xref: /openbmc/linux/mm/mempolicy.c (revision 7211ec63)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100 #include <linux/swapops.h>
101 
102 #include <asm/tlbflush.h>
103 #include <linux/uaccess.h>
104 
105 #include "internal.h"
106 
107 /* Internal flags */
108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
110 
111 static struct kmem_cache *policy_cache;
112 static struct kmem_cache *sn_cache;
113 
114 /* Highest zone. An specific allocation for a zone below that is not
115    policied. */
116 enum zone_type policy_zone = 0;
117 
118 /*
119  * run-time system-wide default policy => local allocation
120  */
121 static struct mempolicy default_policy = {
122 	.refcnt = ATOMIC_INIT(1), /* never free it */
123 	.mode = MPOL_PREFERRED,
124 	.flags = MPOL_F_LOCAL,
125 };
126 
127 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128 
129 struct mempolicy *get_task_policy(struct task_struct *p)
130 {
131 	struct mempolicy *pol = p->mempolicy;
132 	int node;
133 
134 	if (pol)
135 		return pol;
136 
137 	node = numa_node_id();
138 	if (node != NUMA_NO_NODE) {
139 		pol = &preferred_node_policy[node];
140 		/* preferred_node_policy is not initialised early in boot */
141 		if (pol->mode)
142 			return pol;
143 	}
144 
145 	return &default_policy;
146 }
147 
148 static const struct mempolicy_operations {
149 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
151 } mpol_ops[MPOL_MAX];
152 
153 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
154 {
155 	return pol->flags & MPOL_MODE_FLAGS;
156 }
157 
158 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
159 				   const nodemask_t *rel)
160 {
161 	nodemask_t tmp;
162 	nodes_fold(tmp, *orig, nodes_weight(*rel));
163 	nodes_onto(*ret, tmp, *rel);
164 }
165 
166 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 	if (nodes_empty(*nodes))
169 		return -EINVAL;
170 	pol->v.nodes = *nodes;
171 	return 0;
172 }
173 
174 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
175 {
176 	if (!nodes)
177 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
178 	else if (nodes_empty(*nodes))
179 		return -EINVAL;			/*  no allowed nodes */
180 	else
181 		pol->v.preferred_node = first_node(*nodes);
182 	return 0;
183 }
184 
185 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 	if (nodes_empty(*nodes))
188 		return -EINVAL;
189 	pol->v.nodes = *nodes;
190 	return 0;
191 }
192 
193 /*
194  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
195  * any, for the new policy.  mpol_new() has already validated the nodes
196  * parameter with respect to the policy mode and flags.  But, we need to
197  * handle an empty nodemask with MPOL_PREFERRED here.
198  *
199  * Must be called holding task's alloc_lock to protect task's mems_allowed
200  * and mempolicy.  May also be called holding the mmap_semaphore for write.
201  */
202 static int mpol_set_nodemask(struct mempolicy *pol,
203 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
204 {
205 	int ret;
206 
207 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
208 	if (pol == NULL)
209 		return 0;
210 	/* Check N_MEMORY */
211 	nodes_and(nsc->mask1,
212 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
213 
214 	VM_BUG_ON(!nodes);
215 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
216 		nodes = NULL;	/* explicit local allocation */
217 	else {
218 		if (pol->flags & MPOL_F_RELATIVE_NODES)
219 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
220 		else
221 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
222 
223 		if (mpol_store_user_nodemask(pol))
224 			pol->w.user_nodemask = *nodes;
225 		else
226 			pol->w.cpuset_mems_allowed =
227 						cpuset_current_mems_allowed;
228 	}
229 
230 	if (nodes)
231 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
232 	else
233 		ret = mpol_ops[pol->mode].create(pol, NULL);
234 	return ret;
235 }
236 
237 /*
238  * This function just creates a new policy, does some check and simple
239  * initialization. You must invoke mpol_set_nodemask() to set nodes.
240  */
241 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
242 				  nodemask_t *nodes)
243 {
244 	struct mempolicy *policy;
245 
246 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
247 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
248 
249 	if (mode == MPOL_DEFAULT) {
250 		if (nodes && !nodes_empty(*nodes))
251 			return ERR_PTR(-EINVAL);
252 		return NULL;
253 	}
254 	VM_BUG_ON(!nodes);
255 
256 	/*
257 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
258 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
259 	 * All other modes require a valid pointer to a non-empty nodemask.
260 	 */
261 	if (mode == MPOL_PREFERRED) {
262 		if (nodes_empty(*nodes)) {
263 			if (((flags & MPOL_F_STATIC_NODES) ||
264 			     (flags & MPOL_F_RELATIVE_NODES)))
265 				return ERR_PTR(-EINVAL);
266 		}
267 	} else if (mode == MPOL_LOCAL) {
268 		if (!nodes_empty(*nodes) ||
269 		    (flags & MPOL_F_STATIC_NODES) ||
270 		    (flags & MPOL_F_RELATIVE_NODES))
271 			return ERR_PTR(-EINVAL);
272 		mode = MPOL_PREFERRED;
273 	} else if (nodes_empty(*nodes))
274 		return ERR_PTR(-EINVAL);
275 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 	if (!policy)
277 		return ERR_PTR(-ENOMEM);
278 	atomic_set(&policy->refcnt, 1);
279 	policy->mode = mode;
280 	policy->flags = flags;
281 
282 	return policy;
283 }
284 
285 /* Slow path of a mpol destructor. */
286 void __mpol_put(struct mempolicy *p)
287 {
288 	if (!atomic_dec_and_test(&p->refcnt))
289 		return;
290 	kmem_cache_free(policy_cache, p);
291 }
292 
293 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
294 {
295 }
296 
297 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
298 {
299 	nodemask_t tmp;
300 
301 	if (pol->flags & MPOL_F_STATIC_NODES)
302 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
303 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
304 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
305 	else {
306 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
307 								*nodes);
308 		pol->w.cpuset_mems_allowed = tmp;
309 	}
310 
311 	if (nodes_empty(tmp))
312 		tmp = *nodes;
313 
314 	pol->v.nodes = tmp;
315 }
316 
317 static void mpol_rebind_preferred(struct mempolicy *pol,
318 						const nodemask_t *nodes)
319 {
320 	nodemask_t tmp;
321 
322 	if (pol->flags & MPOL_F_STATIC_NODES) {
323 		int node = first_node(pol->w.user_nodemask);
324 
325 		if (node_isset(node, *nodes)) {
326 			pol->v.preferred_node = node;
327 			pol->flags &= ~MPOL_F_LOCAL;
328 		} else
329 			pol->flags |= MPOL_F_LOCAL;
330 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 		pol->v.preferred_node = first_node(tmp);
333 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
334 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
335 						   pol->w.cpuset_mems_allowed,
336 						   *nodes);
337 		pol->w.cpuset_mems_allowed = *nodes;
338 	}
339 }
340 
341 /*
342  * mpol_rebind_policy - Migrate a policy to a different set of nodes
343  *
344  * Per-vma policies are protected by mmap_sem. Allocations using per-task
345  * policies are protected by task->mems_allowed_seq to prevent a premature
346  * OOM/allocation failure due to parallel nodemask modification.
347  */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 	if (!pol)
351 		return;
352 	if (!mpol_store_user_nodemask(pol) &&
353 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 		return;
355 
356 	mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358 
359 /*
360  * Wrapper for mpol_rebind_policy() that just requires task
361  * pointer, and updates task mempolicy.
362  *
363  * Called with task's alloc_lock held.
364  */
365 
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 	mpol_rebind_policy(tsk->mempolicy, new);
369 }
370 
371 /*
372  * Rebind each vma in mm to new nodemask.
373  *
374  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
375  */
376 
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 	struct vm_area_struct *vma;
380 
381 	down_write(&mm->mmap_sem);
382 	for (vma = mm->mmap; vma; vma = vma->vm_next)
383 		mpol_rebind_policy(vma->vm_policy, new);
384 	up_write(&mm->mmap_sem);
385 }
386 
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 	[MPOL_DEFAULT] = {
389 		.rebind = mpol_rebind_default,
390 	},
391 	[MPOL_INTERLEAVE] = {
392 		.create = mpol_new_interleave,
393 		.rebind = mpol_rebind_nodemask,
394 	},
395 	[MPOL_PREFERRED] = {
396 		.create = mpol_new_preferred,
397 		.rebind = mpol_rebind_preferred,
398 	},
399 	[MPOL_BIND] = {
400 		.create = mpol_new_bind,
401 		.rebind = mpol_rebind_nodemask,
402 	},
403 };
404 
405 static void migrate_page_add(struct page *page, struct list_head *pagelist,
406 				unsigned long flags);
407 
408 struct queue_pages {
409 	struct list_head *pagelist;
410 	unsigned long flags;
411 	nodemask_t *nmask;
412 	struct vm_area_struct *prev;
413 };
414 
415 /*
416  * Check if the page's nid is in qp->nmask.
417  *
418  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
419  * in the invert of qp->nmask.
420  */
421 static inline bool queue_pages_required(struct page *page,
422 					struct queue_pages *qp)
423 {
424 	int nid = page_to_nid(page);
425 	unsigned long flags = qp->flags;
426 
427 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
428 }
429 
430 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
431 				unsigned long end, struct mm_walk *walk)
432 {
433 	int ret = 0;
434 	struct page *page;
435 	struct queue_pages *qp = walk->private;
436 	unsigned long flags;
437 
438 	if (unlikely(is_pmd_migration_entry(*pmd))) {
439 		ret = 1;
440 		goto unlock;
441 	}
442 	page = pmd_page(*pmd);
443 	if (is_huge_zero_page(page)) {
444 		spin_unlock(ptl);
445 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
446 		goto out;
447 	}
448 	if (!thp_migration_supported()) {
449 		get_page(page);
450 		spin_unlock(ptl);
451 		lock_page(page);
452 		ret = split_huge_page(page);
453 		unlock_page(page);
454 		put_page(page);
455 		goto out;
456 	}
457 	if (!queue_pages_required(page, qp)) {
458 		ret = 1;
459 		goto unlock;
460 	}
461 
462 	ret = 1;
463 	flags = qp->flags;
464 	/* go to thp migration */
465 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
466 		migrate_page_add(page, qp->pagelist, flags);
467 unlock:
468 	spin_unlock(ptl);
469 out:
470 	return ret;
471 }
472 
473 /*
474  * Scan through pages checking if pages follow certain conditions,
475  * and move them to the pagelist if they do.
