xref: /openbmc/linux/mm/mempolicy.c (revision 7b7dfdd2)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 static struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 
130 	if (!pol) {
131 		int node = numa_node_id();
132 
133 		if (node != NUMA_NO_NODE) {
134 			pol = &preferred_node_policy[node];
135 			/*
136 			 * preferred_node_policy is not initialised early in
137 			 * boot
138 			 */
139 			if (!pol->mode)
140 				pol = NULL;
141 		}
142 	}
143 
144 	return pol;
145 }
146 
147 static const struct mempolicy_operations {
148 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 	/*
150 	 * If read-side task has no lock to protect task->mempolicy, write-side
151 	 * task will rebind the task->mempolicy by two step. The first step is
152 	 * setting all the newly nodes, and the second step is cleaning all the
153 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
154 	 * page.
155 	 * If we have a lock to protect task->mempolicy in read-side, we do
156 	 * rebind directly.
157 	 *
158 	 * step:
159 	 * 	MPOL_REBIND_ONCE - do rebind work at once
160 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
161 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
162 	 */
163 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 			enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
166 
167 /* Check that the nodemask contains at least one populated zone */
168 static int is_valid_nodemask(const nodemask_t *nodemask)
169 {
170 	return nodes_intersects(*nodemask, node_states[N_MEMORY]);
171 }
172 
173 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
174 {
175 	return pol->flags & MPOL_MODE_FLAGS;
176 }
177 
178 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
179 				   const nodemask_t *rel)
180 {
181 	nodemask_t tmp;
182 	nodes_fold(tmp, *orig, nodes_weight(*rel));
183 	nodes_onto(*ret, tmp, *rel);
184 }
185 
186 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
195 {
196 	if (!nodes)
197 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
198 	else if (nodes_empty(*nodes))
199 		return -EINVAL;			/*  no allowed nodes */
200 	else
201 		pol->v.preferred_node = first_node(*nodes);
202 	return 0;
203 }
204 
205 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
206 {
207 	if (!is_valid_nodemask(nodes))
208 		return -EINVAL;
209 	pol->v.nodes = *nodes;
210 	return 0;
211 }
212 
213 /*
214  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215  * any, for the new policy.  mpol_new() has already validated the nodes
216  * parameter with respect to the policy mode and flags.  But, we need to
217  * handle an empty nodemask with MPOL_PREFERRED here.
218  *
219  * Must be called holding task's alloc_lock to protect task's mems_allowed
220  * and mempolicy.  May also be called holding the mmap_semaphore for write.
221  */
222 static int mpol_set_nodemask(struct mempolicy *pol,
223 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
224 {
225 	int ret;
226 
227 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
228 	if (pol == NULL)
229 		return 0;
230 	/* Check N_MEMORY */
231 	nodes_and(nsc->mask1,
232 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
233 
234 	VM_BUG_ON(!nodes);
235 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
236 		nodes = NULL;	/* explicit local allocation */
237 	else {
238 		if (pol->flags & MPOL_F_RELATIVE_NODES)
239 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
240 		else
241 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
242 
243 		if (mpol_store_user_nodemask(pol))
244 			pol->w.user_nodemask = *nodes;
245 		else
246 			pol->w.cpuset_mems_allowed =
247 						cpuset_current_mems_allowed;
248 	}
249 
250 	if (nodes)
251 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
252 	else
253 		ret = mpol_ops[pol->mode].create(pol, NULL);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 		}
287 	} else if (mode == MPOL_LOCAL) {
288 		if (!nodes_empty(*nodes))
289 			return ERR_PTR(-EINVAL);
290 		mode = MPOL_PREFERRED;
291 	} else if (nodes_empty(*nodes))
292 		return ERR_PTR(-EINVAL);
293 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 	if (!policy)
295 		return ERR_PTR(-ENOMEM);
296 	atomic_set(&policy->refcnt, 1);
297 	policy->mode = mode;
298 	policy->flags = flags;
299 
300 	return policy;
301 }
302 
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 	if (!atomic_dec_and_test(&p->refcnt))
307 		return;
308 	kmem_cache_free(policy_cache, p);
309 }
310 
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
312 				enum mpol_rebind_step step)
313 {
314 }
315 
316 /*
317  * step:
318  * 	MPOL_REBIND_ONCE  - do rebind work at once
319  * 	MPOL_REBIND_STEP1 - set all the newly nodes
320  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
321  */
322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
323 				 enum mpol_rebind_step step)
324 {
325 	nodemask_t tmp;
326 
327 	if (pol->flags & MPOL_F_STATIC_NODES)
328 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
329 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
330 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 	else {
332 		/*
333 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
334 		 * result
335 		 */
336 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
337 			nodes_remap(tmp, pol->v.nodes,
338 					pol->w.cpuset_mems_allowed, *nodes);
339 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
340 		} else if (step == MPOL_REBIND_STEP2) {
341 			tmp = pol->w.cpuset_mems_allowed;
342 			pol->w.cpuset_mems_allowed = *nodes;
343 		} else
344 			BUG();
345 	}
346 
347 	if (nodes_empty(tmp))
348 		tmp = *nodes;
349 
350 	if (step == MPOL_REBIND_STEP1)
351 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
352 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
353 		pol->v.nodes = tmp;
354 	else
355 		BUG();
356 
357 	if (!node_isset(current->il_next, tmp)) {
358 		current->il_next = next_node(current->il_next, tmp);
359 		if (current->il_next >= MAX_NUMNODES)
360 			current->il_next = first_node(tmp);
361 		if (current->il_next >= MAX_NUMNODES)
362 			current->il_next = numa_node_id();
363 	}
364 }
365 
366 static void mpol_rebind_preferred(struct mempolicy *pol,
367 				  const nodemask_t *nodes,
368 				  enum mpol_rebind_step step)
369 {
370 	nodemask_t tmp;
371 
372 	if (pol->flags & MPOL_F_STATIC_NODES) {
373 		int node = first_node(pol->w.user_nodemask);
374 
375 		if (node_isset(node, *nodes)) {
376 			pol->v.preferred_node = node;
377 			pol->flags &= ~MPOL_F_LOCAL;
378 		} else
379 			pol->flags |= MPOL_F_LOCAL;
380 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
381 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
382 		pol->v.preferred_node = first_node(tmp);
383 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
384 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
385 						   pol->w.cpuset_mems_allowed,
386 						   *nodes);
387 		pol->w.cpuset_mems_allowed = *nodes;
388 	}
389 }
390 
391 /*
392  * mpol_rebind_policy - Migrate a policy to a different set of nodes
393  *
394  * If read-side task has no lock to protect task->mempolicy, write-side
395  * task will rebind the task->mempolicy by two step. The first step is
396  * setting all the newly nodes, and the second step is cleaning all the
397  * disallowed nodes. In this way, we can avoid finding no node to alloc
398  * page.
399  * If we have a lock to protect task->mempolicy in read-side, we do
400  * rebind directly.
401  *
402  * step:
403  * 	MPOL_REBIND_ONCE  - do rebind work at once
404  * 	MPOL_REBIND_STEP1 - set all the newly nodes
405  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
406  */
407 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
408 				enum mpol_rebind_step step)
409 {
410 	if (!pol)
411 		return;
412 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
413 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
414 		return;
415 
416 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
417 		return;
418 
419 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
420 		BUG();
421 
422 	if (step == MPOL_REBIND_STEP1)
423 		pol->flags |= MPOL_F_REBINDING;
424 	else if (step == MPOL_REBIND_STEP2)
425 		pol->flags &= ~MPOL_F_REBINDING;
426 	else if (step >= MPOL_REBIND_NSTEP)
427 		BUG();
428 
429 	mpol_ops[pol->mode].rebind(pol, newmask, step);
430 }
431 
432 /*
433  * Wrapper for mpol_rebind_policy() that just requires task
434  * pointer, and updates task mempolicy.
435  *
436  * Called with task's alloc_lock held.
437  */
438 
439 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
440 			enum mpol_rebind_step step)
441 {
442 	mpol_rebind_policy(tsk->mempolicy, new, step);
443 }
444 
445 /*
446  * Rebind each vma in mm to new nodemask.
447  *
448  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
449  */
450 
451 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
452 {
453 	struct vm_area_struct *vma;
454 
455 	down_write(&mm->mmap_sem);
456 	for (vma = mm->mmap; vma; vma = vma->vm_next)
457 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
458 	up_write(&mm->mmap_sem);
459 }
460 
461 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
462 	[MPOL_DEFAULT] = {
463 		.rebind = mpol_rebind_default,
464 	},
465 	[MPOL_INTERLEAVE] = {
466 		.create = mpol_new_interleave,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 	[MPOL_PREFERRED] = {
470 		.create = mpol_new_preferred,
471 		.rebind = mpol_rebind_preferred,
472 	},
473 	[MPOL_BIND] = {
474 		.create = mpol_new_bind,
475 		.rebind = mpol_rebind_nodemask,
476 	},
477 };
478 
479 static void migrate_page_add(struct page *page, struct list_head *pagelist,
480 				unsigned long flags);
481 
482 /*
483  * Scan through pages checking if pages follow certain conditions,
484  * and move them to the pagelist if they do.
485  */
486 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
487 		unsigned long addr, unsigned long end,
488 		const nodemask_t *nodes, unsigned long flags,
489 		void *private)
490 {
491 	pte_t *orig_pte;
492 	pte_t *pte;
493 	spinlock_t *ptl;
494 
495 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
496 	do {
497 		struct page *page;
498 		int nid;
499 
500 		if (!pte_present(*pte))
501 			continue;
502 		page = vm_normal_page(vma, addr, *pte);
503 		if (!page)
504 			continue;
505 		/*
506 		 * vm_normal_page() filters out zero pages, but there might
507 		 * still be PageReserved pages to skip, perhaps in a VDSO.
