1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 101 #include "internal.h" 102 103 /* Internal flags */ 104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 106 107 static struct kmem_cache *policy_cache; 108 static struct kmem_cache *sn_cache; 109 110 /* Highest zone. An specific allocation for a zone below that is not 111 policied. */ 112 enum zone_type policy_zone = 0; 113 114 /* 115 * run-time system-wide default policy => local allocation 116 */ 117 static struct mempolicy default_policy = { 118 .refcnt = ATOMIC_INIT(1), /* never free it */ 119 .mode = MPOL_PREFERRED, 120 .flags = MPOL_F_LOCAL, 121 }; 122 123 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 124 125 struct mempolicy *get_task_policy(struct task_struct *p) 126 { 127 struct mempolicy *pol = p->mempolicy; 128 int node; 129 130 if (pol) 131 return pol; 132 133 node = numa_node_id(); 134 if (node != NUMA_NO_NODE) { 135 pol = &preferred_node_policy[node]; 136 /* preferred_node_policy is not initialised early in boot */ 137 if (pol->mode) 138 return pol; 139 } 140 141 return &default_policy; 142 } 143 144 static const struct mempolicy_operations { 145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 146 /* 147 * If read-side task has no lock to protect task->mempolicy, write-side 148 * task will rebind the task->mempolicy by two step. The first step is 149 * setting all the newly nodes, and the second step is cleaning all the 150 * disallowed nodes. In this way, we can avoid finding no node to alloc 151 * page. 152 * If we have a lock to protect task->mempolicy in read-side, we do 153 * rebind directly. 154 * 155 * step: 156 * MPOL_REBIND_ONCE - do rebind work at once 157 * MPOL_REBIND_STEP1 - set all the newly nodes 158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 159 */ 160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 161 enum mpol_rebind_step step); 162 } mpol_ops[MPOL_MAX]; 163 164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 165 { 166 return pol->flags & MPOL_MODE_FLAGS; 167 } 168 169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 170 const nodemask_t *rel) 171 { 172 nodemask_t tmp; 173 nodes_fold(tmp, *orig, nodes_weight(*rel)); 174 nodes_onto(*ret, tmp, *rel); 175 } 176 177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 178 { 179 if (nodes_empty(*nodes)) 180 return -EINVAL; 181 pol->v.nodes = *nodes; 182 return 0; 183 } 184 185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 186 { 187 if (!nodes) 188 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 189 else if (nodes_empty(*nodes)) 190 return -EINVAL; /* no allowed nodes */ 191 else 192 pol->v.preferred_node = first_node(*nodes); 193 return 0; 194 } 195 196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 197 { 198 if (nodes_empty(*nodes)) 199 return -EINVAL; 200 pol->v.nodes = *nodes; 201 return 0; 202 } 203 204 /* 205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 206 * any, for the new policy. mpol_new() has already validated the nodes 207 * parameter with respect to the policy mode and flags. But, we need to 208 * handle an empty nodemask with MPOL_PREFERRED here. 209 * 210 * Must be called holding task's alloc_lock to protect task's mems_allowed 211 * and mempolicy. May also be called holding the mmap_semaphore for write. 212 */ 213 static int mpol_set_nodemask(struct mempolicy *pol, 214 const nodemask_t *nodes, struct nodemask_scratch *nsc) 215 { 216 int ret; 217 218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 219 if (pol == NULL) 220 return 0; 221 /* Check N_MEMORY */ 222 nodes_and(nsc->mask1, 223 cpuset_current_mems_allowed, node_states[N_MEMORY]); 224 225 VM_BUG_ON(!nodes); 226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 227 nodes = NULL; /* explicit local allocation */ 228 else { 229 if (pol->flags & MPOL_F_RELATIVE_NODES) 230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 231 else 232 nodes_and(nsc->mask2, *nodes, nsc->mask1); 233 234 if (mpol_store_user_nodemask(pol)) 235 pol->w.user_nodemask = *nodes; 236 else 237 pol->w.cpuset_mems_allowed = 238 cpuset_current_mems_allowed; 239 } 240 241 if (nodes) 242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 243 else 244 ret = mpol_ops[pol->mode].create(pol, NULL); 245 return ret; 246 } 247 248 /* 249 * This function just creates a new policy, does some check and simple 250 * initialization. You must invoke mpol_set_nodemask() to set nodes. 251 */ 252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 253 nodemask_t *nodes) 254 { 255 struct mempolicy *policy; 256 257 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 259 260 if (mode == MPOL_DEFAULT) { 261 if (nodes && !nodes_empty(*nodes)) 262 return ERR_PTR(-EINVAL); 263 return NULL; 264 } 265 VM_BUG_ON(!nodes); 266 267 /* 268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 270 * All other modes require a valid pointer to a non-empty nodemask. 271 */ 272 if (mode == MPOL_PREFERRED) { 273 if (nodes_empty(*nodes)) { 274 if (((flags & MPOL_F_STATIC_NODES) || 275 (flags & MPOL_F_RELATIVE_NODES))) 276 return ERR_PTR(-EINVAL); 277 } 278 } else if (mode == MPOL_LOCAL) { 279 if (!nodes_empty(*nodes)) 280 return ERR_PTR(-EINVAL); 281 mode = MPOL_PREFERRED; 282 } else if (nodes_empty(*nodes)) 283 return ERR_PTR(-EINVAL); 284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 285 if (!policy) 286 return ERR_PTR(-ENOMEM); 287 atomic_set(&policy->refcnt, 1); 288 policy->mode = mode; 289 policy->flags = flags; 290 291 return policy; 292 } 293 294 /* Slow path of a mpol destructor. */ 295 void __mpol_put(struct mempolicy *p) 296 { 297 if (!atomic_dec_and_test(&p->refcnt)) 298 return; 299 kmem_cache_free(policy_cache, p); 300 } 301 302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 303 enum mpol_rebind_step step) 304 { 305 } 306 307 /* 308 * step: 309 * MPOL_REBIND_ONCE - do rebind work at once 310 * MPOL_REBIND_STEP1 - set all the newly nodes 311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 312 */ 313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 314 enum mpol_rebind_step step) 315 { 316 nodemask_t tmp; 317 318 if (pol->flags & MPOL_F_STATIC_NODES) 319 nodes_and(tmp, pol->w.user_nodemask, *nodes); 320 else if (pol->flags & MPOL_F_RELATIVE_NODES) 321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 322 else { 323 /* 324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 325 * result 326 */ 327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 328 nodes_remap(tmp, pol->v.nodes, 329 pol->w.cpuset_mems_allowed, *nodes); 330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 331 } else if (step == MPOL_REBIND_STEP2) { 332 tmp = pol->w.cpuset_mems_allowed; 333 pol->w.cpuset_mems_allowed = *nodes; 334 } else 335 BUG(); 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 if (step == MPOL_REBIND_STEP1) 342 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 344 pol->v.nodes = tmp; 345 else 346 BUG(); 347 348 if (!node_isset(current->il_next, tmp)) { 349 current->il_next = next_node_in(current->il_next, tmp); 350 if (current->il_next >= MAX_NUMNODES) 351 current->il_next = numa_node_id(); 352 } 353 } 354 355 static void mpol_rebind_preferred(struct mempolicy *pol, 356 const nodemask_t *nodes, 357 enum mpol_rebind_step step) 358 { 359 nodemask_t tmp; 360 361 if (pol->flags & MPOL_F_STATIC_NODES) { 362 int node = first_node(pol->w.user_nodemask); 363 364 if (node_isset(node, *nodes)) { 365 pol->v.preferred_node = node; 366 pol->flags &= ~MPOL_F_LOCAL; 367 } else 368 pol->flags |= MPOL_F_LOCAL; 369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 371 pol->v.preferred_node = first_node(tmp); 372 } else if (!(pol->flags & MPOL_F_LOCAL)) { 373 pol->v.preferred_node = node_remap(pol->v.preferred_node, 374 pol->w.cpuset_mems_allowed, 375 *nodes); 376 pol->w.cpuset_mems_allowed = *nodes; 377 } 378 } 379 380 /* 381 * mpol_rebind_policy - Migrate a policy to a different set of nodes 382 * 383 * If read-side task has no lock to protect task->mempolicy, write-side 384 * task will rebind the task->mempolicy by two step. The first step is 385 * setting all the newly nodes, and the second step is cleaning all the 386 * disallowed nodes. In this way, we can avoid finding no node to alloc 387 * page. 388 * If we have a lock to protect task->mempolicy in read-side, we do 389 * rebind directly. 390 * 391 * step: 392 * MPOL_REBIND_ONCE - do rebind work at once 393 * MPOL_REBIND_STEP1 - set all the newly nodes 394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 395 */ 396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 397 enum mpol_rebind_step step) 398 { 399 if (!pol) 400 return; 401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 403 return; 404 405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 406 return; 407 408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 409 BUG(); 410 411 if (step == MPOL_REBIND_STEP1) 412 pol->flags |= MPOL_F_REBINDING; 413 else if (step == MPOL_REBIND_STEP2) 414 pol->flags &= ~MPOL_F_REBINDING; 415 else if (step >= MPOL_REBIND_NSTEP) 416 BUG(); 417 418 mpol_ops[pol->mode].rebind(pol, newmask, step); 419 } 420 421 /* 422 * Wrapper for mpol_rebind_policy() that just requires task 423 * pointer, and updates task mempolicy. 424 * 425 * Called with task's alloc_lock held. 426 */ 427 428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 429 enum mpol_rebind_step step) 430 { 431 mpol_rebind_policy(tsk->mempolicy, new, step); 432 } 433 434 /* 435 * Rebind each vma in mm to new nodemask. 