476  */
477 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
478 			unsigned long end, struct mm_walk *walk)
479 {
480 	struct vm_area_struct *vma = walk->vma;
481 	struct page *page;
482 	struct queue_pages *qp = walk->private;
483 	unsigned long flags = qp->flags;
484 	int ret;
485 	pte_t *pte;
486 	spinlock_t *ptl;
487 
488 	ptl = pmd_trans_huge_lock(pmd, vma);
489 	if (ptl) {
490 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
491 		if (ret)
492 			return 0;
493 	}
494 
495 	if (pmd_trans_unstable(pmd))
496 		return 0;
497 retry:
498 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
499 	for (; addr != end; pte++, addr += PAGE_SIZE) {
500 		if (!pte_present(*pte))
501 			continue;
502 		page = vm_normal_page(vma, addr, *pte);
503 		if (!page)
504 			continue;
505 		/*
506 		 * vm_normal_page() filters out zero pages, but there might
507 		 * still be PageReserved pages to skip, perhaps in a VDSO.
508 		 */
509 		if (PageReserved(page))
510 			continue;
511 		if (!queue_pages_required(page, qp))
512 			continue;
513 		if (PageTransCompound(page) && !thp_migration_supported()) {
514 			get_page(page);
515 			pte_unmap_unlock(pte, ptl);
516 			lock_page(page);
517 			ret = split_huge_page(page);
518 			unlock_page(page);
519 			put_page(page);
520 			/* Failed to split -- skip. */
521 			if (ret) {
522 				pte = pte_offset_map_lock(walk->mm, pmd,
523 						addr, &ptl);
524 				continue;
525 			}
526 			goto retry;
527 		}
528 
529 		migrate_page_add(page, qp->pagelist, flags);
530 	}
531 	pte_unmap_unlock(pte - 1, ptl);
532 	cond_resched();
533 	return 0;
534 }
535 
536 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
537 			       unsigned long addr, unsigned long end,
538 			       struct mm_walk *walk)
539 {
540 #ifdef CONFIG_HUGETLB_PAGE
541 	struct queue_pages *qp = walk->private;
542 	unsigned long flags = qp->flags;
543 	struct page *page;
544 	spinlock_t *ptl;
545 	pte_t entry;
546 
547 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
548 	entry = huge_ptep_get(pte);
549 	if (!pte_present(entry))
550 		goto unlock;
551 	page = pte_page(entry);
552 	if (!queue_pages_required(page, qp))
553 		goto unlock;
554 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
555 	if (flags & (MPOL_MF_MOVE_ALL) ||
556 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
557 		isolate_huge_page(page, qp->pagelist);
558 unlock:
559 	spin_unlock(ptl);
560 #else
561 	BUG();
562 #endif
563 	return 0;
564 }
565 
566 #ifdef CONFIG_NUMA_BALANCING
567 /*
568  * This is used to mark a range of virtual addresses to be inaccessible.
569  * These are later cleared by a NUMA hinting fault. Depending on these
570  * faults, pages may be migrated for better NUMA placement.
571  *
572  * This is assuming that NUMA faults are handled using PROT_NONE. If
573  * an architecture makes a different choice, it will need further
574  * changes to the core.
575  */
576 unsigned long change_prot_numa(struct vm_area_struct *vma,
577 			unsigned long addr, unsigned long end)
578 {
579 	int nr_updated;
580 
581 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
582 	if (nr_updated)
583 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
584 
585 	return nr_updated;
586 }
587 #else
588 static unsigned long change_prot_numa(struct vm_area_struct *vma,
589 			unsigned long addr, unsigned long end)
590 {
591 	return 0;
592 }
593 #endif /* CONFIG_NUMA_BALANCING */
594 
595 static int queue_pages_test_walk(unsigned long start, unsigned long end,
596 				struct mm_walk *walk)
597 {
598 	struct vm_area_struct *vma = walk->vma;
599 	struct queue_pages *qp = walk->private;
600 	unsigned long endvma = vma->vm_end;
601 	unsigned long flags = qp->flags;
602 
603 	if (!vma_migratable(vma))
604 		return 1;
605 
606 	if (endvma > end)
607 		endvma = end;
608 	if (vma->vm_start > start)
609 		start = vma->vm_start;
610 
611 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
612 		if (!vma->vm_next && vma->vm_end < end)
613 			return -EFAULT;
614 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
615 			return -EFAULT;
616 	}
617 
618 	qp->prev = vma;
619 
620 	if (flags & MPOL_MF_LAZY) {
621 		/* Similar to task_numa_work, skip inaccessible VMAs */
622 		if (!is_vm_hugetlb_page(vma) &&
623 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
624 			!(vma->vm_flags & VM_MIXEDMAP))
625 			change_prot_numa(vma, start, endvma);
626 		return 1;
627 	}
628 
629 	/* queue pages from current vma */
630 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
631 		return 0;
632 	return 1;
633 }
634 
635 /*
636  * Walk through page tables and collect pages to be migrated.
637  *
638  * If pages found in a given range are on a set of nodes (determined by
639  * @nodes and @flags,) it's isolated and queued to the pagelist which is
640  * passed via @private.)
641  */
642 static int
643 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
644 		nodemask_t *nodes, unsigned long flags,
645 		struct list_head *pagelist)
646 {
647 	struct queue_pages qp = {
648 		.pagelist = pagelist,
649 		.flags = flags,
650 		.nmask = nodes,
651 		.prev = NULL,
652 	};
653 	struct mm_walk queue_pages_walk = {
654 		.hugetlb_entry = queue_pages_hugetlb,
655 		.pmd_entry = queue_pages_pte_range,
656 		.test_walk = queue_pages_test_walk,
657 		.mm = mm,
658 		.private = &qp,
659 	};
660 
661 	return walk_page_range(start, end, &queue_pages_walk);
662 }
663 
664 /*
665  * Apply policy to a single VMA
666  * This must be called with the mmap_sem held for writing.
667  */
668 static int vma_replace_policy(struct vm_area_struct *vma,
669 						struct mempolicy *pol)
670 {
671 	int err;
672 	struct mempolicy *old;
673 	struct mempolicy *new;
674 
675 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
676 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
677 		 vma->vm_ops, vma->vm_file,
678 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
679 
680 	new = mpol_dup(pol);
681 	if (IS_ERR(new))
682 		return PTR_ERR(new);
683 
684 	if (vma->vm_ops && vma->vm_ops->set_policy) {
685 		err = vma->vm_ops->set_policy(vma, new);
686 		if (err)
687 			goto err_out;
688 	}
689 
690 	old = vma->vm_policy;
691 	vma->vm_policy = new; /* protected by mmap_sem */
692 	mpol_put(old);
693 
694 	return 0;
695  err_out:
696 	mpol_put(new);
697 	return err;
698 }
699 
700 /* Step 2: apply policy to a range and do splits. */
701 static int mbind_range(struct mm_struct *mm, unsigned long start,
702 		       unsigned long end, struct mempolicy *new_pol)
703 {
704 	struct vm_area_struct *next;
705 	struct vm_area_struct *prev;
706 	struct vm_area_struct *vma;
707 	int err = 0;
708 	pgoff_t pgoff;
709 	unsigned long vmstart;
710 	unsigned long vmend;
711 
712 	vma = find_vma(mm, start);
713 	if (!vma || vma->vm_start > start)
714 		return -EFAULT;
715 
716 	prev = vma->vm_prev;
717 	if (start > vma->vm_start)
718 		prev = vma;
719 
720 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
721 		next = vma->vm_next;
722 		vmstart = max(start, vma->vm_start);
723 		vmend   = min(end, vma->vm_end);
724 
725 		if (mpol_equal(vma_policy(vma), new_pol))
726 			continue;
727 
728 		pgoff = vma->vm_pgoff +
729 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
730 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
731 				 vma->anon_vma, vma->vm_file, pgoff,
732 				 new_pol, vma->vm_userfaultfd_ctx);
733 		if (prev) {
734 			vma = prev;
735 			next = vma->vm_next;
736 			if (mpol_equal(vma_policy(vma), new_pol))
737 				continue;
738 			/* vma_merge() joined vma && vma->next, case 8 */
739 			goto replace;
740 		}
741 		if (vma->vm_start != vmstart) {
742 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
743 			if (err)
744 				goto out;
745 		}
746 		if (vma->vm_end != vmend) {
747 			err = split_vma(vma->vm_mm, vma, vmend, 0);
748 			if (err)
749 				goto out;
750 		}
751  replace:
752 		err = vma_replace_policy(vma, new_pol);
753 		if (err)
754 			goto out;
755 	}
756 
757  out:
758 	return err;
759 }
760 
761 /* Set the process memory policy */
762 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
763 			     nodemask_t *nodes)
764 {
765 	struct mempolicy *new, *old;
766 	NODEMASK_SCRATCH(scratch);
767 	int ret;
768 
769 	if (!scratch)
770 		return -ENOMEM;
771 
772 	new = mpol_new(mode, flags, nodes);
773 	if (IS_ERR(new)) {
774 		ret = PTR_ERR(new);
775 		goto out;
776 	}
777 
778 	task_lock(current);
779 	ret = mpol_set_nodemask(new, nodes, scratch);
780 	if (ret) {
781 		task_unlock(current);
782 		mpol_put(new);
783 		goto out;
784 	}
785 	old = current->mempolicy;
786 	current->mempolicy = new;
787 	if (new && new->mode == MPOL_INTERLEAVE)
788 		current->il_prev = MAX_NUMNODES-1;
789 	task_unlock(current);
790 	mpol_put(old);
791 	ret = 0;
792 out:
793 	NODEMASK_SCRATCH_FREE(scratch);
794 	return ret;
795 }
796 
797 /*
798  * Return nodemask for policy for get_mempolicy() query
799  *
800  * Called with task's alloc_lock held
801  */
802 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
803 {
804 	nodes_clear(*nodes);
805 	if (p == &default_policy)
806 		return;
807 
808 	switch (p->mode) {
809 	case MPOL_BIND:
810 		/* Fall through */
811 	case MPOL_INTERLEAVE:
812 		*nodes = p->v.nodes;
813 		break;
814 	case MPOL_PREFERRED:
815 		if (!(p->flags & MPOL_F_LOCAL))
816 			node_set(p->v.preferred_node, *nodes);
817 		/* else return empty node mask for local allocation */
818 		break;
819 	default:
820 		BUG();
821 	}
822 }
823 
824 static int lookup_node(unsigned long addr)
825 {
826 	struct page *p;
827 	int err;
828 
829 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
830 	if (err >= 0) {
831 		err = page_to_nid(p);
832 		put_page(p);
833 	}
834 	return err;
835 }
836 
837 /* Retrieve NUMA policy */
838 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
839 			     unsigned long addr, unsigned long flags)
840 {
841 	int err;
842 	struct mm_struct *mm = current->mm;
843 	struct vm_area_struct *vma = NULL;
844 	struct mempolicy *pol = current->mempolicy;
845 
846 	if (flags &
847 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
848 		return -EINVAL;
849 
850 	if (flags & MPOL_F_MEMS_ALLOWED) {
851 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
852 			return -EINVAL;
853 		*policy = 0;	/* just so it's initialized */
854 		task_lock(current);
855 		*nmask  = cpuset_current_mems_allowed;
856 		task_unlock(current);
857 		return 0;
858 	}
859 
860 	if (flags & MPOL_F_ADDR) {
861 		/*
862 		 * Do NOT fall back to task policy if the
863 		 * vma/shared policy at addr is NULL.  We
864 		 * want to return MPOL_DEFAULT in this case.
