1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/gfp.h> 77 #include <linux/slab.h> 78 #include <linux/string.h> 79 #include <linux/module.h> 80 #include <linux/nsproxy.h> 81 #include <linux/interrupt.h> 82 #include <linux/init.h> 83 #include <linux/compat.h> 84 #include <linux/swap.h> 85 #include <linux/seq_file.h> 86 #include <linux/proc_fs.h> 87 #include <linux/migrate.h> 88 #include <linux/ksm.h> 89 #include <linux/rmap.h> 90 #include <linux/security.h> 91 #include <linux/syscalls.h> 92 #include <linux/ctype.h> 93 #include <linux/mm_inline.h> 94 95 #include <asm/tlbflush.h> 96 #include <asm/uaccess.h> 97 98 #include "internal.h" 99 100 /* Internal flags */ 101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 103 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 104 105 static struct kmem_cache *policy_cache; 106 static struct kmem_cache *sn_cache; 107 108 /* Highest zone. An specific allocation for a zone below that is not 109 policied. */ 110 enum zone_type policy_zone = 0; 111 112 /* 113 * run-time system-wide default policy => local allocation 114 */ 115 struct mempolicy default_policy = { 116 .refcnt = ATOMIC_INIT(1), /* never free it */ 117 .mode = MPOL_PREFERRED, 118 .flags = MPOL_F_LOCAL, 119 }; 120 121 static const struct mempolicy_operations { 122 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 123 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 124 } mpol_ops[MPOL_MAX]; 125 126 /* Check that the nodemask contains at least one populated zone */ 127 static int is_valid_nodemask(const nodemask_t *nodemask) 128 { 129 int nd, k; 130 131 /* Check that there is something useful in this mask */ 132 k = policy_zone; 133 134 for_each_node_mask(nd, *nodemask) { 135 struct zone *z; 136 137 for (k = 0; k <= policy_zone; k++) { 138 z = &NODE_DATA(nd)->node_zones[k]; 139 if (z->present_pages > 0) 140 return 1; 141 } 142 } 143 144 return 0; 145 } 146 147 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 148 { 149 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES); 150 } 151 152 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 153 const nodemask_t *rel) 154 { 155 nodemask_t tmp; 156 nodes_fold(tmp, *orig, nodes_weight(*rel)); 157 nodes_onto(*ret, tmp, *rel); 158 } 159 160 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 161 { 162 if (nodes_empty(*nodes)) 163 return -EINVAL; 164 pol->v.nodes = *nodes; 165 return 0; 166 } 167 168 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 169 { 170 if (!nodes) 171 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 172 else if (nodes_empty(*nodes)) 173 return -EINVAL; /* no allowed nodes */ 174 else 175 pol->v.preferred_node = first_node(*nodes); 176 return 0; 177 } 178 179 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 180 { 181 if (!is_valid_nodemask(nodes)) 182 return -EINVAL; 183 pol->v.nodes = *nodes; 184 return 0; 185 } 186 187 /* 188 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 189 * any, for the new policy. mpol_new() has already validated the nodes 190 * parameter with respect to the policy mode and flags. But, we need to 191 * handle an empty nodemask with MPOL_PREFERRED here. 192 * 193 * Must be called holding task's alloc_lock to protect task's mems_allowed 194 * and mempolicy. May also be called holding the mmap_semaphore for write. 195 */ 196 static int mpol_set_nodemask(struct mempolicy *pol, 197 const nodemask_t *nodes, struct nodemask_scratch *nsc) 198 { 199 int ret; 200 201 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 202 if (pol == NULL) 203 return 0; 204 /* Check N_HIGH_MEMORY */ 205 nodes_and(nsc->mask1, 206 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); 207 208 VM_BUG_ON(!nodes); 209 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 210 nodes = NULL; /* explicit local allocation */ 211 else { 212 if (pol->flags & MPOL_F_RELATIVE_NODES) 213 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 214 else 215 nodes_and(nsc->mask2, *nodes, nsc->mask1); 216 217 if (mpol_store_user_nodemask(pol)) 218 pol->w.user_nodemask = *nodes; 219 else 220 pol->w.cpuset_mems_allowed = 221 cpuset_current_mems_allowed; 222 } 223 224 if (nodes) 225 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 226 else 227 ret = mpol_ops[pol->mode].create(pol, NULL); 228 return ret; 229 } 230 231 /* 232 * This function just creates a new policy, does some check and simple 233 * initialization. You must invoke mpol_set_nodemask() to set nodes. 234 */ 235 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 236 nodemask_t *nodes) 237 { 238 struct mempolicy *policy; 239 240 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 241 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 242 243 if (mode == MPOL_DEFAULT) { 244 if (nodes && !nodes_empty(*nodes)) 245 return ERR_PTR(-EINVAL); 246 return NULL; /* simply delete any existing policy */ 247 } 248 VM_BUG_ON(!nodes); 249 250 /* 251 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 252 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 253 * All other modes require a valid pointer to a non-empty nodemask. 254 */ 255 if (mode == MPOL_PREFERRED) { 256 if (nodes_empty(*nodes)) { 257 if (((flags & MPOL_F_STATIC_NODES) || 258 (flags & MPOL_F_RELATIVE_NODES))) 259 return ERR_PTR(-EINVAL); 260 } 261 } else if (nodes_empty(*nodes)) 262 return ERR_PTR(-EINVAL); 263 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 264 if (!policy) 265 return ERR_PTR(-ENOMEM); 266 atomic_set(&policy->refcnt, 1); 267 policy->mode = mode; 268 policy->flags = flags; 269 270 return policy; 271 } 272 273 /* Slow path of a mpol destructor. */ 274 void __mpol_put(struct mempolicy *p) 275 { 276 if (!atomic_dec_and_test(&p->refcnt)) 277 return; 278 kmem_cache_free(policy_cache, p); 279 } 280 281 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 282 { 283 } 284 285 static void mpol_rebind_nodemask(struct mempolicy *pol, 286 const nodemask_t *nodes) 287 { 288 nodemask_t tmp; 289 290 if (pol->flags & MPOL_F_STATIC_NODES) 291 nodes_and(tmp, pol->w.user_nodemask, *nodes); 292 else if (pol->flags & MPOL_F_RELATIVE_NODES) 293 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 294 else { 295 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed, 296 *nodes); 297 pol->w.cpuset_mems_allowed = *nodes; 298 } 299 300 pol->v.nodes = tmp; 301 if (!node_isset(current->il_next, tmp)) { 302 current->il_next = next_node(current->il_next, tmp); 303 if (current->il_next >= MAX_NUMNODES) 304 current->il_next = first_node(tmp); 305 if (current->il_next >= MAX_NUMNODES) 306 current->il_next = numa_node_id(); 307 } 308 } 309 310 static void mpol_rebind_preferred(struct mempolicy *pol, 311 const nodemask_t *nodes) 312 { 313 nodemask_t tmp; 314 315 if (pol->flags & MPOL_F_STATIC_NODES) { 316 int node = first_node(pol->w.user_nodemask); 317 318 if (node_isset(node, *nodes)) { 319 pol->v.preferred_node = node; 320 pol->flags &= ~MPOL_F_LOCAL; 321 } else 322 pol->flags |= MPOL_F_LOCAL; 323 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 325 pol->v.preferred_node = first_node(tmp); 326 } else if (!(pol->flags & MPOL_F_LOCAL)) { 327 pol->v.preferred_node = node_remap(pol->v.preferred_node, 328 pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 } 333 334 /* Migrate a policy to a different set of nodes */ 335 static void mpol_rebind_policy(struct mempolicy *pol, 336 const nodemask_t *newmask) 337 { 338 if (!pol) 339 return; 340 if (!mpol_store_user_nodemask(pol) && 341 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 342 return; 343 mpol_ops[pol->mode].rebind(pol, newmask); 344 } 345 346 /* 347 * Wrapper for mpol_rebind_policy() that just requires task 348 * pointer, and updates task mempolicy. 349 * 350 * Called with task's alloc_lock held. 351 */ 352 353 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 354 { 355 mpol_rebind_policy(tsk->mempolicy, new); 356 } 357 358 /* 359 * Rebind each vma in mm to new nodemask. 