1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/swap.h> 89 #include <linux/seq_file.h> 90 #include <linux/proc_fs.h> 91 #include <linux/migrate.h> 92 #include <linux/ksm.h> 93 #include <linux/rmap.h> 94 #include <linux/security.h> 95 #include <linux/syscalls.h> 96 #include <linux/ctype.h> 97 #include <linux/mm_inline.h> 98 #include <linux/mmu_notifier.h> 99 #include <linux/printk.h> 100 #include <linux/swapops.h> 101 102 #include <asm/tlbflush.h> 103 #include <linux/uaccess.h> 104 105 #include "internal.h" 106 107 /* Internal flags */ 108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 110 111 static struct kmem_cache *policy_cache; 112 static struct kmem_cache *sn_cache; 113 114 /* Highest zone. An specific allocation for a zone below that is not 115 policied. */ 116 enum zone_type policy_zone = 0; 117 118 /* 119 * run-time system-wide default policy => local allocation 120 */ 121 static struct mempolicy default_policy = { 122 .refcnt = ATOMIC_INIT(1), /* never free it */ 123 .mode = MPOL_PREFERRED, 124 .flags = MPOL_F_LOCAL, 125 }; 126 127 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 128 129 struct mempolicy *get_task_policy(struct task_struct *p) 130 { 131 struct mempolicy *pol = p->mempolicy; 132 int node; 133 134 if (pol) 135 return pol; 136 137 node = numa_node_id(); 138 if (node != NUMA_NO_NODE) { 139 pol = &preferred_node_policy[node]; 140 /* preferred_node_policy is not initialised early in boot */ 141 if (pol->mode) 142 return pol; 143 } 144 145 return &default_policy; 146 } 147 148 static const struct mempolicy_operations { 149 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 150 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 151 } mpol_ops[MPOL_MAX]; 152 153 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 154 { 155 return pol->flags & MPOL_MODE_FLAGS; 156 } 157 158 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 159 const nodemask_t *rel) 160 { 161 nodemask_t tmp; 162 nodes_fold(tmp, *orig, nodes_weight(*rel)); 163 nodes_onto(*ret, tmp, *rel); 164 } 165 166 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 167 { 168 if (nodes_empty(*nodes)) 169 return -EINVAL; 170 pol->v.nodes = *nodes; 171 return 0; 172 } 173 174 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 175 { 176 if (!nodes) 177 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 178 else if (nodes_empty(*nodes)) 179 return -EINVAL; /* no allowed nodes */ 180 else 181 pol->v.preferred_node = first_node(*nodes); 182 return 0; 183 } 184 185 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 186 { 187 if (nodes_empty(*nodes)) 188 return -EINVAL; 189 pol->v.nodes = *nodes; 190 return 0; 191 } 192 193 /* 194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 195 * any, for the new policy. mpol_new() has already validated the nodes 196 * parameter with respect to the policy mode and flags. But, we need to 197 * handle an empty nodemask with MPOL_PREFERRED here. 198 * 199 * Must be called holding task's alloc_lock to protect task's mems_allowed 200 * and mempolicy. May also be called holding the mmap_semaphore for write. 