865 		 */
866 		down_read(&mm->mmap_sem);
867 		vma = find_vma_intersection(mm, addr, addr+1);
868 		if (!vma) {
869 			up_read(&mm->mmap_sem);
870 			return -EFAULT;
871 		}
872 		if (vma->vm_ops && vma->vm_ops->get_policy)
873 			pol = vma->vm_ops->get_policy(vma, addr);
874 		else
875 			pol = vma->vm_policy;
876 	} else if (addr)
877 		return -EINVAL;
878 
879 	if (!pol)
880 		pol = &default_policy;	/* indicates default behavior */
881 
882 	if (flags & MPOL_F_NODE) {
883 		if (flags & MPOL_F_ADDR) {
884 			err = lookup_node(addr);
885 			if (err < 0)
886 				goto out;
887 			*policy = err;
888 		} else if (pol == current->mempolicy &&
889 				pol->mode == MPOL_INTERLEAVE) {
890 			*policy = next_node_in(current->il_prev, pol->v.nodes);
891 		} else {
892 			err = -EINVAL;
893 			goto out;
894 		}
895 	} else {
896 		*policy = pol == &default_policy ? MPOL_DEFAULT :
897 						pol->mode;
898 		/*
899 		 * Internal mempolicy flags must be masked off before exposing
900 		 * the policy to userspace.
901 		 */
902 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
903 	}
904 
905 	err = 0;
906 	if (nmask) {
907 		if (mpol_store_user_nodemask(pol)) {
908 			*nmask = pol->w.user_nodemask;
909 		} else {
910 			task_lock(current);
911 			get_policy_nodemask(pol, nmask);
912 			task_unlock(current);
913 		}
914 	}
915 
916  out:
917 	mpol_cond_put(pol);
918 	if (vma)
919 		up_read(&current->mm->mmap_sem);
920 	return err;
921 }
922 
923 #ifdef CONFIG_MIGRATION
924 /*
925  * page migration, thp tail pages can be passed.
926  */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 				unsigned long flags)
929 {
930 	struct page *head = compound_head(page);
931 	/*
932 	 * Avoid migrating a page that is shared with others.
933 	 */
934 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
935 		if (!isolate_lru_page(head)) {
936 			list_add_tail(&head->lru, pagelist);
937 			mod_node_page_state(page_pgdat(head),
938 				NR_ISOLATED_ANON + page_is_file_cache(head),
939 				hpage_nr_pages(head));
940 		}
941 	}
942 }
943 
944 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
945 {
946 	if (PageHuge(page))
947 		return alloc_huge_page_node(page_hstate(compound_head(page)),
948 					node);
949 	else if (thp_migration_supported() && PageTransHuge(page)) {
950 		struct page *thp;
951 
952 		thp = alloc_pages_node(node,
953 			(GFP_TRANSHUGE | __GFP_THISNODE),
954 			HPAGE_PMD_ORDER);
955 		if (!thp)
956 			return NULL;
957 		prep_transhuge_page(thp);
958 		return thp;
959 	} else
960 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
961 						    __GFP_THISNODE, 0);
962 }
963 
964 /*
965  * Migrate pages from one node to a target node.
966  * Returns error or the number of pages not migrated.
967  */
968 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
969 			   int flags)
970 {
971 	nodemask_t nmask;
972 	LIST_HEAD(pagelist);
973 	int err = 0;
974 
975 	nodes_clear(nmask);
976 	node_set(source, nmask);
977 
978 	/*
979 	 * This does not "check" the range but isolates all pages that
980 	 * need migration.  Between passing in the full user address
981 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
982 	 */
983 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
984 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
985 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
986 
987 	if (!list_empty(&pagelist)) {
988 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
989 					MIGRATE_SYNC, MR_SYSCALL);
990 		if (err)
991 			putback_movable_pages(&pagelist);
992 	}
993 
994 	return err;
995 }
996 
997 /*
998  * Move pages between the two nodesets so as to preserve the physical
999  * layout as much as possible.
1000  *
1001  * Returns the number of page that could not be moved.
1002  */
1003 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1004 		     const nodemask_t *to, int flags)
1005 {
1006 	int busy = 0;
1007 	int err;
1008 	nodemask_t tmp;
1009 
1010 	err = migrate_prep();
1011 	if (err)
1012 		return err;
1013 
1014 	down_read(&mm->mmap_sem);
1015 
1016 	/*
1017 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1018 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1019 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1020 	 * The pair of nodemasks 'to' and 'from' define the map.
1021 	 *
1022 	 * If no pair of bits is found that way, fallback to picking some
1023 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1024 	 * 'source' and 'dest' bits are the same, this represents a node
1025 	 * that will be migrating to itself, so no pages need move.
1026 	 *
1027 	 * If no bits are left in 'tmp', or if all remaining bits left
1028 	 * in 'tmp' correspond to the same bit in 'to', return false
1029 	 * (nothing left to migrate).
1030 	 *
1031 	 * This lets us pick a pair of nodes to migrate between, such that
1032 	 * if possible the dest node is not already occupied by some other
1033 	 * source node, minimizing the risk of overloading the memory on a
1034 	 * node that would happen if we migrated incoming memory to a node
1035 	 * before migrating outgoing memory source that same node.
1036 	 *
1037 	 * A single scan of tmp is sufficient.  As we go, we remember the
1038 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1039 	 * that not only moved, but what's better, moved to an empty slot
1040 	 * (d is not set in tmp), then we break out then, with that pair.
1041 	 * Otherwise when we finish scanning from_tmp, we at least have the
1042 	 * most recent <s, d> pair that moved.  If we get all the way through
1043 	 * the scan of tmp without finding any node that moved, much less
1044 	 * moved to an empty node, then there is nothing left worth migrating.
1045 	 */
1046 
1047 	tmp = *from;
1048 	while (!nodes_empty(tmp)) {
1049 		int s,d;
1050 		int source = NUMA_NO_NODE;
1051 		int dest = 0;
1052 
1053 		for_each_node_mask(s, tmp) {
1054 
1055 			/*
1056 			 * do_migrate_pages() tries to maintain the relative
1057 			 * node relationship of the pages established between
1058 			 * threads and memory areas.
1059                          *
1060 			 * However if the number of source nodes is not equal to
1061 			 * the number of destination nodes we can not preserve
1062 			 * this node relative relationship.  In that case, skip
1063 			 * copying memory from a node that is in the destination
1064 			 * mask.
1065 			 *
1066 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1067 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1068 			 */
1069 
1070 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1071 						(node_isset(s, *to)))
1072 				continue;
1073 
1074 			d = node_remap(s, *from, *to);
1075 			if (s == d)
1076 				continue;
1077 
1078 			source = s;	/* Node moved. Memorize */
1079 			dest = d;
1080 
1081 			/* dest not in remaining from nodes? */
1082 			if (!node_isset(dest, tmp))
1083 				break;
1084 		}
1085 		if (source == NUMA_NO_NODE)
1086 			break;
1087 
1088 		node_clear(source, tmp);
1089 		err = migrate_to_node(mm, source, dest, flags);
1090 		if (err > 0)
1091 			busy += err;
1092 		if (err < 0)
1093 			break;
1094 	}
1095 	up_read(&mm->mmap_sem);
1096 	if (err < 0)
1097 		return err;
1098 	return busy;
1099 
1100 }
1101 
1102 /*
1103  * Allocate a new page for page migration based on vma policy.
1104  * Start by assuming the page is mapped by the same vma as contains @start.
1105  * Search forward from there, if not.  N.B., this assumes that the
1106  * list of pages handed to migrate_pages()--which is how we get here--
1107  * is in virtual address order.