436 * 437 * Call holding a reference to mm. Takes mm->mmap_sem during call. 438 */ 439 440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 441 { 442 struct vm_area_struct *vma; 443 444 down_write(&mm->mmap_sem); 445 for (vma = mm->mmap; vma; vma = vma->vm_next) 446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 447 up_write(&mm->mmap_sem); 448 } 449 450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 451 [MPOL_DEFAULT] = { 452 .rebind = mpol_rebind_default, 453 }, 454 [MPOL_INTERLEAVE] = { 455 .create = mpol_new_interleave, 456 .rebind = mpol_rebind_nodemask, 457 }, 458 [MPOL_PREFERRED] = { 459 .create = mpol_new_preferred, 460 .rebind = mpol_rebind_preferred, 461 }, 462 [MPOL_BIND] = { 463 .create = mpol_new_bind, 464 .rebind = mpol_rebind_nodemask, 465 }, 466 }; 467 468 static void migrate_page_add(struct page *page, struct list_head *pagelist, 469 unsigned long flags); 470 471 struct queue_pages { 472 struct list_head *pagelist; 473 unsigned long flags; 474 nodemask_t *nmask; 475 struct vm_area_struct *prev; 476 }; 477 478 /* 479 * Scan through pages checking if pages follow certain conditions, 480 * and move them to the pagelist if they do. 481 */ 482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 483 unsigned long end, struct mm_walk *walk) 484 { 485 struct vm_area_struct *vma = walk->vma; 486 struct page *page; 487 struct queue_pages *qp = walk->private; 488 unsigned long flags = qp->flags; 489 int nid, ret; 490 pte_t *pte; 491 spinlock_t *ptl; 492 493 if (pmd_trans_huge(*pmd)) { 494 ptl = pmd_lock(walk->mm, pmd); 495 if (pmd_trans_huge(*pmd)) { 496 page = pmd_page(*pmd); 497 if (is_huge_zero_page(page)) { 498 spin_unlock(ptl); 499 split_huge_pmd(vma, pmd, addr); 500 } else { 501 get_page(page); 502 spin_unlock(ptl); 503 lock_page(page); 504 ret = split_huge_page(page); 505 unlock_page(page); 506 put_page(page); 507 if (ret) 508 return 0; 509 } 510 } else { 511 spin_unlock(ptl); 512 } 513 } 514 515 retry: 516 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 517 for (; addr != end; pte++, addr += PAGE_SIZE) { 518 if (!pte_present(*pte)) 519 continue; 520 page = vm_normal_page(vma, addr, *pte); 521 if (!page) 522 continue; 523 /* 524 * vm_normal_page() filters out zero pages, but there might 525 * still be PageReserved pages to skip, perhaps in a VDSO. 526 */ 527 if (PageReserved(page)) 528 continue; 529 nid = page_to_nid(page); 530 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 531 continue; 532 if (PageTransCompound(page) && PageAnon(page)) { 533 get_page(page); 534 pte_unmap_unlock(pte, ptl); 535 lock_page(page); 536 ret = split_huge_page(page); 537 unlock_page(page); 538 put_page(page); 539 /* Failed to split -- skip. */ 540 if (ret) { 541 pte = pte_offset_map_lock(walk->mm, pmd, 542 addr, &ptl); 543 continue; 544 } 545 goto retry; 546 } 547 548 migrate_page_add(page, qp->pagelist, flags); 549 } 550 pte_unmap_unlock(pte - 1, ptl); 551 cond_resched(); 552 return 0; 553 } 554 555 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 556 unsigned long addr, unsigned long end, 557 struct mm_walk *walk) 558 { 559 #ifdef CONFIG_HUGETLB_PAGE 560 struct queue_pages *qp = walk->private; 561 unsigned long flags = qp->flags; 562 int nid; 563 struct page *page; 564 spinlock_t *ptl; 565 pte_t entry; 566 567 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 568 entry = huge_ptep_get(pte); 569 if (!pte_present(entry)) 570 goto unlock; 571 page = pte_page(entry); 572 nid = page_to_nid(page); 573 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 574 goto unlock; 575 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 576 if (flags & (MPOL_MF_MOVE_ALL) || 577 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 578 isolate_huge_page(page, qp->pagelist); 579 unlock: 580 spin_unlock(ptl); 581 #else 582 BUG(); 583 #endif 584 return 0; 585 } 586 587 #ifdef CONFIG_NUMA_BALANCING 588 /* 589 * This is used to mark a range of virtual addresses to be inaccessible. 590 * These are later cleared by a NUMA hinting fault. Depending on these 591 * faults, pages may be migrated for better NUMA placement. 592 * 593 * This is assuming that NUMA faults are handled using PROT_NONE. If 594 * an architecture makes a different choice, it will need further 595 * changes to the core. 596 */ 597 unsigned long change_prot_numa(struct vm_area_struct *vma, 598 unsigned long addr, unsigned long end) 599 { 600 int nr_updated; 601 602 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 603 if (nr_updated) 604 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 605 606 return nr_updated; 607 } 608 #else 609 static unsigned long change_prot_numa(struct vm_area_struct *vma, 610 unsigned long addr, unsigned long end) 611 { 612 return 0; 613 } 614 #endif /* CONFIG_NUMA_BALANCING */ 615 616 static int queue_pages_test_walk(unsigned long start, unsigned long end, 617 struct mm_walk *walk) 618 { 619 struct vm_area_struct *vma = walk->vma; 620 struct queue_pages *qp = walk->private; 621 unsigned long endvma = vma->vm_end; 622 unsigned long flags = qp->flags; 623 624 if (!vma_migratable(vma)) 625 return 1; 626 627 if (endvma > end) 628 endvma = end; 629 if (vma->vm_start > start) 630 start = vma->vm_start; 631 632 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 633 if (!vma->vm_next && vma->vm_end < end) 634 return -EFAULT; 635 if (qp->prev && qp->prev->vm_end < vma->vm_start) 636 return -EFAULT; 637 } 638 639 qp->prev = vma; 640 641 if (flags & MPOL_MF_LAZY) { 642 /* Similar to task_numa_work, skip inaccessible VMAs */ 643 if (!is_vm_hugetlb_page(vma) && 644 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 645 !(vma->vm_flags & VM_MIXEDMAP)) 646 change_prot_numa(vma, start, endvma); 647 return 1; 648 } 649 650 /* queue pages from current vma */ 651 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 652 return 0; 653 return 1; 654 } 655 656 /* 657 * Walk through page tables and collect pages to be migrated. 658 * 659 * If pages found in a given range are on a set of nodes (determined by 660 * @nodes and @flags,) it's isolated and queued to the pagelist which is 661 * passed via @private.) 662 */ 663 static int 664 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 665 nodemask_t *nodes, unsigned long flags, 666 struct list_head *pagelist) 667 { 668 struct queue_pages qp = { 669 .pagelist = pagelist, 670 .flags = flags, 671 .nmask = nodes, 672 .prev = NULL, 673 }; 674 struct mm_walk queue_pages_walk = { 675 .hugetlb_entry = queue_pages_hugetlb, 676 .pmd_entry = queue_pages_pte_range, 677 .test_walk = queue_pages_test_walk, 678 .mm = mm, 679 .private = &qp, 680 }; 681 682 return walk_page_range(start, end, &queue_pages_walk); 683 } 684 685 /* 686 * Apply policy to a single VMA 687 * This must be called with the mmap_sem held for writing. 688 */ 689 static int vma_replace_policy(struct vm_area_struct *vma, 690 struct mempolicy *pol) 691 { 692 int err; 693 struct mempolicy *old; 694 struct mempolicy *new; 695 696 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 697 vma->vm_start, vma->vm_end, vma->vm_pgoff, 698 vma->vm_ops, vma->vm_file, 699 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 700 701 new = mpol_dup(pol); 702 if (IS_ERR(new)) 703 return PTR_ERR(new); 704 705 if (vma->vm_ops && vma->vm_ops->set_policy) { 706 err = vma->vm_ops->set_policy(vma, new); 707 if (err) 708 goto err_out; 709 } 710 711 old = vma->vm_policy; 712 vma->vm_policy = new; /* protected by mmap_sem */ 713 mpol_put(old); 714 715 return 0; 716 err_out: 717 mpol_put(new); 718 return err; 719 } 720 721 /* Step 2: apply policy to a range and do splits. */ 722 static int mbind_range(struct mm_struct *mm, unsigned long start, 723 unsigned long end, struct mempolicy *new_pol) 724 { 725 struct vm_area_struct *next; 726 struct vm_area_struct *prev; 727 struct vm_area_struct *vma; 728 int err = 0; 729 pgoff_t pgoff; 730 unsigned long vmstart; 731 unsigned long vmend; 732 733 vma = find_vma(mm, start); 734 if (!vma || vma->vm_start > start) 735 return -EFAULT; 736 737 prev = vma->vm_prev; 738 if (start > vma->vm_start) 739 prev = vma; 740 741 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 742 next = vma->vm_next; 743 vmstart = max(start, vma->vm_start); 744 vmend = min(end, vma->vm_end); 745 746 if (mpol_equal(vma_policy(vma), new_pol)) 747 continue; 748 749 pgoff = vma->vm_pgoff + 750 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 751 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 752 vma->anon_vma, vma->vm_file, pgoff, 753 new_pol, vma->vm_userfaultfd_ctx); 754 if (prev) { 755 vma = prev; 756 next = vma->vm_next; 757 if (mpol_equal(vma_policy(vma), new_pol)) 758 continue; 759 /* vma_merge() joined vma && vma->next, case 8 */ 760 goto replace; 761 } 762 if (vma->vm_start != vmstart) { 763 err = split_vma(vma->vm_mm, vma, vmstart, 1); 764 if (err) 765 goto out; 766 } 767 if (vma->vm_end != vmend) { 768 err = split_vma(vma->vm_mm, vma, vmend, 0); 769 if (err) 770 goto out; 771 } 772 replace: 773 err = vma_replace_policy(vma, new_pol); 774 if (err) 775 goto out; 776 } 777 778 out: 779 return err; 780 } 781 782 /* Set the process memory policy */ 783 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 784 nodemask_t *nodes) 785 { 786 struct mempolicy *new, *old; 787 NODEMASK_SCRATCH(scratch); 788 int ret; 789 790 if (!scratch) 791 return -ENOMEM; 792 793 new = mpol_new(mode, flags, nodes); 794 if (IS_ERR(new)) { 795 ret = PTR_ERR(new); 796 goto out; 797 } 798 799 task_lock(current); 800 ret = mpol_set_nodemask(new, nodes, scratch); 801 if (ret) { 802 task_unlock(current); 803 mpol_put(new); 804 goto out; 805 } 806 old = current->mempolicy; 807 current->mempolicy = new; 808 if (new && new->mode == MPOL_INTERLEAVE && 809 nodes_weight(new->v.nodes)) 810 current->il_next = first_node(new->v.nodes); 811 task_unlock(current); 812 mpol_put(old); 813 ret = 0; 814 out: 815 NODEMASK_SCRATCH_FREE(scratch); 816 return ret; 817 } 818 819 /* 820 * Return nodemask for policy for get_mempolicy() query 821 * 822 * Called with task's alloc_lock held 823 */ 824 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 825 { 826 nodes_clear(*nodes); 827 if (p == &default_policy) 828 return; 829 830 switch (p->mode) { 831 case MPOL_BIND: 832 /* Fall through */ 833 case MPOL_INTERLEAVE: 834 *nodes = p->v.nodes; 835 break; 836 case MPOL_PREFERRED: 837 if (!