201 */ 202 static int mpol_set_nodemask(struct mempolicy *pol, 203 const nodemask_t *nodes, struct nodemask_scratch *nsc) 204 { 205 int ret; 206 207 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 208 if (pol == NULL) 209 return 0; 210 /* Check N_MEMORY */ 211 nodes_and(nsc->mask1, 212 cpuset_current_mems_allowed, node_states[N_MEMORY]); 213 214 VM_BUG_ON(!nodes); 215 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 216 nodes = NULL; /* explicit local allocation */ 217 else { 218 if (pol->flags & MPOL_F_RELATIVE_NODES) 219 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 220 else 221 nodes_and(nsc->mask2, *nodes, nsc->mask1); 222 223 if (mpol_store_user_nodemask(pol)) 224 pol->w.user_nodemask = *nodes; 225 else 226 pol->w.cpuset_mems_allowed = 227 cpuset_current_mems_allowed; 228 } 229 230 if (nodes) 231 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 232 else 233 ret = mpol_ops[pol->mode].create(pol, NULL); 234 return ret; 235 } 236 237 /* 238 * This function just creates a new policy, does some check and simple 239 * initialization. You must invoke mpol_set_nodemask() to set nodes. 240 */ 241 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 242 nodemask_t *nodes) 243 { 244 struct mempolicy *policy; 245 246 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 247 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 248 249 if (mode == MPOL_DEFAULT) { 250 if (nodes && !nodes_empty(*nodes)) 251 return ERR_PTR(-EINVAL); 252 return NULL; 253 } 254 VM_BUG_ON(!nodes); 255 256 /* 257 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 258 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 259 * All other modes require a valid pointer to a non-empty nodemask. 260 */ 261 if (mode == MPOL_PREFERRED) { 262 if (nodes_empty(*nodes)) { 263 if (((flags & MPOL_F_STATIC_NODES) || 264 (flags & MPOL_F_RELATIVE_NODES))) 265 return ERR_PTR(-EINVAL); 266 } 267 } else if (mode == MPOL_LOCAL) { 268 if (!nodes_empty(*nodes) || 269 (flags & MPOL_F_STATIC_NODES) || 270 (flags & MPOL_F_RELATIVE_NODES)) 271 return ERR_PTR(-EINVAL); 272 mode = MPOL_PREFERRED; 273 } else if (nodes_empty(*nodes)) 274 return ERR_PTR(-EINVAL); 275 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 276 if (!policy) 277 return ERR_PTR(-ENOMEM); 278 atomic_set(&policy->refcnt, 1); 279 policy->mode = mode; 280 policy->flags = flags; 281 282 return policy; 283 } 284 285 /* Slow path of a mpol destructor. */ 286 void __mpol_put(struct mempolicy *p) 287 { 288 if (!atomic_dec_and_test(&p->refcnt)) 289 return; 290 kmem_cache_free(policy_cache, p); 291 } 292 293 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 294 { 295 } 296 297 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 298 { 299 nodemask_t tmp; 300 301 if (pol->flags & MPOL_F_STATIC_NODES) 302 nodes_and(tmp, pol->w.user_nodemask, *nodes); 303 else if (pol->flags & MPOL_F_RELATIVE_NODES) 304 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 305 else { 306 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 307 *nodes); 308 pol->w.cpuset_mems_allowed = tmp; 309 } 310 311 if (nodes_empty(tmp)) 312 tmp = *nodes; 313 314 pol->v.nodes = tmp; 315 } 316 317 static void mpol_rebind_preferred(struct mempolicy *pol, 318 const nodemask_t *nodes) 319 { 320 nodemask_t tmp; 321 322 if (pol->flags & MPOL_F_STATIC_NODES) { 323 int node = first_node(pol->w.user_nodemask); 324 325 if (node_isset(node, *nodes)) { 326 pol->v.preferred_node = node; 327 pol->flags &= ~MPOL_F_LOCAL; 328 } else 329 pol->flags |= MPOL_F_LOCAL; 330 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 332 pol->v.preferred_node = first_node(tmp); 333 } else if (!(pol->flags & MPOL_F_LOCAL)) { 334 pol->v.preferred_node = node_remap(pol->v.preferred_node, 335 pol->w.cpuset_mems_allowed, 336 *nodes); 337 pol->w.cpuset_mems_allowed = *nodes; 338 } 339 } 340 341 /* 342 * mpol_rebind_policy - Migrate a policy to a different set of nodes 343 * 344 * Per-vma policies are protected by mmap_sem. Allocations using per-task 345 * policies are protected by task->mems_allowed_seq to prevent a premature 346 * OOM/allocation failure due to parallel nodemask modification. 