1108  */
1109 static struct page *new_page(struct page *page, unsigned long start, int **x)
1110 {
1111 	struct vm_area_struct *vma;
1112 	unsigned long uninitialized_var(address);
1113 
1114 	vma = find_vma(current->mm, start);
1115 	while (vma) {
1116 		address = page_address_in_vma(page, vma);
1117 		if (address != -EFAULT)
1118 			break;
1119 		vma = vma->vm_next;
1120 	}
1121 
1122 	if (PageHuge(page)) {
1123 		BUG_ON(!vma);
1124 		return alloc_huge_page_noerr(vma, address, 1);
1125 	} else if (thp_migration_supported() && PageTransHuge(page)) {
1126 		struct page *thp;
1127 
1128 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1129 					 HPAGE_PMD_ORDER);
1130 		if (!thp)
1131 			return NULL;
1132 		prep_transhuge_page(thp);
1133 		return thp;
1134 	}
1135 	/*
1136 	 * if !vma, alloc_page_vma() will use task or system default policy
1137 	 */
1138 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1139 			vma, address);
1140 }
1141 #else
1142 
1143 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1144 				unsigned long flags)
1145 {
1146 }
1147 
1148 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1149 		     const nodemask_t *to, int flags)
1150 {
1151 	return -ENOSYS;
1152 }
1153 
1154 static struct page *new_page(struct page *page, unsigned long start, int **x)
1155 {
1156 	return NULL;
1157 }
1158 #endif
1159 
1160 static long do_mbind(unsigned long start, unsigned long len,
1161 		     unsigned short mode, unsigned short mode_flags,
1162 		     nodemask_t *nmask, unsigned long flags)
1163 {
1164 	struct mm_struct *mm = current->mm;
1165 	struct mempolicy *new;
1166 	unsigned long end;
1167 	int err;
1168 	LIST_HEAD(pagelist);
1169 
1170 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1171 		return -EINVAL;
1172 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1173 		return -EPERM;
1174 
1175 	if (start & ~PAGE_MASK)
1176 		return -EINVAL;
1177 
1178 	if (mode == MPOL_DEFAULT)
1179 		flags &= ~MPOL_MF_STRICT;
1180 
1181 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1182 	end = start + len;
1183 
1184 	if (end < start)
1185 		return -EINVAL;
1186 	if (end == start)
1187 		return 0;
1188 
1189 	new = mpol_new(mode, mode_flags, nmask);
1190 	if (IS_ERR(new))
1191 		return PTR_ERR(new);
1192 
1193 	if (flags & MPOL_MF_LAZY)
1194 		new->flags |= MPOL_F_MOF;
1195 
1196 	/*
1197 	 * If we are using the default policy then operation
1198 	 * on discontinuous address spaces is okay after all
1199 	 */
1200 	if (!new)
1201 		flags |= MPOL_MF_DISCONTIG_OK;
1202 
1203 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1204 		 start, start + len, mode, mode_flags,
1205 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1206 
1207 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1208 
1209 		err = migrate_prep();
1210 		if (err)
1211 			goto mpol_out;
1212 	}
1213 	{
1214 		NODEMASK_SCRATCH(scratch);
1215 		if (scratch) {
1216 			down_write(&mm->mmap_sem);
1217 			task_lock(current);
1218 			err = mpol_set_nodemask(new, nmask, scratch);
1219 			task_unlock(current);
1220 			if (err)
1221 				up_write(&mm->mmap_sem);
1222 		} else
1223 			err = -ENOMEM;
1224 		NODEMASK_SCRATCH_FREE(scratch);
1225 	}
1226 	if (err)
1227 		goto mpol_out;
1228 
1229 	err = queue_pages_range(mm, start, end, nmask,
1230 			  flags | MPOL_MF_INVERT, &pagelist);
1231 	if (!err)
1232 		err = mbind_range(mm, start, end, new);
1233 
1234 	if (!err) {
1235 		int nr_failed = 0;
1236 
1237 		if (!list_empty(&pagelist)) {
1238 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1239 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1240 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1241 			if (nr_failed)
1242 				putback_movable_pages(&pagelist);
1243 		}
1244 
1245 		if (nr_failed && (flags & MPOL_MF_STRICT))
1246 			err = -EIO;
1247 	} else
1248 		putback_movable_pages(&pagelist);
1249 
1250 	up_write(&mm->mmap_sem);
1251  mpol_out:
1252 	mpol_put(new);
1253 	return err;
1254 }
1255 
1256 /*
1257  * User space interface with variable sized bitmaps for nodelists.
1258  */
1259 
1260 /* Copy a node mask from user space. */
1261 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1262 		     unsigned long maxnode)
1263 {
1264 	unsigned long k;
1265 	unsigned long nlongs;
1266 	unsigned long endmask;
1267 
1268 	--maxnode;
1269 	nodes_clear(*nodes);
1270 	if (maxnode == 0 || !nmask)
1271 		return 0;
1272 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1273 		return -EINVAL;
1274 
1275 	nlongs = BITS_TO_LONGS(maxnode);
1276 	if ((maxnode % BITS_PER_LONG) == 0)
1277 		endmask = ~0UL;
1278 	else
1279 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1280 
1281 	/* When the user specified more nodes than supported just check
1282 	   if the non supported part is all zero. */
1283 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1284 		if (nlongs > PAGE_SIZE/sizeof(long))
1285 			return -EINVAL;
1286 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1287 			unsigned long t;
1288 			if (get_user(t, nmask + k))
1289 				return -EFAULT;
1290 			if (k == nlongs - 1) {
1291 				if (t & endmask)
1292 					return -EINVAL;
1293 			} else if (t)
1294 				return -EINVAL;
1295 		}
1296 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1297 		endmask = ~0UL;
1298 	}
1299 
1300 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1301 		return -EFAULT;
1302 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1303 	return 0;
1304 }
1305 
1306 /* Copy a kernel node mask to user space */
1307 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1308 			      nodemask_t *nodes)
1309 {
1310 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1311 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1312 
1313 	if (copy > nbytes) {
1314 		if (copy > PAGE_SIZE)
1315 			return -EINVAL;
1316 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1317 			return -EFAULT;
1318 		copy = nbytes;
1319 	}
1320 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1321 }
1322 
1323 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1324 		unsigned long, mode, const unsigned long __user *, nmask,
1325 		unsigned long, maxnode, unsigned, flags)
1326 {
1327 	nodemask_t nodes;
1328 	int err;
1329 	unsigned short mode_flags;
1330 
1331 	mode_flags = mode & MPOL_MODE_FLAGS;
1332 	mode &= ~MPOL_MODE_FLAGS;
1333 	if (mode >= MPOL_MAX)
1334 		return -EINVAL;
1335 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1336 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1337 		return -EINVAL;
1338 	err = get_nodes(&nodes, nmask, maxnode);
1339 	if (err)
1340 		return err;
1341 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1342 }
1343 
1344 /* Set the process memory policy */
1345 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1346 		unsigned long, maxnode)
1347 {
1348 	int err;
1349 	nodemask_t nodes;
1350 	unsigned short flags;
1351 
1352 	flags = mode & MPOL_MODE_FLAGS;
1353 	mode &= ~MPOL_MODE_FLAGS;
1354 	if ((unsigned int)mode >= MPOL_MAX)
1355 		return -EINVAL;
1356 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1357 		return -EINVAL;
1358 	err = get_nodes(&nodes, nmask, maxnode);
1359 	if (err)
1360 		return err;
1361 	return do_set_mempolicy(mode, flags, &nodes);
1362 }
1363 
1364 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1365 		const unsigned long __user *, old_nodes,
1366 		const unsigned long __user *, new_nodes)
1367 {
1368 	const struct cred *cred = current_cred(), *tcred;
1369 	struct mm_struct *mm = NULL;
1370 	struct task_struct *task;
1371 	nodemask_t task_nodes;
1372 	int err;
1373 	nodemask_t *old;
1374 	nodemask_t *new;
1375 	NODEMASK_SCRATCH(scratch);
1376 
1377 	if (!scratch)
1378 		return -ENOMEM;
1379 
1380 	old = &scratch->mask1;
1381 	new = &scratch->mask2;
1382 
1383 	err = get_nodes(old, old_nodes, maxnode);
1384 	if (err)
1385 		goto out;
1386 
1387 	err = get_nodes(new, new_nodes, maxnode);
1388 	if (err)
1389 		goto out;
1390 
1391 	/* Find the mm_struct */
1392 	rcu_read_lock();
1393 	task = pid ? find_task_by_vpid(pid) : current;
1394 	if (!task) {
1395 		rcu_read_unlock();
1396 		err = -ESRCH;
1397 		goto out;
1398 	}
1399 	get_task_struct(task);
1400 
1401 	err = -EINVAL;
1402 
1403 	/*
1404 	 * Check if this process has the right to modify the specified
1405 	 * process. The right exists if the process has administrative
1406 	 * capabilities, superuser privileges or the same
1407 	 * userid as the target process.