(p->flags & MPOL_F_LOCAL)) 838 node_set(p->v.preferred_node, *nodes); 839 /* else return empty node mask for local allocation */ 840 break; 841 default: 842 BUG(); 843 } 844 } 845 846 static int lookup_node(unsigned long addr) 847 { 848 struct page *p; 849 int err; 850 851 err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL); 852 if (err >= 0) { 853 err = page_to_nid(p); 854 put_page(p); 855 } 856 return err; 857 } 858 859 /* Retrieve NUMA policy */ 860 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 861 unsigned long addr, unsigned long flags) 862 { 863 int err; 864 struct mm_struct *mm = current->mm; 865 struct vm_area_struct *vma = NULL; 866 struct mempolicy *pol = current->mempolicy; 867 868 if (flags & 869 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 870 return -EINVAL; 871 872 if (flags & MPOL_F_MEMS_ALLOWED) { 873 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 874 return -EINVAL; 875 *policy = 0; /* just so it's initialized */ 876 task_lock(current); 877 *nmask = cpuset_current_mems_allowed; 878 task_unlock(current); 879 return 0; 880 } 881 882 if (flags & MPOL_F_ADDR) { 883 /* 884 * Do NOT fall back to task policy if the 885 * vma/shared policy at addr is NULL. We 886 * want to return MPOL_DEFAULT in this case. 887 */ 888 down_read(&mm->mmap_sem); 889 vma = find_vma_intersection(mm, addr, addr+1); 890 if (!vma) { 891 up_read(&mm->mmap_sem); 892 return -EFAULT; 893 } 894 if (vma->vm_ops && vma->vm_ops->get_policy) 895 pol = vma->vm_ops->get_policy(vma, addr); 896 else 897 pol = vma->vm_policy; 898 } else if (addr) 899 return -EINVAL; 900 901 if (!pol) 902 pol = &default_policy; /* indicates default behavior */ 903 904 if (flags & MPOL_F_NODE) { 905 if (flags & MPOL_F_ADDR) { 906 err = lookup_node(addr); 907 if (err < 0) 908 goto out; 909 *policy = err; 910 } else if (pol == current->mempolicy && 911 pol->mode == MPOL_INTERLEAVE) { 912 *policy = current->il_next; 913 } else { 914 err = -EINVAL; 915 goto out; 916 } 917 } else { 918 *policy = pol == &default_policy ? MPOL_DEFAULT : 919 pol->mode; 920 /* 921 * Internal mempolicy flags must be masked off before exposing 922 * the policy to userspace. 923 */ 924 *policy |= (pol->flags & MPOL_MODE_FLAGS); 925 } 926 927 if (vma) { 928 up_read(¤t->mm->mmap_sem); 929 vma = NULL; 930 } 931 932 err = 0; 933 if (nmask) { 934 if (mpol_store_user_nodemask(pol)) { 935 *nmask = pol->w.user_nodemask; 936 } else { 937 task_lock(current); 938 get_policy_nodemask(pol, nmask); 939 task_unlock(current); 940 } 941 } 942 943 out: 944 mpol_cond_put(pol); 945 if (vma) 946 up_read(¤t->mm->mmap_sem); 947 return err; 948 } 949 950 #ifdef CONFIG_MIGRATION 951 /* 952 * page migration 953 */ 954 static void migrate_page_add(struct page *page, struct list_head *pagelist, 955 unsigned long flags) 956 { 957 /* 958 * Avoid migrating a page that is shared with others. 959 */ 960 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 961 if (!isolate_lru_page(page)) { 962 list_add_tail(&page->lru, pagelist); 963 inc_zone_page_state(page, NR_ISOLATED_ANON + 964 page_is_file_cache(page)); 965 } 966 } 967 } 968 969 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 970 { 971 if (PageHuge(page)) 972 return alloc_huge_page_node(page_hstate(compound_head(page)), 973 node); 974 else 975 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 976 __GFP_THISNODE, 0); 977 } 978 979 /* 980 * Migrate pages from one node to a target node. 981 * Returns error or the number of pages not migrated. 982 */ 983 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 984 int flags) 985 { 986 nodemask_t nmask; 987 LIST_HEAD(pagelist); 988 int err = 0; 989 990 nodes_clear(nmask); 991 node_set(source, nmask); 992 993 /* 994 * This does not "check" the range but isolates all pages that 995 * need migration. Between passing in the full user address 996 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 997 */ 998 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 999 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1000 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1001 1002 if (!list_empty(&pagelist)) { 1003 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1004 MIGRATE_SYNC, MR_SYSCALL); 1005 if (err) 1006 putback_movable_pages(&pagelist); 1007 } 1008 1009 return err; 1010 } 1011 1012 /* 1013 * Move pages between the two nodesets so as to preserve the physical 1014 * layout as much as possible. 1015 * 1016 * Returns the number of page that could not be moved. 1017 */ 1018 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1019 const nodemask_t *to, int flags) 1020 { 1021 int busy = 0; 1022 int err; 1023 nodemask_t tmp; 1024 1025 err = migrate_prep(); 1026 if (err) 1027 return err; 1028 1029 down_read(&mm->mmap_sem); 1030 1031 /* 1032 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1033 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1034 * bit in 'tmp', and return that <source, dest> pair for migration. 1035 * The pair of nodemasks 'to' and 'from' define the map. 1036 * 1037 * If no pair of bits is found that way, fallback to picking some 1038 * pair of 'source' and 'dest' bits that are not the same. If the 1039 * 'source' and 'dest' bits are the same, this represents a node 1040 * that will be migrating to itself, so no pages need move. 1041 * 1042 * If no bits are left in 'tmp', or if all remaining bits left 1043 * in 'tmp' correspond to the same bit in 'to', return false 1044 * (nothing left to migrate). 1045 * 1046 * This lets us pick a pair of nodes to migrate between, such that 1047 * if possible the dest node is not already occupied by some other 1048 * source node, minimizing the risk of overloading the memory on a 1049 * node that would happen if we migrated incoming memory to a node 1050 * before migrating outgoing memory source that same node. 1051 * 1052 * A single scan of tmp is sufficient. As we go, we remember the 1053 * most recent <s, d> pair that moved (s != d). If we find a pair 1054 * that not only moved, but what's better, moved to an empty slot 1055 * (d is not set in tmp), then we break out then, with that pair. 1056 * Otherwise when we finish scanning from_tmp, we at least have the 1057 * most recent <s, d> pair that moved. If we get all the way through 1058 * the scan of tmp without finding any node that moved, much less 1059 * moved to an empty node, then there is nothing left worth migrating. 1060 */ 1061 1062 tmp = *from; 1063 while (!nodes_empty(tmp)) { 1064 int s,d; 1065 int source = NUMA_NO_NODE; 1066 int dest = 0; 1067 1068 for_each_node_mask(s, tmp) { 1069 1070 /* 1071 * do_migrate_pages() tries to maintain the relative 1072 * node relationship of the pages established between 1073 * threads and memory areas. 1074 * 1075 * However if the number of source nodes is not equal to 1076 * the number of destination nodes we can not preserve 1077 * this node relative relationship. In that case, skip 1078 * copying memory from a node that is in the destination 1079 * mask. 1080 * 1081 * Example: [2,3,4] -> [3,4,5] moves everything. 1082 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1083 */ 1084 1085 if ((nodes_weight(*from) != nodes_weight(*to)) && 1086 (node_isset(s, *to))) 1087 continue; 1088 1089 d = node_remap(s, *from, *to); 1090 if (s == d) 1091 continue; 1092 1093 source = s; /* Node moved. Memorize */ 1094 dest = d; 1095 1096 /* dest not in remaining from nodes? */ 1097 if (!node_isset(dest, tmp)) 1098 break; 1099 } 1100 if (source == NUMA_NO_NODE) 1101 break; 1102 1103 node_clear(source, tmp); 1104 err = migrate_to_node(mm, source, dest, flags); 1105 if (err > 0) 1106 busy += err; 1107 if (err < 0) 1108 break; 1109 } 1110 up_read(&mm->mmap_sem); 1111 if (err < 0) 1112 return err; 1113 return busy; 1114 1115 } 1116 1117 /* 1118 * Allocate a new page for page migration based on vma policy. 1119 * Start by assuming the page is mapped by the same vma as contains @start. 1120 * Search forward from there, if not. N.B., this assumes that the 1121 * list of pages handed to migrate_pages()--which is how we get here-- 1122 * is in virtual address order. 