347 */ 348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 349 { 350 if (!pol) 351 return; 352 if (!mpol_store_user_nodemask(pol) && 353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 354 return; 355 356 mpol_ops[pol->mode].rebind(pol, newmask); 357 } 358 359 /* 360 * Wrapper for mpol_rebind_policy() that just requires task 361 * pointer, and updates task mempolicy. 362 * 363 * Called with task's alloc_lock held. 364 */ 365 366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 367 { 368 mpol_rebind_policy(tsk->mempolicy, new); 369 } 370 371 /* 372 * Rebind each vma in mm to new nodemask. 373 * 374 * Call holding a reference to mm. Takes mm->mmap_sem during call. 375 */ 376 377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 378 { 379 struct vm_area_struct *vma; 380 381 down_write(&mm->mmap_sem); 382 for (vma = mm->mmap; vma; vma = vma->vm_next) 383 mpol_rebind_policy(vma->vm_policy, new); 384 up_write(&mm->mmap_sem); 385 } 386 387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 388 [MPOL_DEFAULT] = { 389 .rebind = mpol_rebind_default, 390 }, 391 [MPOL_INTERLEAVE] = { 392 .create = mpol_new_interleave, 393 .rebind = mpol_rebind_nodemask, 394 }, 395 [MPOL_PREFERRED] = { 396 .create = mpol_new_preferred, 397 .rebind = mpol_rebind_preferred, 398 }, 399 [MPOL_BIND] = { 400 .create = mpol_new_bind, 401 .rebind = mpol_rebind_nodemask, 402 }, 403 }; 404 405 static void migrate_page_add(struct page *page, struct list_head *pagelist, 406 unsigned long flags); 407 408 struct queue_pages { 409 struct list_head *pagelist; 410 unsigned long flags; 411 nodemask_t *nmask; 412 struct vm_area_struct *prev; 413 }; 414 415 /* 416 * Check if the page's nid is in qp->nmask. 417 * 418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 419 * in the invert of qp->nmask. 420 */ 421 static inline bool queue_pages_required(struct page *page, 422 struct queue_pages *qp) 423 { 424 int nid = page_to_nid(page); 425 unsigned long flags = qp->flags; 426 427 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 428 } 429 430 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 431 unsigned long end, struct mm_walk *walk) 432 { 433 int ret = 0; 434 struct page *page; 435 struct queue_pages *qp = walk->private; 436 unsigned long flags; 437 438 if (unlikely(is_pmd_migration_entry(*pmd))) { 439 ret = 1; 440 goto unlock; 441 } 442 page = pmd_page(*pmd); 443 if (is_huge_zero_page(page)) { 444 spin_unlock(ptl); 445 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 446 goto out; 447 } 448 if (!thp_migration_supported()) { 449 get_page(page); 450 spin_unlock(ptl); 451 lock_page(page); 452 ret = split_huge_page(page); 453 unlock_page(page); 454 put_page(page); 455 goto out; 456 } 457 if (!queue_pages_required(page, qp)) { 458 ret = 1; 459 goto unlock; 460 } 461 462 ret = 1; 463 flags = qp->flags; 464 /* go to thp migration */ 465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 466 migrate_page_add(page, qp->pagelist, flags); 467 unlock: 468 spin_unlock(ptl); 469 out: 470 return ret; 471 } 472 473 /* 474 * Scan through pages checking if pages follow certain conditions, 475 * and move them to the pagelist if they do. 476 */ 477 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 478 unsigned long end, struct mm_walk *walk) 479 { 480 struct vm_area_struct *vma = walk->vma; 481 struct page *page; 482 struct queue_pages *qp = walk->private; 483 unsigned long flags = qp->flags; 484 int ret; 485 pte_t *pte; 486 spinlock_t *ptl; 487 488 ptl = pmd_trans_huge_lock(pmd, vma); 489 if (ptl) { 490 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 491 if (ret) 492 return 0; 493 } 494 495 if (pmd_trans_unstable(pmd)) 496 return 0; 497 retry: 498 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 499 for (; addr != end; pte++, addr += PAGE_SIZE) { 500 if (!pte_present(*pte)) 501 continue; 502 page = vm_normal_page(vma, addr, *pte); 503 if (!page) 504 continue; 505 /* 506 * vm_normal_page() filters out zero pages, but there might 507 * still be PageReserved pages to skip, perhaps in a VDSO. 508 */ 509 if (PageReserved(page)) 510 continue; 511 if (!queue_pages_required(page, qp)) 512 continue; 513 if (PageTransCompound(page) && !thp_migration_supported()) { 514 get_page(page); 515 pte_unmap_unlock(pte, ptl); 516 lock_page(page); 517 ret = split_huge_page(page); 518 unlock_page(page); 519 put_page(page); 520 /* Failed to split -- skip. */ 521 if (ret) { 522 pte = pte_offset_map_lock(walk->mm, pmd, 523 addr, &ptl); 524 continue; 525 } 526 goto retry; 527 } 528 529 migrate_page_add(page, qp->pagelist, flags); 530 } 531 pte_unmap_unlock(pte - 1, ptl); 532 cond_resched(); 533 return 0; 534 } 535 536 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 537 unsigned long addr, unsigned long end, 538 struct mm_walk *walk) 539 { 540 #ifdef CONFIG_HUGETLB_PAGE 541 struct queue_pages *qp = walk->private; 542 unsigned long flags = qp->flags; 543 struct page *page; 544 spinlock_t *ptl; 545 pte_t entry; 546 547 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 548 entry = huge_ptep_get(pte); 549 if (!pte_present(entry)) 550 goto unlock; 551 page = pte_page(entry); 552 if (!queue_pages_required(page, qp)) 553 goto unlock; 554 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 555 if (flags & (MPOL_MF_MOVE_ALL) || 556 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 557 isolate_huge_page(page, qp->pagelist); 558 unlock: 559 spin_unlock(ptl); 560 #else 561 BUG(); 562 #endif 563 return 0; 564 } 565 566 #ifdef CONFIG_NUMA_BALANCING 567 /* 568 * This is used to mark a range of virtual addresses to be inaccessible. 569 * These are later cleared by a NUMA hinting fault. Depending on these 570 * faults, pages may be migrated for better NUMA placement. 571 * 572 * This is assuming that NUMA faults are handled using PROT_NONE. If 573 * an architecture makes a different choice, it will need further 574 * changes to the core. 575 */ 576 unsigned long change_prot_numa(struct vm_area_struct *vma, 577 unsigned long addr, unsigned long end) 578 { 579 int nr_updated; 580 581 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 582 if (nr_updated) 583 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 584 585 return nr_updated; 586 } 587 #else 588 static unsigned long change_prot_numa(struct vm_area_struct *vma, 589 unsigned long addr, unsigned long end) 590 { 591 return 0; 592 } 593 #endif /* CONFIG_NUMA_BALANCING */ 594 595 static int queue_pages_test_walk(unsigned long start, unsigned long end, 596 struct mm_walk *walk) 597 { 598 struct vm_area_struct *vma = walk->vma; 599 struct queue_pages *qp = walk->private; 600 unsigned long endvma = vma->vm_end; 601 unsigned long flags = qp->flags; 602 603 if (!vma_migratable(vma)) 604 return 1; 605 606 if (endvma > end) 607 endvma = end; 608 if (vma->vm_start > start) 609 start = vma->vm_start; 610 611 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 612 if (!vma->vm_next && vma->vm_end < end) 613 return -EFAULT; 614 if (qp->prev && qp->prev->vm_end < vma->vm_start) 615 return -EFAULT; 616 } 617 618 qp->prev = vma; 619 620 if (flags & MPOL_MF_LAZY) { 621 /* Similar to task_numa_work, skip inaccessible VMAs */ 622 if (!is_vm_hugetlb_page(vma) && 623 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 624 !