2813 
2814 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2815 		 vma->vm_pgoff,
2816 		 sz, npol ? npol->mode : -1,
2817 		 npol ? npol->flags : -1,
2818 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2819 
2820 	if (npol) {
2821 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2822 		if (!new)
2823 			return -ENOMEM;
2824 	}
2825 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2826 	if (err && new)
2827 		sp_free(new);
2828 	return err;
2829 }
2830 
2831 /* Free a backing policy store on inode delete. */
2832 void mpol_free_shared_policy(struct shared_policy *p)
2833 {
2834 	struct sp_node *n;
2835 	struct rb_node *next;
2836 
2837 	if (!p->root.rb_node)
2838 		return;
2839 	write_lock(&p->lock);
2840 	next = rb_first(&p->root);
2841 	while (next) {
2842 		n = rb_entry(next, struct sp_node, nd);
2843 		next = rb_next(&n->nd);
2844 		sp_delete(p, n);
2845 	}
2846 	write_unlock(&p->lock);
2847 }
2848 
2849 #ifdef CONFIG_NUMA_BALANCING
2850 static int __initdata numabalancing_override;
2851 
2852 static void __init check_numabalancing_enable(void)
2853 {
2854 	bool numabalancing_default = false;
2855 
2856 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2857 		numabalancing_default = true;
2858 
2859 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2860 	if (numabalancing_override)
2861 		set_numabalancing_state(numabalancing_override == 1);
2862 
2863 	if (num_online_nodes() > 1 && !numabalancing_override) {
2864 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2865 			numabalancing_default ? "Enabling" : "Disabling");
2866 		set_numabalancing_state(numabalancing_default);
2867 	}
2868 }
2869 
2870 static int __init setup_numabalancing(char *str)
2871 {
2872 	int ret = 0;
2873 	if (!str)
2874 		goto out;
2875 
2876 	if (!strcmp(str, "enable")) {
2877 		numabalancing_override = 1;
2878 		ret = 1;
2879 	} else if (!strcmp(str, "disable")) {
2880 		numabalancing_override = -1;
2881 		ret = 1;
2882 	}
2883 out:
2884 	if (!ret)
2885 		pr_warn("Unable to parse numa_balancing=\n");
2886 
2887 	return ret;
2888 }
2889 __setup("numa_balancing=", setup_numabalancing);
2890 #else
2891 static inline void __init check_numabalancing_enable(void)
2892 {
2893 }
2894 #endif /* CONFIG_NUMA_BALANCING */
2895 
2896 /* assumes fs == KERNEL_DS */
2897 void __init numa_policy_init(void)
2898 {
2899 	nodemask_t interleave_nodes;
2900 	unsigned long largest = 0;
2901 	int nid, prefer = 0;
2902 
2903 	policy_cache = kmem_cache_create("numa_policy",
2904 					 sizeof(struct mempolicy),
2905 					 0, SLAB_PANIC, NULL);
2906 
2907 	sn_cache = kmem_cache_create("shared_policy_node",
2908 				     sizeof(struct sp_node),
2909 				     0, SLAB_PANIC, NULL);
2910 
2911 	for_each_node(nid) {
2912 		preferred_node_policy[nid] = (struct mempolicy) {
2913 			.refcnt = ATOMIC_INIT(1),
2914 			.mode = MPOL_PREFERRED,
2915 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2916 			.nodes = nodemask_of_node(nid),
2917 		};
2918 	}
2919 
2920 	/*
2921 	 * Set interleaving policy for system init. Interleaving is only
2922 	 * enabled across suitably sized nodes (default is >= 16MB), or
2923 	 * fall back to the largest node if they're all smaller.
2924 	 */
2925 	nodes_clear(interleave_nodes);
2926 	for_each_node_state(nid, N_MEMORY) {
2927 		unsigned long total_pages = node_present_pages(nid);
2928 
2929 		/* Preserve the largest node */
2930 		if (largest < total_pages) {
2931 			largest = total_pages;
2932 			prefer = nid;
2933 		}
2934 
2935 		/* Interleave this node? */
2936 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2937 			node_set(nid, interleave_nodes);
2938 	}
2939 
2940 	/* All too small, use the largest */
2941 	if (unlikely(nodes_empty(interleave_nodes)))
2942 		node_set(prefer, interleave_nodes);
2943 
2944 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2945 		pr_err("%s: interleaving failed\n", __func__);
2946 
2947 	check_numabalancing_enable();
2948 }
2949 
2950 /* Reset policy of current process to default */
2951 void numa_default_policy(void)
2952 {
2953 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2954 }
2955 
2956 /*
2957  * Parse and format mempolicy from/to strings
2958  */
2959 
2960 static const char * const policy_modes[] =
2961 {
2962 	[MPOL_DEFAULT]    = "default",
2963 	[MPOL_PREFERRED]  = "prefer",
2964 	[MPOL_BIND]       = "bind",
2965 	[MPOL_INTERLEAVE] = "interleave",
2966 	[MPOL_LOCAL]      = "local",
2967 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2968 };
2969 
2970 
2971 #ifdef CONFIG_TMPFS
2972 /**
2973  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2974  * @str:  string containing mempolicy to parse
2975  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2976  *
2977  * Format of input:
2978  *	<mode>[=<flags>][:<nodelist>]
2979  *
2980  * Return: %0 on success, else %1
2981  */
2982 int mpol_parse_str(char *str, struct mempolicy **mpol)
2983 {
2984 	struct mempolicy *new = NULL;
2985 	unsigned short mode_flags;
2986 	nodemask_t nodes;
2987 	char *nodelist = strchr(str, ':');
2988 	char *flags = strchr(str, '=');
2989 	int err = 1, mode;
2990 
2991 	if (flags)
2992 		*flags++ = '\0';	/* terminate mode string */
2993 
2994 	if (nodelist) {
2995 		/* NUL-terminate mode or flags string */
2996 		*nodelist++ = '\0';
2997 		if (nodelist_parse(nodelist, nodes))
2998 			goto out;
2999 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3000 			goto out;
3001 	} else
3002 		nodes_clear(nodes);
3003 
3004 	mode = match_string(policy_modes, MPOL_MAX, str);
3005 	if (mode < 0)
3006 		goto out;
3007 
3008 	switch (mode) {
3009 	case MPOL_PREFERRED:
3010 		/*
3011 		 * Insist on a nodelist of one node only, although later
3012 		 * we use first_node(nodes) to grab a single node, so here
3013 		 * nodelist (or nodes) cannot be empty.