508 		 */
509 		if (PageReserved(page))
510 			continue;
511 		nid = page_to_nid(page);
512 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
513 			continue;
514 
515 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
516 			migrate_page_add(page, private, flags);
517 		else
518 			break;
519 	} while (pte++, addr += PAGE_SIZE, addr != end);
520 	pte_unmap_unlock(orig_pte, ptl);
521 	return addr != end;
522 }
523 
524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
525 		pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
526 				    void *private)
527 {
528 #ifdef CONFIG_HUGETLB_PAGE
529 	int nid;
530 	struct page *page;
531 	spinlock_t *ptl;
532 	pte_t entry;
533 
534 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
535 	entry = huge_ptep_get((pte_t *)pmd);
536 	if (!pte_present(entry))
537 		goto unlock;
538 	page = pte_page(entry);
539 	nid = page_to_nid(page);
540 	if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
541 		goto unlock;
542 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
543 	if (flags & (MPOL_MF_MOVE_ALL) ||
544 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
545 		isolate_huge_page(page, private);
546 unlock:
547 	spin_unlock(ptl);
548 #else
549 	BUG();
550 #endif
551 }
552 
553 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
554 		unsigned long addr, unsigned long end,
555 		const nodemask_t *nodes, unsigned long flags,
556 		void *private)
557 {
558 	pmd_t *pmd;
559 	unsigned long next;
560 
561 	pmd = pmd_offset(pud, addr);
562 	do {
563 		next = pmd_addr_end(addr, end);
564 		if (!pmd_present(*pmd))
565 			continue;
566 		if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
567 			queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
568 						flags, private);
569 			continue;
570 		}
571 		split_huge_page_pmd(vma, addr, pmd);
572 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
573 			continue;
574 		if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
575 				    flags, private))
576 			return -EIO;
577 	} while (pmd++, addr = next, addr != end);
578 	return 0;
579 }
580 
581 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
582 		unsigned long addr, unsigned long end,
583 		const nodemask_t *nodes, unsigned long flags,
584 		void *private)
585 {
586 	pud_t *pud;
587 	unsigned long next;
588 
589 	pud = pud_offset(pgd, addr);
590 	do {
591 		next = pud_addr_end(addr, end);
592 		if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
593 			continue;
594 		if (pud_none_or_clear_bad(pud))
595 			continue;
596 		if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
597 				    flags, private))
598 			return -EIO;
599 	} while (pud++, addr = next, addr != end);
600 	return 0;
601 }
602 
603 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
604 		unsigned long addr, unsigned long end,
605 		const nodemask_t *nodes, unsigned long flags,
606 		void *private)
607 {
608 	pgd_t *pgd;
609 	unsigned long next;
610 
611 	pgd = pgd_offset(vma->vm_mm, addr);
612 	do {
613 		next = pgd_addr_end(addr, end);
614 		if (pgd_none_or_clear_bad(pgd))
615 			continue;
616 		if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
617 				    flags, private))
618 			return -EIO;
619 	} while (pgd++, addr = next, addr != end);
620 	return 0;
621 }
622 
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625  * This is used to mark a range of virtual addresses to be inaccessible.
626  * These are later cleared by a NUMA hinting fault. Depending on these
627  * faults, pages may be migrated for better NUMA placement.
628  *
629  * This is assuming that NUMA faults are handled using PROT_NONE. If
630  * an architecture makes a different choice, it will need further
631  * changes to the core.
632  */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 			unsigned long addr, unsigned long end)
635 {
636 	int nr_updated;
637 
638 	nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
639 	if (nr_updated)
640 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641 
642 	return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 			unsigned long addr, unsigned long end)
647 {
648 	return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651 
652 /*
653  * Walk through page tables and collect pages to be migrated.
654  *
655  * If pages found in a given range are on a set of nodes (determined by
656  * @nodes and @flags,) it's isolated and queued to the pagelist which is
657  * passed via @private.)
658  */
659 static struct vm_area_struct *
660 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
661 		const nodemask_t *nodes, unsigned long flags, void *private)
662 {
663 	int err;
664 	struct vm_area_struct *first, *vma, *prev;
665 
666 
667 	first = find_vma(mm, start);
668 	if (!first)
669 		return ERR_PTR(-EFAULT);
670 	prev = NULL;
671 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
672 		unsigned long endvma = vma->vm_end;
673 
674 		if (endvma > end)
675 			endvma = end;
676 		if (vma->vm_start > start)
677 			start = vma->vm_start;
678 
679 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
680 			if (!vma->vm_next && vma->vm_end < end)
681 				return ERR_PTR(-EFAULT);
682 			if (prev && prev->vm_end < vma->vm_start)
683 				return ERR_PTR(-EFAULT);
684 		}
685 
686 		if (flags & MPOL_MF_LAZY) {
687 			change_prot_numa(vma, start, endvma);
688 			goto next;
689 		}
690 
691 		if ((flags & MPOL_MF_STRICT) ||
692 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
693 		      vma_migratable(vma))) {
694 
695 			err = queue_pages_pgd_range(vma, start, endvma, nodes,
696 						flags, private);
697 			if (err) {
698 				first = ERR_PTR(err);
699 				break;
700 			}
701 		}
702 next:
703 		prev = vma;
704 	}
705 	return first;
706 }
707 
708 /*
709  * Apply policy to a single VMA
710  * This must be called with the mmap_sem held for writing.
711  */
712 static int vma_replace_policy(struct vm_area_struct *vma,
713 						struct mempolicy *pol)
714 {
715 	int err;
716 	struct mempolicy *old;
717 	struct mempolicy *new;
718 
719 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
720 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
721 		 vma->vm_ops, vma->vm_file,
722 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
723 
724 	new = mpol_dup(pol);
725 	if (IS_ERR(new))
726 		return PTR_ERR(new);
727 
728 	if (vma->vm_ops && vma->vm_ops->set_policy) {
729 		err = vma->vm_ops->set_policy(vma, new);
730 		if (err)
731 			goto err_out;
732 	}
733 
734 	old = vma->vm_policy;
735 	vma->vm_policy = new; /* protected by mmap_sem */
736 	mpol_put(old);
737 
738 	return 0;
739  err_out:
740 	mpol_put(new);
741 	return err;
742 }
743 
744 /* Step 2: apply policy to a range and do splits. */
745 static int mbind_range(struct mm_struct *mm, unsigned long start,
746 		       unsigned long end, struct mempolicy *new_pol)
747 {
748 	struct vm_area_struct *next;
749 	struct vm_area_struct *prev;
750 	struct vm_area_struct *vma;
751 	int err = 0;
752 	pgoff_t pgoff;
753 	unsigned long vmstart;
754 	unsigned long vmend;
755 
756 	vma = find_vma(mm, start);
757 	if (!vma || vma->vm_start > start)
758 		return -EFAULT;
759 
760 	prev = vma->vm_prev;
761 	if (start > vma->vm_start)
762 		prev = vma;
763 
764 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
765 		next = vma->vm_next;
766 		vmstart = max(start, vma->vm_start);
767 		vmend   = min(end, vma->vm_end);
768 
769 		if (mpol_equal(vma_policy(vma), new_pol))
770 			continue;
771 
772 		pgoff = vma->vm_pgoff +
773 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
774 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
775 				  vma->anon_vma, vma->vm_file, pgoff,
776 				  new_pol);
777 		if (prev) {
778 			vma = prev;
779 			next = vma->vm_next;
780 			if (mpol_equal(vma_policy(vma), new_pol))
781 				continue;
782 			/* vma_merge() joined vma && vma->next, case 8 */
783 			goto replace;
784 		}
785 		if (vma->vm_start != vmstart) {
786 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
787 			if (err)
788 				goto out;
789 		}
790 		if (vma->vm_end != vmend) {
791 			err = split_vma(vma->vm_mm, vma, vmend, 0);
792 			if (err)
793 				goto out;
794 		}
795  replace:
796 		err = vma_replace_policy(vma, new_pol);
797 		if (err)
798 			goto out;
799 	}
800 
801  out:
802 	return err;
803 }
804 
805 /* Set the process memory policy */
806 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
807 			     nodemask_t *nodes)
808 {
809 	struct mempolicy *new, *old;
810 	struct mm_struct *mm = current->mm;
811 	NODEMASK_SCRATCH(scratch);
812 	int ret;
813 
814 	if (!scratch)
815 		return -ENOMEM;
816 
817 	new = mpol_new(mode, flags, nodes);
818 	if (IS_ERR(new)) {
819 		ret = PTR_ERR(new);
820 		goto out;
821 	}
822 	/*
823 	 * prevent changing our mempolicy while show_numa_maps()
824 	 * is using it.
825 	 * Note:  do_set_mempolicy() can be called at init time
826 	 * with no 'mm'.
827 	 */
828 	if (mm)
829 		down_write(&mm->mmap_sem);
830 	task_lock(current);
831 	ret = mpol_set_nodemask(new, nodes, scratch);
832 	if (ret) {
833 		task_unlock(current);
834 		if (mm)
835 			up_write(&mm->mmap_sem);
836 		mpol_put(new);
837 		goto out;
838 	}
839 	old = current->mempolicy;
840 	current->mempolicy = new;
841 	if (new && new->mode == MPOL_INTERLEAVE &&
842 	    nodes_weight(new->v.nodes))
843 		current->il_next = first_node(new->v.nodes);
844 	task_unlock(current);
845 	if (mm)
846 		up_write(&mm->mmap_sem);
847 
848 	mpol_put(old);
849 	ret = 0;
850 out:
851 	NODEMASK_SCRATCH_FREE(scratch);
852 	return ret;
853 }
854 
855 /*
856  * Return nodemask for policy for get_mempolicy() query
857  *
858  * Called with task's alloc_lock held
859  */
860 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
861 {
862 	nodes_clear(*nodes);
863 	if (p == &default_policy)
864 		return;
865 
866 	switch (p->mode) {
867 	case MPOL_BIND:
868 		/* Fall through */
869 	case MPOL_INTERLEAVE:
870 		*nodes = p->v.nodes;
871 		break;
872 	case MPOL_PREFERRED:
873 		if (!(p->flags & MPOL_F_LOCAL))
874 			node_set(p->v.preferred_node, *nodes);
875 		/* else return empty node mask for local allocation */
876 		break;
877 	default:
878 		BUG();
879 	}
880 }
881 
882 static int lookup_node(struct mm_struct *mm, unsigned long addr)
883 {
884 	struct page *p;
885 	int err;
886 
887 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
888 	if (err >= 0) {
889 		err = page_to_nid(p);
890 		put_page(p);
891 	}
892 	return err;
893 }
894 
895 /* Retrieve NUMA policy */
896 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
897 			     unsigned long addr, unsigned long flags)
898 {
899 	int err;
900 	struct mm_struct *mm = current->mm;
901 	struct vm_area_struct *vma = NULL;
902 	struct mempolicy *pol = current->mempolicy;
903 
904 	if (flags &
905 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
906 		return -EINVAL;
907 
908 	if (flags & MPOL_F_MEMS_ALLOWED) {
909 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
910 			return -EINVAL;
911 		*policy = 0;	/* just so it's initialized */
912 		task_lock(current);
913 		*nmask  = cpuset_current_mems_allowed;
914 		task_unlock(current);
915 		return 0;
916 	}
917 
918 	if (flags & MPOL_F_ADDR) {
919 		/*
920 		 * Do NOT fall back to task policy if the
921 		 * vma/shared policy at addr is NULL.  We
922 		 * want to return MPOL_DEFAULT in this case.