1408 	 */
1409 	tcred = __task_cred(task);
1410 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1411 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1412 	    !capable(CAP_SYS_NICE)) {
1413 		rcu_read_unlock();
1414 		err = -EPERM;
1415 		goto out_put;
1416 	}
1417 	rcu_read_unlock();
1418 
1419 	task_nodes = cpuset_mems_allowed(task);
1420 	/* Is the user allowed to access the target nodes? */
1421 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1422 		err = -EPERM;
1423 		goto out_put;
1424 	}
1425 
1426 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1427 		err = -EINVAL;
1428 		goto out_put;
1429 	}
1430 
1431 	err = security_task_movememory(task);
1432 	if (err)
1433 		goto out_put;
1434 
1435 	mm = get_task_mm(task);
1436 	put_task_struct(task);
1437 
1438 	if (!mm) {
1439 		err = -EINVAL;
1440 		goto out;
1441 	}
1442 
1443 	err = do_migrate_pages(mm, old, new,
1444 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1445 
1446 	mmput(mm);
1447 out:
1448 	NODEMASK_SCRATCH_FREE(scratch);
1449 
1450 	return err;
1451 
1452 out_put:
1453 	put_task_struct(task);
1454 	goto out;
1455 
1456 }
1457 
1458 
1459 /* Retrieve NUMA policy */
1460 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1461 		unsigned long __user *, nmask, unsigned long, maxnode,
1462 		unsigned long, addr, unsigned long, flags)
1463 {
1464 	int err;
1465 	int uninitialized_var(pval);
1466 	nodemask_t nodes;
1467 
1468 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1469 		return -EINVAL;
1470 
1471 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1472 
1473 	if (err)
1474 		return err;
1475 
1476 	if (policy && put_user(pval, policy))
1477 		return -EFAULT;
1478 
1479 	if (nmask)
1480 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1481 
1482 	return err;
1483 }
1484 
1485 #ifdef CONFIG_COMPAT
1486 
1487 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1488 		       compat_ulong_t __user *, nmask,
1489 		       compat_ulong_t, maxnode,
1490 		       compat_ulong_t, addr, compat_ulong_t, flags)
1491 {
1492 	long err;
1493 	unsigned long __user *nm = NULL;
1494 	unsigned long nr_bits, alloc_size;
1495 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1496 
1497 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1498 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1499 
1500 	if (nmask)
1501 		nm = compat_alloc_user_space(alloc_size);
1502 
1503 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1504 
1505 	if (!err && nmask) {
1506 		unsigned long copy_size;
1507 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1508 		err = copy_from_user(bm, nm, copy_size);
1509 		/* ensure entire bitmap is zeroed */
1510 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1511 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1512 	}
1513 
1514 	return err;
1515 }
1516 
1517 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1518 		       compat_ulong_t, maxnode)
1519 {
1520 	unsigned long __user *nm = NULL;
1521 	unsigned long nr_bits, alloc_size;
1522 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1523 
1524 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1525 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1526 
1527 	if (nmask) {
1528 		if (compat_get_bitmap(bm, nmask, nr_bits))
1529 			return -EFAULT;
1530 		nm = compat_alloc_user_space(alloc_size);
1531 		if (copy_to_user(nm, bm, alloc_size))
1532 			return -EFAULT;
1533 	}
1534 
1535 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1536 }
1537 
1538 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1539 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1540 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1541 {
1542 	unsigned long __user *nm = NULL;
1543 	unsigned long nr_bits, alloc_size;
1544 	nodemask_t bm;
1545 
1546 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1547 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1548 
1549 	if (nmask) {
1550 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1551 			return -EFAULT;
1552 		nm = compat_alloc_user_space(alloc_size);
1553 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1554 			return -EFAULT;
1555 	}
1556 
1557 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1558 }
1559 
1560 #endif
1561 
1562 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1563 						unsigned long addr)
1564 {
1565 	struct mempolicy *pol = NULL;
1566 
1567 	if (vma) {
1568 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1569 			pol = vma->vm_ops->get_policy(vma, addr);
1570 		} else if (vma->vm_policy) {
1571 			pol = vma->vm_policy;
1572 
1573 			/*
1574 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1575 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1576 			 * count on these policies which will be dropped by
1577 			 * mpol_cond_put() later
1578 			 */
1579 			if (mpol_needs_cond_ref(pol))
1580 				mpol_get(pol);
1581 		}
1582 	}
1583 
1584 	return pol;
1585 }
1586 
1587 /*
1588  * get_vma_policy(@vma, @addr)
1589  * @vma: virtual memory area whose policy is sought
1590  * @addr: address in @vma for shared policy lookup
1591  *
1592  * Returns effective policy for a VMA at specified address.
1593  * Falls back to current->mempolicy or system default policy, as necessary.
1594  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1595  * count--added by the get_policy() vm_op, as appropriate--to protect against
1596  * freeing by another task.  It is the caller's responsibility to free the
1597  * extra reference for shared policies.
1598  */
1599 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1600 						unsigned long addr)
1601 {
1602 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1603 
1604 	if (!pol)
1605 		pol = get_task_policy(current);
1606 
1607 	return pol;
1608 }
1609 
1610 bool vma_policy_mof(struct vm_area_struct *vma)
1611 {
1612 	struct mempolicy *pol;
1613 
1614 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1615 		bool ret = false;
1616 
1617 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1618 		if (pol && (pol->flags & MPOL_F_MOF))
1619 			ret = true;
1620 		mpol_cond_put(pol);
1621 
1622 		return ret;
1623 	}
1624 
1625 	pol = vma->vm_policy;
1626 	if (!pol)
1627 		pol = get_task_policy(current);
1628 
1629 	return pol->flags & MPOL_F_MOF;
1630 }
1631 
1632 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1633 {
1634 	enum zone_type dynamic_policy_zone = policy_zone;
1635 
1636 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1637 
1638 	/*
1639 	 * if policy->v.nodes has movable memory only,
1640 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1641 	 *
1642 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1643 	 * so if the following test faile, it implies
1644 	 * policy->v.nodes has movable memory only.
1645 	 */
1646 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1647 		dynamic_policy_zone = ZONE_MOVABLE;
1648 
1649 	return zone >= dynamic_policy_zone;
1650 }
1651 
1652 /*
1653  * Return a nodemask representing a mempolicy for filtering nodes for
1654  * page allocation
1655  */
1656 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1657 {
1658 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1659 	if (unlikely(policy->mode == MPOL_BIND) &&
1660 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1661 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1662 		return &policy->v.nodes;
1663 
1664 	return NULL;
1665 }
1666 
1667 /* Return the node id preferred by the given mempolicy, or the given id */
1668 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1669 								int nd)
1670 {
1671 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1672 		nd = policy->v.preferred_node;
1673 	else {
1674 		/*
1675 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1676 		 * because we might easily break the expectation to stay on the
1677 		 * requested node and not break the policy.
1678 		 */
1679 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1680 	}
1681 
1682 	return nd;
1683 }
1684 
1685 /* Do dynamic interleaving for a process */
1686 static unsigned interleave_nodes(struct mempolicy *policy)
1687 {
1688 	unsigned next;
1689 	struct task_struct *me = current;
1690 
1691 	next = next_node_in(me->il_prev, policy->v.nodes);
1692 	if (next < MAX_NUMNODES)
1693 		me->il_prev = next;
1694 	return next;
1695 }
1696 
1697 /*
1698  * Depending on the memory policy provide a node from which to allocate the
1699  * next slab entry.
1700  */
1701 unsigned int mempolicy_slab_node(void)
1702 {
1703 	struct mempolicy *policy;
1704 	int node = numa_mem_id();
1705 
1706 	if (in_interrupt())
1707 		return node;
1708 
1709 	policy = current->mempolicy;
1710 	if (!policy || policy->flags & MPOL_F_LOCAL)
1711 		return node;
1712 
1713 	switch (policy->mode) {
1714 	case MPOL_PREFERRED:
1715 		/*
1716 		 * handled MPOL_F_LOCAL above
1717 		 */
1718 		return policy->v.preferred_node;
1719 
1720 	case MPOL_INTERLEAVE:
1721 		return interleave_nodes(policy);
1722 
1723 	case MPOL_BIND: {
1724 		struct zoneref *z;
1725 
1726 		/*
1727 		 * Follow bind policy behavior and start allocation at the
1728 		 * first node.
1729 		 */
1730 		struct zonelist *zonelist;
1731 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1732 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1733 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1734 							&policy->v.nodes);
1735 		return z->zone ? z->zone->node : node;
1736 	}
1737 
1738 	default:
1739 		BUG();
1740 	}
1741 }
1742 
1743 /*
1744  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1745  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1746  * number of present nodes.
1747  */
1748 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1749 {
1750 	unsigned nnodes = nodes_weight(pol->v.nodes);
1751 	unsigned target;
1752 	int i;
1753 	int nid;
1754 
1755 	if (!nnodes)
1756 		return numa_node_id();
1757 	target = (unsigned int)n % nnodes;
1758 	nid = first_node(pol->v.nodes);
1759 	for (i = 0; i < target; i++)
1760 		nid = next_node(nid, pol->v.nodes);
1761 	return nid;
1762 }
1763 
1764 /* Determine a node number for interleave */
1765 static inline unsigned interleave_nid(struct mempolicy *pol,
1766 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1767 {
1768 	if (vma) {
1769 		unsigned long off;
1770 
1771 		/*
1772 		 * for small pages, there is no difference between
1773 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1774 		 * for huge pages, since vm_pgoff is in units of small
1775 		 * pages, we need to shift off the always 0 bits to get
1776 		 * a useful offset.
1777 		 */
1778 		BUG_ON(shift < PAGE_SHIFT);
1779 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1780 		off += (addr - vma->vm_start) >> shift;
1781 		return offset_il_node(pol, off);
1782 	} else
1783 		return interleave_nodes(pol);
1784 }
1785 
1786 #ifdef CONFIG_HUGETLBFS
1787 /*
1788  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1789  * @vma: virtual memory area whose policy is sought
1790  * @addr: address in @vma for shared policy lookup and interleave policy
1791  * @gfp_flags: for requested zone
1792  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1793  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1794  *
1795  * Returns a nid suitable for a huge page allocation and a pointer
1796  * to the struct mempolicy for conditional unref after allocation.
1797  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1798  * @nodemask for filtering the zonelist.
1799  *
1800  * Must be protected by read_mems_allowed_begin()
1801  */
1802 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1803 				struct mempolicy **mpol, nodemask_t **nodemask)
1804 {
1805 	int nid;
1806 
1807 	*mpol = get_vma_policy(vma, addr);
1808 	*nodemask = NULL;	/* assume !MPOL_BIND */
1809 
1810 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1811 		nid = interleave_nid(*mpol, vma, addr,
1812 					huge_page_shift(hstate_vma(vma)));
1813 	} else {
1814 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1815 		if ((*mpol)->mode == MPOL_BIND)
1816 			*nodemask = &(*mpol)->v.nodes;
1817 	}
1818 	return nid;
1819 }
1820 
1821 /*
1822  * init_nodemask_of_mempolicy
1823  *
1824  * If the current task's mempolicy is "default" [NULL], return 'false'
1825  * to indicate default policy.  Otherwise, extract the policy nodemask
1826  * for 'bind' or 'interleave' policy into the argument nodemask, or
1827  * initialize the argument nodemask to contain the single node for
1828  * 'preferred' or 'local' policy and return 'true' to indicate presence
1829  * of non-default mempolicy.
1830  *
1831  * We don't bother with reference counting the mempolicy [mpol_get/put]
1832  * because the current task is examining it's own mempolicy and a task's
1833  * mempolicy is only ever changed by the task itself.
1834  *
1835  * N.B., it is the caller's responsibility to free a returned nodemask.