(vma->vm_flags & VM_MIXEDMAP)) 625 change_prot_numa(vma, start, endvma); 626 return 1; 627 } 628 629 /* queue pages from current vma */ 630 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 631 return 0; 632 return 1; 633 } 634 635 /* 636 * Walk through page tables and collect pages to be migrated. 637 * 638 * If pages found in a given range are on a set of nodes (determined by 639 * @nodes and @flags,) it's isolated and queued to the pagelist which is 640 * passed via @private.) 641 */ 642 static int 643 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 644 nodemask_t *nodes, unsigned long flags, 645 struct list_head *pagelist) 646 { 647 struct queue_pages qp = { 648 .pagelist = pagelist, 649 .flags = flags, 650 .nmask = nodes, 651 .prev = NULL, 652 }; 653 struct mm_walk queue_pages_walk = { 654 .hugetlb_entry = queue_pages_hugetlb, 655 .pmd_entry = queue_pages_pte_range, 656 .test_walk = queue_pages_test_walk, 657 .mm = mm, 658 .private = &qp, 659 }; 660 661 return walk_page_range(start, end, &queue_pages_walk); 662 } 663 664 /* 665 * Apply policy to a single VMA 666 * This must be called with the mmap_sem held for writing. 667 */ 668 static int vma_replace_policy(struct vm_area_struct *vma, 669 struct mempolicy *pol) 670 { 671 int err; 672 struct mempolicy *old; 673 struct mempolicy *new; 674 675 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 676 vma->vm_start, vma->vm_end, vma->vm_pgoff, 677 vma->vm_ops, vma->vm_file, 678 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 679 680 new = mpol_dup(pol); 681 if (IS_ERR(new)) 682 return PTR_ERR(new); 683 684 if (vma->vm_ops && vma->vm_ops->set_policy) { 685 err = vma->vm_ops->set_policy(vma, new); 686 if (err) 687 goto err_out; 688 } 689 690 old = vma->vm_policy; 691 vma->vm_policy = new; /* protected by mmap_sem */ 692 mpol_put(old); 693 694 return 0; 695 err_out: 696 mpol_put(new); 697 return err; 698 } 699 700 /* Step 2: apply policy to a range and do splits. */ 701 static int mbind_range(struct mm_struct *mm, unsigned long start, 702 unsigned long end, struct mempolicy *new_pol) 703 { 704 struct vm_area_struct *next; 705 struct vm_area_struct *prev; 706 struct vm_area_struct *vma; 707 int err = 0; 708 pgoff_t pgoff; 709 unsigned long vmstart; 710 unsigned long vmend; 711 712 vma = find_vma(mm, start); 713 if (!vma || vma->vm_start > start) 714 return -EFAULT; 715 716 prev = vma->vm_prev; 717 if (start > vma->vm_start) 718 prev = vma; 719 720 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 721 next = vma->vm_next; 722 vmstart = max(start, vma->vm_start); 723 vmend = min(end, vma->vm_end); 724 725 if (mpol_equal(vma_policy(vma), new_pol)) 726 continue; 727 728 pgoff = vma->vm_pgoff + 729 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 730 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 731 vma->anon_vma, vma->vm_file, pgoff, 732 new_pol, vma->vm_userfaultfd_ctx); 733 if (prev) { 734 vma = prev; 735 next = vma->vm_next; 736 if (mpol_equal(vma_policy(vma), new_pol)) 737 continue; 738 /* vma_merge() joined vma && vma->next, case 8 */ 739 goto replace; 740 } 741 if (vma->vm_start != vmstart) { 742 err = split_vma(vma->vm_mm, vma, vmstart, 1); 743 if (err) 744 goto out; 745 } 746 if (vma->vm_end != vmend) { 747 err = split_vma(vma->vm_mm, vma, vmend, 0); 748 if (err) 749 goto out; 750 } 751 replace: 752 err = vma_replace_policy(vma, new_pol); 753 if (err) 