1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 101 #include "internal.h" 102 103 /* Internal flags */ 104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 106 107 static struct kmem_cache *policy_cache; 108 static struct kmem_cache *sn_cache; 109 110 /* Highest zone. An specific allocation for a zone below that is not 111 policied. */ 112 enum zone_type policy_zone = 0; 113 114 /* 115 * run-time system-wide default policy => local allocation 116 */ 117 static struct mempolicy default_policy = { 118 .refcnt = ATOMIC_INIT(1), /* never free it */ 119 .mode = MPOL_PREFERRED, 120 .flags = MPOL_F_LOCAL, 121 }; 122 123 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 124 125 struct mempolicy *get_task_policy(struct task_struct *p) 126 { 127 struct mempolicy *pol = p->mempolicy; 128 int node; 129 130 if (pol) 131 return pol; 132 133 node = numa_node_id(); 134 if (node != NUMA_NO_NODE) { 135 pol = &preferred_node_policy[node]; 136 /* preferred_node_policy is not initialised early in boot */ 137 if (pol->mode) 138 return pol; 139 } 140 141 return &default_policy; 142 } 143 144 static const struct mempolicy_operations { 145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 146 /* 147 * If read-side task has no lock to protect task->mempolicy, write-side 148 * task will rebind the task->mempolicy by two step. The first step is 149 * setting all the newly nodes, and the second step is cleaning all the 150 * disallowed nodes. In this way, we can avoid finding no node to alloc 151 * page. 152 * If we have a lock to protect task->mempolicy in read-side, we do 153 * rebind directly. 154 * 155 * step: 156 * MPOL_REBIND_ONCE - do rebind work at once 157 * MPOL_REBIND_STEP1 - set all the newly nodes 158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 159 */ 160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 161 enum mpol_rebind_step step); 162 } mpol_ops[MPOL_MAX]; 163 164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 165 { 166 return pol->flags & MPOL_MODE_FLAGS; 167 } 168 169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 170 const nodemask_t *rel) 171 { 172 nodemask_t tmp; 173 nodes_fold(tmp, *orig, nodes_weight(*rel)); 174 nodes_onto(*ret, tmp, *rel); 175 } 176 177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 178 { 179 if (nodes_empty(*nodes)) 180 return -EINVAL; 181 pol->v.nodes = *nodes; 182 return 0; 183 } 184 185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 186 { 187 if (!nodes) 188 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 189 else if (nodes_empty(*nodes)) 190 return -EINVAL; /* no allowed nodes */ 191 else 192 pol->v.preferred_node = first_node(*nodes); 193 return 0; 194 } 195 196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 197 { 198 if (nodes_empty(*nodes)) 199 return -EINVAL; 200 pol->v.nodes = *nodes; 201 return 0; 202 } 203 204 /* 205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 206 * any, for the new policy. mpol_new() has already validated the nodes 207 * parameter with respect to the policy mode and flags. But, we need to 208 * handle an empty nodemask with MPOL_PREFERRED here. 209 * 210 * Must be called holding task's alloc_lock to protect task's mems_allowed 211 * and mempolicy. May also be called holding the mmap_semaphore for write. 212 */ 213 static int mpol_set_nodemask(struct mempolicy *pol, 214 const nodemask_t *nodes, struct nodemask_scratch *nsc) 215 { 216 int ret; 217 218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 219 if (pol == NULL) 220 return 0; 221 /* Check N_MEMORY */ 222 nodes_and(nsc->mask1, 223 cpuset_current_mems_allowed, node_states[N_MEMORY]); 224 225 VM_BUG_ON(!nodes); 226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 227 nodes = NULL; /* explicit local allocation */ 228 else { 229 if (pol->flags & MPOL_F_RELATIVE_NODES) 230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 231 else 232 nodes_and(nsc->mask2, *nodes, nsc->mask1); 233 234 if (mpol_store_user_nodemask(pol)) 235 pol->w.user_nodemask = *nodes; 236 else 237 pol->w.cpuset_mems_allowed = 238 cpuset_current_mems_allowed; 239 } 240 241 if (nodes) 242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 243 else 244 ret = mpol_ops[pol->mode].create(pol, NULL); 245 return ret; 246 } 247 248 /* 249 * This function just creates a new policy, does some check and simple 250 * initialization. You must invoke mpol_set_nodemask() to set nodes. 251 */ 252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 253 nodemask_t *nodes) 254 { 255 struct mempolicy *policy; 256 257 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 259 260 if (mode == MPOL_DEFAULT) { 261 if (nodes && !nodes_empty(*nodes)) 262 return ERR_PTR(-EINVAL); 263 return NULL; 264 } 265 VM_BUG_ON(!nodes); 266 267 /* 268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 270 * All other modes require a valid pointer to a non-empty nodemask. 271 */ 272 if (mode == MPOL_PREFERRED) { 273 if (nodes_empty(*nodes)) { 274 if (((flags & MPOL_F_STATIC_NODES) || 275 (flags & MPOL_F_RELATIVE_NODES))) 276 return ERR_PTR(-EINVAL); 277 } 278 } else if (mode == MPOL_LOCAL) { 279 if (!nodes_empty(*nodes)) 280 return ERR_PTR(-EINVAL); 281 mode = MPOL_PREFERRED; 282 } else if (nodes_empty(*nodes)) 283 return ERR_PTR(-EINVAL); 284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 285 if (!policy) 286 return ERR_PTR(-ENOMEM); 287 atomic_set(&policy->refcnt, 1); 288 policy->mode = mode; 289 policy->flags = flags; 290 291 return policy; 292 } 293 294 /* Slow path of a mpol destructor. */ 295 void __mpol_put(struct mempolicy *p) 296 { 297 if (!atomic_dec_and_test(&p->refcnt)) 298 return; 299 kmem_cache_free(policy_cache, p); 300 } 301 302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 303 enum mpol_rebind_step step) 304 { 305 } 306 307 /* 308 * step: 309 * MPOL_REBIND_ONCE - do rebind work at once 310 * MPOL_REBIND_STEP1 - set all the newly nodes 311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 312 */ 313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 314 enum mpol_rebind_step step) 315 { 316 nodemask_t tmp; 317 318 if (pol->flags & MPOL_F_STATIC_NODES) 319 nodes_and(tmp, pol->w.user_nodemask, *nodes); 320 else if (pol->flags & MPOL_F_RELATIVE_NODES) 321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 322 else { 323 /* 324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 325 * result 326 */ 327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 328 nodes_remap(tmp, pol->v.nodes, 329 pol->w.cpuset_mems_allowed, *nodes); 330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 331 } else if (step == MPOL_REBIND_STEP2) { 332 tmp = pol->w.cpuset_mems_allowed; 333 pol->w.cpuset_mems_allowed = *nodes; 334 } else 335 BUG(); 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 if (step == MPOL_REBIND_STEP1) 342 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 344 pol->v.nodes = tmp; 345 else 346 BUG(); 347 348 if (!node_isset(current->il_next, tmp)) { 349 current->il_next = next_node_in(current->il_next, tmp); 350 if (current->il_next >= MAX_NUMNODES) 351 current->il_next = numa_node_id(); 352 } 353 } 354 355 static void mpol_rebind_preferred(struct mempolicy *pol, 356 const nodemask_t *nodes, 357 enum mpol_rebind_step step) 358 { 359 nodemask_t tmp; 360 361 if (pol->flags & MPOL_F_STATIC_NODES) { 362 int node = first_node(pol->w.user_nodemask); 363 364 if (node_isset(node, *nodes)) { 365 pol->v.preferred_node = node; 366 pol->flags &= ~MPOL_F_LOCAL; 367 } else 368 pol->flags |= MPOL_F_LOCAL; 369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 371 pol->v.preferred_node = first_node(tmp); 372 } else if (!(pol->flags & MPOL_F_LOCAL)) { 373 pol->v.preferred_node = node_remap(pol->v.preferred_node, 374 pol->w.cpuset_mems_allowed, 375 *nodes); 376 pol->w.cpuset_mems_allowed = *nodes; 377 } 378 } 379 380 /* 381 * mpol_rebind_policy - Migrate a policy to a different set of nodes 382 * 383 * If read-side task has no lock to protect task->mempolicy, write-side 384 * task will rebind the task->mempolicy by two step. The first step is 385 * setting all the newly nodes, and the second step is cleaning all the 386 * disallowed nodes. In this way, we can avoid finding no node to alloc 387 * page. 388 * If we have a lock to protect task->mempolicy in read-side, we do 389 * rebind directly. 390 * 391 * step: 392 * MPOL_REBIND_ONCE - do rebind work at once 393 * MPOL_REBIND_STEP1 - set all the newly nodes 394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 395 */ 396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 397 enum mpol_rebind_step step) 398 { 399 if (!pol) 400 return; 401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 403 return; 404 405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 406 return; 407 408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 409 BUG(); 410 411 if (step == MPOL_REBIND_STEP1) 412 pol->flags |= MPOL_F_REBINDING; 413 else if (step == MPOL_REBIND_STEP2) 414 pol->flags &= ~MPOL_F_REBINDING; 415 else if (step >= MPOL_REBIND_NSTEP) 416 BUG(); 417 418 mpol_ops[pol->mode].rebind(pol, newmask, step); 419 } 420 421 /* 422 * Wrapper for mpol_rebind_policy() that just requires task 423 * pointer, and updates task mempolicy. 424 * 425 * Called with task's alloc_lock held. 426 */ 427 428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 429 enum mpol_rebind_step step) 430 { 431 mpol_rebind_policy(tsk->mempolicy, new, step); 432 } 433 434 /* 435 * Rebind each vma in mm to new nodemask. 