360 * 361 * Call holding a reference to mm. Takes mm->mmap_sem during call. 362 */ 363 364 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 365 { 366 struct vm_area_struct *vma; 367 368 down_write(&mm->mmap_sem); 369 for (vma = mm->mmap; vma; vma = vma->vm_next) 370 mpol_rebind_policy(vma->vm_policy, new); 371 up_write(&mm->mmap_sem); 372 } 373 374 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 375 [MPOL_DEFAULT] = { 376 .rebind = mpol_rebind_default, 377 }, 378 [MPOL_INTERLEAVE] = { 379 .create = mpol_new_interleave, 380 .rebind = mpol_rebind_nodemask, 381 }, 382 [MPOL_PREFERRED] = { 383 .create = mpol_new_preferred, 384 .rebind = mpol_rebind_preferred, 385 }, 386 [MPOL_BIND] = { 387 .create = mpol_new_bind, 388 .rebind = mpol_rebind_nodemask, 389 }, 390 }; 391 392 static void gather_stats(struct page *, void *, int pte_dirty); 393 static void migrate_page_add(struct page *page, struct list_head *pagelist, 394 unsigned long flags); 395 396 /* Scan through pages checking if pages follow certain conditions. */ 397 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 398 unsigned long addr, unsigned long end, 399 const nodemask_t *nodes, unsigned long flags, 400 void *private) 401 { 402 pte_t *orig_pte; 403 pte_t *pte; 404 spinlock_t *ptl; 405 406 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 407 do { 408 struct page *page; 409 int nid; 410 411 if (!pte_present(*pte)) 412 continue; 413 page = vm_normal_page(vma, addr, *pte); 414 if (!page) 415 continue; 416 /* 417 * vm_normal_page() filters out zero pages, but there might 418 * still be PageReserved pages to skip, perhaps in a VDSO. 419 * And we cannot move PageKsm pages sensibly or safely yet. 420 */ 421 if (PageReserved(page) || PageKsm(page)) 422 continue; 423 nid = page_to_nid(page); 424 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 425 continue; 426 427 if (flags & MPOL_MF_STATS) 428 gather_stats(page, private, pte_dirty(*pte)); 429 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 430 migrate_page_add(page, private, flags); 431 else 432 break; 433 } while (pte++, addr += PAGE_SIZE, addr != end); 434 pte_unmap_unlock(orig_pte, ptl); 435 return addr != end; 436 } 437 438 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 439 unsigned long addr, unsigned long end, 440 const nodemask_t *nodes, unsigned long flags, 441 void *private) 442 { 443 pmd_t *pmd; 444 unsigned long next; 445 446 pmd = pmd_offset(pud, addr); 447 do { 448 next = pmd_addr_end(addr, end); 449 if (pmd_none_or_clear_bad(pmd)) 450 continue; 451 if (check_pte_range(vma, pmd, addr, next, nodes, 452 flags, private)) 453 return -EIO; 454 } while (pmd++, addr = next, addr != end); 455 return 0; 456 } 457 458 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 459 unsigned long addr, unsigned long end, 460 const nodemask_t *nodes, unsigned long flags, 461 void *private) 462 { 463 pud_t *pud; 464 unsigned long next; 465 466 pud = pud_offset(pgd, addr); 467 do { 468 next = pud_addr_end(addr, end); 469 if (pud_none_or_clear_bad(pud)) 470 continue; 471 if (check_pmd_range(vma, pud, addr, next, nodes, 472 flags, private)) 473 return -EIO; 474 } while (pud++, addr = next, addr != end); 475 return 0; 476 } 477 478 static inline int check_pgd_range(struct vm_area_struct *vma, 479 unsigned long addr, unsigned long end, 480 const nodemask_t *nodes, unsigned long flags, 481 void *private) 482 { 483 pgd_t *pgd; 484 unsigned long next; 485 486 pgd = pgd_offset(vma->vm_mm, addr); 487 do { 488 next = pgd_addr_end(addr, end); 489 if (pgd_none_or_clear_bad(pgd)) 490 continue; 491 if (check_pud_range(vma, pgd, addr, next, nodes, 492 flags, private)) 493 return -EIO; 494 } while (pgd++, addr = next, addr != end); 495 return 0; 496 } 497 498 /* 499 * Check if all pages in a range are on a set of nodes. 500 * If pagelist != NULL then isolate pages from the LRU and 501 * put them on the pagelist. 502 */ 503 static struct vm_area_struct * 504 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 505 const nodemask_t *nodes, unsigned long flags, void *private) 506 { 507 int err; 508 struct vm_area_struct *first, *vma, *prev; 509 510 511 first = find_vma(mm, start); 512 if (!first) 513 return ERR_PTR(-EFAULT); 514 prev = NULL; 515 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 516 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 517 if (!vma->vm_next && vma->vm_end < end) 518 return ERR_PTR(-EFAULT); 519 if (prev && prev->vm_end < vma->vm_start) 520 return ERR_PTR(-EFAULT); 521 } 522 if (!is_vm_hugetlb_page(vma) && 523 ((flags & MPOL_MF_STRICT) || 524 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 525 vma_migratable(vma)))) { 526 unsigned long endvma = vma->vm_end; 527 528 if (endvma > end) 529 endvma = end; 530 if (vma->vm_start > start) 531 start = vma->vm_start; 532 err = check_pgd_range(vma, start, endvma, nodes, 533 flags, private); 534 if (err) { 535 first = ERR_PTR(err); 536 break; 537 } 538 } 539 prev = vma; 540 } 541 return first; 542 } 543 544 /* Apply policy to a single VMA */ 545 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 546 { 547 int err = 0; 548 struct mempolicy *old = vma->vm_policy; 549 550 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 551 vma->vm_start, vma->vm_end, vma->vm_pgoff, 552 vma->vm_ops, vma->vm_file, 553 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 554 555 if (vma->vm_ops && vma->vm_ops->set_policy) 556 err = vma->vm_ops->set_policy(vma, new); 557 if (!err) { 558 mpol_get(new); 559 vma->vm_policy = new; 560 mpol_put(old); 561 } 562 return err; 563 } 564 565 /* Step 2: apply policy to a range and do splits. */ 566 static int mbind_range(struct vm_area_struct *vma, unsigned long start, 567 unsigned long end, struct mempolicy *new) 568 { 569 struct vm_area_struct *next; 570 int err; 571 572 err = 0; 573 for (; vma && vma->vm_start < end; vma = next) { 574 next = vma->vm_next; 575 if (vma->vm_start < start) 576 err = split_vma(vma->vm_mm, vma, start, 1); 577 if (!err && vma->vm_end > end) 578 err = split_vma(vma->vm_mm, vma, end, 0); 579 if (!err) 580 err = policy_vma(vma, new); 581 if (err) 582 break; 583 } 584 return err; 585 } 586 587 /* 588 * Update task->flags PF_MEMPOLICY bit: set iff non-default 589 * mempolicy. Allows more rapid checking of this (combined perhaps 590 * with other PF_* flag bits) on memory allocation hot code paths. 591 * 592 * If called from outside this file, the task 'p' should -only- be 593 * a newly forked child not yet visible on the task list, because 594 * manipulating the task flags of a visible task is not safe. 595 * 596 * The above limitation is why this routine has the funny name 597 * mpol_fix_fork_child_flag(). 598 * 599 * It is also safe to call this with a task pointer of current, 600 * which the static wrapper mpol_set_task_struct_flag() does, 601 * for use within this file. 602 */ 603 604 void mpol_fix_fork_child_flag(struct task_struct *p) 605 { 606 if (p->mempolicy) 607 p->flags |= PF_MEMPOLICY; 608 else 609 p->flags &= ~PF_MEMPOLICY; 610 } 611 612 static void mpol_set_task_struct_flag(void) 613 { 614 mpol_fix_fork_child_flag(current); 615 } 616 617 /* Set the process memory policy */ 618 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 619 nodemask_t *nodes) 620 { 621 struct mempolicy *new, *old; 622 struct mm_struct *mm = current->mm; 623 NODEMASK_SCRATCH(scratch); 624 int ret; 625 626 if (!scratch) 627 return -ENOMEM; 628 629 new = mpol_new(mode, flags, nodes); 630 if (IS_ERR(new)) { 631 ret = PTR_ERR(new); 632 goto out; 633 } 634 /* 635 * prevent changing our mempolicy while show_numa_maps() 636 * is using it. 637 * Note: do_set_mempolicy() can be called at init time 638 * with no 'mm'. 639 */ 640 if (mm) 641 down_write(&mm->mmap_sem); 642 task_lock(current); 643 ret = mpol_set_nodemask(new, nodes, scratch); 644 if (ret) { 645 task_unlock(current); 646 if (mm) 647 up_write(&mm->mmap_sem); 648 mpol_put(new); 649 goto out; 650 } 651 old = current->mempolicy; 652 current->mempolicy = new; 653 mpol_set_task_struct_flag(); 654 if (new && new->mode == MPOL_INTERLEAVE && 655 nodes_weight(new->v.nodes)) 656 current->il_next = first_node(new->v.nodes); 657 task_unlock(current); 658 if (mm) 659 up_write(&mm->mmap_sem); 660 661 mpol_put(old); 662 ret = 0; 663 out: 664 NODEMASK_SCRATCH_FREE(scratch); 665 return ret; 666 } 667 668 /* 669 * Return nodemask for policy for get_mempolicy() query 670 * 671 * Called with task's alloc_lock held 672 */ 673 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 674 { 675 nodes_clear(*nodes); 676 if (p == &default_policy) 677 return; 678 679 switch (p->mode) { 680 case MPOL_BIND: 681 /* Fall through */ 682 case MPOL_INTERLEAVE: 683 *nodes = p->v.nodes; 684 break; 685 case MPOL_PREFERRED: 686 if (!