754 goto out; 755 } 756 757 out: 758 return err; 759 } 760 761 /* Set the process memory policy */ 762 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 763 nodemask_t *nodes) 764 { 765 struct mempolicy *new, *old; 766 NODEMASK_SCRATCH(scratch); 767 int ret; 768 769 if (!scratch) 770 return -ENOMEM; 771 772 new = mpol_new(mode, flags, nodes); 773 if (IS_ERR(new)) { 774 ret = PTR_ERR(new); 775 goto out; 776 } 777 778 task_lock(current); 779 ret = mpol_set_nodemask(new, nodes, scratch); 780 if (ret) { 781 task_unlock(current); 782 mpol_put(new); 783 goto out; 784 } 785 old = current->mempolicy; 786 current->mempolicy = new; 787 if (new && new->mode == MPOL_INTERLEAVE) 788 current->il_prev = MAX_NUMNODES-1; 789 task_unlock(current); 790 mpol_put(old); 791 ret = 0; 792 out: 793 NODEMASK_SCRATCH_FREE(scratch); 794 return ret; 795 } 796 797 /* 798 * Return nodemask for policy for get_mempolicy() query 799 * 800 * Called with task's alloc_lock held 801 */ 802 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 803 { 804 nodes_clear(*nodes); 805 if (p == &default_policy) 806 return; 807 808 switch (p->mode) { 809 case MPOL_BIND: 810 /* Fall through */ 811 case MPOL_INTERLEAVE: 812 *nodes = p->v.nodes; 813 break; 814 case MPOL_PREFERRED: 815 if (!(p->flags & MPOL_F_LOCAL)) 816 node_set(p->v.preferred_node, *nodes); 817 /* else return empty node mask for local allocation */ 818 break; 819 default: 820 BUG(); 821 } 822 } 823 824 static int lookup_node(unsigned long addr) 825 { 826 struct page *p; 827 int err; 828 829 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 830 if (err >= 0) { 831 err = page_to_nid(p); 832 put_page(p); 833 } 834 return err; 835 } 836 837 /* Retrieve NUMA policy */ 838 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 839 unsigned long addr, unsigned long flags) 840 { 841 int err; 842 struct mm_struct *mm = current->mm; 843 struct vm_area_struct *vma = NULL; 844 struct mempolicy *pol = current->mempolicy; 845 846 if (flags & 847 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 848 return -EINVAL; 849 850 if (flags & MPOL_F_MEMS_ALLOWED) { 851 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 852 return -EINVAL; 853 *policy = 0; /* just so it's initialized */ 854 task_lock(current); 855 *nmask = cpuset_current_mems_allowed; 856 task_unlock(current); 857 return 0; 858 } 859 860 if (flags & MPOL_F_ADDR) { 861 /* 862 * Do NOT fall back to task policy if the 863 * vma/shared policy at addr is NULL. We 864 * want to return MPOL_DEFAULT in this case. 865 */ 866 down_read(&mm->mmap_sem); 867 vma = find_vma_intersection(mm, addr, addr+1); 868 if (!vma) { 869 up_read(&mm->mmap_sem); 870 return -EFAULT; 871 } 872 if (vma->vm_ops && vma->vm_ops->get_policy) 873 pol = vma->vm_ops->get_policy(vma, addr); 874 else 875 pol = vma->vm_policy; 876 } else if (addr) 877 return -EINVAL; 878 879 if (!pol) 880 pol = &default_policy; /* indicates default behavior */ 881 882 if (flags & MPOL_F_NODE) { 883 if (flags & MPOL_F_ADDR) { 884 err = lookup_node(addr); 885 if (err < 0) 886 goto out; 887 *policy = err; 888 } else if (pol == current->mempolicy && 889 pol->mode == MPOL_INTERLEAVE) { 890 *policy = next_node_in(current->il_prev, pol->v.nodes); 891 } else { 892 err = -EINVAL; 893 goto out; 894 } 895 } else { 896 *policy = pol == &default_policy ? MPOL_DEFAULT : 897 pol->mode; 898 /* 899 * Internal mempolicy flags must be masked off before exposing 900 * the policy to userspace. 