1836  */
1837 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1838 {
1839 	struct mempolicy *mempolicy;
1840 	int nid;
1841 
1842 	if (!(mask && current->mempolicy))
1843 		return false;
1844 
1845 	task_lock(current);
1846 	mempolicy = current->mempolicy;
1847 	switch (mempolicy->mode) {
1848 	case MPOL_PREFERRED:
1849 		if (mempolicy->flags & MPOL_F_LOCAL)
1850 			nid = numa_node_id();
1851 		else
1852 			nid = mempolicy->v.preferred_node;
1853 		init_nodemask_of_node(mask, nid);
1854 		break;
1855 
1856 	case MPOL_BIND:
1857 		/* Fall through */
1858 	case MPOL_INTERLEAVE:
1859 		*mask =  mempolicy->v.nodes;
1860 		break;
1861 
1862 	default:
1863 		BUG();
1864 	}
1865 	task_unlock(current);
1866 
1867 	return true;
1868 }
1869 #endif
1870 
1871 /*
1872  * mempolicy_nodemask_intersects
1873  *
1874  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1875  * policy.  Otherwise, check for intersection between mask and the policy
1876  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1877  * policy, always return true since it may allocate elsewhere on fallback.
1878  *
1879  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1880  */
1881 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1882 					const nodemask_t *mask)
1883 {
1884 	struct mempolicy *mempolicy;
1885 	bool ret = true;
1886 
1887 	if (!mask)
1888 		return ret;
1889 	task_lock(tsk);
1890 	mempolicy = tsk->mempolicy;
1891 	if (!mempolicy)
1892 		goto out;
1893 
1894 	switch (mempolicy->mode) {
1895 	case MPOL_PREFERRED:
1896 		/*
1897 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1898 		 * allocate from, they may fallback to other nodes when oom.
1899 		 * Thus, it's possible for tsk to have allocated memory from
1900 		 * nodes in mask.
1901 		 */
1902 		break;
1903 	case MPOL_BIND:
1904 	case MPOL_INTERLEAVE:
1905 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1906 		break;
1907 	default:
1908 		BUG();
1909 	}
1910 out:
1911 	task_unlock(tsk);
1912 	return ret;
1913 }
1914 
1915 /* Allocate a page in interleaved policy.
1916    Own path because it needs to do special accounting. */
1917 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1918 					unsigned nid)
1919 {
1920 	struct page *page;
1921 
1922 	page = __alloc_pages(gfp, order, nid);
1923 	if (page && page_to_nid(page) == nid)
1924 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1925 	return page;
1926 }
1927 
1928 /**
1929  * 	alloc_pages_vma	- Allocate a page for a VMA.
1930  *
1931  * 	@gfp:
1932  *      %GFP_USER    user allocation.
1933  *      %GFP_KERNEL  kernel allocations,
1934  *      %GFP_HIGHMEM highmem/user allocations,
1935  *      %GFP_FS      allocation should not call back into a file system.
1936  *      %GFP_ATOMIC  don't sleep.
1937  *
1938  *	@order:Order of the GFP allocation.
1939  * 	@vma:  Pointer to VMA or NULL if not available.
1940  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1941  *	@node: Which node to prefer for allocation (modulo policy).
1942  *	@hugepage: for hugepages try only the preferred node if possible
1943  *
1944  * 	This function allocates a page from the kernel page pool and applies
1945  *	a NUMA policy associated with the VMA or the current process.
1946  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1947  *	mm_struct of the VMA to prevent it from going away. Should be used for
1948  *	all allocations for pages that will be mapped into user space. Returns
1949  *	NULL when no page can be allocated.
1950  */
1951 struct page *
1952 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1953 		unsigned long addr, int node, bool hugepage)
1954 {
1955 	struct mempolicy *pol;
1956 	struct page *page;
1957 	int preferred_nid;
1958 	nodemask_t *nmask;
1959 
1960 	pol = get_vma_policy(vma, addr);
1961 
1962 	if (pol->mode == MPOL_INTERLEAVE) {
1963 		unsigned nid;
1964 
1965 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1966 		mpol_cond_put(pol);
1967 		page = alloc_page_interleave(gfp, order, nid);
1968 		goto out;
1969 	}
1970 
1971 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1972 		int hpage_node = node;
1973 
1974 		/*
1975 		 * For hugepage allocation and non-interleave policy which
1976 		 * allows the current node (or other explicitly preferred
1977 		 * node) we only try to allocate from the current/preferred
1978 		 * node and don't fall back to other nodes, as the cost of
1979 		 * remote accesses would likely offset THP benefits.
1980 		 *
1981 		 * If the policy is interleave, or does not allow the current
1982 		 * node in its nodemask, we allocate the standard way.
1983 		 */
1984 		if (pol->mode == MPOL_PREFERRED &&
1985 						!(pol->flags & MPOL_F_LOCAL))
1986 			hpage_node = pol->v.preferred_node;
1987 
1988 		nmask = policy_nodemask(gfp, pol);
1989 		if (!nmask || node_isset(hpage_node, *nmask)) {
1990 			mpol_cond_put(pol);
1991 			page = __alloc_pages_node(hpage_node,
1992 						gfp | __GFP_THISNODE, order);
1993 			goto out;
1994 		}
1995 	}
1996 
1997 	nmask = policy_nodemask(gfp, pol);
1998 	preferred_nid = policy_node(gfp, pol, node);
1999 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2000 	mpol_cond_put(pol);
2001 out:
2002 	return page;
2003 }
2004 
2005 /**
2006  * 	alloc_pages_current - Allocate pages.
2007  *
2008  *	@gfp:
2009  *		%GFP_USER   user allocation,
2010  *      	%GFP_KERNEL kernel allocation,
2011  *      	%GFP_HIGHMEM highmem allocation,
2012  *      	%GFP_FS     don't call back into a file system.
2013  *      	%GFP_ATOMIC don't sleep.
2014  *	@order: Power of two of allocation size in pages. 0 is a single page.
2015  *
2016  *	Allocate a page from the kernel page pool.  When not in
2017  *	interrupt context and apply the current process NUMA policy.
2018  *	Returns NULL when no page can be allocated.
2019  */
2020 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2021 {
2022 	struct mempolicy *pol = &default_policy;
2023 	struct page *page;
2024 
2025 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2026 		pol = get_task_policy(current);
2027 
2028 	/*
2029 	 * No reference counting needed for current->mempolicy
2030 	 * nor system default_policy
2031 	 */
2032 	if (pol->mode == MPOL_INTERLEAVE)
2033 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2034 	else
2035 		page = __alloc_pages_nodemask(gfp, order,
2036 				policy_node(gfp, pol, numa_node_id()),
2037 				policy_nodemask(gfp, pol));
2038 
2039 	return page;
2040 }
2041 EXPORT_SYMBOL(alloc_pages_current);
2042 
2043 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2044 {
2045 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2046 
2047 	if (IS_ERR(pol))
2048 		return PTR_ERR(pol);
2049 	dst->vm_policy = pol;
2050 	return 0;
2051 }
2052 
2053 /*
2054  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2055  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2056  * with the mems_allowed returned by cpuset_mems_allowed().  This
2057  * keeps mempolicies cpuset relative after its cpuset moves.  See
2058  * further kernel/cpuset.c update_nodemask().
2059  *
2060  * current's mempolicy may be rebinded by the other task(the task that changes
2061  * cpuset's mems), so we needn't do rebind work for current task.
2062  */
2063 
2064 /* Slow path of a mempolicy duplicate */
2065 struct mempolicy *__mpol_dup(struct mempolicy *old)
2066 {
2067 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2068 
2069 	if (!new)
2070 		return ERR_PTR(-ENOMEM);
2071 
2072 	/* task's mempolicy is protected by alloc_lock */
2073 	if (old == current->mempolicy) {
2074 		task_lock(current);
2075 		*new = *old;
2076 		task_unlock(current);
2077 	} else
2078 		*new = *old;
2079 
2080 	if (current_cpuset_is_being_rebound()) {
2081 		nodemask_t mems = cpuset_mems_allowed(current);
2082 		mpol_rebind_policy(new, &mems);
2083 	}
2084 	atomic_set(&new->refcnt, 1);
2085 	return new;
2086 }
2087 
2088 /* Slow path of a mempolicy comparison */
2089 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2090 {
2091 	if (!a || !b)
2092 		return false;
2093 	if (a->mode != b->mode)
2094 		return false;
2095 	if (a->flags != b->flags)
2096 		return false;
2097 	if (mpol_store_user_nodemask(a))
2098 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2099 			return false;
2100 
2101 	switch (a->mode) {
2102 	case MPOL_BIND:
2103 		/* Fall through */
2104 	case MPOL_INTERLEAVE:
2105 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2106 	case MPOL_PREFERRED:
2107 		return a->v.preferred_node == b->v.preferred_node;
2108 	default:
2109 		BUG();
2110 		return false;
2111 	}
2112 }
2113 
2114 /*
2115  * Shared memory backing store policy support.
2116  *
2117  * Remember policies even when nobody has shared memory mapped.
2118  * The policies are kept in Red-Black tree linked from the inode.
2119  * They are protected by the sp->lock rwlock, which should be held
2120  * for any accesses to the tree.
2121  */
2122 
2123 /*
2124  * lookup first element intersecting start-end.  Caller holds sp->lock for
2125  * reading or for writing
2126  */
2127 static struct sp_node *
2128 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2129 {
2130 	struct rb_node *n = sp->root.rb_node;
2131 
2132 	while (n) {
2133 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2134 
2135 		if (start >= p->end)
2136 			n = n->rb_right;
2137 		else if (end <= p->start)
2138 			n = n->rb_left;
2139 		else
2140 			break;
2141 	}
2142 	if (!n)
2143 		return NULL;
2144 	for (;;) {
2145 		struct sp_node *w = NULL;
2146 		struct rb_node *prev = rb_prev(n);
2147 		if (!prev)
2148 			break;
2149 		w = rb_entry(prev, struct sp_node, nd);
2150 		if (w->end <= start)
2151 			break;
2152 		n = prev;
2153 	}
2154 	return rb_entry(n, struct sp_node, nd);
2155 }
2156 
2157 /*
2158  * Insert a new shared policy into the list.  Caller holds sp->lock for
2159  * writing.