436 * 437 * Call holding a reference to mm. Takes mm->mmap_sem during call. 438 */ 439 440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 441 { 442 struct vm_area_struct *vma; 443 444 down_write(&mm->mmap_sem); 445 for (vma = mm->mmap; vma; vma = vma->vm_next) 446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 447 up_write(&mm->mmap_sem); 448 } 449 450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 451 [MPOL_DEFAULT] = { 452 .rebind = mpol_rebind_default, 453 }, 454 [MPOL_INTERLEAVE] = { 455 .create = mpol_new_interleave, 456 .rebind = mpol_rebind_nodemask, 457 }, 458 [MPOL_PREFERRED] = { 459 .create = mpol_new_preferred, 460 .rebind = mpol_rebind_preferred, 461 }, 462 [MPOL_BIND] = { 463 .create = mpol_new_bind, 464 .rebind = mpol_rebind_nodemask, 465 }, 466 }; 467 468 static void migrate_page_add(struct page *page, struct list_head *pagelist, 469 unsigned long flags); 470 471 struct queue_pages { 472 struct list_head *pagelist; 473 unsigned long flags; 474 nodemask_t *nmask; 475 struct vm_area_struct *prev; 476 }; 477 478 /* 479 * Scan through pages checking if pages follow certain conditions, 480 * and move them to the pagelist if they do. 481 */ 482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 483 unsigned long end, struct mm_walk *walk) 484 { 485 struct vm_area_struct *vma = walk->vma; 486 struct page *page; 487 struct queue_pages *qp = walk->private; 488 unsigned long flags = qp->flags; 489 int nid, ret; 490 pte_t *pte; 491 spinlock_t *ptl; 492 493 if (pmd_trans_huge(*pmd)) { 494 ptl = pmd_lock(walk->mm, pmd); 495 if (pmd_trans_huge(*pmd)) { 496 page = pmd_page(*pmd); 497 if (is_huge_zero_page(page)) { 498 spin_unlock(ptl); 499 split_huge_pmd(vma, pmd, addr); 500 } else { 501 get_page(page); 502 spin_unlock(ptl); 503 lock_page(page); 504 ret = split_huge_page(page); 505 unlock_page(page); 506 put_page(page); 507 if (ret) 508 return 0; 509 } 510 } else { 511 spin_unlock(ptl); 512 } 513 } 514 515 if (pmd_trans_unstable(pmd)) 516 return 0; 517 retry: 518 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 519 for (; addr != end; pte++, addr += PAGE_SIZE) { 520 if (!pte_present(*pte)) 521 continue; 522 page = vm_normal_page(vma, addr, *pte); 523 if (!page) 524 continue; 525 /* 526 * vm_normal_page() filters out zero pages, but there might 527 * still be PageReserved pages to skip, perhaps in a VDSO. 528 */ 529 if (PageReserved(page)) 530 continue; 531 nid = page_to_nid(page); 532 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 533 continue; 534 if (PageTransCompound(page)) { 535 get_page(page); 536 pte_unmap_unlock(pte, ptl); 537 lock_page(page); 538 ret = split_huge_page(page); 539 unlock_page(page); 540 put_page(page); 541 /* Failed to split -- skip. */ 542 if (ret) { 543 pte = pte_offset_map_lock(walk->mm, pmd, 544 addr, &ptl); 545 continue; 546 } 547 goto retry; 548 } 549 550 migrate_page_add(page, qp->pagelist, flags); 551 } 552 pte_unmap_unlock(pte - 1, ptl); 553 cond_resched(); 554 return 0; 555 } 556 557 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 558 unsigned long addr, unsigned long end, 559 struct mm_walk *walk) 560 { 561 #ifdef CONFIG_HUGETLB_PAGE 562 struct queue_pages *qp = walk->private; 563 unsigned long flags = qp->flags; 564 int nid; 565 struct page *page; 566 spinlock_t *ptl; 567 pte_t entry; 568 569 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 570 entry = huge_ptep_get(pte); 571 if (!pte_present(entry)) 572 goto unlock; 573 page = pte_page(entry); 574 nid = page_to_nid(page); 575 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 576 goto unlock; 577 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 578 if (flags & (MPOL_MF_MOVE_ALL) || 579 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 580 isolate_huge_page(page, qp->pagelist); 581 unlock: 582 spin_unlock(ptl); 583 #else 584 BUG(); 585 #endif 586 return 0; 587 } 588 589 #ifdef CONFIG_NUMA_BALANCING 590 /* 591 * This is used to mark a range of virtual addresses to be inaccessible. 592 * These are later cleared by a NUMA hinting fault. Depending on these 593 * faults, pages may be migrated for better NUMA placement. 594 * 595 * This is assuming that NUMA faults are handled using PROT_NONE. If 596 * an architecture makes a different choice, it will need further 597 * changes to the core. 598 */ 599 unsigned long change_prot_numa(struct vm_area_struct *vma, 600 unsigned long addr, unsigned long end) 601 { 602 int nr_updated; 603 604 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 605 if (nr_updated) 606 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 607 608 return nr_updated; 609 } 610 #else 611 static unsigned long change_prot_numa(struct vm_area_struct *vma, 612 unsigned long addr, unsigned long end) 613 { 614 return 0; 615 } 616 #endif /* CONFIG_NUMA_BALANCING */ 617 618 static int queue_pages_test_walk(unsigned long start, unsigned long end, 619 struct mm_walk *walk) 620 { 621 struct vm_area_struct *vma = walk->vma; 622 struct queue_pages *qp = walk->private; 623 unsigned long endvma = vma->vm_end; 624 unsigned long flags = qp->flags; 625 626 if (!vma_migratable(vma)) 627 return 1; 628 629 if (endvma > end) 630 endvma = end; 631 if (vma->vm_start > start) 632 start = vma->vm_start; 633 634 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 635 if (!vma->vm_next && vma->vm_end < end) 636 return -EFAULT; 637 if (qp->prev && qp->prev->vm_end < vma->vm_start) 638 return -EFAULT; 639 } 640 641 qp->prev = vma; 642 643 if (flags & MPOL_MF_LAZY) { 644 /* Similar to task_numa_work, skip inaccessible VMAs */ 645 if (!is_vm_hugetlb_page(vma) && 646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 647 !(vma->vm_flags & VM_MIXEDMAP)) 648 change_prot_numa(vma, start, endvma); 649 return 1; 650 } 651 652 /* queue pages from current vma */ 653 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 654 return 0; 655 return 1; 656 } 657 658 /* 659 * Walk through page tables and collect pages to be migrated. 660 * 661 * If pages found in a given range are on a set of nodes (determined by 662 * @nodes and @flags,) it's isolated and queued to the pagelist which is 663 * passed via @private.) 664 */ 665 static int 666 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 667 nodemask_t *nodes, unsigned long flags, 668 struct list_head *pagelist) 669 { 670 struct queue_pages qp = { 671 .pagelist = pagelist, 672 .flags = flags, 673 .nmask = nodes, 674 .prev = NULL, 675 }; 676 struct mm_walk queue_pages_walk = { 677 .hugetlb_entry = queue_pages_hugetlb, 678 .pmd_entry = queue_pages_pte_range, 679 .test_walk = queue_pages_test_walk, 680 .mm = mm, 681 .private = &qp, 682 }; 683 684 return walk_page_range(start, end, &queue_pages_walk); 685 } 686 687 /* 688 * Apply policy to a single VMA 689 * This must be called with the mmap_sem held for writing. 690 */ 691 static int vma_replace_policy(struct vm_area_struct *vma, 692 struct mempolicy *pol) 693 { 694 int err; 695 struct mempolicy *old; 696 struct mempolicy *new; 697 698 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 699 vma->vm_start, vma->vm_end, vma->vm_pgoff, 700 vma->vm_ops, vma->vm_file, 701 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 702 703 new = mpol_dup(pol); 704 if (IS_ERR(new)) 705 return PTR_ERR(new); 706 707 if (vma->vm_ops && vma->vm_ops->set_policy) { 708 err = vma->vm_ops->set_policy(vma, new); 709 if (err) 710 goto err_out; 711 } 712 713 old = vma->vm_policy; 714 vma->vm_policy = new; /* protected by mmap_sem */ 715 mpol_put(old); 716 717 return 0; 718 err_out: 719 mpol_put(new); 720 return err; 721 } 722 723 /* Step 2: apply policy to a range and do splits. */ 724 static int mbind_range(struct mm_struct *mm, unsigned long start, 725 unsigned long end, struct mempolicy *new_pol) 726 { 727 struct vm_area_struct *next; 728 struct vm_area_struct *prev; 729 struct vm_area_struct *vma; 730 int err = 0; 731 pgoff_t pgoff; 732 unsigned long vmstart; 733 unsigned long vmend; 734 735 vma = find_vma(mm, start); 736 if (!vma || vma->vm_start > start) 737 return -EFAULT; 738 739 prev = vma->vm_prev; 740 if (start > vma->vm_start) 741 prev = vma; 742 743 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 744 next = vma->vm_next; 745 vmstart = max(start, vma->vm_start); 746 vmend = min(end, vma->vm_end); 747 748 if (mpol_equal(vma_policy(vma), new_pol)) 749 continue; 750 751 pgoff = vma->vm_pgoff + 752 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 753 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 754 vma->anon_vma, vma->vm_file, pgoff, 755 new_pol, vma->vm_userfaultfd_ctx); 756 if (prev) { 757 vma = prev; 758 next = vma->vm_next; 759 if (mpol_equal(vma_policy(vma), new_pol)) 760 continue; 761 /* vma_merge() joined vma && vma->next, case 8 */ 762 goto replace; 763 } 764 if (vma->vm_start != vmstart) { 765 err = split_vma(vma->vm_mm, vma, vmstart, 1); 766 if (err) 767 goto out; 768 } 769 if (vma->vm_end != vmend) { 770 err = split_vma(vma->vm_mm, vma, vmend, 0); 771 if (err) 772 goto out; 773 } 774 replace: 775 err = vma_replace_policy(vma, new_pol); 776 if (err) 777 goto out; 778 } 779 780 out: 781 return err; 782 } 783 784 /* Set the process memory policy */ 785 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 786 nodemask_t *nodes) 787 { 788 struct mempolicy *new, *old; 789 NODEMASK_SCRATCH(scratch); 790 int ret; 791 792 if (!scratch) 793 return -ENOMEM; 794 795 new = mpol_new(mode, flags, nodes); 796 if (IS_ERR(new)) { 797 ret = PTR_ERR(new); 798 goto out; 799 } 800 801 task_lock(current); 802 ret = mpol_set_nodemask(new, nodes, scratch); 803 if (ret) { 804 task_unlock(current); 805 mpol_put(new); 806 goto out; 807 } 808 old = current->mempolicy; 809 current->mempolicy = new; 810 if (new && new->mode == MPOL_INTERLEAVE && 811 nodes_weight(new->v.nodes)) 812 current->il_next = first_node(new->v.nodes); 813 task_unlock(current); 814 mpol_put(old); 815 ret = 0; 816 out: 817 NODEMASK_SCRATCH_FREE(scratch); 818 return ret; 819 } 820 821 /* 822 * Return nodemask for policy for get_mempolicy() query 823 * 824 * Called with task's alloc_lock held 825 */ 826 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 827 { 828 nodes_clear(*nodes); 829 if (p == &default_policy) 830 return; 831 832 switch (p->mode) { 833 case MPOL_BIND: 834 /* Fall through */ 835 case MPOL_INTERLEAVE: 836 *nodes = p->v.nodes; 837 break; 838 case MPOL_PREFERRED: 839 if (!