1123 */ 1124 static struct page *new_page(struct page *page, unsigned long start, int **x) 1125 { 1126 struct vm_area_struct *vma; 1127 unsigned long uninitialized_var(address); 1128 1129 vma = find_vma(current->mm, start); 1130 while (vma) { 1131 address = page_address_in_vma(page, vma); 1132 if (address != -EFAULT) 1133 break; 1134 vma = vma->vm_next; 1135 } 1136 1137 if (PageHuge(page)) { 1138 BUG_ON(!vma); 1139 return alloc_huge_page_noerr(vma, address, 1); 1140 } 1141 /* 1142 * if !vma, alloc_page_vma() will use task or system default policy 1143 */ 1144 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1145 } 1146 #else 1147 1148 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1149 unsigned long flags) 1150 { 1151 } 1152 1153 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1154 const nodemask_t *to, int flags) 1155 { 1156 return -ENOSYS; 1157 } 1158 1159 static struct page *new_page(struct page *page, unsigned long start, int **x) 1160 { 1161 return NULL; 1162 } 1163 #endif 1164 1165 static long do_mbind(unsigned long start, unsigned long len, 1166 unsigned short mode, unsigned short mode_flags, 1167 nodemask_t *nmask, unsigned long flags) 1168 { 1169 struct mm_struct *mm = current->mm; 1170 struct mempolicy *new; 1171 unsigned long end; 1172 int err; 1173 LIST_HEAD(pagelist); 1174 1175 if (flags & ~(unsigned long)MPOL_MF_VALID) 1176 return -EINVAL; 1177 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1178 return -EPERM; 1179 1180 if (start & ~PAGE_MASK) 1181 return -EINVAL; 1182 1183 if (mode == MPOL_DEFAULT) 1184 flags &= ~MPOL_MF_STRICT; 1185 1186 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1187 end = start + len; 1188 1189 if (end < start) 1190 return -EINVAL; 1191 if (end == start) 1192 return 0; 1193 1194 new = mpol_new(mode, mode_flags, nmask); 1195 if (IS_ERR(new)) 1196 return PTR_ERR(new); 1197 1198 if (flags & MPOL_MF_LAZY) 1199 new->flags |= MPOL_F_MOF; 1200 1201 /* 1202 * If we are using the default policy then operation 1203 * on discontinuous address spaces is okay after all 1204 */ 1205 if (!new) 1206 flags |= MPOL_MF_DISCONTIG_OK; 1207 1208 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1209 start, start + len, mode, mode_flags, 1210 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1211 1212 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1213 1214 err = migrate_prep(); 1215 if (err) 1216 goto mpol_out; 1217 } 1218 { 1219 NODEMASK_SCRATCH(scratch); 1220 if (scratch) { 1221 down_write(&mm->mmap_sem); 1222 task_lock(current); 1223 err = mpol_set_nodemask(new, nmask, scratch); 1224 task_unlock(current); 1225 if (err) 1226 up_write(&mm->mmap_sem); 1227 } else 1228 err = -ENOMEM; 1229 NODEMASK_SCRATCH_FREE(scratch); 1230 } 1231 if (err) 1232 goto mpol_out; 1233 1234 err = queue_pages_range(mm, start, end, nmask, 1235 flags | MPOL_MF_INVERT, &pagelist); 1236 if (!err) 1237 err = mbind_range(mm, start, end, new); 1238 1239 if (!err) { 1240 int nr_failed = 0; 1241 1242 if (!list_empty(&pagelist)) { 1243 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1244 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1245 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1246 if (nr_failed) 1247 putback_movable_pages(&pagelist); 1248 } 1249 1250 if (nr_failed && (flags & MPOL_MF_STRICT)) 1251 err = -EIO; 1252 } else 1253 putback_movable_pages(&pagelist); 1254 1255 up_write(&mm->mmap_sem); 1256 mpol_out: 1257 mpol_put(new); 1258 return err; 1259 } 1260 1261 /* 1262 * User space interface with variable sized bitmaps for nodelists. 1263 */ 1264 1265 /* Copy a node mask from user space. */ 1266 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1267 unsigned long maxnode) 1268 { 1269 unsigned long k; 1270 unsigned long nlongs; 1271 unsigned long endmask; 1272 1273 --maxnode; 1274 nodes_clear(*nodes); 1275 if (maxnode == 0 || !nmask) 1276 return 0; 1277 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1278 return -EINVAL; 1279 1280 nlongs = BITS_TO_LONGS(maxnode); 1281 if ((maxnode % BITS_PER_LONG) == 0) 1282 endmask = ~0UL; 1283 else 1284 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1285 1286 /* When the user specified more nodes than supported just check 1287 if the non supported part is all zero. */ 1288 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1289 if (nlongs > PAGE_SIZE/sizeof(long)) 1290 return -EINVAL; 1291 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1292 unsigned long t; 1293 if (get_user(t, nmask + k)) 1294 return -EFAULT; 1295 if (k == nlongs - 1) { 1296 if (t & endmask) 1297 return -EINVAL; 1298 } else if (t) 1299 return -EINVAL; 1300 } 1301 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1302 endmask = ~0UL; 1303 } 1304 1305 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1306 return -EFAULT; 1307 nodes_addr(*nodes)[nlongs-1] &= endmask; 1308 return 0; 1309 } 1310 1311 /* Copy a kernel node mask to user space */ 1312 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1313 nodemask_t *nodes) 1314 { 1315 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1316 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1317 1318 if (copy > nbytes) { 1319 if (copy > PAGE_SIZE) 1320 return -EINVAL; 1321 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1322 return -EFAULT; 1323 copy = nbytes; 1324 } 1325 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1326 } 1327 1328 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1329 unsigned long, mode, const unsigned long __user *, nmask, 1330 unsigned long, maxnode, unsigned, flags) 1331 { 1332 nodemask_t nodes; 1333 int err; 1334 unsigned short mode_flags; 1335 1336 mode_flags = mode & MPOL_MODE_FLAGS; 1337 mode &= ~MPOL_MODE_FLAGS; 1338 if (mode >= MPOL_MAX) 1339 return -EINVAL; 1340 if ((mode_flags & MPOL_F_STATIC_NODES) && 1341 (mode_flags & MPOL_F_RELATIVE_NODES)) 1342 return -EINVAL; 1343 err = get_nodes(&nodes, nmask, maxnode); 1344 if (err) 1345 return err; 1346 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1347 } 1348 1349 /* Set the process memory policy */ 1350 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1351 unsigned long, maxnode) 1352 { 1353 int err; 1354 nodemask_t nodes; 1355 unsigned short flags; 1356 1357 flags = mode & MPOL_MODE_FLAGS; 1358 mode &= ~MPOL_MODE_FLAGS; 1359 if ((unsigned int)mode >= MPOL_MAX) 1360 return -EINVAL; 1361 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1362 return -EINVAL; 1363 err = get_nodes(&nodes, nmask, maxnode); 1364 if (err) 1365 return err; 1366 return do_set_mempolicy(mode, flags, &nodes); 1367 } 1368 1369 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1370 const unsigned long __user *, old_nodes, 1371 const unsigned long __user *, new_nodes) 1372 { 1373 const struct cred *cred = current_cred(), *tcred; 1374 struct mm_struct *mm = NULL; 1375 struct task_struct *task; 1376 nodemask_t task_nodes; 1377 int err; 1378 nodemask_t *old; 1379 nodemask_t *new; 1380 NODEMASK_SCRATCH(scratch); 1381 1382 if (!scratch) 1383 return -ENOMEM; 1384 1385 old = &scratch->mask1; 1386 new = &scratch->mask2; 1387 1388 err = get_nodes(old, old_nodes, maxnode); 1389 if (err) 1390 goto out; 1391 1392 err = get_nodes(new, new_nodes, maxnode); 1393 if (err) 1394 goto out; 1395 1396 /* Find the mm_struct */ 1397 rcu_read_lock(); 1398 task = pid ? find_task_by_vpid(pid) : current; 1399 if (!task) { 1400 rcu_read_unlock(); 1401 err = -ESRCH; 1402 goto out; 1403 } 1404 get_task_struct(task); 1405 1406 err = -EINVAL; 1407 1408 /* 1409 * Check if this process has the right to modify the specified 1410 * process. The right exists if the process has administrative 1411 * capabilities, superuser privileges or the same 1412 * userid as the target process. 1413 */ 1414 tcred = __task_cred(task); 1415 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1416 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1417 !capable(CAP_SYS_NICE)) { 1418 rcu_read_unlock(); 1419 err = -EPERM; 1420 goto out_put; 1421 } 1422 rcu_read_unlock(); 1423 1424 task_nodes = cpuset_mems_allowed(task); 1425 /* Is the user allowed to access the target nodes? */ 1426 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1427 err = -EPERM; 1428 goto out_put; 1429 } 1430 1431 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1432 err = -EINVAL; 1433 goto out_put; 1434 } 1435 1436 err = security_task_movememory(task); 1437 if (err) 1438 goto out_put; 1439 1440 mm = get_task_mm(task); 1441 put_task_struct(task); 1442 1443 if (!mm) { 1444 err = -EINVAL; 1445 goto out; 1446 } 1447 1448 err = do_migrate_pages(mm, old, new, 1449 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1450 1451 mmput(mm); 1452 out: 1453 NODEMASK_SCRATCH_FREE(scratch); 1454 1455 return err; 1456 1457 out_put: 1458 put_task_struct(task); 1459 goto out; 1460 1461 } 1462 1463 1464 /* Retrieve NUMA policy */ 1465 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1466 unsigned long __user *, nmask, unsigned long, maxnode, 1467 unsigned long, addr, unsigned long, flags) 1468 { 1469 int err; 1470 int uninitialized_var(pval); 1471 nodemask_t nodes; 1472 1473 if (nmask != NULL && maxnode < MAX_NUMNODES) 1474 return -EINVAL; 1475 1476 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1477 1478 if (err) 1479 return err; 1480 1481 if (policy && put_user(pval, policy)) 1482 return -EFAULT; 1483 1484 if (nmask) 1485 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1486 1487 return err; 1488 } 1489 1490 #ifdef CONFIG_COMPAT 1491 1492 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1493 compat_ulong_t __user *, nmask, 1494 compat_ulong_t, maxnode, 1495 compat_ulong_t, addr, compat_ulong_t, flags) 1496 { 1497 long err; 1498 unsigned long __user *nm = NULL; 1499 unsigned long nr_bits, alloc_size; 