923 		 */
924 		down_read(&mm->mmap_sem);
925 		vma = find_vma_intersection(mm, addr, addr+1);
926 		if (!vma) {
927 			up_read(&mm->mmap_sem);
928 			return -EFAULT;
929 		}
930 		if (vma->vm_ops && vma->vm_ops->get_policy)
931 			pol = vma->vm_ops->get_policy(vma, addr);
932 		else
933 			pol = vma->vm_policy;
934 	} else if (addr)
935 		return -EINVAL;
936 
937 	if (!pol)
938 		pol = &default_policy;	/* indicates default behavior */
939 
940 	if (flags & MPOL_F_NODE) {
941 		if (flags & MPOL_F_ADDR) {
942 			err = lookup_node(mm, addr);
943 			if (err < 0)
944 				goto out;
945 			*policy = err;
946 		} else if (pol == current->mempolicy &&
947 				pol->mode == MPOL_INTERLEAVE) {
948 			*policy = current->il_next;
949 		} else {
950 			err = -EINVAL;
951 			goto out;
952 		}
953 	} else {
954 		*policy = pol == &default_policy ? MPOL_DEFAULT :
955 						pol->mode;
956 		/*
957 		 * Internal mempolicy flags must be masked off before exposing
958 		 * the policy to userspace.
959 		 */
960 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
961 	}
962 
963 	if (vma) {
964 		up_read(&current->mm->mmap_sem);
965 		vma = NULL;
966 	}
967 
968 	err = 0;
969 	if (nmask) {
970 		if (mpol_store_user_nodemask(pol)) {
971 			*nmask = pol->w.user_nodemask;
972 		} else {
973 			task_lock(current);
974 			get_policy_nodemask(pol, nmask);
975 			task_unlock(current);
976 		}
977 	}
978 
979  out:
980 	mpol_cond_put(pol);
981 	if (vma)
982 		up_read(&current->mm->mmap_sem);
983 	return err;
984 }
985 
986 #ifdef CONFIG_MIGRATION
987 /*
988  * page migration
989  */
990 static void migrate_page_add(struct page *page, struct list_head *pagelist,
991 				unsigned long flags)
992 {
993 	/*
994 	 * Avoid migrating a page that is shared with others.
995 	 */
996 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
997 		if (!isolate_lru_page(page)) {
998 			list_add_tail(&page->lru, pagelist);
999 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1000 					    page_is_file_cache(page));
1001 		}
1002 	}
1003 }
1004 
1005 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1006 {
1007 	if (PageHuge(page))
1008 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1009 					node);
1010 	else
1011 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1012 }
1013 
1014 /*
1015  * Migrate pages from one node to a target node.
1016  * Returns error or the number of pages not migrated.
1017  */
1018 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1019 			   int flags)
1020 {
1021 	nodemask_t nmask;
1022 	LIST_HEAD(pagelist);
1023 	int err = 0;
1024 
1025 	nodes_clear(nmask);
1026 	node_set(source, nmask);
1027 
1028 	/*
1029 	 * This does not "check" the range but isolates all pages that
1030 	 * need migration.  Between passing in the full user address
1031 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1032 	 */
1033 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1034 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1035 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1036 
1037 	if (!list_empty(&pagelist)) {
1038 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1039 					MIGRATE_SYNC, MR_SYSCALL);
1040 		if (err)
1041 			putback_movable_pages(&pagelist);
1042 	}
1043 
1044 	return err;
1045 }
1046 
1047 /*
1048  * Move pages between the two nodesets so as to preserve the physical
1049  * layout as much as possible.
1050  *
1051  * Returns the number of page that could not be moved.
1052  */
1053 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1054 		     const nodemask_t *to, int flags)
1055 {
1056 	int busy = 0;
1057 	int err;
1058 	nodemask_t tmp;
1059 
1060 	err = migrate_prep();
1061 	if (err)
1062 		return err;
1063 
1064 	down_read(&mm->mmap_sem);
1065 
1066 	err = migrate_vmas(mm, from, to, flags);
1067 	if (err)
1068 		goto out;
1069 
1070 	/*
1071 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1072 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1073 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1074 	 * The pair of nodemasks 'to' and 'from' define the map.
1075 	 *
1076 	 * If no pair of bits is found that way, fallback to picking some
1077 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1078 	 * 'source' and 'dest' bits are the same, this represents a node
1079 	 * that will be migrating to itself, so no pages need move.
1080 	 *
1081 	 * If no bits are left in 'tmp', or if all remaining bits left
1082 	 * in 'tmp' correspond to the same bit in 'to', return false
1083 	 * (nothing left to migrate).
1084 	 *
1085 	 * This lets us pick a pair of nodes to migrate between, such that
1086 	 * if possible the dest node is not already occupied by some other
1087 	 * source node, minimizing the risk of overloading the memory on a
1088 	 * node that would happen if we migrated incoming memory to a node
1089 	 * before migrating outgoing memory source that same node.
1090 	 *
1091 	 * A single scan of tmp is sufficient.  As we go, we remember the
1092 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1093 	 * that not only moved, but what's better, moved to an empty slot
1094 	 * (d is not set in tmp), then we break out then, with that pair.
1095 	 * Otherwise when we finish scanning from_tmp, we at least have the
1096 	 * most recent <s, d> pair that moved.  If we get all the way through
1097 	 * the scan of tmp without finding any node that moved, much less
1098 	 * moved to an empty node, then there is nothing left worth migrating.
1099 	 */
1100 
1101 	tmp = *from;
1102 	while (!nodes_empty(tmp)) {
1103 		int s,d;
1104 		int source = NUMA_NO_NODE;
1105 		int dest = 0;
1106 
1107 		for_each_node_mask(s, tmp) {
1108 
1109 			/*
1110 			 * do_migrate_pages() tries to maintain the relative
1111 			 * node relationship of the pages established between
1112 			 * threads and memory areas.
1113                          *
1114 			 * However if the number of source nodes is not equal to
1115 			 * the number of destination nodes we can not preserve
1116 			 * this node relative relationship.  In that case, skip
1117 			 * copying memory from a node that is in the destination
1118 			 * mask.
1119 			 *
1120 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1121 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1122 			 */
1123 
1124 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1125 						(node_isset(s, *to)))
1126 				continue;
1127 
1128 			d = node_remap(s, *from, *to);
1129 			if (s == d)
1130 				continue;
1131 
1132 			source = s;	/* Node moved. Memorize */
1133 			dest = d;
1134 
1135 			/* dest not in remaining from nodes? */
1136 			if (!node_isset(dest, tmp))
1137 				break;
1138 		}
1139 		if (source == NUMA_NO_NODE)
1140 			break;
1141 
1142 		node_clear(source, tmp);
1143 		err = migrate_to_node(mm, source, dest, flags);
1144 		if (err > 0)
1145 			busy += err;
1146 		if (err < 0)
1147 			break;
1148 	}
1149 out:
1150 	up_read(&mm->mmap_sem);
1151 	if (err < 0)
1152 		return err;
1153 	return busy;
1154 
1155 }
1156 
1157 /*
1158  * Allocate a new page for page migration based on vma policy.
1159  * Start assuming that page is mapped by vma pointed to by @private.
1160  * Search forward from there, if not.  N.B., this assumes that the
1161  * list of pages handed to migrate_pages()--which is how we get here--
1162  * is in virtual address order.