(p->flags & MPOL_F_LOCAL)) 840 node_set(p->v.preferred_node, *nodes); 841 /* else return empty node mask for local allocation */ 842 break; 843 default: 844 BUG(); 845 } 846 } 847 848 static int lookup_node(unsigned long addr) 849 { 850 struct page *p; 851 int err; 852 853 err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL); 854 if (err >= 0) { 855 err = page_to_nid(p); 856 put_page(p); 857 } 858 return err; 859 } 860 861 /* Retrieve NUMA policy */ 862 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 863 unsigned long addr, unsigned long flags) 864 { 865 int err; 866 struct mm_struct *mm = current->mm; 867 struct vm_area_struct *vma = NULL; 868 struct mempolicy *pol = current->mempolicy; 869 870 if (flags & 871 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 872 return -EINVAL; 873 874 if (flags & MPOL_F_MEMS_ALLOWED) { 875 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 876 return -EINVAL; 877 *policy = 0; /* just so it's initialized */ 878 task_lock(current); 879 *nmask = cpuset_current_mems_allowed; 880 task_unlock(current); 881 return 0; 882 } 883 884 if (flags & MPOL_F_ADDR) { 885 /* 886 * Do NOT fall back to task policy if the 887 * vma/shared policy at addr is NULL. We 888 * want to return MPOL_DEFAULT in this case. 889 */ 890 down_read(&mm->mmap_sem); 891 vma = find_vma_intersection(mm, addr, addr+1); 892 if (!vma) { 893 up_read(&mm->mmap_sem); 894 return -EFAULT; 895 } 896 if (vma->vm_ops && vma->vm_ops->get_policy) 897 pol = vma->vm_ops->get_policy(vma, addr); 898 else 899 pol = vma->vm_policy; 900 } else if (addr) 901 return -EINVAL; 902 903 if (!pol) 904 pol = &default_policy; /* indicates default behavior */ 905 906 if (flags & MPOL_F_NODE) { 907 if (flags & MPOL_F_ADDR) { 908 err = lookup_node(addr); 909 if (err < 0) 910 goto out; 911 *policy = err; 912 } else if (pol == current->mempolicy && 913 pol->mode == MPOL_INTERLEAVE) { 914 *policy = current->il_next; 915 } else { 916 err = -EINVAL; 917 goto out; 918 } 919 } else { 920 *policy = pol == &default_policy ? MPOL_DEFAULT : 921 pol->mode; 922 /* 923 * Internal mempolicy flags must be masked off before exposing 924 * the policy to userspace. 925 */ 926 *policy |= (pol->flags & MPOL_MODE_FLAGS); 927 } 928 929 if (vma) { 930 up_read(¤t->mm->mmap_sem); 931 vma = NULL; 932 } 933 934 err = 0; 935 if (nmask) { 936 if (mpol_store_user_nodemask(pol)) { 937 *nmask = pol->w.user_nodemask; 938 } else { 939 task_lock(current); 940 get_policy_nodemask(pol, nmask); 941 task_unlock(current); 942 } 943 } 944 945 out: 946 mpol_cond_put(pol); 947 if (vma) 948 up_read(¤t->mm->mmap_sem); 949 return err; 950 } 951 952 #ifdef CONFIG_MIGRATION 953 /* 954 * page migration 955 */ 956 static void migrate_page_add(struct page *page, struct list_head *pagelist, 957 unsigned long flags) 958 { 959 /* 960 * Avoid migrating a page that is shared with others. 961 */ 962 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 963 if (!isolate_lru_page(page)) { 964 list_add_tail(&page->lru, pagelist); 965 inc_node_page_state(page, NR_ISOLATED_ANON + 966 page_is_file_cache(page)); 967 } 968 } 969 } 970 971 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 972 { 973 if (PageHuge(page)) 974 return alloc_huge_page_node(page_hstate(compound_head(page)), 975 node); 976 else 977 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 978 __GFP_THISNODE, 0); 979 } 980 981 /* 982 * Migrate pages from one node to a target node. 983 * Returns error or the number of pages not migrated. 984 */ 985 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 986 int flags) 987 { 988 nodemask_t nmask; 989 LIST_HEAD(pagelist); 990 int err = 0; 991 992 nodes_clear(nmask); 993 node_set(source, nmask); 994 995 /* 996 * This does not "check" the range but isolates all pages that 997 * need migration. Between passing in the full user address 998 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 999 */ 1000 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1001 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1002 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1003 1004 if (!list_empty(&pagelist)) { 1005 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1006 MIGRATE_SYNC, MR_SYSCALL); 1007 if (err) 1008 putback_movable_pages(&pagelist); 1009 } 1010 1011 return err; 1012 } 1013 1014 /* 1015 * Move pages between the two nodesets so as to preserve the physical 1016 * layout as much as possible. 1017 * 1018 * Returns the number of page that could not be moved. 1019 */ 1020 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1021 const nodemask_t *to, int flags) 1022 { 1023 int busy = 0; 1024 int err; 1025 nodemask_t tmp; 1026 1027 err = migrate_prep(); 1028 if (err) 1029 return err; 1030 1031 down_read(&mm->mmap_sem); 1032 1033 /* 1034 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1035 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1036 * bit in 'tmp', and return that <source, dest> pair for migration. 1037 * The pair of nodemasks 'to' and 'from' define the map. 1038 * 1039 * If no pair of bits is found that way, fallback to picking some 1040 * pair of 'source' and 'dest' bits that are not the same. If the 1041 * 'source' and 'dest' bits are the same, this represents a node 1042 * that will be migrating to itself, so no pages need move. 1043 * 1044 * If no bits are left in 'tmp', or if all remaining bits left 1045 * in 'tmp' correspond to the same bit in 'to', return false 1046 * (nothing left to migrate). 1047 * 1048 * This lets us pick a pair of nodes to migrate between, such that 1049 * if possible the dest node is not already occupied by some other 1050 * source node, minimizing the risk of overloading the memory on a 1051 * node that would happen if we migrated incoming memory to a node 1052 * before migrating outgoing memory source that same node. 1053 * 1054 * A single scan of tmp is sufficient. As we go, we remember the 1055 * most recent <s, d> pair that moved (s != d). If we find a pair 1056 * that not only moved, but what's better, moved to an empty slot 1057 * (d is not set in tmp), then we break out then, with that pair. 1058 * Otherwise when we finish scanning from_tmp, we at least have the 1059 * most recent <s, d> pair that moved. If we get all the way through 1060 * the scan of tmp without finding any node that moved, much less 1061 * moved to an empty node, then there is nothing left worth migrating. 1062 */ 1063 1064 tmp = *from; 1065 while (!nodes_empty(tmp)) { 1066 int s,d; 1067 int source = NUMA_NO_NODE; 1068 int dest = 0; 1069 1070 for_each_node_mask(s, tmp) { 1071 1072 /* 1073 * do_migrate_pages() tries to maintain the relative 1074 * node relationship of the pages established between 1075 * threads and memory areas. 1076 * 1077 * However if the number of source nodes is not equal to 1078 * the number of destination nodes we can not preserve 1079 * this node relative relationship. In that case, skip 1080 * copying memory from a node that is in the destination 1081 * mask. 1082 * 1083 * Example: [2,3,4] -> [3,4,5] moves everything. 1084 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1085 */ 1086 1087 if ((nodes_weight(*from) != nodes_weight(*to)) && 1088 (node_isset(s, *to))) 1089 continue; 1090 1091 d = node_remap(s, *from, *to); 1092 if (s == d) 1093 continue; 1094 1095 source = s; /* Node moved. Memorize */ 1096 dest = d; 1097 1098 /* dest not in remaining from nodes? */ 1099 if (!node_isset(dest, tmp)) 1100 break; 1101 } 1102 if (source == NUMA_NO_NODE) 1103 break; 1104 1105 node_clear(source, tmp); 1106 err = migrate_to_node(mm, source, dest, flags); 1107 if (err > 0) 1108 busy += err; 1109 if (err < 0) 1110 break; 1111 } 1112 up_read(&mm->mmap_sem); 1113 if (err < 0) 1114 return err; 1115 return busy; 1116 1117 } 1118 1119 /* 1120 * Allocate a new page for page migration based on vma policy. 1121 * Start by assuming the page is mapped by the same vma as contains @start. 1122 * Search forward from there, if not. N.B., this assumes that the 1123 * list of pages handed to migrate_pages()--which is how we get here-- 1124 * is in virtual address order. 