1500 DECLARE_BITMAP(bm, MAX_NUMNODES); 1501 1502 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1503 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1504 1505 if (nmask) 1506 nm = compat_alloc_user_space(alloc_size); 1507 1508 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1509 1510 if (!err && nmask) { 1511 unsigned long copy_size; 1512 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1513 err = copy_from_user(bm, nm, copy_size); 1514 /* ensure entire bitmap is zeroed */ 1515 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1516 err |= compat_put_bitmap(nmask, bm, nr_bits); 1517 } 1518 1519 return err; 1520 } 1521 1522 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1523 compat_ulong_t, maxnode) 1524 { 1525 long err = 0; 1526 unsigned long __user *nm = NULL; 1527 unsigned long nr_bits, alloc_size; 1528 DECLARE_BITMAP(bm, MAX_NUMNODES); 1529 1530 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1531 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1532 1533 if (nmask) { 1534 err = compat_get_bitmap(bm, nmask, nr_bits); 1535 nm = compat_alloc_user_space(alloc_size); 1536 err |= copy_to_user(nm, bm, alloc_size); 1537 } 1538 1539 if (err) 1540 return -EFAULT; 1541 1542 return sys_set_mempolicy(mode, nm, nr_bits+1); 1543 } 1544 1545 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1546 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1547 compat_ulong_t, maxnode, compat_ulong_t, flags) 1548 { 1549 long err = 0; 1550 unsigned long __user *nm = NULL; 1551 unsigned long nr_bits, alloc_size; 1552 nodemask_t bm; 1553 1554 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1555 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1556 1557 if (nmask) { 1558 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1559 nm = compat_alloc_user_space(alloc_size); 1560 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1561 } 1562 1563 if (err) 1564 return -EFAULT; 1565 1566 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1567 } 1568 1569 #endif 1570 1571 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1572 unsigned long addr) 1573 { 1574 struct mempolicy *pol = NULL; 1575 1576 if (vma) { 1577 if (vma->vm_ops && vma->vm_ops->get_policy) { 1578 pol = vma->vm_ops->get_policy(vma, addr); 1579 } else if (vma->vm_policy) { 1580 pol = vma->vm_policy; 1581 1582 /* 1583 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1584 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1585 * count on these policies which will be dropped by 1586 * mpol_cond_put() later 1587 */ 1588 if (mpol_needs_cond_ref(pol)) 1589 mpol_get(pol); 1590 } 1591 } 1592 1593 return pol; 1594 } 1595 1596 /* 1597 * get_vma_policy(@vma, @addr) 1598 * @vma: virtual memory area whose policy is sought 1599 * @addr: address in @vma for shared policy lookup 1600 * 1601 * Returns effective policy for a VMA at specified address. 1602 * Falls back to current->mempolicy or system default policy, as necessary. 1603 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1604 * count--added by the get_policy() vm_op, as appropriate--to protect against 1605 * freeing by another task. It is the caller's responsibility to free the 1606 * extra reference for shared policies. 1607 */ 1608 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1609 unsigned long addr) 1610 { 1611 struct mempolicy *pol = __get_vma_policy(vma, addr); 1612 1613 if (!pol) 1614 pol = get_task_policy(current); 1615 1616 return pol; 1617 } 1618 1619 bool vma_policy_mof(struct vm_area_struct *vma) 1620 { 1621 struct mempolicy *pol; 1622 1623 if (vma->vm_ops && vma->vm_ops->get_policy) { 1624 bool ret = false; 1625 1626 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1627 if (pol && (pol->flags & MPOL_F_MOF)) 1628 ret = true; 1629 mpol_cond_put(pol); 1630 1631 return ret; 1632 } 1633 1634 pol = vma->vm_policy; 1635 if (!pol) 1636 pol = get_task_policy(current); 1637 1638 return pol->flags & MPOL_F_MOF; 1639 } 1640 1641 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1642 { 1643 enum zone_type dynamic_policy_zone = policy_zone; 1644 1645 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1646 1647 /* 1648 * if policy->v.nodes has movable memory only, 1649 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1650 * 1651 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1652 * so if the following test faile, it implies 1653 * policy->v.nodes has movable memory only. 1654 */ 1655 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1656 dynamic_policy_zone = ZONE_MOVABLE; 1657 1658 return zone >= dynamic_policy_zone; 1659 } 1660 1661 /* 1662 * Return a nodemask representing a mempolicy for filtering nodes for 1663 * page allocation 1664 */ 1665 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1666 { 1667 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1668 if (unlikely(policy->mode == MPOL_BIND) && 1669 apply_policy_zone(policy, gfp_zone(gfp)) && 1670 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1671 return &policy->v.nodes; 1672 1673 return NULL; 1674 } 1675 1676 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1677 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1678 int nd) 1679 { 1680 switch (policy->mode) { 1681 case MPOL_PREFERRED: 1682 if (!(policy->flags & MPOL_F_LOCAL)) 1683 nd = policy->v.preferred_node; 1684 break; 1685 case MPOL_BIND: 1686 /* 1687 * Normally, MPOL_BIND allocations are node-local within the 1688 * allowed nodemask. However, if __GFP_THISNODE is set and the 1689 * current node isn't part of the mask, we use the zonelist for 1690 * the first node in the mask instead. 1691 */ 1692 if (unlikely(gfp & __GFP_THISNODE) && 1693 unlikely(!node_isset(nd, policy->v.nodes))) 1694 nd = first_node(policy->v.nodes); 1695 break; 1696 default: 1697 BUG(); 1698 } 1699 return node_zonelist(nd, gfp); 1700 } 1701 1702 /* Do dynamic interleaving for a process */ 1703 static unsigned interleave_nodes(struct mempolicy *policy) 1704 { 1705 unsigned nid, next; 1706 struct task_struct *me = current; 1707 1708 nid = me->il_next; 1709 next = next_node_in(nid, policy->v.nodes); 1710 if (next < MAX_NUMNODES) 1711 me->il_next = next; 1712 return nid; 1713 } 1714 1715 /* 1716 * Depending on the memory policy provide a node from which to allocate the 1717 * next slab entry. 1718 */ 1719 unsigned int mempolicy_slab_node(void) 1720 { 1721 struct mempolicy *policy; 1722 int node = numa_mem_id(); 1723 1724 if (in_interrupt()) 1725 return node; 1726 1727 policy = current->mempolicy; 1728 if (!policy || policy->flags & MPOL_F_LOCAL) 1729 return node; 1730 1731 switch (policy->mode) { 1732 case MPOL_PREFERRED: 1733 /* 1734 * handled MPOL_F_LOCAL above 1735 */ 1736 return policy->v.preferred_node; 1737 1738 case MPOL_INTERLEAVE: 1739 return interleave_nodes(policy); 1740 1741 case MPOL_BIND: { 1742 struct zoneref *z; 1743 1744 /* 1745 * Follow bind policy behavior and start allocation at the 1746 * first node. 1747 */ 1748 struct zonelist *zonelist; 1749 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1750 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1751 z = first_zones_zonelist(zonelist, highest_zoneidx, 1752 &policy->v.nodes); 1753 return z->zone ? z->zone->node : node; 1754 } 1755 1756 default: 1757 BUG(); 1758 } 1759 } 1760 1761 /* 1762 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1763 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1764 * number of present nodes. 1765 */ 1766 static unsigned offset_il_node(struct mempolicy *pol, 1767 struct vm_area_struct *vma, unsigned long n) 1768 { 1769 unsigned nnodes = nodes_weight(pol->v.nodes); 1770 unsigned target; 1771 int i; 1772 int nid; 1773 1774 if (!nnodes) 1775 return numa_node_id(); 1776 target = (unsigned int)n % nnodes; 1777 nid = first_node(pol->v.nodes); 1778 for (i = 0; i < target; i++) 1779 nid = next_node(nid, pol->v.nodes); 1780 return nid; 1781 } 1782 1783 /* Determine a node number for interleave */ 1784 static inline unsigned interleave_nid(struct mempolicy *pol, 1785 struct vm_area_struct *vma, unsigned long addr, int shift) 1786 { 1787 if (vma) { 1788 unsigned long off; 1789 1790 /* 1791 * for small pages, there is no difference between 1792 * shift and PAGE_SHIFT, so the bit-shift is safe. 1793 * for huge pages, since vm_pgoff is in units of small 1794 * pages, we need to shift off the always 0 bits to get 1795 * a useful offset. 1796 */ 1797 BUG_ON(shift < PAGE_SHIFT); 1798 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1799 off += (addr - vma->vm_start) >> shift; 1800 return offset_il_node(pol, vma, off); 1801 } else 1802 return interleave_nodes(pol); 1803 } 1804 1805 #ifdef CONFIG_HUGETLBFS 1806 /* 1807 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1808 * @vma: virtual memory area whose policy is sought 1809 * @addr: address in @vma for shared policy lookup and interleave policy 1810 * @gfp_flags: for requested zone 1811 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1812 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1813 * 1814 * Returns a zonelist suitable for a huge page allocation and a pointer 1815 * to the struct mempolicy for conditional unref after allocation. 1816 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1817 * @nodemask for filtering the zonelist. 