1163  */
1164 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1165 {
1166 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1167 	unsigned long uninitialized_var(address);
1168 
1169 	while (vma) {
1170 		address = page_address_in_vma(page, vma);
1171 		if (address != -EFAULT)
1172 			break;
1173 		vma = vma->vm_next;
1174 	}
1175 
1176 	if (PageHuge(page)) {
1177 		BUG_ON(!vma);
1178 		return alloc_huge_page_noerr(vma, address, 1);
1179 	}
1180 	/*
1181 	 * if !vma, alloc_page_vma() will use task or system default policy
1182 	 */
1183 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1184 }
1185 #else
1186 
1187 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1188 				unsigned long flags)
1189 {
1190 }
1191 
1192 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1193 		     const nodemask_t *to, int flags)
1194 {
1195 	return -ENOSYS;
1196 }
1197 
1198 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1199 {
1200 	return NULL;
1201 }
1202 #endif
1203 
1204 static long do_mbind(unsigned long start, unsigned long len,
1205 		     unsigned short mode, unsigned short mode_flags,
1206 		     nodemask_t *nmask, unsigned long flags)
1207 {
1208 	struct vm_area_struct *vma;
1209 	struct mm_struct *mm = current->mm;
1210 	struct mempolicy *new;
1211 	unsigned long end;
1212 	int err;
1213 	LIST_HEAD(pagelist);
1214 
1215 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1216 		return -EINVAL;
1217 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1218 		return -EPERM;
1219 
1220 	if (start & ~PAGE_MASK)
1221 		return -EINVAL;
1222 
1223 	if (mode == MPOL_DEFAULT)
1224 		flags &= ~MPOL_MF_STRICT;
1225 
1226 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1227 	end = start + len;
1228 
1229 	if (end < start)
1230 		return -EINVAL;
1231 	if (end == start)
1232 		return 0;
1233 
1234 	new = mpol_new(mode, mode_flags, nmask);
1235 	if (IS_ERR(new))
1236 		return PTR_ERR(new);
1237 
1238 	if (flags & MPOL_MF_LAZY)
1239 		new->flags |= MPOL_F_MOF;
1240 
1241 	/*
1242 	 * If we are using the default policy then operation
1243 	 * on discontinuous address spaces is okay after all
1244 	 */
1245 	if (!new)
1246 		flags |= MPOL_MF_DISCONTIG_OK;
1247 
1248 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1249 		 start, start + len, mode, mode_flags,
1250 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1251 
1252 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1253 
1254 		err = migrate_prep();
1255 		if (err)
1256 			goto mpol_out;
1257 	}
1258 	{
1259 		NODEMASK_SCRATCH(scratch);
1260 		if (scratch) {
1261 			down_write(&mm->mmap_sem);
1262 			task_lock(current);
1263 			err = mpol_set_nodemask(new, nmask, scratch);
1264 			task_unlock(current);
1265 			if (err)
1266 				up_write(&mm->mmap_sem);
1267 		} else
1268 			err = -ENOMEM;
1269 		NODEMASK_SCRATCH_FREE(scratch);
1270 	}
1271 	if (err)
1272 		goto mpol_out;
1273 
1274 	vma = queue_pages_range(mm, start, end, nmask,
1275 			  flags | MPOL_MF_INVERT, &pagelist);
1276 
1277 	err = PTR_ERR(vma);	/* maybe ... */
1278 	if (!IS_ERR(vma))
1279 		err = mbind_range(mm, start, end, new);
1280 
1281 	if (!err) {
1282 		int nr_failed = 0;
1283 
1284 		if (!list_empty(&pagelist)) {
1285 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1286 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1287 					NULL, (unsigned long)vma,
1288 					MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1289 			if (nr_failed)
1290 				putback_movable_pages(&pagelist);
1291 		}
1292 
1293 		if (nr_failed && (flags & MPOL_MF_STRICT))
1294 			err = -EIO;
1295 	} else
1296 		putback_movable_pages(&pagelist);
1297 
1298 	up_write(&mm->mmap_sem);
1299  mpol_out:
1300 	mpol_put(new);
1301 	return err;
1302 }
1303 
1304 /*
1305  * User space interface with variable sized bitmaps for nodelists.
1306  */
1307 
1308 /* Copy a node mask from user space. */
1309 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1310 		     unsigned long maxnode)
1311 {
1312 	unsigned long k;
1313 	unsigned long nlongs;
1314 	unsigned long endmask;
1315 
1316 	--maxnode;
1317 	nodes_clear(*nodes);
1318 	if (maxnode == 0 || !nmask)
1319 		return 0;
1320 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1321 		return -EINVAL;
1322 
1323 	nlongs = BITS_TO_LONGS(maxnode);
1324 	if ((maxnode % BITS_PER_LONG) == 0)
1325 		endmask = ~0UL;
1326 	else
1327 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1328 
1329 	/* When the user specified more nodes than supported just check
1330 	   if the non supported part is all zero. */
1331 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1332 		if (nlongs > PAGE_SIZE/sizeof(long))
1333 			return -EINVAL;
1334 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1335 			unsigned long t;
1336 			if (get_user(t, nmask + k))
1337 				return -EFAULT;
1338 			if (k == nlongs - 1) {
1339 				if (t & endmask)
1340 					return -EINVAL;
1341 			} else if (t)
1342 				return -EINVAL;
1343 		}
1344 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1345 		endmask = ~0UL;
1346 	}
1347 
1348 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1349 		return -EFAULT;
1350 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1351 	return 0;
1352 }
1353 
1354 /* Copy a kernel node mask to user space */
1355 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1356 			      nodemask_t *nodes)
1357 {
1358 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1359 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1360 
1361 	if (copy > nbytes) {
1362 		if (copy > PAGE_SIZE)
1363 			return -EINVAL;
1364 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1365 			return -EFAULT;
1366 		copy = nbytes;
1367 	}
1368 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1369 }
1370 
1371 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1372 		unsigned long, mode, const unsigned long __user *, nmask,
1373 		unsigned long, maxnode, unsigned, flags)
1374 {
1375 	nodemask_t nodes;
1376 	int err;
1377 	unsigned short mode_flags;
1378 
1379 	mode_flags = mode & MPOL_MODE_FLAGS;
1380 	mode &= ~MPOL_MODE_FLAGS;
1381 	if (mode >= MPOL_MAX)
1382 		return -EINVAL;
1383 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1384 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1385 		return -EINVAL;
1386 	err = get_nodes(&nodes, nmask, maxnode);
1387 	if (err)
1388 		return err;
1389 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1390 }
1391 
1392 /* Set the process memory policy */
1393 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1394 		unsigned long, maxnode)
1395 {
1396 	int err;
1397 	nodemask_t nodes;
1398 	unsigned short flags;
1399 
1400 	flags = mode & MPOL_MODE_FLAGS;
1401 	mode &= ~MPOL_MODE_FLAGS;
1402 	if ((unsigned int)mode >= MPOL_MAX)
1403 		return -EINVAL;
1404 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1405 		return -EINVAL;
1406 	err = get_nodes(&nodes, nmask, maxnode);
1407 	if (err)
1408 		return err;
1409 	return do_set_mempolicy(mode, flags, &nodes);
1410 }
1411 
1412 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1413 		const unsigned long __user *, old_nodes,
1414 		const unsigned long __user *, new_nodes)
1415 {
1416 	const struct cred *cred = current_cred(), *tcred;
1417 	struct mm_struct *mm = NULL;
1418 	struct task_struct *task;
1419 	nodemask_t task_nodes;
1420 	int err;
1421 	nodemask_t *old;
1422 	nodemask_t *new;
1423 	NODEMASK_SCRATCH(scratch);
1424 
1425 	if (!scratch)
1426 		return -ENOMEM;
1427 
1428 	old = &scratch->mask1;
1429 	new = &scratch->mask2;
1430 
1431 	err = get_nodes(old, old_nodes, maxnode);
1432 	if (err)
1433 		goto out;
1434 
1435 	err = get_nodes(new, new_nodes, maxnode);
1436 	if (err)
1437 		goto out;
1438 
1439 	/* Find the mm_struct */
1440 	rcu_read_lock();
1441 	task = pid ? find_task_by_vpid(pid) : current;
1442 	if (!task) {
1443 		rcu_read_unlock();
1444 		err = -ESRCH;
1445 		goto out;
1446 	}
1447 	get_task_struct(task);
1448 
1449 	err = -EINVAL;
1450 
1451 	/*
1452 	 * Check if this process has the right to modify the specified
1453 	 * process. The right exists if the process has administrative
1454 	 * capabilities, superuser privileges or the same
1455 	 * userid as the target process.
1456 	 */
1457 	tcred = __task_cred(task);
1458 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1459 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1460 	    !capable(CAP_SYS_NICE)) {
1461 		rcu_read_unlock();
1462 		err = -EPERM;
1463 		goto out_put;
1464 	}
1465 	rcu_read_unlock();
1466 
1467 	task_nodes = cpuset_mems_allowed(task);
1468 	/* Is the user allowed to access the target nodes? */
1469 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1470 		err = -EPERM;
1471 		goto out_put;
1472 	}
1473 
1474 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1475 		err = -EINVAL;
1476 		goto out_put;
1477 	}
1478 
1479 	err = security_task_movememory(task);
1480 	if (err)
1481 		goto out_put;
1482 
1483 	mm = get_task_mm(task);
1484 	put_task_struct(task);
1485 
1486 	if (!mm) {
1487 		err = -EINVAL;
1488 		goto out;
1489 	}
1490 
1491 	err = do_migrate_pages(mm, old, new,
1492 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1493 
1494 	mmput(mm);
1495 out:
1496 	NODEMASK_SCRATCH_FREE(scratch);
1497 
1498 	return err;
1499 
1500 out_put:
1501 	put_task_struct(task);
1502 	goto out;
1503 
1504 }
1505 
1506 
1507 /* Retrieve NUMA policy */
1508 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1509 		unsigned long __user *, nmask, unsigned long, maxnode,
1510 		unsigned long, addr, unsigned long, flags)
1511 {
1512 	int err;
1513 	int uninitialized_var(pval);
1514 	nodemask_t nodes;
1515 
1516 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1517 		return -EINVAL;
1518 
1519 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1520 
1521 	if (err)
1522 		return err;
1523 
1524 	if (policy && put_user(pval, policy))
1525 		return -EFAULT;
1526 
1527 	if (nmask)
1528 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1529 
1530 	return err;
1531 }
1532 
1533 #ifdef CONFIG_COMPAT
1534 
1535 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1536 		       compat_ulong_t __user *, nmask,
1537 		       compat_ulong_t, maxnode,
1538 		       compat_ulong_t, addr, compat_ulong_t, flags)
1539 {
1540 	long err;
1541 	unsigned long __user *nm = NULL;
1542 	unsigned long nr_bits, alloc_size;
1543 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1544 
1545 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1546 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1547 
1548 	if (nmask)
1549 		nm = compat_alloc_user_space(alloc_size);
1550 
1551 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1552 
1553 	if (!err && nmask) {
1554 		unsigned long copy_size;
1555 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1556 		err = copy_from_user(bm, nm, copy_size);
1557 		/* ensure entire bitmap is zeroed */
1558 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1559 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1560 	}
1561 
1562 	return err;
1563 }
1564 
1565 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1566 		       compat_ulong_t, maxnode)
1567 {
1568 	long err = 0;
1569 	unsigned long __user *nm = NULL;
1570 	unsigned long nr_bits, alloc_size;
1571 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1572 
1573 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1574 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1575 
1576 	if (nmask) {
1577 		err = compat_get_bitmap(bm, nmask, nr_bits);
1578 		nm = compat_alloc_user_space(alloc_size);
1579 		err |= copy_to_user(nm, bm, alloc_size);
1580 	}
1581 
1582 	if (err)
1583 		return -EFAULT;
1584 
1585 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1586 }
1587 
1588 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1589 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1590 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1591 {
1592 	long err = 0;
1593 	unsigned long __user *nm = NULL;
1594 	unsigned long nr_bits, alloc_size;
1595 	nodemask_t bm;
1596 
1597 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1598 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1599 
1600 	if (nmask) {
1601 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1602 		nm = compat_alloc_user_space(alloc_size);
1603 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1604 	}
1605 
1606 	if (err)
1607 		return -EFAULT;
1608 
1609 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1610 }
1611 
1612 #endif
1613 
1614 /*
1615  * get_vma_policy(@task, @vma, @addr)
1616  * @task: task for fallback if vma policy == default
1617  * @vma: virtual memory area whose policy is sought
1618  * @addr: address in @vma for shared policy lookup
1619  *
1620  * Returns effective policy for a VMA at specified address.