1125 */ 1126 static struct page *new_page(struct page *page, unsigned long start, int **x) 1127 { 1128 struct vm_area_struct *vma; 1129 unsigned long uninitialized_var(address); 1130 1131 vma = find_vma(current->mm, start); 1132 while (vma) { 1133 address = page_address_in_vma(page, vma); 1134 if (address != -EFAULT) 1135 break; 1136 vma = vma->vm_next; 1137 } 1138 1139 if (PageHuge(page)) { 1140 BUG_ON(!vma); 1141 return alloc_huge_page_noerr(vma, address, 1); 1142 } 1143 /* 1144 * if !vma, alloc_page_vma() will use task or system default policy 1145 */ 1146 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1147 } 1148 #else 1149 1150 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1151 unsigned long flags) 1152 { 1153 } 1154 1155 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1156 const nodemask_t *to, int flags) 1157 { 1158 return -ENOSYS; 1159 } 1160 1161 static struct page *new_page(struct page *page, unsigned long start, int **x) 1162 { 1163 return NULL; 1164 } 1165 #endif 1166 1167 static long do_mbind(unsigned long start, unsigned long len, 1168 unsigned short mode, unsigned short mode_flags, 1169 nodemask_t *nmask, unsigned long flags) 1170 { 1171 struct mm_struct *mm = current->mm; 1172 struct mempolicy *new; 1173 unsigned long end; 1174 int err; 1175 LIST_HEAD(pagelist); 1176 1177 if (flags & ~(unsigned long)MPOL_MF_VALID) 1178 return -EINVAL; 1179 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1180 return -EPERM; 1181 1182 if (start & ~PAGE_MASK) 1183 return -EINVAL; 1184 1185 if (mode == MPOL_DEFAULT) 1186 flags &= ~MPOL_MF_STRICT; 1187 1188 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1189 end = start + len; 1190 1191 if (end < start) 1192 return -EINVAL; 1193 if (end == start) 1194 return 0; 1195 1196 new = mpol_new(mode, mode_flags, nmask); 1197 if (IS_ERR(new)) 1198 return PTR_ERR(new); 1199 1200 if (flags & MPOL_MF_LAZY) 1201 new->flags |= MPOL_F_MOF; 1202 1203 /* 1204 * If we are using the default policy then operation 1205 * on discontinuous address spaces is okay after all 1206 */ 1207 if (!new) 1208 flags |= MPOL_MF_DISCONTIG_OK; 1209 1210 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1211 start, start + len, mode, mode_flags, 1212 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1213 1214 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1215 1216 err = migrate_prep(); 1217 if (err) 1218 goto mpol_out; 1219 } 1220 { 1221 NODEMASK_SCRATCH(scratch); 1222 if (scratch) { 1223 down_write(&mm->mmap_sem); 1224 task_lock(current); 1225 err = mpol_set_nodemask(new, nmask, scratch); 1226 task_unlock(current); 1227 if (err) 1228 up_write(&mm->mmap_sem); 1229 } else 1230 err = -ENOMEM; 1231 NODEMASK_SCRATCH_FREE(scratch); 1232 } 1233 if (err) 1234 goto mpol_out; 1235 1236 err = queue_pages_range(mm, start, end, nmask, 1237 flags | MPOL_MF_INVERT, &pagelist); 1238 if (!err) 1239 err = mbind_range(mm, start, end, new); 1240 1241 if (!err) { 1242 int nr_failed = 0; 1243 1244 if (!list_empty(&pagelist)) { 1245 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1246 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1247 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1248 if (nr_failed) 1249 putback_movable_pages(&pagelist); 1250 } 1251 1252 if (nr_failed && (flags & MPOL_MF_STRICT)) 1253 err = -EIO; 1254 } else 1255 putback_movable_pages(&pagelist); 1256 1257 up_write(&mm->mmap_sem); 1258 mpol_out: 1259 mpol_put(new); 1260 return err; 1261 } 1262 1263 /* 1264 * User space interface with variable sized bitmaps for nodelists. 1265 */ 1266 1267 /* Copy a node mask from user space. */ 1268 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1269 unsigned long maxnode) 1270 { 1271 unsigned long k; 1272 unsigned long nlongs; 1273 unsigned long endmask; 1274 1275 --maxnode; 1276 nodes_clear(*nodes); 1277 if (maxnode == 0 || !nmask) 1278 return 0; 1279 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1280 return -EINVAL; 1281 1282 nlongs = BITS_TO_LONGS(maxnode); 1283 if ((maxnode % BITS_PER_LONG) == 0) 1284 endmask = ~0UL; 1285 else 1286 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1287 1288 /* When the user specified more nodes than supported just check 1289 if the non supported part is all zero. */ 1290 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1291 if (nlongs > PAGE_SIZE/sizeof(long)) 1292 return -EINVAL; 1293 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1294 unsigned long t; 1295 if (get_user(t, nmask + k)) 1296 return -EFAULT; 1297 if (k == nlongs - 1) { 1298 if (t & endmask) 1299 return -EINVAL; 1300 } else if (t) 1301 return -EINVAL; 1302 } 1303 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1304 endmask = ~0UL; 1305 } 1306 1307 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1308 return -EFAULT; 1309 nodes_addr(*nodes)[nlongs-1] &= endmask; 1310 return 0; 1311 } 1312 1313 /* Copy a kernel node mask to user space */ 1314 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1315 nodemask_t *nodes) 1316 { 1317 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1318 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1319 1320 if (copy > nbytes) { 1321 if (copy > PAGE_SIZE) 1322 return -EINVAL; 1323 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1324 return -EFAULT; 1325 copy = nbytes; 1326 } 1327 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1328 } 1329 1330 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1331 unsigned long, mode, const unsigned long __user *, nmask, 1332 unsigned long, maxnode, unsigned, flags) 1333 { 1334 nodemask_t nodes; 1335 int err; 1336 unsigned short mode_flags; 1337 1338 mode_flags = mode & MPOL_MODE_FLAGS; 1339 mode &= ~MPOL_MODE_FLAGS; 1340 if (mode >= MPOL_MAX) 1341 return -EINVAL; 1342 if ((mode_flags & MPOL_F_STATIC_NODES) && 1343 (mode_flags & MPOL_F_RELATIVE_NODES)) 1344 return -EINVAL; 1345 err = get_nodes(&nodes, nmask, maxnode); 1346 if (err) 1347 return err; 1348 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1349 } 1350 1351 /* Set the process memory policy */ 1352 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1353 unsigned long, maxnode) 1354 { 1355 int err; 1356 nodemask_t nodes; 1357 unsigned short flags; 1358 1359 flags = mode & MPOL_MODE_FLAGS; 1360 mode &= ~MPOL_MODE_FLAGS; 1361 if ((unsigned int)mode >= MPOL_MAX) 1362 return -EINVAL; 1363 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1364 return -EINVAL; 1365 err = get_nodes(&nodes, nmask, maxnode); 1366 if (err) 1367 return err; 1368 return do_set_mempolicy(mode, flags, &nodes); 1369 } 1370 1371 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1372 const unsigned long __user *, old_nodes, 1373 const unsigned long __user *, new_nodes) 1374 { 1375 const struct cred *cred = current_cred(), *tcred; 1376 struct mm_struct *mm = NULL; 1377 struct task_struct *task; 1378 nodemask_t task_nodes; 1379 int err; 1380 nodemask_t *old; 1381 nodemask_t *new; 1382 NODEMASK_SCRATCH(scratch); 1383 1384 if (!scratch) 1385 return -ENOMEM; 1386 1387 old = &scratch->mask1; 1388 new = &scratch->mask2; 1389 1390 err = get_nodes(old, old_nodes, maxnode); 1391 if (err) 1392 goto out; 1393 1394 err = get_nodes(new, new_nodes, maxnode); 1395 if (err) 1396 goto out; 1397 1398 /* Find the mm_struct */ 1399 rcu_read_lock(); 1400 task = pid ? find_task_by_vpid(pid) : current; 1401 if (!task) { 1402 rcu_read_unlock(); 1403 err = -ESRCH; 1404 goto out; 1405 } 1406 get_task_struct(task); 1407 1408 err = -EINVAL; 1409 1410 /* 1411 * Check if this process has the right to modify the specified 1412 * process. The right exists if the process has administrative 1413 * capabilities, superuser privileges or the same 1414 * userid as the target process. 1415 */ 1416 tcred = __task_cred(task); 1417 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1418 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1419 !capable(CAP_SYS_NICE)) { 1420 rcu_read_unlock(); 1421 err = -EPERM; 1422 goto out_put; 1423 } 1424 rcu_read_unlock(); 1425 1426 task_nodes = cpuset_mems_allowed(task); 1427 /* Is the user allowed to access the target nodes? */ 1428 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1429 err = -EPERM; 1430 goto out_put; 1431 } 1432 1433 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1434 err = -EINVAL; 1435 goto out_put; 1436 } 1437 1438 err = security_task_movememory(task); 1439 if (err) 1440 goto out_put; 1441 1442 mm = get_task_mm(task); 1443 put_task_struct(task); 1444 1445 if (!mm) { 1446 err = -EINVAL; 1447 goto out; 1448 } 1449 1450 err = do_migrate_pages(mm, old, new, 1451 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1452 1453 mmput(mm); 1454 out: 1455 NODEMASK_SCRATCH_FREE(scratch); 1456 1457 return err; 1458 1459 out_put: 1460 put_task_struct(task); 1461 goto out; 1462 1463 } 1464 1465 1466 /* Retrieve NUMA policy */ 1467 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1468 unsigned long __user *, nmask, unsigned long, maxnode, 1469 unsigned long, addr, unsigned long, flags) 1470 { 1471 int err; 1472 int uninitialized_var(pval); 1473 nodemask_t nodes; 1474 1475 if (nmask != NULL && maxnode < MAX_NUMNODES) 1476 return -EINVAL; 1477 1478 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1479 1480 if (err) 1481 return err; 1482 1483 if (policy && put_user(pval, policy)) 1484 return -EFAULT; 1485 1486 if (nmask) 1487 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1488 1489 return err; 1490 } 1491 1492 #ifdef CONFIG_COMPAT 1493 1494 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1495 compat_ulong_t __user *, nmask, 1496 compat_ulong_t, maxnode, 1497 compat_ulong_t, addr, compat_ulong_t, flags) 1498 { 1499 long err; 1500 unsigned long __user *nm = NULL; 1501 unsigned long