1818 * 1819 * Must be protected by read_mems_allowed_begin() 1820 */ 1821 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1822 gfp_t gfp_flags, struct mempolicy **mpol, 1823 nodemask_t **nodemask) 1824 { 1825 struct zonelist *zl; 1826 1827 *mpol = get_vma_policy(vma, addr); 1828 *nodemask = NULL; /* assume !MPOL_BIND */ 1829 1830 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1831 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1832 huge_page_shift(hstate_vma(vma))), gfp_flags); 1833 } else { 1834 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1835 if ((*mpol)->mode == MPOL_BIND) 1836 *nodemask = &(*mpol)->v.nodes; 1837 } 1838 return zl; 1839 } 1840 1841 /* 1842 * init_nodemask_of_mempolicy 1843 * 1844 * If the current task's mempolicy is "default" [NULL], return 'false' 1845 * to indicate default policy. Otherwise, extract the policy nodemask 1846 * for 'bind' or 'interleave' policy into the argument nodemask, or 1847 * initialize the argument nodemask to contain the single node for 1848 * 'preferred' or 'local' policy and return 'true' to indicate presence 1849 * of non-default mempolicy. 1850 * 1851 * We don't bother with reference counting the mempolicy [mpol_get/put] 1852 * because the current task is examining it's own mempolicy and a task's 1853 * mempolicy is only ever changed by the task itself. 1854 * 1855 * N.B., it is the caller's responsibility to free a returned nodemask. 1856 */ 1857 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1858 { 1859 struct mempolicy *mempolicy; 1860 int nid; 1861 1862 if (!(mask && current->mempolicy)) 1863 return false; 1864 1865 task_lock(current); 1866 mempolicy = current->mempolicy; 1867 switch (mempolicy->mode) { 1868 case MPOL_PREFERRED: 1869 if (mempolicy->flags & MPOL_F_LOCAL) 1870 nid = numa_node_id(); 1871 else 1872 nid = mempolicy->v.preferred_node; 1873 init_nodemask_of_node(mask, nid); 1874 break; 1875 1876 case MPOL_BIND: 1877 /* Fall through */ 1878 case MPOL_INTERLEAVE: 1879 *mask = mempolicy->v.nodes; 1880 break; 1881 1882 default: 1883 BUG(); 1884 } 1885 task_unlock(current); 1886 1887 return true; 1888 } 1889 #endif 1890 1891 /* 1892 * mempolicy_nodemask_intersects 1893 * 1894 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1895 * policy. Otherwise, check for intersection between mask and the policy 1896 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1897 * policy, always return true since it may allocate elsewhere on fallback. 1898 * 1899 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1900 */ 1901 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1902 const nodemask_t *mask) 1903 { 1904 struct mempolicy *mempolicy; 1905 bool ret = true; 1906 1907 if (!mask) 1908 return ret; 1909 task_lock(tsk); 1910 mempolicy = tsk->mempolicy; 1911 if (!mempolicy) 1912 goto out; 1913 1914 switch (mempolicy->mode) { 1915 case MPOL_PREFERRED: 1916 /* 1917 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1918 * allocate from, they may fallback to other nodes when oom. 1919 * Thus, it's possible for tsk to have allocated memory from 1920 * nodes in mask. 1921 */ 1922 break; 1923 case MPOL_BIND: 1924 case MPOL_INTERLEAVE: 1925 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1926 break; 1927 default: 1928 BUG(); 1929 } 1930 out: 1931 task_unlock(tsk); 1932 return ret; 1933 } 1934 1935 /* Allocate a page in interleaved policy. 1936 Own path because it needs to do special accounting. */ 1937 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1938 unsigned nid) 1939 { 1940 struct zonelist *zl; 1941 struct page *page; 1942 1943 zl = node_zonelist(nid, gfp); 1944 page = __alloc_pages(gfp, order, zl); 1945 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1946 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1947 return page; 1948 } 1949 1950 /** 1951 * alloc_pages_vma - Allocate a page for a VMA. 1952 * 1953 * @gfp: 1954 * %GFP_USER user allocation. 1955 * %GFP_KERNEL kernel allocations, 1956 * %GFP_HIGHMEM highmem/user allocations, 1957 * %GFP_FS allocation should not call back into a file system. 1958 * %GFP_ATOMIC don't sleep. 1959 * 1960 * @order:Order of the GFP allocation. 1961 * @vma: Pointer to VMA or NULL if not available. 1962 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1963 * @node: Which node to prefer for allocation (modulo policy). 1964 * @hugepage: for hugepages try only the preferred node if possible 1965 * 1966 * This function allocates a page from the kernel page pool and applies 1967 * a NUMA policy associated with the VMA or the current process. 1968 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1969 * mm_struct of the VMA to prevent it from going away. Should be used for 1970 * all allocations for pages that will be mapped into user space. Returns 1971 * NULL when no page can be allocated. 1972 */ 1973 struct page * 1974 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1975 unsigned long addr, int node, bool hugepage) 1976 { 1977 struct mempolicy *pol; 1978 struct page *page; 1979 unsigned int cpuset_mems_cookie; 1980 struct zonelist *zl; 1981 nodemask_t *nmask; 1982 1983 retry_cpuset: 1984 pol = get_vma_policy(vma, addr); 1985 cpuset_mems_cookie = read_mems_allowed_begin(); 1986 1987 if (pol->mode == MPOL_INTERLEAVE) { 1988 unsigned nid; 1989 1990 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1991 mpol_cond_put(pol); 1992 page = alloc_page_interleave(gfp, order, nid); 1993 goto out; 1994 } 1995 1996 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1997 int hpage_node = node; 1998 1999 /* 2000 * For hugepage allocation and non-interleave policy which 2001 * allows the current node (or other explicitly preferred 2002 * node) we only try to allocate from the current/preferred 2003 * node and don't fall back to other nodes, as the cost of 2004 * remote accesses would likely offset THP benefits. 2005 * 2006 * If the policy is interleave, or does not allow the current 2007 * node in its nodemask, we allocate the standard way. 2008 */ 2009 if (pol->mode == MPOL_PREFERRED && 2010 !(pol->flags & MPOL_F_LOCAL)) 2011 hpage_node = pol->v.preferred_node; 2012 2013 nmask = policy_nodemask(gfp, pol); 2014 if (!nmask || node_isset(hpage_node, *nmask)) { 2015 mpol_cond_put(pol); 2016 page = __alloc_pages_node(hpage_node, 2017 gfp | __GFP_THISNODE, order); 2018 goto out; 2019 } 2020 } 2021 2022 nmask = policy_nodemask(gfp, pol); 2023 zl = policy_zonelist(gfp, pol, node); 2024 mpol_cond_put(pol); 2025 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2026 out: 2027 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2028 goto retry_cpuset; 2029 return page; 2030 } 2031 2032 /** 2033 * alloc_pages_current - Allocate pages. 2034 * 2035 * @gfp: 2036 * %GFP_USER user allocation, 2037 * %GFP_KERNEL kernel allocation, 2038 * %GFP_HIGHMEM highmem allocation, 2039 * %GFP_FS don't call back into a file system. 2040 * %GFP_ATOMIC don't sleep. 2041 * @order: Power of two of allocation size in pages. 0 is a single page. 2042 * 2043 * Allocate a page from the kernel page pool. When not in 2044 * interrupt context and apply the current process NUMA policy. 2045 * Returns NULL when no page can be allocated. 2046 * 2047 * Don't call cpuset_update_task_memory_state() unless 2048 * 1) it's ok to take cpuset_sem (can WAIT), and 2049 * 2) allocating for current task (not interrupt). 2050 */ 2051 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2052 { 2053 struct mempolicy *pol = &default_policy; 2054 struct page *page; 2055 unsigned int cpuset_mems_cookie; 2056 2057 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2058 pol = get_task_policy(current); 2059 2060 retry_cpuset: 2061 cpuset_mems_cookie = read_mems_allowed_begin(); 2062 2063 /* 2064 * No reference counting needed for current->mempolicy 2065 * nor system default_policy 2066 */ 2067 if (pol->mode == MPOL_INTERLEAVE) 2068 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2069 else 2070 page = __alloc_pages_nodemask(gfp, order, 2071 policy_zonelist(gfp, pol, numa_node_id()), 2072 policy_nodemask(gfp, pol)); 2073 2074 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2075 goto retry_cpuset; 2076 2077 return page; 2078 } 2079 EXPORT_SYMBOL(alloc_pages_current); 2080 2081 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2082 { 2083 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2084 2085 if (IS_ERR(pol)) 2086 return PTR_ERR(pol); 2087 dst->vm_policy = pol; 2088 return 0; 2089 } 2090 2091 /* 2092 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2093 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2094 * with the mems_allowed returned by cpuset_mems_allowed(). This 2095 * keeps mempolicies cpuset relative after its cpuset moves. See 2096 * further kernel/cpuset.c update_nodemask(). 