1621  * Falls back to @task or system default policy, as necessary.
1622  * Current or other task's task mempolicy and non-shared vma policies must be
1623  * protected by task_lock(task) by the caller.
1624  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1625  * count--added by the get_policy() vm_op, as appropriate--to protect against
1626  * freeing by another task.  It is the caller's responsibility to free the
1627  * extra reference for shared policies.
1628  */
1629 struct mempolicy *get_vma_policy(struct task_struct *task,
1630 		struct vm_area_struct *vma, unsigned long addr)
1631 {
1632 	struct mempolicy *pol = get_task_policy(task);
1633 
1634 	if (vma) {
1635 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1636 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1637 									addr);
1638 			if (vpol)
1639 				pol = vpol;
1640 		} else if (vma->vm_policy) {
1641 			pol = vma->vm_policy;
1642 
1643 			/*
1644 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1645 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1646 			 * count on these policies which will be dropped by
1647 			 * mpol_cond_put() later
1648 			 */
1649 			if (mpol_needs_cond_ref(pol))
1650 				mpol_get(pol);
1651 		}
1652 	}
1653 	if (!pol)
1654 		pol = &default_policy;
1655 	return pol;
1656 }
1657 
1658 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1659 {
1660 	struct mempolicy *pol = get_task_policy(task);
1661 	if (vma) {
1662 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1663 			bool ret = false;
1664 
1665 			pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1666 			if (pol && (pol->flags & MPOL_F_MOF))
1667 				ret = true;
1668 			mpol_cond_put(pol);
1669 
1670 			return ret;
1671 		} else if (vma->vm_policy) {
1672 			pol = vma->vm_policy;
1673 		}
1674 	}
1675 
1676 	if (!pol)
1677 		return default_policy.flags & MPOL_F_MOF;
1678 
1679 	return pol->flags & MPOL_F_MOF;
1680 }
1681 
1682 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1683 {
1684 	enum zone_type dynamic_policy_zone = policy_zone;
1685 
1686 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1687 
1688 	/*
1689 	 * if policy->v.nodes has movable memory only,
1690 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1691 	 *
1692 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1693 	 * so if the following test faile, it implies
1694 	 * policy->v.nodes has movable memory only.
1695 	 */
1696 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1697 		dynamic_policy_zone = ZONE_MOVABLE;
1698 
1699 	return zone >= dynamic_policy_zone;
1700 }
1701 
1702 /*
1703  * Return a nodemask representing a mempolicy for filtering nodes for
1704  * page allocation
1705  */
1706 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1707 {
1708 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1709 	if (unlikely(policy->mode == MPOL_BIND) &&
1710 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1711 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1712 		return &policy->v.nodes;
1713 
1714 	return NULL;
1715 }
1716 
1717 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1718 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1719 	int nd)
1720 {
1721 	switch (policy->mode) {
1722 	case MPOL_PREFERRED:
1723 		if (!(policy->flags & MPOL_F_LOCAL))
1724 			nd = policy->v.preferred_node;
1725 		break;
1726 	case MPOL_BIND:
1727 		/*
1728 		 * Normally, MPOL_BIND allocations are node-local within the
1729 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1730 		 * current node isn't part of the mask, we use the zonelist for
1731 		 * the first node in the mask instead.
1732 		 */
1733 		if (unlikely(gfp & __GFP_THISNODE) &&
1734 				unlikely(!node_isset(nd, policy->v.nodes)))
1735 			nd = first_node(policy->v.nodes);
1736 		break;
1737 	default:
1738 		BUG();
1739 	}
1740 	return node_zonelist(nd, gfp);
1741 }
1742 
1743 /* Do dynamic interleaving for a process */
1744 static unsigned interleave_nodes(struct mempolicy *policy)
1745 {
1746 	unsigned nid, next;
1747 	struct task_struct *me = current;
1748 
1749 	nid = me->il_next;
1750 	next = next_node(nid, policy->v.nodes);
1751 	if (next >= MAX_NUMNODES)
1752 		next = first_node(policy->v.nodes);
1753 	if (next < MAX_NUMNODES)
1754 		me->il_next = next;
1755 	return nid;
1756 }
1757 
1758 /*
1759  * Depending on the memory policy provide a node from which to allocate the
1760  * next slab entry.
1761  */
1762 unsigned int mempolicy_slab_node(void)
1763 {
1764 	struct mempolicy *policy;
1765 	int node = numa_mem_id();
1766 
1767 	if (in_interrupt())
1768 		return node;
1769 
1770 	policy = current->mempolicy;
1771 	if (!policy || policy->flags & MPOL_F_LOCAL)
1772 		return node;
1773 
1774 	switch (policy->mode) {
1775 	case MPOL_PREFERRED:
1776 		/*
1777 		 * handled MPOL_F_LOCAL above
1778 		 */
1779 		return policy->v.preferred_node;
1780 
1781 	case MPOL_INTERLEAVE:
1782 		return interleave_nodes(policy);
1783 
1784 	case MPOL_BIND: {
1785 		/*
1786 		 * Follow bind policy behavior and start allocation at the
1787 		 * first node.
1788 		 */
1789 		struct zonelist *zonelist;
1790 		struct zone *zone;
1791 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1792 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1793 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1794 							&policy->v.nodes,
1795 							&zone);
1796 		return zone ? zone->node : node;
1797 	}
1798 
1799 	default:
1800 		BUG();
1801 	}
1802 }
1803 
1804 /* Do static interleaving for a VMA with known offset. */
1805 static unsigned offset_il_node(struct mempolicy *pol,
1806 		struct vm_area_struct *vma, unsigned long off)
1807 {
1808 	unsigned nnodes = nodes_weight(pol->v.nodes);
1809 	unsigned target;
1810 	int c;
1811 	int nid = NUMA_NO_NODE;
1812 
1813 	if (!nnodes)
1814 		return numa_node_id();
1815 	target = (unsigned int)off % nnodes;
1816 	c = 0;
1817 	do {
1818 		nid = next_node(nid, pol->v.nodes);
1819 		c++;
1820 	} while (c <= target);
1821 	return nid;
1822 }
1823 
1824 /* Determine a node number for interleave */
1825 static inline unsigned interleave_nid(struct mempolicy *pol,
1826 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1827 {
1828 	if (vma) {
1829 		unsigned long off;
1830 
1831 		/*
1832 		 * for small pages, there is no difference between
1833 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1834 		 * for huge pages, since vm_pgoff is in units of small
1835 		 * pages, we need to shift off the always 0 bits to get
1836 		 * a useful offset.
1837 		 */
1838 		BUG_ON(shift < PAGE_SHIFT);
1839 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1840 		off += (addr - vma->vm_start) >> shift;
1841 		return offset_il_node(pol, vma, off);
1842 	} else
1843 		return interleave_nodes(pol);
1844 }
1845 
1846 /*
1847  * Return the bit number of a random bit set in the nodemask.
1848  * (returns NUMA_NO_NODE if nodemask is empty)
1849  */
1850 int node_random(const nodemask_t *maskp)
1851 {
1852 	int w, bit = NUMA_NO_NODE;
1853 
1854 	w = nodes_weight(*maskp);
1855 	if (w)
1856 		bit = bitmap_ord_to_pos(maskp->bits,
1857 			get_random_int() % w, MAX_NUMNODES);
1858 	return bit;
1859 }
1860 
1861 #ifdef CONFIG_HUGETLBFS
1862 /*
1863  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1864  * @vma: virtual memory area whose policy is sought
1865  * @addr: address in @vma for shared policy lookup and interleave policy
1866  * @gfp_flags: for requested zone
1867  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1868  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1869  *
1870  * Returns a zonelist suitable for a huge page allocation and a pointer
1871  * to the struct mempolicy for conditional unref after allocation.
1872  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1873  * @nodemask for filtering the zonelist.
1874  *
1875  * Must be protected by read_mems_allowed_begin()
1876  */
1877 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1878 				gfp_t gfp_flags, struct mempolicy **mpol,
1879 				nodemask_t **nodemask)
1880 {
1881 	struct zonelist *zl;
1882 
1883 	*mpol = get_vma_policy(current, vma, addr);
1884 	*nodemask = NULL;	/* assume !MPOL_BIND */
1885 
1886 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1887 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1888 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1889 	} else {
1890 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1891 		if ((*mpol)->mode == MPOL_BIND)
1892 			*nodemask = &(*mpol)->v.nodes;
1893 	}
1894 	return zl;
1895 }
1896 
1897 /*
1898  * init_nodemask_of_mempolicy
1899  *
1900  * If the current task's mempolicy is "default" [NULL], return 'false'
1901  * to indicate default policy.  Otherwise, extract the policy nodemask
1902  * for 'bind' or 'interleave' policy into the argument nodemask, or
1903  * initialize the argument nodemask to contain the single node for
1904  * 'preferred' or 'local' policy and return 'true' to indicate presence
1905  * of non-default mempolicy.
1906  *
1907  * We don't bother with reference counting the mempolicy [mpol_get/put]
1908  * because the current task is examining it's own mempolicy and a task's
1909  * mempolicy is only ever changed by the task itself.
1910  *
1911  * N.B., it is the caller's responsibility to free a returned nodemask.