nr_bits, alloc_size; 1502 DECLARE_BITMAP(bm, MAX_NUMNODES); 1503 1504 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1505 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1506 1507 if (nmask) 1508 nm = compat_alloc_user_space(alloc_size); 1509 1510 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1511 1512 if (!err && nmask) { 1513 unsigned long copy_size; 1514 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1515 err = copy_from_user(bm, nm, copy_size); 1516 /* ensure entire bitmap is zeroed */ 1517 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1518 err |= compat_put_bitmap(nmask, bm, nr_bits); 1519 } 1520 1521 return err; 1522 } 1523 1524 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1525 compat_ulong_t, maxnode) 1526 { 1527 long err = 0; 1528 unsigned long __user *nm = NULL; 1529 unsigned long nr_bits, alloc_size; 1530 DECLARE_BITMAP(bm, MAX_NUMNODES); 1531 1532 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1533 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1534 1535 if (nmask) { 1536 err = compat_get_bitmap(bm, nmask, nr_bits); 1537 nm = compat_alloc_user_space(alloc_size); 1538 err |= copy_to_user(nm, bm, alloc_size); 1539 } 1540 1541 if (err) 1542 return -EFAULT; 1543 1544 return sys_set_mempolicy(mode, nm, nr_bits+1); 1545 } 1546 1547 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1548 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1549 compat_ulong_t, maxnode, compat_ulong_t, flags) 1550 { 1551 long err = 0; 1552 unsigned long __user *nm = NULL; 1553 unsigned long nr_bits, alloc_size; 1554 nodemask_t bm; 1555 1556 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1557 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1558 1559 if (nmask) { 1560 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1561 nm = compat_alloc_user_space(alloc_size); 1562 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1563 } 1564 1565 if (err) 1566 return -EFAULT; 1567 1568 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1569 } 1570 1571 #endif 1572 1573 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1574 unsigned long addr) 1575 { 1576 struct mempolicy *pol = NULL; 1577 1578 if (vma) { 1579 if (vma->vm_ops && vma->vm_ops->get_policy) { 1580 pol = vma->vm_ops->get_policy(vma, addr); 1581 } else if (vma->vm_policy) { 1582 pol = vma->vm_policy; 1583 1584 /* 1585 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1586 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1587 * count on these policies which will be dropped by 1588 * mpol_cond_put() later 1589 */ 1590 if (mpol_needs_cond_ref(pol)) 1591 mpol_get(pol); 1592 } 1593 } 1594 1595 return pol; 1596 } 1597 1598 /* 1599 * get_vma_policy(@vma, @addr) 1600 * @vma: virtual memory area whose policy is sought 1601 * @addr: address in @vma for shared policy lookup 1602 * 1603 * Returns effective policy for a VMA at specified address. 1604 * Falls back to current->mempolicy or system default policy, as necessary. 1605 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1606 * count--added by the get_policy() vm_op, as appropriate--to protect against 1607 * freeing by another task. It is the caller's responsibility to free the 1608 * extra reference for shared policies. 1609 */ 1610 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1611 unsigned long addr) 1612 { 1613 struct mempolicy *pol = __get_vma_policy(vma, addr); 1614 1615 if (!pol) 1616 pol = get_task_policy(current); 1617 1618 return pol; 1619 } 1620 1621 bool vma_policy_mof(struct vm_area_struct *vma) 1622 { 1623 struct mempolicy *pol; 1624 1625 if (vma->vm_ops && vma->vm_ops->get_policy) { 1626 bool ret = false; 1627 1628 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1629 if (pol && (pol->flags & MPOL_F_MOF)) 1630 ret = true; 1631 mpol_cond_put(pol); 1632 1633 return ret; 1634 } 1635 1636 pol = vma->vm_policy; 1637 if (!pol) 1638 pol = get_task_policy(current); 1639 1640 return pol->flags & MPOL_F_MOF; 1641 } 1642 1643 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1644 { 1645 enum zone_type dynamic_policy_zone = policy_zone; 1646 1647 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1648 1649 /* 1650 * if policy->v.nodes has movable memory only, 1651 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1652 * 1653 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1654 * so if the following test faile, it implies 1655 * policy->v.nodes has movable memory only. 1656 */ 1657 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1658 dynamic_policy_zone = ZONE_MOVABLE; 1659 1660 return zone >= dynamic_policy_zone; 1661 } 1662 1663 /* 1664 * Return a nodemask representing a mempolicy for filtering nodes for 1665 * page allocation 1666 */ 1667 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1668 { 1669 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1670 if (unlikely(policy->mode == MPOL_BIND) && 1671 apply_policy_zone(policy, gfp_zone(gfp)) && 1672 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1673 return &policy->v.nodes; 1674 1675 return NULL; 1676 } 1677 1678 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1679 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1680 int nd) 1681 { 1682 switch (policy->mode) { 1683 case MPOL_PREFERRED: 1684 if (!(policy->flags & MPOL_F_LOCAL)) 1685 nd = policy->v.preferred_node; 1686 break; 1687 case MPOL_BIND: 1688 /* 1689 * Normally, MPOL_BIND allocations are node-local within the 1690 * allowed nodemask. However, if __GFP_THISNODE is set and the 1691 * current node isn't part of the mask, we use the zonelist for 1692 * the first node in the mask instead. 1693 */ 1694 if (unlikely(gfp & __GFP_THISNODE) && 1695 unlikely(!node_isset(nd, policy->v.nodes))) 1696 nd = first_node(policy->v.nodes); 1697 break; 1698 default: 1699 BUG(); 1700 } 1701 return node_zonelist(nd, gfp); 1702 } 1703 1704 /* Do dynamic interleaving for a process */ 1705 static unsigned interleave_nodes(struct mempolicy *policy) 1706 { 1707 unsigned nid, next; 1708 struct task_struct *me = current; 1709 1710 nid = me->il_next; 1711 next = next_node_in(nid, policy->v.nodes); 1712 if (next < MAX_NUMNODES) 1713 me->il_next = next; 1714 return nid; 1715 } 1716 1717 /* 1718 * Depending on the memory policy provide a node from which to allocate the 1719 * next slab entry. 1720 */ 1721 unsigned int mempolicy_slab_node(void) 1722 { 1723 struct mempolicy *policy; 1724 int node = numa_mem_id(); 1725 1726 if (in_interrupt()) 1727 return node; 1728 1729 policy = current->mempolicy; 1730 if (!policy || policy->flags & MPOL_F_LOCAL) 1731 return node; 1732 1733 switch (policy->mode) { 1734 case MPOL_PREFERRED: 1735 /* 1736 * handled MPOL_F_LOCAL above 1737 */ 1738 return policy->v.preferred_node; 1739 1740 case MPOL_INTERLEAVE: 1741 return interleave_nodes(policy); 1742 1743 case MPOL_BIND: { 1744 struct zoneref *z; 1745 1746 /* 1747 * Follow bind policy behavior and start allocation at the 1748 * first node. 1749 */ 1750 struct zonelist *zonelist; 1751 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1752 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1753 z = first_zones_zonelist(zonelist, highest_zoneidx, 1754 &policy->v.nodes); 1755 return z->zone ? z->zone->node : node; 1756 } 1757 1758 default: 1759 BUG(); 1760 } 1761 } 1762 1763 /* 1764 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1765 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1766 * number of present nodes. 1767 */ 1768 static unsigned offset_il_node(struct mempolicy *pol, 1769 struct vm_area_struct *vma, unsigned long n) 1770 { 1771 unsigned nnodes = nodes_weight(pol->v.nodes); 1772 unsigned target; 1773 int i; 1774 int nid; 1775 1776 if (!nnodes) 1777 return numa_node_id(); 1778 target = (unsigned int)n % nnodes; 1779 nid = first_node(pol->v.nodes); 1780 for (i = 0; i < target; i++) 1781 nid = next_node(nid, pol->v.nodes); 1782 return nid; 1783 } 1784 1785 /* Determine a node number for interleave */ 1786 static inline unsigned interleave_nid(struct mempolicy *pol, 1787 struct vm_area_struct *vma, unsigned long addr, int shift) 1788 { 1789 if (vma) { 1790 unsigned long off; 1791 1792 /* 1793 * for small pages, there is no difference between 1794 * shift and PAGE_SHIFT, so the bit-shift is safe. 1795 * for huge pages, since vm_pgoff is in units of small 1796 * pages, we need to shift off the always 0 bits to get 1797 * a useful offset. 1798 */ 1799 BUG_ON(shift < PAGE_SHIFT); 1800 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1801 off += (addr - vma->vm_start) >> shift; 1802 return offset_il_node(pol, vma, off); 1803 } else 1804 return interleave_nodes(pol); 1805 } 1806 1807 #ifdef CONFIG_HUGETLBFS 1808 /* 1809 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1810 * @vma: virtual memory area whose policy is sought 1811 * @addr: address in @vma for shared policy lookup and interleave policy 1812 * @gfp_flags: for requested zone 1813 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1814 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1815 * 1816 * Returns a zonelist suitable for a huge page allocation and a pointer 1817 * to the struct mempolicy for conditional unref after allocation. 1818 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1819 * @nodemask for filtering the zonelist. 