(p->flags & MPOL_F_LOCAL)) 687 node_set(p->v.preferred_node, *nodes); 688 /* else return empty node mask for local allocation */ 689 break; 690 default: 691 BUG(); 692 } 693 } 694 695 static int lookup_node(struct mm_struct *mm, unsigned long addr) 696 { 697 struct page *p; 698 int err; 699 700 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 701 if (err >= 0) { 702 err = page_to_nid(p); 703 put_page(p); 704 } 705 return err; 706 } 707 708 /* Retrieve NUMA policy */ 709 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 710 unsigned long addr, unsigned long flags) 711 { 712 int err; 713 struct mm_struct *mm = current->mm; 714 struct vm_area_struct *vma = NULL; 715 struct mempolicy *pol = current->mempolicy; 716 717 if (flags & 718 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 719 return -EINVAL; 720 721 if (flags & MPOL_F_MEMS_ALLOWED) { 722 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 723 return -EINVAL; 724 *policy = 0; /* just so it's initialized */ 725 task_lock(current); 726 *nmask = cpuset_current_mems_allowed; 727 task_unlock(current); 728 return 0; 729 } 730 731 if (flags & MPOL_F_ADDR) { 732 /* 733 * Do NOT fall back to task policy if the 734 * vma/shared policy at addr is NULL. We 735 * want to return MPOL_DEFAULT in this case. 736 */ 737 down_read(&mm->mmap_sem); 738 vma = find_vma_intersection(mm, addr, addr+1); 739 if (!vma) { 740 up_read(&mm->mmap_sem); 741 return -EFAULT; 742 } 743 if (vma->vm_ops && vma->vm_ops->get_policy) 744 pol = vma->vm_ops->get_policy(vma, addr); 745 else 746 pol = vma->vm_policy; 747 } else if (addr) 748 return -EINVAL; 749 750 if (!pol) 751 pol = &default_policy; /* indicates default behavior */ 752 753 if (flags & MPOL_F_NODE) { 754 if (flags & MPOL_F_ADDR) { 755 err = lookup_node(mm, addr); 756 if (err < 0) 757 goto out; 758 *policy = err; 759 } else if (pol == current->mempolicy && 760 pol->mode == MPOL_INTERLEAVE) { 761 *policy = current->il_next; 762 } else { 763 err = -EINVAL; 764 goto out; 765 } 766 } else { 767 *policy = pol == &default_policy ? MPOL_DEFAULT : 768 pol->mode; 769 /* 770 * Internal mempolicy flags must be masked off before exposing 771 * the policy to userspace. 772 */ 773 *policy |= (pol->flags & MPOL_MODE_FLAGS); 774 } 775 776 if (vma) { 777 up_read(¤t->mm->mmap_sem); 778 vma = NULL; 779 } 780 781 err = 0; 782 if (nmask) { 783 task_lock(current); 784 get_policy_nodemask(pol, nmask); 785 task_unlock(current); 786 } 787 788 out: 789 mpol_cond_put(pol); 790 if (vma) 791 up_read(¤t->mm->mmap_sem); 792 return err; 793 } 794 795 #ifdef CONFIG_MIGRATION 796 /* 797 * page migration 798 */ 799 static void migrate_page_add(struct page *page, struct list_head *pagelist, 800 unsigned long flags) 801 { 802 /* 803 * Avoid migrating a page that is shared with others. 804 */ 805 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 806 if (!isolate_lru_page(page)) { 807 list_add_tail(&page->lru, pagelist); 808 inc_zone_page_state(page, NR_ISOLATED_ANON + 809 page_is_file_cache(page)); 810 } 811 } 812 } 813 814 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 815 { 816 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 817 } 818 819 /* 820 * Migrate pages from one node to a target node. 821 * Returns error or the number of pages not migrated. 822 */ 823 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 824 int flags) 825 { 826 nodemask_t nmask; 827 LIST_HEAD(pagelist); 828 int err = 0; 829 830 nodes_clear(nmask); 831 node_set(source, nmask); 832 833 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, 834 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 835 836 if (!list_empty(&pagelist)) 837 err = migrate_pages(&pagelist, new_node_page, dest, 0); 838 839 return err; 840 } 841 842 /* 843 * Move pages between the two nodesets so as to preserve the physical 844 * layout as much as possible. 845 * 846 * Returns the number of page that could not be moved. 847 */ 848 int do_migrate_pages(struct mm_struct *mm, 849 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 850 { 851 int busy = 0; 852 int err; 853 nodemask_t tmp; 854 855 err = migrate_prep(); 856 if (err) 857 return err; 858 859 down_read(&mm->mmap_sem); 860 861 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 862 if (err) 863 goto out; 864 865 /* 866 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 867 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 868 * bit in 'tmp', and return that <source, dest> pair for migration. 869 * The pair of nodemasks 'to' and 'from' define the map. 870 * 871 * If no pair of bits is found that way, fallback to picking some 872 * pair of 'source' and 'dest' bits that are not the same. If the 873 * 'source' and 'dest' bits are the same, this represents a node 874 * that will be migrating to itself, so no pages need move. 875 * 876 * If no bits are left in 'tmp', or if all remaining bits left 877 * in 'tmp' correspond to the same bit in 'to', return false 878 * (nothing left to migrate). 879 * 880 * This lets us pick a pair of nodes to migrate between, such that 881 * if possible the dest node is not already occupied by some other 882 * source node, minimizing the risk of overloading the memory on a 883 * node that would happen if we migrated incoming memory to a node 884 * before migrating outgoing memory source that same node. 885 * 886 * A single scan of tmp is sufficient. As we go, we remember the 887 * most recent <s, d> pair that moved (s != d). If we find a pair 888 * that not only moved, but what's better, moved to an empty slot 889 * (d is not set in tmp), then we break out then, with that pair. 890 * Otherwise when we finish scannng from_tmp, we at least have the 891 * most recent <s, d> pair that moved. If we get all the way through 892 * the scan of tmp without finding any node that moved, much less 893 * moved to an empty node, then there is nothing left worth migrating. 894 */ 895 896 tmp = *from_nodes; 897 while (!nodes_empty(tmp)) { 898 int s,d; 899 int source = -1; 900 int dest = 0; 901 902 for_each_node_mask(s, tmp) { 903 d = node_remap(s, *from_nodes, *to_nodes); 904 if (s == d) 905 continue; 906 907 source = s; /* Node moved. Memorize */ 908 dest = d; 909 910 /* dest not in remaining from nodes? */ 911 if (!node_isset(dest, tmp)) 912 break; 913 } 914 if (source == -1) 915 break; 916 917 node_clear(source, tmp); 918 err = migrate_to_node(mm, source, dest, flags); 919 if (err > 0) 920 busy += err; 921 if (err < 0) 922 break; 923 } 924 out: 925 up_read(&mm->mmap_sem); 926 if (err < 0) 927 return err; 928 return busy; 929 930 } 931 932 /* 933 * Allocate a new page for page migration based on vma policy. 934 * Start assuming that page is mapped by vma pointed to by @private. 935 * Search forward from there, if not. N.B., this assumes that the 936 * list of pages handed to migrate_pages()--which is how we get here-- 937 * is in virtual address order. 938 */ 939 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 940 { 941 struct vm_area_struct *vma = (struct vm_area_struct *)private; 942 unsigned long uninitialized_var(address); 943 944 while (vma) { 945 address = page_address_in_vma(page, vma); 946 if (address != -EFAULT) 947 break; 948 vma = vma->vm_next; 949 } 950 951 /* 952 * if !vma, alloc_page_vma() will use task or system default policy 953 */ 954 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 955 } 956 #else 957 958 static void migrate_page_add(struct page *page, struct list_head *pagelist, 959 unsigned long flags) 960 { 961 } 962 963 int do_migrate_pages(struct mm_struct *mm, 964 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 965 { 966 return -ENOSYS; 967 } 968 969 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 970 { 971 return NULL; 972 } 973 #endif 974 975 static long do_mbind(unsigned long start, unsigned long len, 976 unsigned short mode, unsigned short mode_flags, 977 nodemask_t *nmask, unsigned long flags) 978 { 979 struct vm_area_struct *vma; 980 struct mm_struct *mm = current->mm; 981 struct mempolicy *new; 982 unsigned long end; 983 int err; 984 LIST_HEAD(pagelist); 985 986 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 987 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 988 return -EINVAL; 989 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 990 return -EPERM; 991 992 if (start & ~PAGE_MASK) 993 return -EINVAL; 994 995 if (mode == MPOL_DEFAULT) 996 flags &= ~MPOL_MF_STRICT; 997 998 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 999 end = start + len; 1000 1001 if (end < start) 1002 return -EINVAL; 1003 if (end == start) 1004 return 0; 1005 1006 new = mpol_new(mode, mode_flags, nmask); 1007 if (IS_ERR(new)) 1008 return PTR_ERR(new); 1009 1010 /* 1011 * If we are using the default policy then operation 1012 * on discontinuous address spaces is okay after all 1013 */ 1014 if (!new) 1015 flags |= MPOL_MF_DISCONTIG_OK; 1016 1017 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1018 start, start + len, mode, mode_flags, 1019 nmask ? nodes_addr(*nmask)[0] : -1); 1020 1021 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1022 1023 err = migrate_prep(); 1024 if (err) 1025 goto mpol_out; 1026 } 1027 { 1028 NODEMASK_SCRATCH(scratch); 1029 if (scratch) { 1030 down_write(&mm->mmap_sem); 1031 task_lock(current); 1032 err = mpol_set_nodemask(new, nmask, scratch); 1033 task_unlock(current); 1034 if (err) 1035 up_write(&mm->mmap_sem); 1036 } else 1037 err = -ENOMEM; 1038 NODEMASK_SCRATCH_FREE(scratch); 1039 } 1040 if (err) 1041 goto mpol_out; 1042 1043 vma = check_range(mm, start, end, nmask, 1044 flags | MPOL_MF_INVERT, &pagelist); 1045 1046 err = PTR_ERR(vma); 1047 if (!IS_ERR(vma)) { 1048 int nr_failed = 0; 1049 1050 err = mbind_range(vma, start, end, new); 1051 1052 if (!list_empty(&pagelist)) 1053 nr_failed = migrate_pages(&pagelist, new_vma_page, 1054 (unsigned long)vma, 0); 1055 1056 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 1057 err = -EIO; 1058 } else 1059 putback_lru_pages(&pagelist); 1060 1061 up_write(&mm->mmap_sem); 1062 mpol_out: 1063 mpol_put(new); 1064 return err; 1065 } 1066 1067 /* 1068 * User space interface with variable sized bitmaps for nodelists. 1069 */ 1070 1071 /* Copy a node mask from user space. */ 1072 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1073 unsigned long maxnode) 1074 { 1075 unsigned long k; 1076 unsigned long nlongs; 1077 unsigned long endmask; 1078 1079 --maxnode; 1080 nodes_clear(*nodes); 1081 if (maxnode == 0 || !nmask) 1082 return 0; 1083 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1084 return -EINVAL; 1085 1086 nlongs = BITS_TO_LONGS(maxnode); 1087 if ((maxnode % BITS_PER_LONG) == 0) 1088 endmask = ~0UL; 1089 else 1090 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1091 1092 /* When the user specified more nodes than supported just check 1093 if the non supported part is all zero. */ 1094 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1095 if (nlongs > PAGE_SIZE/sizeof(long)) 1096 return -EINVAL; 1097 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1098 unsigned long t; 1099 if (get_user(t, nmask + k)) 1100 return -EFAULT; 1101 if (k == nlongs - 1) { 1102 if (t & endmask) 1103 return -EINVAL; 1104 } else if (t) 1105 return -EINVAL; 1106 } 1107 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1108 endmask = ~0UL; 1109 } 1110 1111 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1112 return -EFAULT; 1113 nodes_addr(*nodes)[nlongs-1] &= endmask; 1114 return 0; 1115 } 1116 1117 /* Copy a kernel node mask to user space */ 1118 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1119 nodemask_t *nodes) 1120 { 1121 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1122 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1123 1124 if (copy > nbytes) { 1125 if (copy > PAGE_SIZE) 1126 return -EINVAL; 1127 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1128 return -EFAULT; 1129 copy = nbytes; 1130 } 1131 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1132 } 1133 1134 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1135 unsigned long, mode, unsigned long __user *, nmask, 1136 unsigned long, maxnode, unsigned, flags) 1137 { 1138 nodemask_t nodes; 1139 int err; 1140 unsigned short mode_flags; 1141 1142 mode_flags = mode & MPOL_MODE_FLAGS; 1143 mode &= ~MPOL_MODE_FLAGS; 1144 if (mode >= MPOL_MAX) 1145 return -EINVAL; 1146 if ((mode_flags & MPOL_F_STATIC_NODES) && 1147 (mode_flags & MPOL_F_RELATIVE_NODES)) 1148 return -EINVAL; 1149 err = get_nodes(&nodes, nmask, maxnode); 1150 if (err) 1151 return err; 1152 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1153 } 1154 1155 /* Set the process memory policy */ 1156 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1157 unsigned long, maxnode) 1158 { 1159 int err; 1160 nodemask_t nodes; 1161 unsigned short flags; 1162 1163 flags = mode & MPOL_MODE_FLAGS; 1164 mode &= ~MPOL_MODE_FLAGS; 1165 if ((unsigned int)mode >= MPOL_MAX) 1166 return -EINVAL; 1167 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1168 return -EINVAL; 1169 err = get_nodes(&nodes, nmask, maxnode); 1170 if (err) 1171 return err; 1172 return do_set_mempolicy(mode, flags, &nodes); 1173 } 1174 1175 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1176 const unsigned long __user *, old_nodes, 1177 const unsigned long __user *, new_nodes) 1178 { 1179 const struct cred *cred = current_cred(), *tcred; 1180 struct mm_struct *mm; 1181 struct task_struct *task; 1182 nodemask_t old; 1183 nodemask_t new; 1184 nodemask_t task_nodes; 1185 int err; 1186 1187 err = get_nodes(&old, old_nodes, maxnode); 1188 if (err) 1189 return err; 1190 1191 err = get_nodes(&new, new_nodes, maxnode); 1192 if (err) 1193 return err; 1194 1195 /* Find the mm_struct */ 1196 read_lock(&tasklist_lock); 1197 task = pid ? find_task_by_vpid(pid) : current; 1198 if (!task) { 1199 read_unlock(&tasklist_lock); 1200 return -ESRCH; 1201 } 1202 mm = get_task_mm(task); 1203 read_unlock(&tasklist_lock); 1204 1205 if (!mm) 1206 return -EINVAL; 1207 1208 /* 1209 * Check if this process has the right to modify the specified 1210 * process. The right exists if the process has administrative 1211 * capabilities, superuser privileges or the same 1212 * userid as the target process. 1213 */ 1214 rcu_read_lock(); 1215 tcred = __task_cred(task); 1216 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1217 cred->uid != tcred->suid && cred->uid != tcred->uid && 1218 !capable(CAP_SYS_NICE)) { 1219 rcu_read_unlock(); 1220 err = -EPERM; 1221 goto out; 1222 } 1223 rcu_read_unlock(); 1224 1225 task_nodes = cpuset_mems_allowed(task); 1226 /* Is the user allowed to access the target nodes? */ 1227 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 1228 err = -EPERM; 1229 goto out; 1230 } 1231 1232 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { 1233 err = -EINVAL; 1234 goto out; 1235 } 1236 1237 err = security_task_movememory(task); 1238 if (err) 1239 goto out; 1240 1241 err = do_migrate_pages(mm, &old, &new, 1242 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1243 out: 1244 mmput(mm); 1245 return err; 1246 } 1247 1248 1249 /* Retrieve NUMA policy */ 1250 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1251 unsigned long __user *, nmask, unsigned long, maxnode, 1252 unsigned long, addr, unsigned long, flags) 1253 { 1254 int err; 1255 int uninitialized_var(pval); 1256 nodemask_t nodes; 1257 1258 if (nmask != NULL && maxnode < MAX_NUMNODES) 1259 return -EINVAL; 1260 1261 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1262 1263 if (err) 1264 return err; 1265 1266 if (policy && put_user(pval, policy)) 1267 return -EFAULT; 1268 1269 if (nmask) 1270 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1271 1272 return err; 1273 } 1274 1275 #ifdef CONFIG_COMPAT 1276 1277 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1278 compat_ulong_t __user *nmask, 1279 compat_ulong_t maxnode, 1280 compat_ulong_t addr, compat_ulong_t flags) 1281 { 1282 long err; 1283 unsigned long __user *nm = NULL; 1284 unsigned long nr_bits, alloc_size; 1285 DECLARE_BITMAP(bm, MAX_NUMNODES); 1286 1287 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1288 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1289 1290 if (nmask) 1291 nm = compat_alloc_user_space(alloc_size); 1292 1293 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1294 1295 if (!err && nmask) { 1296 err = copy_from_user(bm, nm, alloc_size); 1297 /* ensure entire bitmap is zeroed */ 1298 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1299 err |= compat_put_bitmap(nmask, bm, nr_bits); 1300 } 1301 1302 return err; 1303 } 1304 1305 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1306 compat_ulong_t maxnode) 1307 { 1308 long err = 0; 1309 unsigned long __user *nm = NULL; 1310 unsigned