1912  */
1913 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1914 {
1915 	struct mempolicy *mempolicy;
1916 	int nid;
1917 
1918 	if (!(mask && current->mempolicy))
1919 		return false;
1920 
1921 	task_lock(current);
1922 	mempolicy = current->mempolicy;
1923 	switch (mempolicy->mode) {
1924 	case MPOL_PREFERRED:
1925 		if (mempolicy->flags & MPOL_F_LOCAL)
1926 			nid = numa_node_id();
1927 		else
1928 			nid = mempolicy->v.preferred_node;
1929 		init_nodemask_of_node(mask, nid);
1930 		break;
1931 
1932 	case MPOL_BIND:
1933 		/* Fall through */
1934 	case MPOL_INTERLEAVE:
1935 		*mask =  mempolicy->v.nodes;
1936 		break;
1937 
1938 	default:
1939 		BUG();
1940 	}
1941 	task_unlock(current);
1942 
1943 	return true;
1944 }
1945 #endif
1946 
1947 /*
1948  * mempolicy_nodemask_intersects
1949  *
1950  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1951  * policy.  Otherwise, check for intersection between mask and the policy
1952  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1953  * policy, always return true since it may allocate elsewhere on fallback.
1954  *
1955  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1956  */
1957 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1958 					const nodemask_t *mask)
1959 {
1960 	struct mempolicy *mempolicy;
1961 	bool ret = true;
1962 
1963 	if (!mask)
1964 		return ret;
1965 	task_lock(tsk);
1966 	mempolicy = tsk->mempolicy;
1967 	if (!mempolicy)
1968 		goto out;
1969 
1970 	switch (mempolicy->mode) {
1971 	case MPOL_PREFERRED:
1972 		/*
1973 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1974 		 * allocate from, they may fallback to other nodes when oom.
1975 		 * Thus, it's possible for tsk to have allocated memory from
1976 		 * nodes in mask.
1977 		 */
1978 		break;
1979 	case MPOL_BIND:
1980 	case MPOL_INTERLEAVE:
1981 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1982 		break;
1983 	default:
1984 		BUG();
1985 	}
1986 out:
1987 	task_unlock(tsk);
1988 	return ret;
1989 }
1990 
1991 /* Allocate a page in interleaved policy.
1992    Own path because it needs to do special accounting. */
1993 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1994 					unsigned nid)
1995 {
1996 	struct zonelist *zl;
1997 	struct page *page;
1998 
1999 	zl = node_zonelist(nid, gfp);
2000 	page = __alloc_pages(gfp, order, zl);
2001 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2002 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2003 	return page;
2004 }
2005 
2006 /**
2007  * 	alloc_pages_vma	- Allocate a page for a VMA.
2008  *
2009  * 	@gfp:
2010  *      %GFP_USER    user allocation.
2011  *      %GFP_KERNEL  kernel allocations,
2012  *      %GFP_HIGHMEM highmem/user allocations,
2013  *      %GFP_FS      allocation should not call back into a file system.
2014  *      %GFP_ATOMIC  don't sleep.
2015  *
2016  *	@order:Order of the GFP allocation.
2017  * 	@vma:  Pointer to VMA or NULL if not available.
2018  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2019  *
2020  * 	This function allocates a page from the kernel page pool and applies
2021  *	a NUMA policy associated with the VMA or the current process.
2022  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2023  *	mm_struct of the VMA to prevent it from going away. Should be used for
2024  *	all allocations for pages that will be mapped into
2025  * 	user space. Returns NULL when no page can be allocated.
2026  *
2027  *	Should be called with the mm_sem of the vma hold.
2028  */
2029 struct page *
2030 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2031 		unsigned long addr, int node)
2032 {
2033 	struct mempolicy *pol;
2034 	struct page *page;
2035 	unsigned int cpuset_mems_cookie;
2036 
2037 retry_cpuset:
2038 	pol = get_vma_policy(current, vma, addr);
2039 	cpuset_mems_cookie = read_mems_allowed_begin();
2040 
2041 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2042 		unsigned nid;
2043 
2044 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2045 		mpol_cond_put(pol);
2046 		page = alloc_page_interleave(gfp, order, nid);
2047 		if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2048 			goto retry_cpuset;
2049 
2050 		return page;
2051 	}
2052 	page = __alloc_pages_nodemask(gfp, order,
2053 				      policy_zonelist(gfp, pol, node),
2054 				      policy_nodemask(gfp, pol));
2055 	if (unlikely(mpol_needs_cond_ref(pol)))
2056 		__mpol_put(pol);
2057 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2058 		goto retry_cpuset;
2059 	return page;
2060 }
2061 
2062 /**
2063  * 	alloc_pages_current - Allocate pages.
2064  *
2065  *	@gfp:
2066  *		%GFP_USER   user allocation,
2067  *      	%GFP_KERNEL kernel allocation,
2068  *      	%GFP_HIGHMEM highmem allocation,
2069  *      	%GFP_FS     don't call back into a file system.
2070  *      	%GFP_ATOMIC don't sleep.
2071  *	@order: Power of two of allocation size in pages. 0 is a single page.
2072  *
2073  *	Allocate a page from the kernel page pool.  When not in
2074  *	interrupt context and apply the current process NUMA policy.
2075  *	Returns NULL when no page can be allocated.
2076  *
2077  *	Don't call cpuset_update_task_memory_state() unless
2078  *	1) it's ok to take cpuset_sem (can WAIT), and
2079  *	2) allocating for current task (not interrupt).
2080  */
2081 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2082 {
2083 	struct mempolicy *pol = get_task_policy(current);
2084 	struct page *page;
2085 	unsigned int cpuset_mems_cookie;
2086 
2087 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2088 		pol = &default_policy;
2089 
2090 retry_cpuset:
2091 	cpuset_mems_cookie = read_mems_allowed_begin();
2092 
2093 	/*
2094 	 * No reference counting needed for current->mempolicy
2095 	 * nor system default_policy
2096 	 */
2097 	if (pol->mode == MPOL_INTERLEAVE)
2098 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2099 	else
2100 		page = __alloc_pages_nodemask(gfp, order,
2101 				policy_zonelist(gfp, pol, numa_node_id()),
2102 				policy_nodemask(gfp, pol));
2103 
2104 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2105 		goto retry_cpuset;
2106 
2107 	return page;
2108 }
2109 EXPORT_SYMBOL(alloc_pages_current);
2110 
2111 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2112 {
2113 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2114 
2115 	if (IS_ERR(pol))
2116 		return PTR_ERR(pol);
2117 	dst->vm_policy = pol;
2118 	return 0;
2119 }
2120 
2121 /*
2122  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2123  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2124  * with the mems_allowed returned by cpuset_mems_allowed().  This
2125  * keeps mempolicies cpuset relative after its cpuset moves.  See
2126  * further kernel/cpuset.c update_nodemask().
2127  *
2128  * current's mempolicy may be rebinded by the other task(the task that changes
2129  * cpuset's mems), so we needn't do rebind work for current task.
2130  */
2131 
2132 /* Slow path of a mempolicy duplicate */
2133 struct mempolicy *__mpol_dup(struct mempolicy *old)
2134 {
2135 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2136 
2137 	if (!new)
2138 		return ERR_PTR(-ENOMEM);
2139 
2140 	/* task's mempolicy is protected by alloc_lock */
2141 	if (old == current->mempolicy) {
2142 		task_lock(current);
2143 		*new = *old;
2144 		task_unlock(current);
2145 	} else
2146 		*new = *old;
2147 
2148 	rcu_read_lock();
2149 	if (current_cpuset_is_being_rebound()) {
2150 		nodemask_t mems = cpuset_mems_allowed(current);
2151 		if (new->flags & MPOL_F_REBINDING)
2152 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2153 		else
2154 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2155 	}
2156 	rcu_read_unlock();
2157 	atomic_set(&new->refcnt, 1);
2158 	return new;
2159 }
2160 
2161 /* Slow path of a mempolicy comparison */
2162 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2163 {
2164 	if (!a || !b)
2165 		return false;
2166 	if (a->mode != b->mode)
2167 		return false;
2168 	if (a->flags != b->flags)
2169 		return false;
2170 	if (mpol_store_user_nodemask(a))
2171 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2172 			return false;
2173 
2174 	switch (a->mode) {
2175 	case MPOL_BIND:
2176 		/* Fall through */
2177 	case MPOL_INTERLEAVE:
2178 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2179 	case MPOL_PREFERRED:
2180 		return a->v.preferred_node == b->v.preferred_node;
2181 	default:
2182 		BUG();
2183 		return false;
2184 	}
2185 }
2186 
2187 /*
2188  * Shared memory backing store policy support.
2189  *
2190  * Remember policies even when nobody has shared memory mapped.
2191  * The policies are kept in Red-Black tree linked from the inode.
2192  * They are protected by the sp->lock spinlock, which should be held
2193  * for any accesses to the tree.