1820 * 1821 * Must be protected by read_mems_allowed_begin() 1822 */ 1823 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1824 gfp_t gfp_flags, struct mempolicy **mpol, 1825 nodemask_t **nodemask) 1826 { 1827 struct zonelist *zl; 1828 1829 *mpol = get_vma_policy(vma, addr); 1830 *nodemask = NULL; /* assume !MPOL_BIND */ 1831 1832 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1833 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1834 huge_page_shift(hstate_vma(vma))), gfp_flags); 1835 } else { 1836 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1837 if ((*mpol)->mode == MPOL_BIND) 1838 *nodemask = &(*mpol)->v.nodes; 1839 } 1840 return zl; 1841 } 1842 1843 /* 1844 * init_nodemask_of_mempolicy 1845 * 1846 * If the current task's mempolicy is "default" [NULL], return 'false' 1847 * to indicate default policy. Otherwise, extract the policy nodemask 1848 * for 'bind' or 'interleave' policy into the argument nodemask, or 1849 * initialize the argument nodemask to contain the single node for 1850 * 'preferred' or 'local' policy and return 'true' to indicate presence 1851 * of non-default mempolicy. 1852 * 1853 * We don't bother with reference counting the mempolicy [mpol_get/put] 1854 * because the current task is examining it's own mempolicy and a task's 1855 * mempolicy is only ever changed by the task itself. 1856 * 1857 * N.B., it is the caller's responsibility to free a returned nodemask. 1858 */ 1859 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1860 { 1861 struct mempolicy *mempolicy; 1862 int nid; 1863 1864 if (!(mask && current->mempolicy)) 1865 return false; 1866 1867 task_lock(current); 1868 mempolicy = current->mempolicy; 1869 switch (mempolicy->mode) { 1870 case MPOL_PREFERRED: 1871 if (mempolicy->flags & MPOL_F_LOCAL) 1872 nid = numa_node_id(); 1873 else 1874 nid = mempolicy->v.preferred_node; 1875 init_nodemask_of_node(mask, nid); 1876 break; 1877 1878 case MPOL_BIND: 1879 /* Fall through */ 1880 case MPOL_INTERLEAVE: 1881 *mask = mempolicy->v.nodes; 1882 break; 1883 1884 default: 1885 BUG(); 1886 } 1887 task_unlock(current); 1888 1889 return true; 1890 } 1891 #endif 1892 1893 /* 1894 * mempolicy_nodemask_intersects 1895 * 1896 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1897 * policy. Otherwise, check for intersection between mask and the policy 1898 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1899 * policy, always return true since it may allocate elsewhere on fallback. 1900 * 1901 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1902 */ 1903 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1904 const nodemask_t *mask) 1905 { 1906 struct mempolicy *mempolicy; 1907 bool ret = true; 1908 1909 if (!mask) 1910 return ret; 1911 task_lock(tsk); 1912 mempolicy = tsk->mempolicy; 1913 if (!mempolicy) 1914 goto out; 1915 1916 switch (mempolicy->mode) { 1917 case MPOL_PREFERRED: 1918 /* 1919 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1920 * allocate from, they may fallback to other nodes when oom. 1921 * Thus, it's possible for tsk to have allocated memory from 1922 * nodes in mask. 1923 */ 1924 break; 1925 case MPOL_BIND: 1926 case MPOL_INTERLEAVE: 1927 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1928 break; 1929 default: 1930 BUG(); 1931 } 1932 out: 1933 task_unlock(tsk); 1934 return ret; 1935 } 1936 1937 /* Allocate a page in interleaved policy. 1938 Own path because it needs to do special accounting. */ 1939 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1940 unsigned nid) 1941 { 1942 struct zonelist *zl; 1943 struct page *page; 1944 1945 zl = node_zonelist(nid, gfp); 1946 page = __alloc_pages(gfp, order, zl); 1947 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1948 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1949 return page; 1950 } 1951 1952 /** 1953 * alloc_pages_vma - Allocate a page for a VMA. 1954 * 1955 * @gfp: 1956 * %GFP_USER user allocation. 1957 * %GFP_KERNEL kernel allocations, 1958 * %GFP_HIGHMEM highmem/user allocations, 1959 * %GFP_FS allocation should not call back into a file system. 1960 * %GFP_ATOMIC don't sleep. 1961 * 1962 * @order:Order of the GFP allocation. 1963 * @vma: Pointer to VMA or NULL if not available. 1964 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1965 * @node: Which node to prefer for allocation (modulo policy). 1966 * @hugepage: for hugepages try only the preferred node if possible 1967 * 1968 * This function allocates a page from the kernel page pool and applies 1969 * a NUMA policy associated with the VMA or the current process. 1970 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1971 * mm_struct of the VMA to prevent it from going away. Should be used for 1972 * all allocations for pages that will be mapped into user space. Returns 1973 * NULL when no page can be allocated. 1974 */ 1975 struct page * 1976 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1977 unsigned long addr, int node, bool hugepage) 1978 { 1979 struct mempolicy *pol; 1980 struct page *page; 1981 unsigned int cpuset_mems_cookie; 1982 struct zonelist *zl; 1983 nodemask_t *nmask; 1984 1985 retry_cpuset: 1986 pol = get_vma_policy(vma, addr); 1987 cpuset_mems_cookie = read_mems_allowed_begin(); 1988 1989 if (pol->mode == MPOL_INTERLEAVE) { 1990 unsigned nid; 1991 1992 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1993 mpol_cond_put(pol); 1994 page = alloc_page_interleave(gfp, order, nid); 1995 goto out; 1996 } 1997 1998 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1999 int hpage_node = node; 2000 2001 /* 2002 * For hugepage allocation and non-interleave policy which 2003 * allows the current node (or other explicitly preferred 2004 * node) we only try to allocate from the current/preferred 2005 * node and don't fall back to other nodes, as the cost of 2006 * remote accesses would likely offset THP benefits. 2007 * 2008 * If the policy is interleave, or does not allow the current 2009 * node in its nodemask, we allocate the standard way. 2010 */ 2011 if (pol->mode == MPOL_PREFERRED && 2012 !(pol->flags & MPOL_F_LOCAL)) 2013 hpage_node = pol->v.preferred_node; 2014 2015 nmask = policy_nodemask(gfp, pol); 2016 if (!nmask || node_isset(hpage_node, *nmask)) { 2017 mpol_cond_put(pol); 2018 page = __alloc_pages_node(hpage_node, 2019 gfp | __GFP_THISNODE, order); 2020 goto out; 2021 } 2022 } 2023 2024 nmask = policy_nodemask(gfp, pol); 2025 zl = policy_zonelist(gfp, pol, node); 2026 mpol_cond_put(pol); 2027 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2028 out: 2029 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2030 goto retry_cpuset; 2031 return page; 2032 } 2033 2034 /** 2035 * alloc_pages_current - Allocate pages. 2036 * 2037 * @gfp: 2038 * %GFP_USER user allocation, 2039 * %GFP_KERNEL kernel allocation, 2040 * %GFP_HIGHMEM highmem allocation, 2041 * %GFP_FS don't call back into a file system. 2042 * %GFP_ATOMIC don't sleep. 2043 * @order: Power of two of allocation size in pages. 0 is a single page. 2044 * 2045 * Allocate a page from the kernel page pool. When not in 2046 * interrupt context and apply the current process NUMA policy. 2047 * Returns NULL when no page can be allocated. 2048 * 2049 * Don't call cpuset_update_task_memory_state() unless 2050 * 1) it's ok to take cpuset_sem (can WAIT), and 2051 * 2) allocating for current task (not interrupt). 2052 */ 2053 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2054 { 2055 struct mempolicy *pol = &default_policy; 2056 struct page *page; 2057 unsigned int cpuset_mems_cookie; 2058 2059 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2060 pol = get_task_policy(current); 2061 2062 retry_cpuset: 2063 cpuset_mems_cookie = read_mems_allowed_begin(); 2064 2065 /* 2066 * No reference counting needed for current->mempolicy 2067 * nor system default_policy 2068 */ 2069 if (pol->mode == MPOL_INTERLEAVE) 2070 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2071 else 2072 page = __alloc_pages_nodemask(gfp, order, 2073 policy_zonelist(gfp, pol, numa_node_id()), 2074 policy_nodemask(gfp, pol)); 2075 2076 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2077 goto retry_cpuset; 2078 2079 return page; 2080 } 2081 EXPORT_SYMBOL(alloc_pages_current); 2082 2083 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2084 { 2085 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2086 2087 if (IS_ERR(pol)) 2088 return PTR_ERR(pol); 2089 dst->vm_policy = pol; 2090 return 0; 2091 } 2092 2093 /* 2094 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2095 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2096 * with the mems_allowed returned by cpuset_mems_allowed(). This 2097 * keeps mempolicies cpuset relative after its cpuset moves. See 2098 * further kernel/cpuset.c update_nodemask(). 