long nr_bits, alloc_size; 1311 DECLARE_BITMAP(bm, MAX_NUMNODES); 1312 1313 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1314 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1315 1316 if (nmask) { 1317 err = compat_get_bitmap(bm, nmask, nr_bits); 1318 nm = compat_alloc_user_space(alloc_size); 1319 err |= copy_to_user(nm, bm, alloc_size); 1320 } 1321 1322 if (err) 1323 return -EFAULT; 1324 1325 return sys_set_mempolicy(mode, nm, nr_bits+1); 1326 } 1327 1328 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1329 compat_ulong_t mode, compat_ulong_t __user *nmask, 1330 compat_ulong_t maxnode, compat_ulong_t flags) 1331 { 1332 long err = 0; 1333 unsigned long __user *nm = NULL; 1334 unsigned long nr_bits, alloc_size; 1335 nodemask_t bm; 1336 1337 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1338 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1339 1340 if (nmask) { 1341 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1342 nm = compat_alloc_user_space(alloc_size); 1343 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1344 } 1345 1346 if (err) 1347 return -EFAULT; 1348 1349 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1350 } 1351 1352 #endif 1353 1354 /* 1355 * get_vma_policy(@task, @vma, @addr) 1356 * @task - task for fallback if vma policy == default 1357 * @vma - virtual memory area whose policy is sought 1358 * @addr - address in @vma for shared policy lookup 1359 * 1360 * Returns effective policy for a VMA at specified address. 1361 * Falls back to @task or system default policy, as necessary. 1362 * Current or other task's task mempolicy and non-shared vma policies 1363 * are protected by the task's mmap_sem, which must be held for read by 1364 * the caller. 1365 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1366 * count--added by the get_policy() vm_op, as appropriate--to protect against 1367 * freeing by another task. It is the caller's responsibility to free the 1368 * extra reference for shared policies. 1369 */ 1370 static struct mempolicy *get_vma_policy(struct task_struct *task, 1371 struct vm_area_struct *vma, unsigned long addr) 1372 { 1373 struct mempolicy *pol = task->mempolicy; 1374 1375 if (vma) { 1376 if (vma->vm_ops && vma->vm_ops->get_policy) { 1377 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1378 addr); 1379 if (vpol) 1380 pol = vpol; 1381 } else if (vma->vm_policy) 1382 pol = vma->vm_policy; 1383 } 1384 if (!pol) 1385 pol = &default_policy; 1386 return pol; 1387 } 1388 1389 /* 1390 * Return a nodemask representing a mempolicy for filtering nodes for 1391 * page allocation 1392 */ 1393 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1394 { 1395 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1396 if (unlikely(policy->mode == MPOL_BIND) && 1397 gfp_zone(gfp) >= policy_zone && 1398 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1399 return &policy->v.nodes; 1400 1401 return NULL; 1402 } 1403 1404 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1405 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy) 1406 { 1407 int nd = numa_node_id(); 1408 1409 switch (policy->mode) { 1410 case MPOL_PREFERRED: 1411 if (!(policy->flags & MPOL_F_LOCAL)) 1412 nd = policy->v.preferred_node; 1413 break; 1414 case MPOL_BIND: 1415 /* 1416 * Normally, MPOL_BIND allocations are node-local within the 1417 * allowed nodemask. However, if __GFP_THISNODE is set and the 1418 * current node is part of the mask, we use the zonelist for 1419 * the first node in the mask instead. 1420 */ 1421 if (unlikely(gfp & __GFP_THISNODE) && 1422 unlikely(!node_isset(nd, policy->v.nodes))) 1423 nd = first_node(policy->v.nodes); 1424 break; 1425 case MPOL_INTERLEAVE: /* should not happen */ 1426 break; 1427 default: 1428 BUG(); 1429 } 1430 return node_zonelist(nd, gfp); 1431 } 1432 1433 /* Do dynamic interleaving for a process */ 1434 static unsigned interleave_nodes(struct mempolicy *policy) 1435 { 1436 unsigned nid, next; 1437 struct task_struct *me = current; 1438 1439 nid = me->il_next; 1440 next = next_node(nid, policy->v.nodes); 1441 if (next >= MAX_NUMNODES) 1442 next = first_node(policy->v.nodes); 1443 if (next < MAX_NUMNODES) 1444 me->il_next = next; 1445 return nid; 1446 } 1447 1448 /* 1449 * Depending on the memory policy provide a node from which to allocate the 1450 * next slab entry. 1451 * @policy must be protected by freeing by the caller. If @policy is 1452 * the current task's mempolicy, this protection is implicit, as only the 1453 * task can change it's policy. The system default policy requires no 1454 * such protection. 1455 */ 1456 unsigned slab_node(struct mempolicy *policy) 1457 { 1458 if (!policy || policy->flags & MPOL_F_LOCAL) 1459 return numa_node_id(); 1460 1461 switch (policy->mode) { 1462 case MPOL_PREFERRED: 1463 /* 1464 * handled MPOL_F_LOCAL above 1465 */ 1466 return policy->v.preferred_node; 1467 1468 case MPOL_INTERLEAVE: 1469 return interleave_nodes(policy); 1470 1471 case MPOL_BIND: { 1472 /* 1473 * Follow bind policy behavior and start allocation at the 1474 * first node. 1475 */ 1476 struct zonelist *zonelist; 1477 struct zone *zone; 1478 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1479 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1480 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1481 &policy->v.nodes, 1482 &zone); 1483 return zone->node; 1484 } 1485 1486 default: 1487 BUG(); 1488 } 1489 } 1490 1491 /* Do static interleaving for a VMA with known offset. */ 1492 static unsigned offset_il_node(struct mempolicy *pol, 1493 struct vm_area_struct *vma, unsigned long off) 1494 { 1495 unsigned nnodes = nodes_weight(pol->v.nodes); 1496 unsigned target; 1497 int c; 1498 int nid = -1; 1499 1500 if (!nnodes) 1501 return numa_node_id(); 1502 target = (unsigned int)off % nnodes; 1503 c = 0; 1504 do { 1505 nid = next_node(nid, pol->v.nodes); 1506 c++; 1507 } while (c <= target); 1508 return nid; 1509 } 1510 1511 /* Determine a node number for interleave */ 1512 static inline unsigned interleave_nid(struct mempolicy *pol, 1513 struct vm_area_struct *vma, unsigned long addr, int shift) 1514 { 1515 if (vma) { 1516 unsigned long off; 1517 1518 /* 1519 * for small pages, there is no difference between 1520 * shift and PAGE_SHIFT, so the bit-shift is safe. 1521 * for huge pages, since vm_pgoff is in units of small 1522 * pages, we need to shift off the always 0 bits to get 1523 * a useful offset. 1524 */ 1525 BUG_ON(shift < PAGE_SHIFT); 1526 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1527 off += (addr - vma->vm_start) >> shift; 1528 return offset_il_node(pol, vma, off); 1529 } else 1530 return interleave_nodes(pol); 1531 } 1532 1533 #ifdef CONFIG_HUGETLBFS 1534 /* 1535 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1536 * @vma = virtual memory area whose policy is sought 1537 * @addr = address in @vma for shared policy lookup and interleave policy 1538 * @gfp_flags = for requested zone 1539 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1540 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1541 * 1542 * Returns a zonelist suitable for a huge page allocation and a pointer 1543 * to the struct mempolicy for conditional unref after allocation. 1544 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1545 * @nodemask for filtering the zonelist. 1546 */ 1547 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1548 gfp_t gfp_flags, struct mempolicy **mpol, 1549 nodemask_t **nodemask) 1550 { 1551 struct zonelist *zl; 1552 1553 *mpol = get_vma_policy(current, vma, addr); 1554 *nodemask = NULL; /* assume !MPOL_BIND */ 1555 1556 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1557 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1558 huge_page_shift(hstate_vma(vma))), gfp_flags); 1559 } else { 1560 zl = policy_zonelist(gfp_flags, *mpol); 1561 if ((*mpol)->mode == MPOL_BIND) 1562 *nodemask = &(*mpol)->v.nodes; 1563 } 1564 return zl; 1565 } 1566 1567 /* 1568 * init_nodemask_of_mempolicy 1569 * 1570 * If the current task's mempolicy is "default" [NULL], return 'false' 1571 * to indicate default policy. Otherwise, extract the policy nodemask 1572 * for 'bind' or 'interleave' policy into the argument nodemask, or 1573 * initialize the argument nodemask to contain the single node for 1574 * 'preferred' or 'local' policy and return 'true' to indicate presence 1575 * of non-default mempolicy. 