2194  */
2195 
2196 /* lookup first element intersecting start-end */
2197 /* Caller holds sp->lock */
2198 static struct sp_node *
2199 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2200 {
2201 	struct rb_node *n = sp->root.rb_node;
2202 
2203 	while (n) {
2204 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2205 
2206 		if (start >= p->end)
2207 			n = n->rb_right;
2208 		else if (end <= p->start)
2209 			n = n->rb_left;
2210 		else
2211 			break;
2212 	}
2213 	if (!n)
2214 		return NULL;
2215 	for (;;) {
2216 		struct sp_node *w = NULL;
2217 		struct rb_node *prev = rb_prev(n);
2218 		if (!prev)
2219 			break;
2220 		w = rb_entry(prev, struct sp_node, nd);
2221 		if (w->end <= start)
2222 			break;
2223 		n = prev;
2224 	}
2225 	return rb_entry(n, struct sp_node, nd);
2226 }
2227 
2228 /* Insert a new shared policy into the list. */
2229 /* Caller holds sp->lock */
2230 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2231 {
2232 	struct rb_node **p = &sp->root.rb_node;
2233 	struct rb_node *parent = NULL;
2234 	struct sp_node *nd;
2235 
2236 	while (*p) {
2237 		parent = *p;
2238 		nd = rb_entry(parent, struct sp_node, nd);
2239 		if (new->start < nd->start)
2240 			p = &(*p)->rb_left;
2241 		else if (new->end > nd->end)
2242 			p = &(*p)->rb_right;
2243 		else
2244 			BUG();
2245 	}
2246 	rb_link_node(&new->nd, parent, p);
2247 	rb_insert_color(&new->nd, &sp->root);
2248 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2249 		 new->policy ? new->policy->mode : 0);
2250 }
2251 
2252 /* Find shared policy intersecting idx */
2253 struct mempolicy *
2254 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2255 {
2256 	struct mempolicy *pol = NULL;
2257 	struct sp_node *sn;
2258 
2259 	if (!sp->root.rb_node)
2260 		return NULL;
2261 	spin_lock(&sp->lock);
2262 	sn = sp_lookup(sp, idx, idx+1);
2263 	if (sn) {
2264 		mpol_get(sn->policy);
2265 		pol = sn->policy;
2266 	}
2267 	spin_unlock(&sp->lock);
2268 	return pol;
2269 }
2270 
2271 static void sp_free(struct sp_node *n)
2272 {
2273 	mpol_put(n->policy);
2274 	kmem_cache_free(sn_cache, n);
2275 }
2276 
2277 /**
2278  * mpol_misplaced - check whether current page node is valid in policy
2279  *
2280  * @page: page to be checked
2281  * @vma: vm area where page mapped
2282  * @addr: virtual address where page mapped
2283  *
2284  * Lookup current policy node id for vma,addr and "compare to" page's
2285  * node id.
2286  *
2287  * Returns:
2288  *	-1	- not misplaced, page is in the right node
2289  *	node	- node id where the page should be
2290  *
2291  * Policy determination "mimics" alloc_page_vma().
2292  * Called from fault path where we know the vma and faulting address.
2293  */
2294 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2295 {
2296 	struct mempolicy *pol;
2297 	struct zone *zone;
2298 	int curnid = page_to_nid(page);
2299 	unsigned long pgoff;
2300 	int thiscpu = raw_smp_processor_id();
2301 	int thisnid = cpu_to_node(thiscpu);
2302 	int polnid = -1;
2303 	int ret = -1;
2304 
2305 	BUG_ON(!vma);
2306 
2307 	pol = get_vma_policy(current, vma, addr);
2308 	if (!(pol->flags & MPOL_F_MOF))
2309 		goto out;
2310 
2311 	switch (pol->mode) {
2312 	case MPOL_INTERLEAVE:
2313 		BUG_ON(addr >= vma->vm_end);
2314 		BUG_ON(addr < vma->vm_start);
2315 
2316 		pgoff = vma->vm_pgoff;
2317 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2318 		polnid = offset_il_node(pol, vma, pgoff);
2319 		break;
2320 
2321 	case MPOL_PREFERRED:
2322 		if (pol->flags & MPOL_F_LOCAL)
2323 			polnid = numa_node_id();
2324 		else
2325 			polnid = pol->v.preferred_node;
2326 		break;
2327 
2328 	case MPOL_BIND:
2329 		/*
2330 		 * allows binding to multiple nodes.
2331 		 * use current page if in policy nodemask,
2332 		 * else select nearest allowed node, if any.
2333 		 * If no allowed nodes, use current [!misplaced].
2334 		 */
2335 		if (node_isset(curnid, pol->v.nodes))
2336 			goto out;
2337 		(void)first_zones_zonelist(
2338 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2339 				gfp_zone(GFP_HIGHUSER),
2340 				&pol->v.nodes, &zone);
2341 		polnid = zone->node;
2342 		break;
2343 
2344 	default:
2345 		BUG();
2346 	}
2347 
2348 	/* Migrate the page towards the node whose CPU is referencing it */
2349 	if (pol->flags & MPOL_F_MORON) {
2350 		polnid = thisnid;
2351 
2352 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2353 			goto out;
2354 	}
2355 
2356 	if (curnid != polnid)
2357 		ret = polnid;
2358 out:
2359 	mpol_cond_put(pol);
2360 
2361 	return ret;
2362 }
2363 
2364 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2365 {
2366 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2367 	rb_erase(&n->nd, &sp->root);
2368 	sp_free(n);
2369 }
2370 
2371 static void sp_node_init(struct sp_node *node, unsigned long start,
2372 			unsigned long end, struct mempolicy *pol)
2373 {
2374 	node->start = start;
2375 	node->end = end;
2376 	node->policy = pol;
2377 }
2378 
2379 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2380 				struct mempolicy *pol)
2381 {
2382 	struct sp_node *n;
2383 	struct mempolicy *newpol;
2384 
2385 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2386 	if (!n)
2387 		return NULL;
2388 
2389 	newpol = mpol_dup(pol);
2390 	if (IS_ERR(newpol)) {
2391 		kmem_cache_free(sn_cache, n);
2392 		return NULL;
2393 	}
2394 	newpol->flags |= MPOL_F_SHARED;
2395 	sp_node_init(n, start, end, newpol);
2396 
2397 	return n;
2398 }
2399 
2400 /* Replace a policy range. */
2401 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2402 				 unsigned long end, struct sp_node *new)
2403 {
2404 	struct sp_node *n;
2405 	struct sp_node *n_new = NULL;
2406 	struct mempolicy *mpol_new = NULL;
2407 	int ret = 0;
2408 
2409 restart:
2410 	spin_lock(&sp->lock);
2411 	n = sp_lookup(sp, start, end);
2412 	/* Take care of old policies in the same range. */
2413 	while (n && n->start < end) {
2414 		struct rb_node *next = rb_next(&n->nd);
2415 		if (n->start >= start) {
2416 			if (n->end <= end)
2417 				sp_delete(sp, n);
2418 			else
2419 				n->start = end;
2420 		} else {
2421 			/* Old policy spanning whole new range. */
2422 			if (n->end > end) {
2423 				if (!n_new)
2424 					goto alloc_new;
2425 
2426 				*mpol_new = *n->policy;
2427 				atomic_set(&mpol_new->refcnt, 1);
2428 				sp_node_init(n_new, end, n->end, mpol_new);
2429 				n->end = start;
2430 				sp_insert(sp, n_new);
2431 				n_new = NULL;
2432 				mpol_new = NULL;
2433 				break;
2434 			} else
2435 				n->end = start;
2436 		}
2437 		if (!next)
2438 			break;
2439 		n = rb_entry(next, struct sp_node, nd);
2440 	}
2441 	if (new)
2442 		sp_insert(sp, new);
2443 	spin_unlock(&sp->lock);
2444 	ret = 0;
2445 
2446 err_out:
2447 	if (mpol_new)
2448 		mpol_put(mpol_new);
2449 	if (n_new)
2450 		kmem_cache_free(sn_cache, n_new);
2451 
2452 	return ret;
2453 
2454 alloc_new:
2455 	spin_unlock(&sp->lock);
2456 	ret = -ENOMEM;
2457 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2458 	if (!n_new)
2459 		goto err_out;
2460 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2461 	if (!mpol_new)
2462 		goto err_out;
2463 	goto restart;
2464 }
2465 
2466 /**
2467  * mpol_shared_policy_init - initialize shared policy for inode
2468  * @sp: pointer to inode shared policy
2469  * @mpol:  struct mempolicy to install
2470  *
2471  * Install non-NULL @mpol in inode's shared policy rb-tree.
2472  * On entry, the current task has a reference on a non-NULL @mpol.
2473  * This must be released on exit.
2474  * This is called at get_inode() calls and we can use GFP_KERNEL.
2475  */
2476 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2477 {
2478 	int ret;
2479 
2480 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2481 	spin_lock_init(&sp->lock);
2482 
2483 	if (mpol) {
2484 		struct vm_area_struct pvma;
2485 		struct mempolicy *new;
2486 		NODEMASK_SCRATCH(scratch);
2487 
2488 		if (!scratch)
2489 			goto put_mpol;
2490 		/* contextualize the tmpfs mount point mempolicy */
2491 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2492 		if (IS_ERR(new))
2493 			goto free_scratch; /* no valid nodemask intersection */
2494 
2495 		task_lock(current);
2496 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2497 		task_unlock(current);
2498 		if (ret)
2499 			goto put_new;
2500 
2501 		/* Create pseudo-vma that contains just the policy */
2502 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2503 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2504 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2505 
2506 put_new:
2507 		mpol_put(new);			/* drop initial ref */
2508 free_scratch:
2509 		NODEMASK_SCRATCH_FREE(scratch);
2510 put_mpol:
2511 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2512 	}
2513 }
2514 
2515 int mpol_set_shared_policy(struct shared_policy *info,
2516 			struct vm_area_struct *vma, struct mempolicy *npol)
2517 {
2518 	int err;
2519 	struct sp_node *new = NULL;
2520 	unsigned long sz = vma_pages(vma);
2521 
2522 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2523 		 vma->vm_pgoff,
2524 		 sz, npol ? npol->mode : -1,
2525 		 npol ? npol->flags : -1,
2526 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2527 
2528 	if (npol) {
2529 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2530 		if (!new)
2531 			return -ENOMEM;
2532 	}
2533 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2534 	if (err && new)
2535 		sp_free(new);
2536 	return err;
2537 }
2538 
2539 /* Free a backing policy store on inode delete. */
2540 void mpol_free_shared_policy(struct shared_policy *p)
2541 {
2542 	struct sp_node *n;
2543 	struct rb_node *next;
2544 
2545 	if (!p->root.rb_node)
2546 		return;
2547 	spin_lock(&p->lock);
2548 	next = rb_first(&p->root);
2549 	while (next) {
2550 		n = rb_entry(next, struct sp_node, nd);
2551 		next = rb_next(&n->nd);
2552 		sp_delete(p, n);
2553 	}
2554 	spin_unlock(&p->lock);
2555 }
2556 
2557 #ifdef CONFIG_NUMA_BALANCING
2558 static int __initdata numabalancing_override;
2559 
2560 static void __init check_numabalancing_enable(void)
2561 {
2562 	bool numabalancing_default = false;
2563 
2564 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2565 		numabalancing_default = true;
2566 
2567 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2568 	if (numabalancing_override)
2569 		set_numabalancing_state(numabalancing_override == 1);
2570 
2571 	if (nr_node_ids > 1 && !numabalancing_override) {
2572 		pr_info("%s automatic NUMA balancing. "
2573 			"Configure with numa_balancing= or the "
2574 			"kernel.numa_balancing sysctl",
2575 			numabalancing_default ? "Enabling" : "Disabling");
2576 		set_numabalancing_state(numabalancing_default);
2577 	}
2578 }
2579 
2580 static int __init setup_numabalancing(char *str)
2581 {
2582 	int ret = 0;
2583 	if (!str)
2584 		goto out;
2585 
2586 	if (!strcmp(str, "enable")) {
2587 		numabalancing_override = 1;
2588 		ret = 1;
2589 	} else if (!strcmp(str, "disable")) {
2590 		numabalancing_override = -1;
2591 		ret = 1;
2592 	}
2593 out:
2594 	if (!ret)
2595 		pr_warn("Unable to parse numa_balancing=\n");
2596 
2597 	return ret;
2598 }
2599 __setup("numa_balancing=", setup_numabalancing);
2600 #else
2601 static inline void __init check_numabalancing_enable(void)
2602 {
2603 }
2604 #endif /* CONFIG_NUMA_BALANCING */
2605 
2606 /* assumes fs == KERNEL_DS */
2607 void __init numa_policy_init(void)
2608 {
2609 	nodemask_t interleave_nodes;
2610 	unsigned long largest = 0;
2611 	int nid, prefer = 0;
2612 
2613 	policy_cache = kmem_cache_create("numa_policy",
2614 					 sizeof(struct mempolicy),
2615 					 0, SLAB_PANIC, NULL);
2616 
2617 	sn_cache = kmem_cache_create("shared_policy_node",
2618 				     sizeof(struct sp_node),
2619 				     0, SLAB_PANIC, NULL);
2620 
2621 	for_each_node(nid) {
2622 		preferred_node_policy[nid] = (struct mempolicy) {
2623 			.refcnt = ATOMIC_INIT(1),
2624 			.mode = MPOL_PREFERRED,
2625 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2626 			.v = { .preferred_node = nid, },
2627 		};
2628 	}
2629 
2630 	/*
2631 	 * Set interleaving policy for system init. Interleaving is only
2632 	 * enabled across suitably sized nodes (default is >= 16MB), or
2633 	 * fall back to the largest node if they're all smaller.