3014 		 */
3015 		if (nodelist) {
3016 			char *rest = nodelist;
3017 			while (isdigit(*rest))
3018 				rest++;
3019 			if (*rest)
3020 				goto out;
3021 			if (nodes_empty(nodes))
3022 				goto out;
3023 		}
3024 		break;
3025 	case MPOL_INTERLEAVE:
3026 		/*
3027 		 * Default to online nodes with memory if no nodelist
3028 		 */
3029 		if (!nodelist)
3030 			nodes = node_states[N_MEMORY];
3031 		break;
3032 	case MPOL_LOCAL:
3033 		/*
3034 		 * Don't allow a nodelist;  mpol_new() checks flags
3035 		 */
3036 		if (nodelist)
3037 			goto out;
3038 		break;
3039 	case MPOL_DEFAULT:
3040 		/*
3041 		 * Insist on a empty nodelist
3042 		 */
3043 		if (!nodelist)
3044 			err = 0;
3045 		goto out;
3046 	case MPOL_PREFERRED_MANY:
3047 	case MPOL_BIND:
3048 		/*
3049 		 * Insist on a nodelist
3050 		 */
3051 		if (!nodelist)
3052 			goto out;
3053 	}
3054 
3055 	mode_flags = 0;
3056 	if (flags) {
3057 		/*
3058 		 * Currently, we only support two mutually exclusive
3059 		 * mode flags.
3060 		 */
3061 		if (!strcmp(flags, "static"))
3062 			mode_flags |= MPOL_F_STATIC_NODES;
3063 		else if (!strcmp(flags, "relative"))
3064 			mode_flags |= MPOL_F_RELATIVE_NODES;
3065 		else
3066 			goto out;
3067 	}
3068 
3069 	new = mpol_new(mode, mode_flags, &nodes);
3070 	if (IS_ERR(new))
3071 		goto out;
3072 
3073 	/*
3074 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3075 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3076 	 */
3077 	if (mode != MPOL_PREFERRED) {
3078 		new->nodes = nodes;
3079 	} else if (nodelist) {
3080 		nodes_clear(new->nodes);
3081 		node_set(first_node(nodes), new->nodes);
3082 	} else {
3083 		new->mode = MPOL_LOCAL;
3084 	}
3085 
3086 	/*
3087 	 * Save nodes for contextualization: this will be used to "clone"
3088 	 * the mempolicy in a specific context [cpuset] at a later time.
3089 	 */
3090 	new->w.user_nodemask = nodes;
3091 
3092 	err = 0;
3093 
3094 out:
3095 	/* Restore string for error message */
3096 	if (nodelist)
3097 		*--nodelist = ':';
3098 	if (flags)
3099 		*--flags = '=';
3100 	if (!err)
3101 		*mpol = new;
3102 	return err;
3103 }
3104 #endif /* CONFIG_TMPFS */
3105 
3106 /**
3107  * mpol_to_str - format a mempolicy structure for printing
3108  * @buffer:  to contain formatted mempolicy string
3109  * @maxlen:  length of @buffer
3110  * @pol:  pointer to mempolicy to be formatted
3111  *
3112  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3113  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3114  * longest flag, "relative", and to display at least a few node ids.
3115  */
3116 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3117 {
3118 	char *p = buffer;
3119 	nodemask_t nodes = NODE_MASK_NONE;
3120 	unsigned short mode = MPOL_DEFAULT;
3121 	unsigned short flags = 0;
3122 
3123 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3124 		mode = pol->mode;
3125 		flags = pol->flags;
3126 	}
3127 
3128 	switch (mode) {
3129 	case MPOL_DEFAULT:
3130 	case MPOL_LOCAL:
3131 		break;
3132 	case MPOL_PREFERRED:
3133 	case MPOL_PREFERRED_MANY:
3134 	case MPOL_BIND:
3135 	case MPOL_INTERLEAVE:
3136 		nodes = pol->nodes;
3137 		break;
3138 	default:
3139 		WARN_ON_ONCE(1);
3140 		snprintf(p, maxlen, "unknown");
3141 		return;
3142 	}
3143 
3144 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3145 
3146 	if (flags & MPOL_MODE_FLAGS) {
3147 		p += snprintf(p, buffer + maxlen - p, "=");
3148 
3149 		/*
3150 		 * Currently, the only defined flags are mutually exclusive
3151 		 */
3152 		if (flags & MPOL_F_STATIC_NODES)
3153 			p += snprintf(p, buffer + maxlen - p, "static");
3154 		else if (flags & MPOL_F_RELATIVE_NODES)
3155 			p += snprintf(p, buffer + maxlen - p, "relative");
3156 	}
3157 
3158 	if (!nodes_empty(nodes))
3159 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3160 			       nodemask_pr_args(&nodes));
3161 }
3162