2097 * 2098 * current's mempolicy may be rebinded by the other task(the task that changes 2099 * cpuset's mems), so we needn't do rebind work for current task. 2100 */ 2101 2102 /* Slow path of a mempolicy duplicate */ 2103 struct mempolicy *__mpol_dup(struct mempolicy *old) 2104 { 2105 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2106 2107 if (!new) 2108 return ERR_PTR(-ENOMEM); 2109 2110 /* task's mempolicy is protected by alloc_lock */ 2111 if (old == current->mempolicy) { 2112 task_lock(current); 2113 *new = *old; 2114 task_unlock(current); 2115 } else 2116 *new = *old; 2117 2118 if (current_cpuset_is_being_rebound()) { 2119 nodemask_t mems = cpuset_mems_allowed(current); 2120 if (new->flags & MPOL_F_REBINDING) 2121 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2122 else 2123 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2124 } 2125 atomic_set(&new->refcnt, 1); 2126 return new; 2127 } 2128 2129 /* Slow path of a mempolicy comparison */ 2130 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2131 { 2132 if (!a || !b) 2133 return false; 2134 if (a->mode != b->mode) 2135 return false; 2136 if (a->flags != b->flags) 2137 return false; 2138 if (mpol_store_user_nodemask(a)) 2139 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2140 return false; 2141 2142 switch (a->mode) { 2143 case MPOL_BIND: 2144 /* Fall through */ 2145 case MPOL_INTERLEAVE: 2146 return !!nodes_equal(a->v.nodes, b->v.nodes); 2147 case MPOL_PREFERRED: 2148 return a->v.preferred_node == b->v.preferred_node; 2149 default: 2150 BUG(); 2151 return false; 2152 } 2153 } 2154 2155 /* 2156 * Shared memory backing store policy support. 2157 * 2158 * Remember policies even when nobody has shared memory mapped. 2159 * The policies are kept in Red-Black tree linked from the inode. 2160 * They are protected by the sp->lock rwlock, which should be held 2161 * for any accesses to the tree. 2162 */ 2163 2164 /* 2165 * lookup first element intersecting start-end. Caller holds sp->lock for 2166 * reading or for writing 2167 */ 2168 static struct sp_node * 2169 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2170 { 2171 struct rb_node *n = sp->root.rb_node; 2172 2173 while (n) { 2174 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2175 2176 if (start >= p->end) 2177 n = n->rb_right; 2178 else if (end <= p->start) 2179 n = n->rb_left; 2180 else 2181 break; 2182 } 2183 if (!n) 2184 return NULL; 2185 for (;;) { 2186 struct sp_node *w = NULL; 2187 struct rb_node *prev = rb_prev(n); 2188 if (!prev) 2189 break; 2190 w = rb_entry(prev, struct sp_node, nd); 2191 if (w->end <= start) 2192 break; 2193 n = prev; 2194 } 2195 return rb_entry(n, struct sp_node, nd); 2196 } 2197 2198 /* 2199 * Insert a new shared policy into the list. Caller holds sp->lock for 2200 * writing. 2201 */ 2202 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2203 { 2204 struct rb_node **p = &sp->root.rb_node; 2205 struct rb_node *parent = NULL; 2206 struct sp_node *nd; 2207 2208 while (*p) { 2209 parent = *p; 2210 nd = rb_entry(parent, struct sp_node, nd); 2211 if (new->start < nd->start) 2212 p = &(*p)->rb_left; 2213 else if (new->end > nd->end) 2214 p = &(*p)->rb_right; 2215 else 2216 BUG(); 2217 } 2218 rb_link_node(&new->nd, parent, p); 2219 rb_insert_color(&new->nd, &sp->root); 2220 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2221 new->policy ? new->policy->mode : 0); 2222 } 2223 2224 /* Find shared policy intersecting idx */ 2225 struct mempolicy * 2226 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2227 { 2228 struct mempolicy *pol = NULL; 2229 struct sp_node *sn; 2230 2231 if (!sp->root.rb_node) 2232 return NULL; 2233 read_lock(&sp->lock); 2234 sn = sp_lookup(sp, idx, idx+1); 2235 if (sn) { 2236 mpol_get(sn->policy); 2237 pol = sn->policy; 2238 } 2239 read_unlock(&sp->lock); 2240 return pol; 2241 } 2242 2243 static void sp_free(struct sp_node *n) 2244 { 2245 mpol_put(n->policy); 2246 kmem_cache_free(sn_cache, n); 2247 } 2248 2249 /** 2250 * mpol_misplaced - check whether current page node is valid in policy 2251 * 2252 * @page: page to be checked 2253 * @vma: vm area where page mapped 2254 * @addr: virtual address where page mapped 2255 * 2256 * Lookup current policy node id for vma,addr and "compare to" page's 2257 * node id. 2258 * 2259 * Returns: 2260 * -1 - not misplaced, page is in the right node 2261 * node - node id where the page should be 2262 * 2263 * Policy determination "mimics" alloc_page_vma(). 2264 * Called from fault path where we know the vma and faulting address. 2265 */ 2266 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2267 { 2268 struct mempolicy *pol; 2269 struct zoneref *z; 2270 int curnid = page_to_nid(page); 2271 unsigned long pgoff; 2272 int thiscpu = raw_smp_processor_id(); 2273 int thisnid = cpu_to_node(thiscpu); 2274 int polnid = -1; 2275 int ret = -1; 2276 2277 BUG_ON(!vma); 2278 2279 pol = get_vma_policy(vma, addr); 2280 if (!(pol->flags & MPOL_F_MOF)) 2281 goto out; 2282 2283 switch (pol->mode) { 2284 case MPOL_INTERLEAVE: 2285 BUG_ON(addr >= vma->vm_end); 2286 BUG_ON(addr < vma->vm_start); 2287 2288 pgoff = vma->vm_pgoff; 2289 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2290 polnid = offset_il_node(pol, vma, pgoff); 2291 break; 2292 2293 case MPOL_PREFERRED: 2294 if (pol->flags & MPOL_F_LOCAL) 2295 polnid = numa_node_id(); 2296 else 2297 polnid = pol->v.preferred_node; 2298 break; 2299 2300 case MPOL_BIND: 2301 2302 /* 2303 * allows binding to multiple nodes. 2304 * use current page if in policy nodemask, 2305 * else select nearest allowed node, if any. 2306 * If no allowed nodes, use current [!misplaced]. 2307 */ 2308 if (node_isset(curnid, pol->v.nodes)) 2309 goto out; 2310 z = first_zones_zonelist( 2311 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2312 gfp_zone(GFP_HIGHUSER), 2313 &pol->v.nodes); 2314 polnid = z->zone->node; 2315 break; 2316 2317 default: 2318 BUG(); 2319 } 2320 2321 /* Migrate the page towards the node whose CPU is referencing it */ 2322 if (pol->flags & MPOL_F_MORON) { 2323 polnid = thisnid; 2324 2325 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2326 goto out; 2327 } 2328 2329 if (curnid != polnid) 2330 ret = polnid; 2331 out: 2332 mpol_cond_put(pol); 2333 2334 return ret; 2335 } 2336 2337 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2338 { 2339 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2340 rb_erase(&n->nd, &sp->root); 2341 sp_free(n); 2342 } 2343 2344 static void sp_node_init(struct sp_node *node, unsigned long start, 2345 unsigned long end, struct mempolicy *pol) 2346 { 2347 node->start = start; 2348 node->end = end; 2349 node->policy = pol; 2350 } 2351 2352 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2353 struct mempolicy *pol) 2354 { 2355 struct sp_node *n; 2356 struct mempolicy *newpol; 2357 2358 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2359 if (!n) 2360 return NULL; 2361 2362 newpol = mpol_dup(pol); 2363 if (IS_ERR(newpol)) { 2364 kmem_cache_free(sn_cache, n); 2365 return NULL; 2366 } 2367 newpol->flags |= MPOL_F_SHARED; 2368 sp_node_init(n, start, end, newpol); 2369 2370 return n; 2371 } 2372 2373 /* Replace a policy range. */ 2374 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2375 unsigned long end, struct sp_node *new) 2376 { 2377 struct sp_node *n; 2378 struct sp_node *n_new = NULL; 2379 struct mempolicy *mpol_new = NULL; 2380 int ret = 0; 2381 2382 restart: 2383 write_lock(&sp->lock); 2384 n = sp_lookup(sp, start, end); 2385 /* Take care of old policies in the same range. */ 2386 while (n && n->start < end) { 2387 struct rb_node *next = rb_next(&n->nd); 2388 if (n->start >= start) { 2389 if (n->end <= end) 2390 sp_delete(sp, n); 2391 else 2392 n->start = end; 2393 } else { 2394 /* Old policy spanning whole new range. */ 2395 if (n->end > end) { 2396 if (!n_new) 2397 goto alloc_new; 2398 2399 *mpol_new = *n->policy; 2400 atomic_set(&mpol_new->refcnt, 1); 2401 sp_node_init(n_new, end, n->end, mpol_new); 2402 n->end = start; 2403 sp_insert(sp, n_new); 2404 n_new = NULL; 2405 mpol_new = NULL; 2406 break; 2407 } else 2408 n->end = start; 2409 } 2410 if (!next) 2411 break; 2412 n = rb_entry(next, struct sp_node, nd); 2413 } 2414 if (new) 2415 sp_insert(sp, new); 2416 write_unlock(&sp->lock); 2417 ret = 0; 2418 2419 err_out: 2420 if (mpol_new) 2421 mpol_put(mpol_new); 2422 if (n_new) 2423 kmem_cache_free(sn_cache, n_new); 2424 2425 return ret; 2426 2427 alloc_new: 2428 write_unlock(&sp->lock); 2429 ret = -ENOMEM; 2430 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2431 if (!n_new) 2432 goto err_out; 2433 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2434 if (!mpol_new) 2435 goto err_out; 2436 goto restart; 2437 } 2438 2439 /** 2440 * mpol_shared_policy_init - initialize shared policy for inode 2441 * @sp: pointer to inode shared policy 2442 * @mpol: struct mempolicy to install 2443 * 2444 * Install non-NULL @mpol in inode's shared policy rb-tree. 2445 * On entry, the current task has a reference on a non-NULL @mpol. 2446 * This must be released on exit. 2447 * This is called at get_inode() calls and we can use GFP_KERNEL. 