2634 	 */
2635 	nodes_clear(interleave_nodes);
2636 	for_each_node_state(nid, N_MEMORY) {
2637 		unsigned long total_pages = node_present_pages(nid);
2638 
2639 		/* Preserve the largest node */
2640 		if (largest < total_pages) {
2641 			largest = total_pages;
2642 			prefer = nid;
2643 		}
2644 
2645 		/* Interleave this node? */
2646 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2647 			node_set(nid, interleave_nodes);
2648 	}
2649 
2650 	/* All too small, use the largest */
2651 	if (unlikely(nodes_empty(interleave_nodes)))
2652 		node_set(prefer, interleave_nodes);
2653 
2654 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2655 		pr_err("%s: interleaving failed\n", __func__);
2656 
2657 	check_numabalancing_enable();
2658 }
2659 
2660 /* Reset policy of current process to default */
2661 void numa_default_policy(void)
2662 {
2663 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2664 }
2665 
2666 /*
2667  * Parse and format mempolicy from/to strings
2668  */
2669 
2670 /*
2671  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2672  */
2673 static const char * const policy_modes[] =
2674 {
2675 	[MPOL_DEFAULT]    = "default",
2676 	[MPOL_PREFERRED]  = "prefer",
2677 	[MPOL_BIND]       = "bind",
2678 	[MPOL_INTERLEAVE] = "interleave",
2679 	[MPOL_LOCAL]      = "local",
2680 };
2681 
2682 
2683 #ifdef CONFIG_TMPFS
2684 /**
2685  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2686  * @str:  string containing mempolicy to parse
2687  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2688  *
2689  * Format of input:
2690  *	<mode>[=<flags>][:<nodelist>]
2691  *
2692  * On success, returns 0, else 1
2693  */
2694 int mpol_parse_str(char *str, struct mempolicy **mpol)
2695 {
2696 	struct mempolicy *new = NULL;
2697 	unsigned short mode;
2698 	unsigned short mode_flags;
2699 	nodemask_t nodes;
2700 	char *nodelist = strchr(str, ':');
2701 	char *flags = strchr(str, '=');
2702 	int err = 1;
2703 
2704 	if (nodelist) {
2705 		/* NUL-terminate mode or flags string */
2706 		*nodelist++ = '\0';
2707 		if (nodelist_parse(nodelist, nodes))
2708 			goto out;
2709 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2710 			goto out;
2711 	} else
2712 		nodes_clear(nodes);
2713 
2714 	if (flags)
2715 		*flags++ = '\0';	/* terminate mode string */
2716 
2717 	for (mode = 0; mode < MPOL_MAX; mode++) {
2718 		if (!strcmp(str, policy_modes[mode])) {
2719 			break;
2720 		}
2721 	}
2722 	if (mode >= MPOL_MAX)
2723 		goto out;
2724 
2725 	switch (mode) {
2726 	case MPOL_PREFERRED:
2727 		/*
2728 		 * Insist on a nodelist of one node only
2729 		 */
2730 		if (nodelist) {
2731 			char *rest = nodelist;
2732 			while (isdigit(*rest))
2733 				rest++;
2734 			if (*rest)
2735 				goto out;
2736 		}
2737 		break;
2738 	case MPOL_INTERLEAVE:
2739 		/*
2740 		 * Default to online nodes with memory if no nodelist
2741 		 */
2742 		if (!nodelist)
2743 			nodes = node_states[N_MEMORY];
2744 		break;
2745 	case MPOL_LOCAL:
2746 		/*
2747 		 * Don't allow a nodelist;  mpol_new() checks flags
2748 		 */
2749 		if (nodelist)
2750 			goto out;
2751 		mode = MPOL_PREFERRED;
2752 		break;
2753 	case MPOL_DEFAULT:
2754 		/*
2755 		 * Insist on a empty nodelist
2756 		 */
2757 		if (!nodelist)
2758 			err = 0;
2759 		goto out;
2760 	case MPOL_BIND:
2761 		/*
2762 		 * Insist on a nodelist
2763 		 */
2764 		if (!nodelist)
2765 			goto out;
2766 	}
2767 
2768 	mode_flags = 0;
2769 	if (flags) {
2770 		/*
2771 		 * Currently, we only support two mutually exclusive
2772 		 * mode flags.
2773 		 */
2774 		if (!strcmp(flags, "static"))
2775 			mode_flags |= MPOL_F_STATIC_NODES;
2776 		else if (!strcmp(flags, "relative"))
2777 			mode_flags |= MPOL_F_RELATIVE_NODES;
2778 		else
2779 			goto out;
2780 	}
2781 
2782 	new = mpol_new(mode, mode_flags, &nodes);
2783 	if (IS_ERR(new))
2784 		goto out;
2785 
2786 	/*
2787 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2788 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2789 	 */
2790 	if (mode != MPOL_PREFERRED)
2791 		new->v.nodes = nodes;
2792 	else if (nodelist)
2793 		new->v.preferred_node = first_node(nodes);
2794 	else
2795 		new->flags |= MPOL_F_LOCAL;
2796 
2797 	/*
2798 	 * Save nodes for contextualization: this will be used to "clone"
2799 	 * the mempolicy in a specific context [cpuset] at a later time.
2800 	 */
2801 	new->w.user_nodemask = nodes;
2802 
2803 	err = 0;
2804 
2805 out:
2806 	/* Restore string for error message */
2807 	if (nodelist)
2808 		*--nodelist = ':';
2809 	if (flags)
2810 		*--flags = '=';
2811 	if (!err)
2812 		*mpol = new;
2813 	return err;
2814 }
2815 #endif /* CONFIG_TMPFS */
2816 
2817 /**
2818  * mpol_to_str - format a mempolicy structure for printing
2819  * @buffer:  to contain formatted mempolicy string
2820  * @maxlen:  length of @buffer
2821  * @pol:  pointer to mempolicy to be formatted
2822  *
2823  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2824  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2825  * longest flag, "relative", and to display at least a few node ids.
2826  */
2827 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2828 {
2829 	char *p = buffer;
2830 	nodemask_t nodes = NODE_MASK_NONE;
2831 	unsigned short mode = MPOL_DEFAULT;
2832 	unsigned short flags = 0;
2833 
2834 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2835 		mode = pol->mode;
2836 		flags = pol->flags;
2837 	}
2838 
2839 	switch (mode) {
2840 	case MPOL_DEFAULT:
2841 		break;
2842 	case MPOL_PREFERRED:
2843 		if (flags & MPOL_F_LOCAL)
2844 			mode = MPOL_LOCAL;
2845 		else
2846 			node_set(pol->v.preferred_node, nodes);
2847 		break;
2848 	case MPOL_BIND:
2849 	case MPOL_INTERLEAVE:
2850 		nodes = pol->v.nodes;
2851 		break;
2852 	default:
2853 		WARN_ON_ONCE(1);
2854 		snprintf(p, maxlen, "unknown");
2855 		return;
2856 	}
2857 
2858 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2859 
2860 	if (flags & MPOL_MODE_FLAGS) {
2861 		p += snprintf(p, buffer + maxlen - p, "=");
2862 
2863 		/*
2864 		 * Currently, the only defined flags are mutually exclusive
2865 		 */
2866 		if (flags & MPOL_F_STATIC_NODES)
2867 			p += snprintf(p, buffer + maxlen - p, "static");
2868 		else if (flags & MPOL_F_RELATIVE_NODES)
2869 			p += snprintf(p, buffer + maxlen - p, "relative");
2870 	}
2871 
2872 	if (!nodes_empty(nodes)) {
2873 		p += snprintf(p, buffer + maxlen - p, ":");
2874 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2875 	}
2876 }
2877