2160  */
2161 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2162 {
2163 	struct rb_node **p = &sp->root.rb_node;
2164 	struct rb_node *parent = NULL;
2165 	struct sp_node *nd;
2166 
2167 	while (*p) {
2168 		parent = *p;
2169 		nd = rb_entry(parent, struct sp_node, nd);
2170 		if (new->start < nd->start)
2171 			p = &(*p)->rb_left;
2172 		else if (new->end > nd->end)
2173 			p = &(*p)->rb_right;
2174 		else
2175 			BUG();
2176 	}
2177 	rb_link_node(&new->nd, parent, p);
2178 	rb_insert_color(&new->nd, &sp->root);
2179 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2180 		 new->policy ? new->policy->mode : 0);
2181 }
2182 
2183 /* Find shared policy intersecting idx */
2184 struct mempolicy *
2185 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2186 {
2187 	struct mempolicy *pol = NULL;
2188 	struct sp_node *sn;
2189 
2190 	if (!sp->root.rb_node)
2191 		return NULL;
2192 	read_lock(&sp->lock);
2193 	sn = sp_lookup(sp, idx, idx+1);
2194 	if (sn) {
2195 		mpol_get(sn->policy);
2196 		pol = sn->policy;
2197 	}
2198 	read_unlock(&sp->lock);
2199 	return pol;
2200 }
2201 
2202 static void sp_free(struct sp_node *n)
2203 {
2204 	mpol_put(n->policy);
2205 	kmem_cache_free(sn_cache, n);
2206 }
2207 
2208 /**
2209  * mpol_misplaced - check whether current page node is valid in policy
2210  *
2211  * @page: page to be checked
2212  * @vma: vm area where page mapped
2213  * @addr: virtual address where page mapped
2214  *
2215  * Lookup current policy node id for vma,addr and "compare to" page's
2216  * node id.
2217  *
2218  * Returns:
2219  *	-1	- not misplaced, page is in the right node
2220  *	node	- node id where the page should be
2221  *
2222  * Policy determination "mimics" alloc_page_vma().
2223  * Called from fault path where we know the vma and faulting address.
2224  */
2225 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2226 {
2227 	struct mempolicy *pol;
2228 	struct zoneref *z;
2229 	int curnid = page_to_nid(page);
2230 	unsigned long pgoff;
2231 	int thiscpu = raw_smp_processor_id();
2232 	int thisnid = cpu_to_node(thiscpu);
2233 	int polnid = -1;
2234 	int ret = -1;
2235 
2236 	pol = get_vma_policy(vma, addr);
2237 	if (!(pol->flags & MPOL_F_MOF))
2238 		goto out;
2239 
2240 	switch (pol->mode) {
2241 	case MPOL_INTERLEAVE:
2242 		pgoff = vma->vm_pgoff;
2243 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2244 		polnid = offset_il_node(pol, pgoff);
2245 		break;
2246 
2247 	case MPOL_PREFERRED:
2248 		if (pol->flags & MPOL_F_LOCAL)
2249 			polnid = numa_node_id();
2250 		else
2251 			polnid = pol->v.preferred_node;
2252 		break;
2253 
2254 	case MPOL_BIND:
2255 
2256 		/*
2257 		 * allows binding to multiple nodes.
2258 		 * use current page if in policy nodemask,
2259 		 * else select nearest allowed node, if any.
2260 		 * If no allowed nodes, use current [!misplaced].
2261 		 */
2262 		if (node_isset(curnid, pol->v.nodes))
2263 			goto out;
2264 		z = first_zones_zonelist(
2265 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2266 				gfp_zone(GFP_HIGHUSER),
2267 				&pol->v.nodes);
2268 		polnid = z->zone->node;
2269 		break;
2270 
2271 	default:
2272 		BUG();
2273 	}
2274 
2275 	/* Migrate the page towards the node whose CPU is referencing it */
2276 	if (pol->flags & MPOL_F_MORON) {
2277 		polnid = thisnid;
2278 
2279 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2280 			goto out;
2281 	}
2282 
2283 	if (curnid != polnid)
2284 		ret = polnid;
2285 out:
2286 	mpol_cond_put(pol);
2287 
2288 	return ret;
2289 }
2290 
2291 /*
2292  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2293  * dropped after task->mempolicy is set to NULL so that any allocation done as
2294  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2295  * policy.
2296  */
2297 void mpol_put_task_policy(struct task_struct *task)
2298 {
2299 	struct mempolicy *pol;
2300 
2301 	task_lock(task);
2302 	pol = task->mempolicy;
2303 	task->mempolicy = NULL;
2304 	task_unlock(task);
2305 	mpol_put(pol);
2306 }
2307 
2308 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2309 {
2310 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2311 	rb_erase(&n->nd, &sp->root);
2312 	sp_free(n);
2313 }
2314 
2315 static void sp_node_init(struct sp_node *node, unsigned long start,
2316 			unsigned long end, struct mempolicy *pol)
2317 {
2318 	node->start = start;
2319 	node->end = end;
2320 	node->policy = pol;
2321 }
2322 
2323 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2324 				struct mempolicy *pol)
2325 {
2326 	struct sp_node *n;
2327 	struct mempolicy *newpol;
2328 
2329 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2330 	if (!n)
2331 		return NULL;
2332 
2333 	newpol = mpol_dup(pol);
2334 	if (IS_ERR(newpol)) {
2335 		kmem_cache_free(sn_cache, n);
2336 		return NULL;
2337 	}
2338 	newpol->flags |= MPOL_F_SHARED;
2339 	sp_node_init(n, start, end, newpol);
2340 
2341 	return n;
2342 }
2343 
2344 /* Replace a policy range. */
2345 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2346 				 unsigned long end, struct sp_node *new)
2347 {
2348 	struct sp_node *n;
2349 	struct sp_node *n_new = NULL;
2350 	struct mempolicy *mpol_new = NULL;
2351 	int ret = 0;
2352 
2353 restart:
2354 	write_lock(&sp->lock);
2355 	n = sp_lookup(sp, start, end);
2356 	/* Take care of old policies in the same range. */
2357 	while (n && n->start < end) {
2358 		struct rb_node *next = rb_next(&n->nd);
2359 		if (n->start >= start) {
2360 			if (n->end <= end)
2361 				sp_delete(sp, n);
2362 			else
2363 				n->start = end;
2364 		} else {
2365 			/* Old policy spanning whole new range. */
2366 			if (n->end > end) {
2367 				if (!n_new)
2368 					goto alloc_new;
2369 
2370 				*mpol_new = *n->policy;
2371 				atomic_set(&mpol_new->refcnt, 1);
2372 				sp_node_init(n_new, end, n->end, mpol_new);
2373 				n->end = start;
2374 				sp_insert(sp, n_new);
2375 				n_new = NULL;
2376 				mpol_new = NULL;
2377 				break;
2378 			} else
2379 				n->end = start;
2380 		}
2381 		if (!next)
2382 			break;
2383 		n = rb_entry(next, struct sp_node, nd);
2384 	}
2385 	if (new)
2386 		sp_insert(sp, new);
2387 	write_unlock(&sp->lock);
2388 	ret = 0;
2389 
2390 err_out:
2391 	if (mpol_new)
2392 		mpol_put(mpol_new);
2393 	if (n_new)
2394 		kmem_cache_free(sn_cache, n_new);
2395 
2396 	return ret;
2397 
2398 alloc_new:
2399 	write_unlock(&sp->lock);
2400 	ret = -ENOMEM;
2401 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2402 	if (!n_new)
2403 		goto err_out;
2404 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2405 	if (!mpol_new)
2406 		goto err_out;
2407 	goto restart;
2408 }
2409 
2410 /**
2411  * mpol_shared_policy_init - initialize shared policy for inode
2412  * @sp: pointer to inode shared policy
2413  * @mpol:  struct mempolicy to install
2414  *
2415  * Install non-NULL @mpol in inode's shared policy rb-tree.
2416  * On entry, the current task has a reference on a non-NULL @mpol.
2417  * This must be released on exit.
2418  * This is called at get_inode() calls and we can use GFP_KERNEL.