2099 * 2100 * current's mempolicy may be rebinded by the other task(the task that changes 2101 * cpuset's mems), so we needn't do rebind work for current task. 2102 */ 2103 2104 /* Slow path of a mempolicy duplicate */ 2105 struct mempolicy *__mpol_dup(struct mempolicy *old) 2106 { 2107 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2108 2109 if (!new) 2110 return ERR_PTR(-ENOMEM); 2111 2112 /* task's mempolicy is protected by alloc_lock */ 2113 if (old == current->mempolicy) { 2114 task_lock(current); 2115 *new = *old; 2116 task_unlock(current); 2117 } else 2118 *new = *old; 2119 2120 if (current_cpuset_is_being_rebound()) { 2121 nodemask_t mems = cpuset_mems_allowed(current); 2122 if (new->flags & MPOL_F_REBINDING) 2123 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2124 else 2125 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2126 } 2127 atomic_set(&new->refcnt, 1); 2128 return new; 2129 } 2130 2131 /* Slow path of a mempolicy comparison */ 2132 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2133 { 2134 if (!a || !b) 2135 return false; 2136 if (a->mode != b->mode) 2137 return false; 2138 if (a->flags != b->flags) 2139 return false; 2140 if (mpol_store_user_nodemask(a)) 2141 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2142 return false; 2143 2144 switch (a->mode) { 2145 case MPOL_BIND: 2146 /* Fall through */ 2147 case MPOL_INTERLEAVE: 2148 return !!nodes_equal(a->v.nodes, b->v.nodes); 2149 case MPOL_PREFERRED: 2150 return a->v.preferred_node == b->v.preferred_node; 2151 default: 2152 BUG(); 2153 return false; 2154 } 2155 } 2156 2157 /* 2158 * Shared memory backing store policy support. 2159 * 2160 * Remember policies even when nobody has shared memory mapped. 2161 * The policies are kept in Red-Black tree linked from the inode. 2162 * They are protected by the sp->lock rwlock, which should be held 2163 * for any accesses to the tree. 2164 */ 2165 2166 /* 2167 * lookup first element intersecting start-end. Caller holds sp->lock for 2168 * reading or for writing 2169 */ 2170 static struct sp_node * 2171 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2172 { 2173 struct rb_node *n = sp->root.rb_node; 2174 2175 while (n) { 2176 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2177 2178 if (start >= p->end) 2179 n = n->rb_right; 2180 else if (end <= p->start) 2181 n = n->rb_left; 2182 else 2183 break; 2184 } 2185 if (!n) 2186 return NULL; 2187 for (;;) { 2188 struct sp_node *w = NULL; 2189 struct rb_node *prev = rb_prev(n); 2190 if (!prev) 2191 break; 2192 w = rb_entry(prev, struct sp_node, nd); 2193 if (w->end <= start) 2194 break; 2195 n = prev; 2196 } 2197 return rb_entry(n, struct sp_node, nd); 2198 } 2199 2200 /* 2201 * Insert a new shared policy into the list. Caller holds sp->lock for 2202 * writing. 2203 */ 2204 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2205 { 2206 struct rb_node **p = &sp->root.rb_node; 2207 struct rb_node *parent = NULL; 2208 struct sp_node *nd; 2209 2210 while (*p) { 2211 parent = *p; 2212 nd = rb_entry(parent, struct sp_node, nd); 2213 if (new->start < nd->start) 2214 p = &(*p)->rb_left; 2215 else if (new->end > nd->end) 2216 p = &(*p)->rb_right; 2217 else 2218 BUG(); 2219 } 2220 rb_link_node(&new->nd, parent, p); 2221 rb_insert_color(&new->nd, &sp->root); 2222 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2223 new->policy ? new->policy->mode : 0); 2224 } 2225 2226 /* Find shared policy intersecting idx */ 2227 struct mempolicy * 2228 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2229 { 2230 struct mempolicy *pol = NULL; 2231 struct sp_node *sn; 2232 2233 if (!sp->root.rb_node) 2234 return NULL; 2235 read_lock(&sp->lock); 2236 sn = sp_lookup(sp, idx, idx+1); 2237 if (sn) { 2238 mpol_get(sn->policy); 2239 pol = sn->policy; 2240 } 2241 read_unlock(&sp->lock); 2242 return pol; 2243 } 2244 2245 static void sp_free(struct sp_node *n) 2246 { 2247 mpol_put(n->policy); 2248 kmem_cache_free(sn_cache, n); 2249 } 2250 2251 /** 2252 * mpol_misplaced - check whether current page node is valid in policy 2253 * 2254 * @page: page to be checked 2255 * @vma: vm area where page mapped 2256 * @addr: virtual address where page mapped 2257 * 2258 * Lookup current policy node id for vma,addr and "compare to" page's 2259 * node id. 2260 * 2261 * Returns: 2262 * -1 - not misplaced, page is in the right node 2263 * node - node id where the page should be 2264 * 2265 * Policy determination "mimics" alloc_page_vma(). 2266 * Called from fault path where we know the vma and faulting address. 2267 */ 2268 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2269 { 2270 struct mempolicy *pol; 2271 struct zoneref *z; 2272 int curnid = page_to_nid(page); 2273 unsigned long pgoff; 2274 int thiscpu = raw_smp_processor_id(); 2275 int thisnid = cpu_to_node(thiscpu); 2276 int polnid = -1; 2277 int ret = -1; 2278 2279 BUG_ON(!vma); 2280 2281 pol = get_vma_policy(vma, addr); 2282 if (!(pol->flags & MPOL_F_MOF)) 2283 goto out; 2284 2285 switch (pol->mode) { 2286 case MPOL_INTERLEAVE: 2287 BUG_ON(addr >= vma->vm_end); 2288 BUG_ON(addr < vma->vm_start); 2289 2290 pgoff = vma->vm_pgoff; 2291 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2292 polnid = offset_il_node(pol, vma, pgoff); 2293 break; 2294 2295 case MPOL_PREFERRED: 2296 if (pol->flags & MPOL_F_LOCAL) 2297 polnid = numa_node_id(); 2298 else 2299 polnid = pol->v.preferred_node; 2300 break; 2301 2302 case MPOL_BIND: 2303 2304 /* 2305 * allows binding to multiple nodes. 2306 * use current page if in policy nodemask, 2307 * else select nearest allowed node, if any. 2308 * If no allowed nodes, use current [!misplaced]. 2309 */ 2310 if (node_isset(curnid, pol->v.nodes)) 2311 goto out; 2312 z = first_zones_zonelist( 2313 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2314 gfp_zone(GFP_HIGHUSER), 2315 &pol->v.nodes); 2316 polnid = z->zone->node; 2317 break; 2318 2319 default: 2320 BUG(); 2321 } 2322 2323 /* Migrate the page towards the node whose CPU is referencing it */ 2324 if (pol->flags & MPOL_F_MORON) { 2325 polnid = thisnid; 2326 2327 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2328 goto out; 2329 } 2330 2331 if (curnid != polnid) 2332 ret = polnid; 2333 out: 2334 mpol_cond_put(pol); 2335 2336 return ret; 2337 } 2338 2339 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2340 { 2341 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2342 rb_erase(&n->nd, &sp->root); 2343 sp_free(n); 2344 } 2345 2346 static void sp_node_init(struct sp_node *node, unsigned long start, 2347 unsigned long end, struct mempolicy *pol) 2348 { 2349 node->start = start; 2350 node->end = end; 2351 node->policy = pol; 2352 } 2353 2354 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2355 struct mempolicy *pol) 2356 { 2357 struct sp_node *n; 2358 struct mempolicy *newpol; 2359 2360 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2361 if (!n) 2362 return NULL; 2363 2364 newpol = mpol_dup(pol); 2365 if (IS_ERR(newpol)) { 2366 kmem_cache_free(sn_cache, n); 2367 return NULL; 2368 } 2369 newpol->flags |= MPOL_F_SHARED; 2370 sp_node_init(n, start, end, newpol); 2371 2372 return n; 2373 } 2374 2375 /* Replace a policy range. */ 2376 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2377 unsigned long end, struct sp_node *new) 2378 { 2379 struct sp_node *n; 2380 struct sp_node *n_new = NULL; 2381 struct mempolicy *mpol_new = NULL; 2382 int ret = 0; 2383 2384 restart: 2385 write_lock(&sp->lock); 2386 n = sp_lookup(sp, start, end); 2387 /* Take care of old policies in the same range. */ 2388 while (n && n->start < end) { 2389 struct rb_node *next = rb_next(&n->nd); 2390 if (n->start >= start) { 2391 if (n->end <= end) 2392 sp_delete(sp, n); 2393 else 2394 n->start = end; 2395 } else { 2396 /* Old policy spanning whole new range. */ 2397 if (n->end > end) { 2398 if (!n_new) 2399 goto alloc_new; 2400 2401 *mpol_new = *n->policy; 2402 atomic_set(&mpol_new->refcnt, 1); 2403 sp_node_init(n_new, end, n->end, mpol_new); 2404 n->end = start; 2405 sp_insert(sp, n_new); 2406 n_new = NULL; 2407 mpol_new = NULL; 2408 break; 2409 } else 2410 n->end = start; 2411 } 2412 if (!next) 2413 break; 2414 n = rb_entry(next, struct sp_node, nd); 2415 } 2416 if (new) 2417 sp_insert(sp, new); 2418 write_unlock(&sp->lock); 2419 ret = 0; 2420 2421 err_out: 2422 if (mpol_new) 2423 mpol_put(mpol_new); 2424 if (n_new) 2425 kmem_cache_free(sn_cache, n_new); 2426 2427 return ret; 2428 2429 alloc_new: 2430 write_unlock(&sp->lock); 2431 ret = -ENOMEM; 2432 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2433 if (!n_new) 2434 goto err_out; 2435 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2436 if (!mpol_new) 2437 goto err_out; 2438 goto restart; 2439 } 2440 2441 /** 2442 * mpol_shared_policy_init - initialize shared policy for inode 2443 * @sp: pointer to inode shared policy 2444 * @mpol: struct mempolicy to install 2445 * 2446 * Install non-NULL @mpol in inode's shared policy rb-tree. 2447 * On entry, the current task has a reference on a non-NULL @mpol. 2448 * This must be released on exit. 2449 * This is called at get_inode() calls and we can use GFP_KERNEL. 