1576 * 1577 * We don't bother with reference counting the mempolicy [mpol_get/put] 1578 * because the current task is examining it's own mempolicy and a task's 1579 * mempolicy is only ever changed by the task itself. 1580 * 1581 * N.B., it is the caller's responsibility to free a returned nodemask. 1582 */ 1583 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1584 { 1585 struct mempolicy *mempolicy; 1586 int nid; 1587 1588 if (!(mask && current->mempolicy)) 1589 return false; 1590 1591 mempolicy = current->mempolicy; 1592 switch (mempolicy->mode) { 1593 case MPOL_PREFERRED: 1594 if (mempolicy->flags & MPOL_F_LOCAL) 1595 nid = numa_node_id(); 1596 else 1597 nid = mempolicy->v.preferred_node; 1598 init_nodemask_of_node(mask, nid); 1599 break; 1600 1601 case MPOL_BIND: 1602 /* Fall through */ 1603 case MPOL_INTERLEAVE: 1604 *mask = mempolicy->v.nodes; 1605 break; 1606 1607 default: 1608 BUG(); 1609 } 1610 1611 return true; 1612 } 1613 #endif 1614 1615 /* Allocate a page in interleaved policy. 1616 Own path because it needs to do special accounting. */ 1617 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1618 unsigned nid) 1619 { 1620 struct zonelist *zl; 1621 struct page *page; 1622 1623 zl = node_zonelist(nid, gfp); 1624 page = __alloc_pages(gfp, order, zl); 1625 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1626 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1627 return page; 1628 } 1629 1630 /** 1631 * alloc_page_vma - Allocate a page for a VMA. 1632 * 1633 * @gfp: 1634 * %GFP_USER user allocation. 1635 * %GFP_KERNEL kernel allocations, 1636 * %GFP_HIGHMEM highmem/user allocations, 1637 * %GFP_FS allocation should not call back into a file system. 1638 * %GFP_ATOMIC don't sleep. 1639 * 1640 * @vma: Pointer to VMA or NULL if not available. 1641 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1642 * 1643 * This function allocates a page from the kernel page pool and applies 1644 * a NUMA policy associated with the VMA or the current process. 1645 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1646 * mm_struct of the VMA to prevent it from going away. Should be used for 1647 * all allocations for pages that will be mapped into 1648 * user space. Returns NULL when no page can be allocated. 1649 * 1650 * Should be called with the mm_sem of the vma hold. 1651 */ 1652 struct page * 1653 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1654 { 1655 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1656 struct zonelist *zl; 1657 1658 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1659 unsigned nid; 1660 1661 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1662 mpol_cond_put(pol); 1663 return alloc_page_interleave(gfp, 0, nid); 1664 } 1665 zl = policy_zonelist(gfp, pol); 1666 if (unlikely(mpol_needs_cond_ref(pol))) { 1667 /* 1668 * slow path: ref counted shared policy 1669 */ 1670 struct page *page = __alloc_pages_nodemask(gfp, 0, 1671 zl, policy_nodemask(gfp, pol)); 1672 __mpol_put(pol); 1673 return page; 1674 } 1675 /* 1676 * fast path: default or task policy 1677 */ 1678 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol)); 1679 } 1680 1681 /** 1682 * alloc_pages_current - Allocate pages. 1683 * 1684 * @gfp: 1685 * %GFP_USER user allocation, 1686 * %GFP_KERNEL kernel allocation, 1687 * %GFP_HIGHMEM highmem allocation, 1688 * %GFP_FS don't call back into a file system. 1689 * %GFP_ATOMIC don't sleep. 1690 * @order: Power of two of allocation size in pages. 0 is a single page. 1691 * 1692 * Allocate a page from the kernel page pool. When not in 1693 * interrupt context and apply the current process NUMA policy. 1694 * Returns NULL when no page can be allocated. 1695 * 1696 * Don't call cpuset_update_task_memory_state() unless 1697 * 1) it's ok to take cpuset_sem (can WAIT), and 1698 * 2) allocating for current task (not interrupt). 1699 */ 1700 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1701 { 1702 struct mempolicy *pol = current->mempolicy; 1703 1704 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1705 pol = &default_policy; 1706 1707 /* 1708 * No reference counting needed for current->mempolicy 1709 * nor system default_policy 1710 */ 1711 if (pol->mode == MPOL_INTERLEAVE) 1712 return alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1713 return __alloc_pages_nodemask(gfp, order, 1714 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol)); 1715 } 1716 EXPORT_SYMBOL(alloc_pages_current); 1717 1718 /* 1719 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 1720 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1721 * with the mems_allowed returned by cpuset_mems_allowed(). This 1722 * keeps mempolicies cpuset relative after its cpuset moves. See 1723 * further kernel/cpuset.c update_nodemask(). 1724 */ 1725 1726 /* Slow path of a mempolicy duplicate */ 1727 struct mempolicy *__mpol_dup(struct mempolicy *old) 1728 { 1729 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1730 1731 if (!new) 1732 return ERR_PTR(-ENOMEM); 1733 if (current_cpuset_is_being_rebound()) { 1734 nodemask_t mems = cpuset_mems_allowed(current); 1735 mpol_rebind_policy(old, &mems); 1736 } 1737 *new = *old; 1738 atomic_set(&new->refcnt, 1); 1739 return new; 1740 } 1741 1742 /* 1743 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 1744 * eliminate the * MPOL_F_* flags that require conditional ref and 1745 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 1746 * after return. Use the returned value. 1747 * 1748 * Allows use of a mempolicy for, e.g., multiple allocations with a single 1749 * policy lookup, even if the policy needs/has extra ref on lookup. 1750 * shmem_readahead needs this. 1751 */ 1752 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 1753 struct mempolicy *frompol) 1754 { 1755 if (!mpol_needs_cond_ref(frompol)) 1756 return frompol; 1757 1758 *tompol = *frompol; 1759 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 1760 __mpol_put(frompol); 1761 return tompol; 1762 } 1763 1764 static int mpol_match_intent(const struct mempolicy *a, 1765 const struct mempolicy *b) 1766 { 1767 if (a->flags != b->flags) 1768 return 0; 1769 if (!mpol_store_user_nodemask(a)) 1770 return 1; 1771 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask); 1772 } 1773 1774 /* Slow path of a mempolicy comparison */ 1775 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1776 { 1777 if (!a || !b) 1778 return 0; 1779 if (a->mode != b->mode) 1780 return 0; 1781 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b)) 1782 return 0; 1783 switch (a->mode) { 1784 case MPOL_BIND: 1785 /* Fall through */ 1786 case MPOL_INTERLEAVE: 1787 return nodes_equal(a->v.nodes, b->v.nodes); 1788 case MPOL_PREFERRED: 1789 return a->v.preferred_node == b->v.preferred_node && 1790 a->flags == b->flags; 1791 default: 1792 BUG(); 1793 return 0; 1794 } 1795 } 1796 1797 /* 1798 * Shared memory backing store policy support. 1799 * 1800 * Remember policies even when nobody has shared memory mapped. 1801 * The policies are kept in Red-Black tree linked from the inode. 1802 * They are protected by the sp->lock spinlock, which should be held 1803 * for any accesses to the tree. 1804 */ 1805 1806 /* lookup first element intersecting start-end */ 1807 /* Caller holds sp->lock */ 1808 static struct sp_node * 1809 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1810 { 1811 struct rb_node *n = sp->root.rb_node; 1812 1813 while (n) { 1814 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1815 1816 if (start >= p->end) 1817 n = n->rb_right; 1818 else if (end <= p->start) 1819 n = n->rb_left; 1820 else 1821 break; 1822 } 1823 if (!n) 1824 return NULL; 1825 for (;;) { 1826 struct sp_node *w = NULL; 1827 struct rb_node *prev = rb_prev(n); 1828 if (!prev) 1829 break; 1830 w = rb_entry(prev, struct sp_node, nd); 1831 if (w->end <= start) 1832 break; 1833 n = prev; 1834 } 1835 return rb_entry(n, struct sp_node, nd); 1836 } 1837 1838 /* Insert a new shared policy into the list. */ 1839 /* Caller holds sp->lock */ 1840 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1841 { 1842 struct rb_node **p = &sp->root.rb_node; 1843 struct rb_node *parent = NULL; 1844 struct sp_node *nd; 1845 1846 while (*p) { 1847 parent = *p; 1848 nd = rb_entry(parent, struct sp_node, nd); 1849 if (new->start < nd->start) 1850 p = &(*p)->rb_left; 1851 else