2419  */
2420 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2421 {
2422 	int ret;
2423 
2424 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2425 	rwlock_init(&sp->lock);
2426 
2427 	if (mpol) {
2428 		struct vm_area_struct pvma;
2429 		struct mempolicy *new;
2430 		NODEMASK_SCRATCH(scratch);
2431 
2432 		if (!scratch)
2433 			goto put_mpol;
2434 		/* contextualize the tmpfs mount point mempolicy */
2435 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2436 		if (IS_ERR(new))
2437 			goto free_scratch; /* no valid nodemask intersection */
2438 
2439 		task_lock(current);
2440 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2441 		task_unlock(current);
2442 		if (ret)
2443 			goto put_new;
2444 
2445 		/* Create pseudo-vma that contains just the policy */
2446 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2447 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2448 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2449 
2450 put_new:
2451 		mpol_put(new);			/* drop initial ref */
2452 free_scratch:
2453 		NODEMASK_SCRATCH_FREE(scratch);
2454 put_mpol:
2455 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2456 	}
2457 }
2458 
2459 int mpol_set_shared_policy(struct shared_policy *info,
2460 			struct vm_area_struct *vma, struct mempolicy *npol)
2461 {
2462 	int err;
2463 	struct sp_node *new = NULL;
2464 	unsigned long sz = vma_pages(vma);
2465 
2466 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2467 		 vma->vm_pgoff,
2468 		 sz, npol ? npol->mode : -1,
2469 		 npol ? npol->flags : -1,
2470 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2471 
2472 	if (npol) {
2473 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2474 		if (!new)
2475 			return -ENOMEM;
2476 	}
2477 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2478 	if (err && new)
2479 		sp_free(new);
2480 	return err;
2481 }
2482 
2483 /* Free a backing policy store on inode delete. */
2484 void mpol_free_shared_policy(struct shared_policy *p)
2485 {
2486 	struct sp_node *n;
2487 	struct rb_node *next;
2488 
2489 	if (!p->root.rb_node)
2490 		return;
2491 	write_lock(&p->lock);
2492 	next = rb_first(&p->root);
2493 	while (next) {
2494 		n = rb_entry(next, struct sp_node, nd);
2495 		next = rb_next(&n->nd);
2496 		sp_delete(p, n);
2497 	}
2498 	write_unlock(&p->lock);
2499 }
2500 
2501 #ifdef CONFIG_NUMA_BALANCING
2502 static int __initdata numabalancing_override;
2503 
2504 static void __init check_numabalancing_enable(void)
2505 {
2506 	bool numabalancing_default = false;
2507 
2508 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2509 		numabalancing_default = true;
2510 
2511 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2512 	if (numabalancing_override)
2513 		set_numabalancing_state(numabalancing_override == 1);
2514 
2515 	if (num_online_nodes() > 1 && !numabalancing_override) {
2516 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2517 			numabalancing_default ? "Enabling" : "Disabling");
2518 		set_numabalancing_state(numabalancing_default);
2519 	}
2520 }
2521 
2522 static int __init setup_numabalancing(char *str)
2523 {
2524 	int ret = 0;
2525 	if (!str)
2526 		goto out;
2527 
2528 	if (!strcmp(str, "enable")) {
2529 		numabalancing_override = 1;
2530 		ret = 1;
2531 	} else if (!strcmp(str, "disable")) {
2532 		numabalancing_override = -1;
2533 		ret = 1;
2534 	}
2535 out:
2536 	if (!ret)
2537 		pr_warn("Unable to parse numa_balancing=\n");
2538 
2539 	return ret;
2540 }
2541 __setup("numa_balancing=", setup_numabalancing);
2542 #else
2543 static inline void __init check_numabalancing_enable(void)
2544 {
2545 }
2546 #endif /* CONFIG_NUMA_BALANCING */
2547 
2548 /* assumes fs == KERNEL_DS */
2549 void __init numa_policy_init(void)
2550 {
2551 	nodemask_t interleave_nodes;
2552 	unsigned long largest = 0;
2553 	int nid, prefer = 0;
2554 
2555 	policy_cache = kmem_cache_create("numa_policy",
2556 					 sizeof(struct mempolicy),
2557 					 0, SLAB_PANIC, NULL);
2558 
2559 	sn_cache = kmem_cache_create("shared_policy_node",
2560 				     sizeof(struct sp_node),
2561 				     0, SLAB_PANIC, NULL);
2562 
2563 	for_each_node(nid) {
2564 		preferred_node_policy[nid] = (struct mempolicy) {
2565 			.refcnt = ATOMIC_INIT(1),
2566 			.mode = MPOL_PREFERRED,
2567 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2568 			.v = { .preferred_node = nid, },
2569 		};
2570 	}
2571 
2572 	/*
2573 	 * Set interleaving policy for system init. Interleaving is only
2574 	 * enabled across suitably sized nodes (default is >= 16MB), or
2575 	 * fall back to the largest node if they're all smaller.
2576 	 */
2577 	nodes_clear(interleave_nodes);
2578 	for_each_node_state(nid, N_MEMORY) {
2579 		unsigned long total_pages = node_present_pages(nid);
2580 
2581 		/* Preserve the largest node */
2582 		if (largest < total_pages) {
2583 			largest = total_pages;
2584 			prefer = nid;
2585 		}
2586 
2587 		/* Interleave this node? */
2588 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2589 			node_set(nid, interleave_nodes);
2590 	}
2591 
2592 	/* All too small, use the largest */
2593 	if (unlikely(nodes_empty(interleave_nodes)))
2594 		node_set(prefer, interleave_nodes);
2595 
2596 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2597 		pr_err("%s: interleaving failed\n", __func__);
2598 
2599 	check_numabalancing_enable();
2600 }
2601 
2602 /* Reset policy of current process to default */
2603 void numa_default_policy(void)
2604 {
2605 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2606 }
2607 
2608 /*
2609  * Parse and format mempolicy from/to strings
2610  */
2611 
2612 /*
2613  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2614  */
2615 static const char * const policy_modes[] =
2616 {
2617 	[MPOL_DEFAULT]    = "default",
2618 	[MPOL_PREFERRED]  = "prefer",
2619 	[MPOL_BIND]       = "bind",
2620 	[MPOL_INTERLEAVE] = "interleave",
2621 	[MPOL_LOCAL]      = "local",
2622 };
2623 
2624 
2625 #ifdef CONFIG_TMPFS
2626 /**
2627  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2628  * @str:  string containing mempolicy to parse
2629  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2630  *
2631  * Format of input:
2632  *	<mode>[=<flags>][:<nodelist>]
2633  *
2634  * On success, returns 0, else 1
2635  */
2636 int mpol_parse_str(char *str, struct mempolicy **mpol)
2637 {
2638 	struct mempolicy *new = NULL;
2639 	unsigned short mode;
2640 	unsigned short mode_flags;
2641 	nodemask_t nodes;
2642 	char *nodelist = strchr(str, ':');
2643 	char *flags = strchr(str, '=');
2644 	int err = 1;
2645 
2646 	if (nodelist) {
2647 		/* NUL-terminate mode or flags string */
2648 		*nodelist++ = '\0';
2649 		if (nodelist_parse(nodelist, nodes))
2650 			goto out;
2651 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2652 			goto out;
2653 	} else
2654 		nodes_clear(nodes);
2655 
2656 	if (flags)
2657 		*flags++ = '\0';	/* terminate mode string */
2658 
2659 	for (mode = 0; mode < MPOL_MAX; mode++) {
2660 		if (!strcmp(str, policy_modes[mode])) {
2661 			break;
2662 		}
2663 	}
2664 	if (mode >= MPOL_MAX)
2665 		goto out;
2666 
2667 	switch (mode) {
2668 	case MPOL_PREFERRED:
2669 		/*
2670 		 * Insist on a nodelist of one node only
2671 		 */
2672 		if (nodelist) {
2673 			char *rest = nodelist;
2674 			while (isdigit(*rest))
2675 				rest++;
2676 			if (*rest)
2677 				goto out;
2678 		}
2679 		break;
2680 	case MPOL_INTERLEAVE:
2681 		/*
2682 		 * Default to online nodes with memory if no nodelist
2683 		 */
2684 		if (!nodelist)
2685 			nodes = node_states[N_MEMORY];
2686 		break;
2687 	case MPOL_LOCAL:
2688 		/*
2689 		 * Don't allow a nodelist;  mpol_new() checks flags
2690 		 */
2691 		if (nodelist)
2692 			goto out;
2693 		mode = MPOL_PREFERRED;
2694 		break;
2695 	case MPOL_DEFAULT:
2696 		/*
2697 		 * Insist on a empty nodelist
2698 		 */
2699 		if (!nodelist)
2700 			err = 0;
2701 		goto out;
2702 	case MPOL_BIND:
2703 		/*
2704 		 * Insist on a nodelist
2705 		 */
2706 		if (!nodelist)
2707 			goto out;
2708 	}
2709 
2710 	mode_flags = 0;
2711 	if (flags) {
2712 		/*
2713 		 * Currently, we only support two mutually exclusive
2714 		 * mode flags.
2715 		 */
2716 		if (!strcmp(flags, "static"))
2717 			mode_flags |= MPOL_F_STATIC_NODES;
2718 		else if (!strcmp(flags, "relative"))
2719 			mode_flags |= MPOL_F_RELATIVE_NODES;
2720 		else
2721 			goto out;
2722 	}
2723 
2724 	new = mpol_new(mode, mode_flags, &nodes);
2725 	if (IS_ERR(new))
2726 		goto out;
2727 
2728 	/*
2729 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2730 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2731 	 */
2732 	if (mode != MPOL_PREFERRED)
2733 		new->v.nodes = nodes;
2734 	else if (nodelist)
2735 		new->v.preferred_node = first_node(nodes);
2736 	else
2737 		new->flags |= MPOL_F_LOCAL;
2738 
2739 	/*
2740 	 * Save nodes for contextualization: this will be used to "clone"
2741 	 * the mempolicy in a specific context [cpuset] at a later time.
2742 	 */
2743 	new->w.user_nodemask = nodes;
2744 
2745 	err = 0;
2746 
2747 out:
2748 	/* Restore string for error message */
2749 	if (nodelist)
2750 		*--nodelist = ':';
2751 	if (flags)
2752 		*--flags = '=';
2753 	if (!err)
2754 		*mpol = new;
2755 	return err;
2756 }
2757 #endif /* CONFIG_TMPFS */
2758 
2759 /**
2760  * mpol_to_str - format a mempolicy structure for printing
2761  * @buffer:  to contain formatted mempolicy string
2762  * @maxlen:  length of @buffer
2763  * @pol:  pointer to mempolicy to be formatted
2764  *
2765  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2766  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2767  * longest flag, "relative", and to display at least a few node ids.
2768  */
2769 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2770 {
2771 	char *p = buffer;
2772 	nodemask_t nodes = NODE_MASK_NONE;
2773 	unsigned short mode = MPOL_DEFAULT;
2774 	unsigned short flags = 0;
2775 
2776 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2777 		mode = pol->mode;
2778 		flags = pol->flags;
2779 	}
2780 
2781 	switch (mode) {
2782 	case MPOL_DEFAULT:
2783 		break;
2784 	case MPOL_PREFERRED:
2785 		if (flags & MPOL_F_LOCAL)
2786 			mode = MPOL_LOCAL;
2787 		else
2788 			node_set(pol->v.preferred_node, nodes);
2789 		break;
2790 	case MPOL_BIND:
2791 	case MPOL_INTERLEAVE:
2792 		nodes = pol->v.nodes;
2793 		break;
2794 	default:
2795 		WARN_ON_ONCE(1);
2796 		snprintf(p, maxlen, "unknown");
2797 		return;
2798 	}
2799 
2800 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2801 
2802 	if (flags & MPOL_MODE_FLAGS) {
2803 		p += snprintf(p, buffer + maxlen - p, "=");
2804 
2805 		/*
2806 		 * Currently, the only defined flags are mutually exclusive
2807 		 */
2808 		if (flags & MPOL_F_STATIC_NODES)
2809 			p += snprintf(p, buffer + maxlen - p, "static");
2810 		else if (flags & MPOL_F_RELATIVE_NODES)
2811 			p += snprintf(p, buffer + maxlen - p, "relative");
2812 	}
2813 
2814 	if (!nodes_empty(nodes))
2815 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2816 			       nodemask_pr_args(&nodes));
2817 }
2818