2450 */ 2451 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2452 { 2453 int ret; 2454 2455 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2456 rwlock_init(&sp->lock); 2457 2458 if (mpol) { 2459 struct vm_area_struct pvma; 2460 struct mempolicy *new; 2461 NODEMASK_SCRATCH(scratch); 2462 2463 if (!scratch) 2464 goto put_mpol; 2465 /* contextualize the tmpfs mount point mempolicy */ 2466 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2467 if (IS_ERR(new)) 2468 goto free_scratch; /* no valid nodemask intersection */ 2469 2470 task_lock(current); 2471 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2472 task_unlock(current); 2473 if (ret) 2474 goto put_new; 2475 2476 /* Create pseudo-vma that contains just the policy */ 2477 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2478 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2479 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2480 2481 put_new: 2482 mpol_put(new); /* drop initial ref */ 2483 free_scratch: 2484 NODEMASK_SCRATCH_FREE(scratch); 2485 put_mpol: 2486 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2487 } 2488 } 2489 2490 int mpol_set_shared_policy(struct shared_policy *info, 2491 struct vm_area_struct *vma, struct mempolicy *npol) 2492 { 2493 int err; 2494 struct sp_node *new = NULL; 2495 unsigned long sz = vma_pages(vma); 2496 2497 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2498 vma->vm_pgoff, 2499 sz, npol ? npol->mode : -1, 2500 npol ? npol->flags : -1, 2501 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2502 2503 if (npol) { 2504 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2505 if (!new) 2506 return -ENOMEM; 2507 } 2508 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2509 if (err && new) 2510 sp_free(new); 2511 return err; 2512 } 2513 2514 /* Free a backing policy store on inode delete. */ 2515 void mpol_free_shared_policy(struct shared_policy *p) 2516 { 2517 struct sp_node *n; 2518 struct rb_node *next; 2519 2520 if (!p->root.rb_node) 2521 return; 2522 write_lock(&p->lock); 2523 next = rb_first(&p->root); 2524 while (next) { 2525 n = rb_entry(next, struct sp_node, nd); 2526 next = rb_next(&n->nd); 2527 sp_delete(p, n); 2528 } 2529 write_unlock(&p->lock); 2530 } 2531 2532 #ifdef CONFIG_NUMA_BALANCING 2533 static int __initdata numabalancing_override; 2534 2535 static void __init check_numabalancing_enable(void) 2536 { 2537 bool numabalancing_default = false; 2538 2539 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2540 numabalancing_default = true; 2541 2542 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2543 if (numabalancing_override) 2544 set_numabalancing_state(numabalancing_override == 1); 2545 2546 if (num_online_nodes() > 1 && !numabalancing_override) { 2547 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2548 numabalancing_default ? "Enabling" : "Disabling"); 2549 set_numabalancing_state(numabalancing_default); 2550 } 2551 } 2552 2553 static int __init setup_numabalancing(char *str) 2554 { 2555 int ret = 0; 2556 if (!str) 2557 goto out; 2558 2559 if (!strcmp(str, "enable")) { 2560 numabalancing_override = 1; 2561 ret = 1; 2562 } else if (!strcmp(str, "disable")) { 2563 numabalancing_override = -1; 2564 ret = 1; 2565 } 2566 out: 2567 if (!ret) 2568 pr_warn("Unable to parse numa_balancing=\n"); 2569 2570 return ret; 2571 } 2572 __setup("numa_balancing=", setup_numabalancing); 2573 #else 2574 static inline void __init check_numabalancing_enable(void) 2575 { 2576 } 2577 #endif /* CONFIG_NUMA_BALANCING */ 2578 2579 /* assumes fs == KERNEL_DS */ 2580 void __init numa_policy_init(void) 2581 { 2582 nodemask_t interleave_nodes; 2583 unsigned long largest = 0; 2584 int nid, prefer = 0; 2585 2586 policy_cache = kmem_cache_create("numa_policy", 2587 sizeof(struct mempolicy), 2588 0, SLAB_PANIC, NULL); 2589 2590 sn_cache = kmem_cache_create("shared_policy_node", 2591 sizeof(struct sp_node), 2592 0, SLAB_PANIC, NULL); 2593 2594 for_each_node(nid) { 2595 preferred_node_policy[nid] = (struct mempolicy) { 2596 .refcnt = ATOMIC_INIT(1), 2597 .mode = MPOL_PREFERRED, 2598 .flags = MPOL_F_MOF | MPOL_F_MORON, 2599 .v = { .preferred_node = nid, }, 2600 }; 2601 } 2602 2603 /* 2604 * Set interleaving policy for system init. Interleaving is only 2605 * enabled across suitably sized nodes (default is >= 16MB), or 2606 * fall back to the largest node if they're all smaller. 2607 */ 2608 nodes_clear(interleave_nodes); 2609 for_each_node_state(nid, N_MEMORY) { 2610 unsigned long total_pages = node_present_pages(nid); 2611 2612 /* Preserve the largest node */ 2613 if (largest < total_pages) { 2614 largest = total_pages; 2615 prefer = nid; 2616 } 2617 2618 /* Interleave this node? */ 2619 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2620 node_set(nid, interleave_nodes); 2621 } 2622 2623 /* All too small, use the largest */ 2624 if (unlikely(nodes_empty(interleave_nodes))) 2625 node_set(prefer, interleave_nodes); 2626 2627 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2628 pr_err("%s: interleaving failed\n", __func__); 2629 2630 check_numabalancing_enable(); 2631 } 2632 2633 /* Reset policy of current process to default */ 2634 void numa_default_policy(void) 2635 { 2636 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2637 } 2638 2639 /* 2640 * Parse and format mempolicy from/to strings 2641 */ 2642 2643 /* 2644 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2645 */ 2646 static const char * const policy_modes[] = 2647 { 2648 [MPOL_DEFAULT] = "default", 2649 [MPOL_PREFERRED] = "prefer", 2650 [MPOL_BIND] = "bind", 2651 [MPOL_INTERLEAVE] = "interleave", 2652 [MPOL_LOCAL] = "local", 2653 }; 2654 2655 2656 #ifdef CONFIG_TMPFS 2657 /** 2658 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2659 * @str: string containing mempolicy to parse 2660 * @mpol: pointer to struct mempolicy pointer, returned on success. 2661 * 2662 * Format of input: 2663 * <mode>[=<flags>][:<nodelist>] 2664 * 2665 * On success, returns 0, else 1 2666 */ 2667 int mpol_parse_str(char *str, struct mempolicy **mpol) 2668 { 2669 struct mempolicy *new = NULL; 2670 unsigned short mode; 2671 unsigned short mode_flags; 2672 nodemask_t nodes; 2673 char *nodelist = strchr(str, ':'); 2674 char *flags = strchr(str, '='); 2675 int err = 1; 2676 2677 if (nodelist) { 2678 /* NUL-terminate mode or flags string */ 2679 *nodelist++ = '\0'; 2680 if (nodelist_parse(nodelist, nodes)) 2681 goto out; 2682 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2683 goto out; 2684 } else 2685 nodes_clear(nodes); 2686 2687 if (flags) 2688 *flags++ = '\0'; /* terminate mode string */ 2689 2690 for (mode = 0; mode < MPOL_MAX; mode++) { 2691 if (!strcmp(str, policy_modes[mode])) { 2692 break; 2693 } 2694 } 2695 if (mode >= MPOL_MAX) 2696 goto out; 2697 2698 switch (mode) { 2699 case MPOL_PREFERRED: 2700 /* 2701 * Insist on a nodelist of one node only 2702 */ 2703 if (nodelist) { 2704 char *rest = nodelist; 2705 while (isdigit(*rest)) 2706 rest++; 2707 if (*rest) 2708 goto out; 2709 } 2710 break; 2711 case MPOL_INTERLEAVE: 2712 /* 2713 * Default to online nodes with memory if no nodelist 2714 */ 2715 if (!nodelist) 2716 nodes = node_states[N_MEMORY]; 2717 break; 2718 case MPOL_LOCAL: 2719 /* 2720 * Don't allow a nodelist; mpol_new() checks flags 2721 */ 2722 if (nodelist) 2723 goto out; 2724 mode = MPOL_PREFERRED; 2725 break; 2726 case MPOL_DEFAULT: 2727 /* 2728 * Insist on a empty nodelist 2729 */ 2730 if (!nodelist) 2731 err = 0; 2732 goto out; 2733 case MPOL_BIND: 2734 /* 2735 * Insist on a nodelist 2736 */ 2737 if (!nodelist) 2738 goto out; 2739 } 2740 2741 mode_flags = 0; 2742 if (flags) { 2743 /* 2744 * Currently, we only support two mutually exclusive 2745 * mode flags. 2746 */ 2747 if (!strcmp(flags, "static")) 2748 mode_flags |= MPOL_F_STATIC_NODES; 2749 else if (!strcmp(flags, "relative")) 2750 mode_flags |= MPOL_F_RELATIVE_NODES; 2751 else 2752 goto out; 2753 } 2754 2755 new = mpol_new(mode, mode_flags, &nodes); 2756 if (IS_ERR(new)) 2757 goto out; 2758 2759 /* 2760 * Save nodes for mpol_to_str() to show the tmpfs mount options 2761 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2762 */ 2763 if (mode != MPOL_PREFERRED) 2764 new->v.nodes = nodes; 2765 else if (nodelist) 2766 new->v.preferred_node = first_node(nodes); 2767 else 2768 new->flags |= MPOL_F_LOCAL; 2769 2770 /* 2771 * Save nodes for contextualization: this will be used to "clone" 2772 * the mempolicy in a specific context [cpuset] at a later time. 2773 */ 2774 new->w.user_nodemask = nodes; 2775 2776 err = 0; 2777 2778 out: 2779 /* Restore string for error message */ 2780 if (nodelist) 2781 *--nodelist = ':'; 2782 if (flags) 2783 *--flags = '='; 2784 if (!err) 2785 *mpol = new; 2786 return err; 2787 } 2788 #endif /* CONFIG_TMPFS */ 2789 2790 /** 2791 * mpol_to_str - format a mempolicy structure for printing 2792 * @buffer: to contain formatted mempolicy string 2793 * @maxlen: length of @buffer 2794 * @pol: pointer to mempolicy to be formatted 2795 * 2796 * Convert @pol into a string. If @buffer is too short, truncate the string. 2797 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2798 * longest flag, "relative", and to display at least a few node ids. 2799 */ 2800 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2801 { 2802 char *p = buffer; 2803 nodemask_t nodes = NODE_MASK_NONE; 2804 unsigned short mode = MPOL_DEFAULT; 2805 unsigned short flags = 0; 2806 2807 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2808 mode = pol->mode; 2809 flags = pol->flags; 2810 } 2811 2812 switch (mode) { 2813 case MPOL_DEFAULT: 2814 break; 2815 case MPOL_PREFERRED: 2816 if (flags & MPOL_F_LOCAL) 2817 mode = MPOL_LOCAL; 2818 else 2819 node_set(pol->v.preferred_node, nodes); 2820 break; 2821 case MPOL_BIND: 2822 case MPOL_INTERLEAVE: 2823 nodes = pol->v.nodes; 2824 break; 2825 default: 2826 WARN_ON_ONCE(1); 2827 snprintf(p, maxlen, "unknown"); 2828 return; 2829 } 2830 2831 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2832 2833 if (flags & MPOL_MODE_FLAGS) { 2834 p += snprintf(p, buffer + maxlen - p, "="); 2835 2836 /* 2837 * Currently, the only defined flags are mutually exclusive 2838 */ 2839 if (flags & MPOL_F_STATIC_NODES) 2840 p += snprintf(p, buffer + maxlen - p, "static"); 2841 else if (flags & MPOL_F_RELATIVE_NODES) 2842 p += snprintf(p, buffer + maxlen - p, "relative"); 2843 } 2844 2845 if (!nodes_empty(nodes)) 2846 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2847 nodemask_pr_args(&nodes)); 2848 } 2849