if (new->end > nd->end) 1852 p = &(*p)->rb_right; 1853 else 1854 BUG(); 1855 } 1856 rb_link_node(&new->nd, parent, p); 1857 rb_insert_color(&new->nd, &sp->root); 1858 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 1859 new->policy ? new->policy->mode : 0); 1860 } 1861 1862 /* Find shared policy intersecting idx */ 1863 struct mempolicy * 1864 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1865 { 1866 struct mempolicy *pol = NULL; 1867 struct sp_node *sn; 1868 1869 if (!sp->root.rb_node) 1870 return NULL; 1871 spin_lock(&sp->lock); 1872 sn = sp_lookup(sp, idx, idx+1); 1873 if (sn) { 1874 mpol_get(sn->policy); 1875 pol = sn->policy; 1876 } 1877 spin_unlock(&sp->lock); 1878 return pol; 1879 } 1880 1881 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 1882 { 1883 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 1884 rb_erase(&n->nd, &sp->root); 1885 mpol_put(n->policy); 1886 kmem_cache_free(sn_cache, n); 1887 } 1888 1889 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 1890 struct mempolicy *pol) 1891 { 1892 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 1893 1894 if (!n) 1895 return NULL; 1896 n->start = start; 1897 n->end = end; 1898 mpol_get(pol); 1899 pol->flags |= MPOL_F_SHARED; /* for unref */ 1900 n->policy = pol; 1901 return n; 1902 } 1903 1904 /* Replace a policy range. */ 1905 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 1906 unsigned long end, struct sp_node *new) 1907 { 1908 struct sp_node *n, *new2 = NULL; 1909 1910 restart: 1911 spin_lock(&sp->lock); 1912 n = sp_lookup(sp, start, end); 1913 /* Take care of old policies in the same range. */ 1914 while (n && n->start < end) { 1915 struct rb_node *next = rb_next(&n->nd); 1916 if (n->start >= start) { 1917 if (n->end <= end) 1918 sp_delete(sp, n); 1919 else 1920 n->start = end; 1921 } else { 1922 /* Old policy spanning whole new range. */ 1923 if (n->end > end) { 1924 if (!new2) { 1925 spin_unlock(&sp->lock); 1926 new2 = sp_alloc(end, n->end, n->policy); 1927 if (!new2) 1928 return -ENOMEM; 1929 goto restart; 1930 } 1931 n->end = start; 1932 sp_insert(sp, new2); 1933 new2 = NULL; 1934 break; 1935 } else 1936 n->end = start; 1937 } 1938 if (!next) 1939 break; 1940 n = rb_entry(next, struct sp_node, nd); 1941 } 1942 if (new) 1943 sp_insert(sp, new); 1944 spin_unlock(&sp->lock); 1945 if (new2) { 1946 mpol_put(new2->policy); 1947 kmem_cache_free(sn_cache, new2); 1948 } 1949 return 0; 1950 } 1951 1952 /** 1953 * mpol_shared_policy_init - initialize shared policy for inode 1954 * @sp: pointer to inode shared policy 1955 * @mpol: struct mempolicy to install 1956 * 1957 * Install non-NULL @mpol in inode's shared policy rb-tree. 1958 * On entry, the current task has a reference on a non-NULL @mpol. 1959 * This must be released on exit. 1960 * This is called at get_inode() calls and we can use GFP_KERNEL. 1961 */ 1962 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 1963 { 1964 int ret; 1965 1966 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 1967 spin_lock_init(&sp->lock); 1968 1969 if (mpol) { 1970 struct vm_area_struct pvma; 1971 struct mempolicy *new; 1972 NODEMASK_SCRATCH(scratch); 1973 1974 if (!scratch) 1975 return; 1976 /* contextualize the tmpfs mount point mempolicy */ 1977 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 1978 if (IS_ERR(new)) { 1979 mpol_put(mpol); /* drop our ref on sb mpol */ 1980 NODEMASK_SCRATCH_FREE(scratch); 1981 return; /* no valid nodemask intersection */ 1982 } 1983 1984 task_lock(current); 1985 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 1986 task_unlock(current); 1987 mpol_put(mpol); /* drop our ref on sb mpol */ 1988 if (ret) { 1989 NODEMASK_SCRATCH_FREE(scratch); 1990 mpol_put(new); 1991 return; 1992 } 1993 1994 /* Create pseudo-vma that contains just the policy */ 1995 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1996 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 1997 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 1998 mpol_put(new); /* drop initial ref */ 1999 NODEMASK_SCRATCH_FREE(scratch); 2000 } 2001 } 2002 2003 int mpol_set_shared_policy(struct shared_policy *info, 2004 struct vm_area_struct *vma, struct mempolicy *npol) 2005 { 2006 int err; 2007 struct sp_node *new = NULL; 2008 unsigned long sz = vma_pages(vma); 2009 2010 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2011 vma->vm_pgoff, 2012 sz, npol ? npol->mode : -1, 2013 npol ? npol->flags : -1, 2014 npol ? nodes_addr(npol->v.nodes)[0] : -1); 2015 2016 if (npol) { 2017 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2018 if (!new) 2019 return -ENOMEM; 2020 } 2021 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2022 if (err && new) 2023 kmem_cache_free(sn_cache, new); 2024 return err; 2025 } 2026 2027 /* Free a backing policy store on inode delete. */ 2028 void mpol_free_shared_policy(struct shared_policy *p) 2029 { 2030 struct sp_node *n; 2031 struct rb_node *next; 2032 2033 if (!p->root.rb_node) 2034 return; 2035 spin_lock(&p->lock); 2036 next = rb_first(&p->root); 2037 while (next) { 2038 n = rb_entry(next, struct sp_node, nd); 2039 next = rb_next(&n->nd); 2040 rb_erase(&n->nd, &p->root); 2041 mpol_put(n->policy); 2042 kmem_cache_free(sn_cache, n); 2043 } 2044 spin_unlock(&p->lock); 2045 } 2046 2047 /* assumes fs == KERNEL_DS */ 2048 void __init numa_policy_init(void) 2049 { 2050 nodemask_t interleave_nodes; 2051 unsigned long largest = 0; 2052 int nid, prefer = 0; 2053 2054 policy_cache = kmem_cache_create("numa_policy", 2055 sizeof(struct mempolicy), 2056 0, SLAB_PANIC, NULL); 2057 2058 sn_cache = kmem_cache_create("shared_policy_node", 2059 sizeof(struct sp_node), 2060 0, SLAB_PANIC, NULL); 2061 2062 /* 2063 * Set interleaving policy for system init. Interleaving is only 2064 * enabled across suitably sized nodes (default is >= 16MB), or 2065 * fall back to the largest node if they're all smaller. 2066 */ 2067 nodes_clear(interleave_nodes); 2068 for_each_node_state(nid, N_HIGH_MEMORY) { 2069 unsigned long total_pages = node_present_pages(nid); 2070 2071 /* Preserve the largest node */ 2072 if (largest < total_pages) { 2073 largest = total_pages; 2074 prefer = nid; 2075 } 2076 2077 /* Interleave this node? */ 2078 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2079 node_set(nid, interleave_nodes); 2080 } 2081 2082 /* All too small, use the largest */ 2083 if (unlikely(nodes_empty(interleave_nodes))) 2084 node_set(prefer, interleave_nodes); 2085 2086 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2087 printk("numa_policy_init: interleaving failed\n"); 2088 } 2089 2090 /* Reset policy of current process to default */ 2091 void numa_default_policy(void) 2092 { 2093 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2094 } 2095 2096 /* 2097 * Parse and format mempolicy from/to strings 2098 */ 2099 2100 /* 2101 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 2102 * Used only for mpol_parse_str() and mpol_to_str() 2103 */ 2104 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1) 2105 static const char * const policy_types[] = 2106 { "default", "prefer", "bind", "interleave", "local" }; 2107 2108 2109 #ifdef CONFIG_TMPFS 2110 /** 2111 * mpol_parse_str - parse string to mempolicy 2112 * @str: string containing mempolicy to parse 2113 * @mpol: pointer to struct mempolicy pointer, returned on success. 2114 * @no_context: flag whether to "contextualize" the mempolicy 2115 * 2116 * Format of input: 2117 * <mode>[=<flags>][:<nodelist>] 2118 * 2119 * if @no_context is true, save the input nodemask in w.user_nodemask in 2120 * the returned mempolicy. This will be used to "clone" the mempolicy in 2121 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 2122 * mount option. Note that if 'static' or 'relative' mode flags were 2123 * specified, the input nodemask will already have been saved. Saving 2124 * it again is redundant, but safe. 2125 * 2126 * On success, returns 0, else 1 2127 */ 2128 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2129 { 2130 struct mempolicy *new = NULL; 2131 unsigned short uninitialized_var(mode); 2132 unsigned short uninitialized_var(mode_flags); 2133 nodemask_t nodes; 2134 char *nodelist = strchr(str, ':'); 2135 char *flags = strchr(str, '='); 2136 int i; 2137 int err = 1; 2138 2139 if (nodelist) { 2140 /* NUL-terminate mode or flags string */ 2141 *nodelist++ = '\0'; 2142 if (nodelist_parse(nodelist, nodes)) 2143 goto out; 2144 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2145 goto out; 2146 } else 2147 nodes_clear(nodes); 2148 2149 if (flags) 2150 *flags++ = '\0'; /* terminate mode string */ 2151 2152 for (i = 0; i <= MPOL_LOCAL; i++) { 2153 if (!strcmp(str, policy_types[i])) { 2154 mode = i; 2155 break; 2156 } 2157 } 2158 if (i > MPOL_LOCAL) 2159 goto out; 2160 2161 switch (mode) { 2162 case MPOL_PREFERRED: 2163 /* 2164 * Insist on a nodelist of one node only 2165 */ 2166 if (nodelist) { 2167 char *rest = nodelist; 2168 while (isdigit(*rest)) 2169 rest++; 2170 if (!