2448 */ 2449 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2450 { 2451 int ret; 2452 2453 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2454 rwlock_init(&sp->lock); 2455 2456 if (mpol) { 2457 struct vm_area_struct pvma; 2458 struct mempolicy *new; 2459 NODEMASK_SCRATCH(scratch); 2460 2461 if (!scratch) 2462 goto put_mpol; 2463 /* contextualize the tmpfs mount point mempolicy */ 2464 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2465 if (IS_ERR(new)) 2466 goto free_scratch; /* no valid nodemask intersection */ 2467 2468 task_lock(current); 2469 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2470 task_unlock(current); 2471 if (ret) 2472 goto put_new; 2473 2474 /* Create pseudo-vma that contains just the policy */ 2475 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2476 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2477 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2478 2479 put_new: 2480 mpol_put(new); /* drop initial ref */ 2481 free_scratch: 2482 NODEMASK_SCRATCH_FREE(scratch); 2483 put_mpol: 2484 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2485 } 2486 } 2487 2488 int mpol_set_shared_policy(struct shared_policy *info, 2489 struct vm_area_struct *vma, struct mempolicy *npol) 2490 { 2491 int err; 2492 struct sp_node *new = NULL; 2493 unsigned long sz = vma_pages(vma); 2494 2495 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2496 vma->vm_pgoff, 2497 sz, npol ? npol->mode : -1, 2498 npol ? npol->flags : -1, 2499 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2500 2501 if (npol) { 2502 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2503 if (!new) 2504 return -ENOMEM; 2505 } 2506 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2507 if (err && new) 2508 sp_free(new); 2509 return err; 2510 } 2511 2512 /* Free a backing policy store on inode delete. */ 2513 void mpol_free_shared_policy(struct shared_policy *p) 2514 { 2515 struct sp_node *n; 2516 struct rb_node *next; 2517 2518 if (!p->root.rb_node) 2519 return; 2520 write_lock(&p->lock); 2521 next = rb_first(&p->root); 2522 while (next) { 2523 n = rb_entry(next, struct sp_node, nd); 2524 next = rb_next(&n->nd); 2525 sp_delete(p, n); 2526 } 2527 write_unlock(&p->lock); 2528 } 2529 2530 #ifdef CONFIG_NUMA_BALANCING 2531 static int __initdata numabalancing_override; 2532 2533 static void __init check_numabalancing_enable(void) 2534 { 2535 bool numabalancing_default = false; 2536 2537 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2538 numabalancing_default = true; 2539 2540 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2541 if (numabalancing_override) 2542 set_numabalancing_state(numabalancing_override == 1); 2543 2544 if (num_online_nodes() > 1 && !numabalancing_override) { 2545 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2546 numabalancing_default ? "Enabling" : "Disabling"); 2547 set_numabalancing_state(numabalancing_default); 2548 } 2549 } 2550 2551 static int __init setup_numabalancing(char *str) 2552 { 2553 int ret = 0; 2554 if (!str) 2555 goto out; 2556 2557 if (!strcmp(str, "enable")) { 2558 numabalancing_override = 1; 2559 ret = 1; 2560 } else if (!strcmp(str, "disable")) { 2561 numabalancing_override = -1; 2562 ret = 1; 2563 } 2564 out: 2565 if (!ret) 2566 pr_warn("Unable to parse numa_balancing=\n"); 2567 2568 return ret; 2569 } 2570 __setup("numa_balancing=", setup_numabalancing); 2571 #else 2572 static inline void __init check_numabalancing_enable(void) 2573 { 2574 } 2575 #endif /* CONFIG_NUMA_BALANCING */ 2576 2577 /* assumes fs == KERNEL_DS */ 2578 void __init numa_policy_init(void) 2579 { 2580 nodemask_t interleave_nodes; 2581 unsigned long largest = 0; 2582 int nid, prefer = 0; 2583 2584 policy_cache = kmem_cache_create("numa_policy", 2585 sizeof(struct mempolicy), 2586 0, SLAB_PANIC, NULL); 2587 2588 sn_cache = kmem_cache_create("shared_policy_node", 2589 sizeof(struct sp_node), 2590 0, SLAB_PANIC, NULL); 2591 2592 for_each_node(nid) { 2593 preferred_node_policy[nid] = (struct mempolicy) { 2594 .refcnt = ATOMIC_INIT(1), 2595 .mode = MPOL_PREFERRED, 2596 .flags = MPOL_F_MOF | MPOL_F_MORON, 2597 .v = { .preferred_node = nid, }, 2598 }; 2599 } 2600 2601 /* 2602 * Set interleaving policy for system init. Interleaving is only 2603 * enabled across suitably sized nodes (default is >= 16MB), or 2604 * fall back to the largest node if they're all smaller. 2605 */ 2606 nodes_clear(interleave_nodes); 2607 for_each_node_state(nid, N_MEMORY) { 2608 unsigned long total_pages = node_present_pages(nid); 2609 2610 /* Preserve the largest node */ 2611 if (largest < total_pages) { 2612 largest = total_pages; 2613 prefer = nid; 2614 } 2615 2616 /* Interleave this node? */ 2617 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2618 node_set(nid, interleave_nodes); 2619 } 2620 2621 /* All too small, use the largest */ 2622 if (unlikely(nodes_empty(interleave_nodes))) 2623 node_set(prefer, interleave_nodes); 2624 2625 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2626 pr_err("%s: interleaving failed\n", __func__); 2627 2628 check_numabalancing_enable(); 2629 } 2630 2631 /* Reset policy of current process to default */ 2632 void numa_default_policy(void) 2633 { 2634 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2635 } 2636 2637 /* 2638 * Parse and format mempolicy from/to strings 2639 */ 2640 2641 /* 2642 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2643 */ 2644 static const char * const policy_modes[] = 2645 { 2646 [MPOL_DEFAULT] = "default", 2647 [MPOL_PREFERRED] = "prefer", 2648 [MPOL_BIND] = "bind", 2649 [MPOL_INTERLEAVE] = "interleave", 2650 [MPOL_LOCAL] = "local", 2651 }; 2652 2653 2654 #ifdef CONFIG_TMPFS 2655 /** 2656 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2657 * @str: string containing mempolicy to parse 2658 * @mpol: pointer to struct mempolicy pointer, returned on success. 2659 * 2660 * Format of input: 2661 * <mode>[=<flags>][:<nodelist>] 2662 * 2663 * On success, returns 0, else 1 2664 */ 2665 int mpol_parse_str(char *str, struct mempolicy **mpol) 2666 { 2667 struct mempolicy *new = NULL; 2668 unsigned short mode; 2669 unsigned short mode_flags; 2670 nodemask_t nodes; 2671 char *nodelist = strchr(str, ':'); 2672 char *flags = strchr(str, '='); 2673 int err = 1; 2674 2675 if (nodelist) { 2676 /* NUL-terminate mode or flags string */ 2677 *nodelist++ = '\0'; 2678 if (nodelist_parse(nodelist, nodes)) 2679 goto out; 2680 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2681 goto out; 2682 } else 2683 nodes_clear(nodes); 2684 2685 if (flags) 2686 *flags++ = '\0'; /* terminate mode string */ 2687 2688 for (mode = 0; mode < MPOL_MAX; mode++) { 2689 if (!strcmp(str, policy_modes[mode])) { 2690 break; 2691 } 2692 } 2693 if (mode >= MPOL_MAX) 2694 goto out; 2695 2696 switch (mode) { 2697 case MPOL_PREFERRED: 2698 /* 2699 * Insist on a nodelist of one node only 2700 */ 2701 if (nodelist) { 2702 char *rest = nodelist; 2703 while (isdigit(*rest)) 2704 rest++; 2705 if (*rest) 2706 goto out; 2707 } 2708 break; 2709 case MPOL_INTERLEAVE: 2710 /* 2711 * Default to online nodes with memory if no nodelist 2712 */ 2713 if (!nodelist) 2714 nodes = node_states[N_MEMORY]; 2715 break; 2716 case MPOL_LOCAL: 2717 /* 2718 * Don't allow a nodelist; mpol_new() checks flags 2719 */ 2720 if (nodelist) 2721 goto out; 2722 mode = MPOL_PREFERRED; 2723 break; 2724 case MPOL_DEFAULT: 2725 /* 2726 * Insist on a empty nodelist 2727 */ 2728 if (!nodelist) 2729 err = 0; 2730 goto out; 2731 case MPOL_BIND: 2732 /* 2733 * Insist on a nodelist 2734 */ 2735 if (!nodelist) 2736 goto out; 2737 } 2738 2739 mode_flags = 0; 2740 if (flags) { 2741 /* 2742 * Currently, we only support two mutually exclusive 2743 * mode flags. 2744 */ 2745 if (!strcmp(flags, "static")) 2746 mode_flags |= MPOL_F_STATIC_NODES; 2747 else if (!strcmp(flags, "relative")) 2748 mode_flags |= MPOL_F_RELATIVE_NODES; 2749 else 2750 goto out; 2751 } 2752 2753 new = mpol_new(mode, mode_flags, &nodes); 2754 if (IS_ERR(new)) 2755 goto out; 2756 2757 /* 2758 * Save nodes for mpol_to_str() to show the tmpfs mount options 2759 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2760 */ 2761 if (mode != MPOL_PREFERRED) 2762 new->v.nodes = nodes; 2763 else if (nodelist) 2764 new->v.preferred_node = first_node(nodes); 2765 else 2766 new->flags |= MPOL_F_LOCAL; 2767 2768 /* 2769 * Save nodes for contextualization: this will be used to "clone" 2770 * the mempolicy in a specific context [cpuset] at a later time. 2771 */ 2772 new->w.user_nodemask = nodes; 2773 2774 err = 0; 2775 2776 out: 2777 /* Restore string for error message */ 2778 if (nodelist) 2779 *--nodelist = ':'; 2780 if (flags) 2781 *--flags = '='; 2782 if (!err) 2783 *mpol = new; 2784 return err; 2785 } 2786 #endif /* CONFIG_TMPFS */ 2787 2788 /** 2789 * mpol_to_str - format a mempolicy structure for printing 2790 * @buffer: to contain formatted mempolicy string 2791 * @maxlen: length of @buffer 2792 * @pol: pointer to mempolicy to be formatted 2793 * 2794 * Convert @pol into a string. If @buffer is too short, truncate the string. 2795 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2796 * longest flag, "relative", and to display at least a few node ids. 2797 */ 2798 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2799 { 2800 char *p = buffer; 2801 nodemask_t nodes = NODE_MASK_NONE; 2802 unsigned short mode = MPOL_DEFAULT; 2803 unsigned short flags = 0; 2804 2805 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2806 mode = pol->mode; 2807 flags = pol->flags; 2808 } 2809 2810 switch (mode) { 2811 case MPOL_DEFAULT: 2812 break; 2813 case MPOL_PREFERRED: 2814 if (flags & MPOL_F_LOCAL) 2815 mode = MPOL_LOCAL; 2816 else 2817 node_set(pol->v.preferred_node, nodes); 2818 break; 2819 case MPOL_BIND: 2820 case MPOL_INTERLEAVE: 2821 nodes = pol->v.nodes; 2822 break; 2823 default: 2824 WARN_ON_ONCE(1); 2825 snprintf(p, maxlen, "unknown"); 2826 return; 2827 } 2828 2829 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2830 2831 if (flags & MPOL_MODE_FLAGS) { 2832 p += snprintf(p, buffer + maxlen - p, "="); 2833 2834 /* 2835 * Currently, the only defined flags are mutually exclusive 2836 */ 2837 if (flags & MPOL_F_STATIC_NODES) 2838 p += snprintf(p, buffer + maxlen - p, "static"); 2839 else if (flags & MPOL_F_RELATIVE_NODES) 2840 p += snprintf(p, buffer + maxlen - p, "relative"); 2841 } 2842 2843 if (!nodes_empty(nodes)) 2844 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2845 nodemask_pr_args(&nodes)); 2846 } 2847