*rest) 2171 err = 0; 2172 } 2173 break; 2174 case MPOL_INTERLEAVE: 2175 /* 2176 * Default to online nodes with memory if no nodelist 2177 */ 2178 if (!nodelist) 2179 nodes = node_states[N_HIGH_MEMORY]; 2180 err = 0; 2181 break; 2182 case MPOL_LOCAL: 2183 /* 2184 * Don't allow a nodelist; mpol_new() checks flags 2185 */ 2186 if (nodelist) 2187 goto out; 2188 mode = MPOL_PREFERRED; 2189 break; 2190 2191 /* 2192 * case MPOL_BIND: mpol_new() enforces non-empty nodemask. 2193 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags. 2194 */ 2195 } 2196 2197 mode_flags = 0; 2198 if (flags) { 2199 /* 2200 * Currently, we only support two mutually exclusive 2201 * mode flags. 2202 */ 2203 if (!strcmp(flags, "static")) 2204 mode_flags |= MPOL_F_STATIC_NODES; 2205 else if (!strcmp(flags, "relative")) 2206 mode_flags |= MPOL_F_RELATIVE_NODES; 2207 else 2208 err = 1; 2209 } 2210 2211 new = mpol_new(mode, mode_flags, &nodes); 2212 if (IS_ERR(new)) 2213 err = 1; 2214 else { 2215 int ret; 2216 NODEMASK_SCRATCH(scratch); 2217 if (scratch) { 2218 task_lock(current); 2219 ret = mpol_set_nodemask(new, &nodes, scratch); 2220 task_unlock(current); 2221 } else 2222 ret = -ENOMEM; 2223 NODEMASK_SCRATCH_FREE(scratch); 2224 if (ret) { 2225 err = 1; 2226 mpol_put(new); 2227 } else if (no_context) { 2228 /* save for contextualization */ 2229 new->w.user_nodemask = nodes; 2230 } 2231 } 2232 2233 out: 2234 /* Restore string for error message */ 2235 if (nodelist) 2236 *--nodelist = ':'; 2237 if (flags) 2238 *--flags = '='; 2239 if (!err) 2240 *mpol = new; 2241 return err; 2242 } 2243 #endif /* CONFIG_TMPFS */ 2244 2245 /** 2246 * mpol_to_str - format a mempolicy structure for printing 2247 * @buffer: to contain formatted mempolicy string 2248 * @maxlen: length of @buffer 2249 * @pol: pointer to mempolicy to be formatted 2250 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2251 * 2252 * Convert a mempolicy into a string. 2253 * Returns the number of characters in buffer (if positive) 2254 * or an error (negative) 2255 */ 2256 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2257 { 2258 char *p = buffer; 2259 int l; 2260 nodemask_t nodes; 2261 unsigned short mode; 2262 unsigned short flags = pol ? pol->flags : 0; 2263 2264 /* 2265 * Sanity check: room for longest mode, flag and some nodes 2266 */ 2267 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2268 2269 if (!pol || pol == &default_policy) 2270 mode = MPOL_DEFAULT; 2271 else 2272 mode = pol->mode; 2273 2274 switch (mode) { 2275 case MPOL_DEFAULT: 2276 nodes_clear(nodes); 2277 break; 2278 2279 case MPOL_PREFERRED: 2280 nodes_clear(nodes); 2281 if (flags & MPOL_F_LOCAL) 2282 mode = MPOL_LOCAL; /* pseudo-policy */ 2283 else 2284 node_set(pol->v.preferred_node, nodes); 2285 break; 2286 2287 case MPOL_BIND: 2288 /* Fall through */ 2289 case MPOL_INTERLEAVE: 2290 if (no_context) 2291 nodes = pol->w.user_nodemask; 2292 else 2293 nodes = pol->v.nodes; 2294 break; 2295 2296 default: 2297 BUG(); 2298 } 2299 2300 l = strlen(policy_types[mode]); 2301 if (buffer + maxlen < p + l + 1) 2302 return -ENOSPC; 2303 2304 strcpy(p, policy_types[mode]); 2305 p += l; 2306 2307 if (flags & MPOL_MODE_FLAGS) { 2308 if (buffer + maxlen < p + 2) 2309 return -ENOSPC; 2310 *p++ = '='; 2311 2312 /* 2313 * Currently, the only defined flags are mutually exclusive 2314 */ 2315 if (flags & MPOL_F_STATIC_NODES) 2316 p += snprintf(p, buffer + maxlen - p, "static"); 2317 else if (flags & MPOL_F_RELATIVE_NODES) 2318 p += snprintf(p, buffer + maxlen - p, "relative"); 2319 } 2320 2321 if (!nodes_empty(nodes)) { 2322 if (buffer + maxlen < p + 2) 2323 return -ENOSPC; 2324 *p++ = ':'; 2325 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2326 } 2327 return p - buffer; 2328 } 2329 2330 struct numa_maps { 2331 unsigned long pages; 2332 unsigned long anon; 2333 unsigned long active; 2334 unsigned long writeback; 2335 unsigned long mapcount_max; 2336 unsigned long dirty; 2337 unsigned long swapcache; 2338 unsigned long node[MAX_NUMNODES]; 2339 }; 2340 2341 static void gather_stats(struct page *page, void *private, int pte_dirty) 2342 { 2343 struct numa_maps *md = private; 2344 int count = page_mapcount(page); 2345 2346 md->pages++; 2347 if (pte_dirty || PageDirty(page)) 2348 md->dirty++; 2349 2350 if (PageSwapCache(page)) 2351 md->swapcache++; 2352 2353 if (PageActive(page) || PageUnevictable(page)) 2354 md->active++; 2355 2356 if (PageWriteback(page)) 2357 md->writeback++; 2358 2359 if (PageAnon(page)) 2360 md->anon++; 2361 2362 if (count > md->mapcount_max) 2363 md->mapcount_max = count; 2364 2365 md->node[page_to_nid(page)]++; 2366 } 2367 2368 #ifdef CONFIG_HUGETLB_PAGE 2369 static void check_huge_range(struct vm_area_struct *vma, 2370 unsigned long start, unsigned long end, 2371 struct numa_maps *md) 2372 { 2373 unsigned long addr; 2374 struct page *page; 2375 struct hstate *h = hstate_vma(vma); 2376 unsigned long sz = huge_page_size(h); 2377 2378 for (addr = start; addr < end; addr += sz) { 2379 pte_t *ptep = huge_pte_offset(vma->vm_mm, 2380 addr & huge_page_mask(h)); 2381 pte_t pte; 2382 2383 if (!ptep) 2384 continue; 2385 2386 pte = *ptep; 2387 if (pte_none(pte)) 2388 continue; 2389 2390 page = pte_page(pte); 2391 if (!page) 2392 continue; 2393 2394 gather_stats(page, md, pte_dirty(*ptep)); 2395 } 2396 } 2397 #else 2398 static inline void check_huge_range(struct vm_area_struct *vma, 2399 unsigned long start, unsigned long end, 2400 struct numa_maps *md) 2401 { 2402 } 2403 #endif 2404 2405 /* 2406 * Display pages allocated per node and memory policy via /proc. 2407 */ 2408 int show_numa_map(struct seq_file *m, void *v) 2409 { 2410 struct proc_maps_private *priv = m->private; 2411 struct vm_area_struct *vma = v; 2412 struct numa_maps *md; 2413 struct file *file = vma->vm_file; 2414 struct mm_struct *mm = vma->vm_mm; 2415 struct mempolicy *pol; 2416 int n; 2417 char buffer[50]; 2418 2419 if (!mm) 2420 return 0; 2421 2422 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 2423 if (!md) 2424 return 0; 2425 2426 pol = get_vma_policy(priv->task, vma, vma->vm_start); 2427 mpol_to_str(buffer, sizeof(buffer), pol, 0); 2428 mpol_cond_put(pol); 2429 2430 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 2431 2432 if (file) { 2433 seq_printf(m, " file="); 2434 seq_path(m, &file->f_path, "\n\t= "); 2435 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 2436 seq_printf(m, " heap"); 2437 } else if (vma->vm_start <= mm->start_stack && 2438 vma->vm_end >= mm->start_stack) { 2439 seq_printf(m, " stack"); 2440 } 2441 2442 if (is_vm_hugetlb_page(vma)) { 2443 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 2444 seq_printf(m, " huge"); 2445 } else { 2446 check_pgd_range(vma, vma->vm_start, vma->vm_end, 2447 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md); 2448 } 2449 2450 if (!md->pages) 2451 goto out; 2452 2453 if (md->anon) 2454 seq_printf(m," anon=%lu",md->anon); 2455 2456 if (md->dirty) 2457 seq_printf(m," dirty=%lu",md->dirty); 2458 2459 if (md->pages != md->anon && md->pages != md->dirty) 2460 seq_printf(m, " mapped=%lu", md->pages); 2461 2462 if (md->mapcount_max > 1) 2463 seq_printf(m, " mapmax=%lu", md->mapcount_max); 2464 2465 if (md->swapcache) 2466 seq_printf(m," swapcache=%lu", md->swapcache); 2467 2468 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2469 seq_printf(m," active=%lu", md->active); 2470 2471 if (md->writeback) 2472 seq_printf(m," writeback=%lu", md->writeback); 2473 2474 for_each_node_state(n, N_HIGH_MEMORY) 2475 if (md->node[n]) 2476 seq_printf(m, " N%d=%lu", n, md->node[n]); 2477 out: 2478 seq_putc(m, '\n'); 2479 kfree(md); 2480 2481 if (m->count < m->size) 2482 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 2483 return 0; 2484 } 2485