901 */ 902 *policy |= (pol->flags & MPOL_MODE_FLAGS); 903 } 904 905 err = 0; 906 if (nmask) { 907 if (mpol_store_user_nodemask(pol)) { 908 *nmask = pol->w.user_nodemask; 909 } else { 910 task_lock(current); 911 get_policy_nodemask(pol, nmask); 912 task_unlock(current); 913 } 914 } 915 916 out: 917 mpol_cond_put(pol); 918 if (vma) 919 up_read(¤t->mm->mmap_sem); 920 return err; 921 } 922 923 #ifdef CONFIG_MIGRATION 924 /* 925 * page migration, thp tail pages can be passed. 926 */ 927 static void migrate_page_add(struct page *page, struct list_head *pagelist, 928 unsigned long flags) 929 { 930 struct page *head = compound_head(page); 931 /* 932 * Avoid migrating a page that is shared with others. 933 */ 934 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 935 if (!isolate_lru_page(head)) { 936 list_add_tail(&head->lru, pagelist); 937 mod_node_page_state(page_pgdat(head), 938 NR_ISOLATED_ANON + page_is_file_cache(head), 939 hpage_nr_pages(head)); 940 } 941 } 942 } 943 944 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 945 { 946 if (PageHuge(page)) 947 return alloc_huge_page_node(page_hstate(compound_head(page)), 948 node); 949 else if (thp_migration_supported() && PageTransHuge(page)) { 950 struct page *thp; 951 952 thp = alloc_pages_node(node, 953 (GFP_TRANSHUGE | __GFP_THISNODE), 954 HPAGE_PMD_ORDER); 955 if (!thp) 956 return NULL; 957 prep_transhuge_page(thp); 958 return thp; 959 } else 960 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 961 __GFP_THISNODE, 0); 962 } 963 964 /* 965 * Migrate pages from one node to a target node. 966 * Returns error or the number of pages not migrated. 967 */ 968 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 969 int flags) 970 { 971 nodemask_t nmask; 972 LIST_HEAD(pagelist); 973 int err = 0; 974 975 nodes_clear(nmask); 976 node_set(source, nmask); 977 978 /* 979 * This does not "check" the range but isolates all pages that 980 * need migration. Between passing in the full user address 981 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 982 */ 983 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 984 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 985 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 986 987 if (!list_empty(&pagelist)) { 988 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 989 MIGRATE_SYNC, MR_SYSCALL); 990 if (err) 991 putback_movable_pages(&pagelist); 992 } 993 994 return err; 995 } 996 997 /* 998 * Move pages between the two nodesets so as to preserve the physical 999 * layout as much as possible. 1000 * 1001 * Returns the number of page that could not be moved. 1002 */ 1003 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1004 const nodemask_t *to, int flags) 1005 { 1006 int busy = 0; 1007 int err; 1008 nodemask_t tmp; 1009 1010 err = migrate_prep(); 1011 if (err) 1012 return err; 1013 1014 down_read(&mm->mmap_sem); 1015 1016 /* 1017 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1018 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1019 * bit in 'tmp', and return that <source, dest> pair for migration. 1020 * The pair of nodemasks 'to' and 'from' define the map. 1021 * 1022 * If no pair of bits is found that way, fallback to picking some 1023 * pair of 'source' and 'dest' bits that are not the same. If the 1024 * 'source' and 'dest' bits are the same, this represents a node 1025 * that will be migrating to itself, so no pages need move. 1026 * 1027 * If no bits are left in 'tmp', or if all remaining bits left 1028 * in 'tmp' correspond to the same bit in 'to', return false 1029 * (nothing left to migrate). 1030 * 1031 * This lets us pick a pair of nodes to migrate between, such that 1032 * if possible the dest node is not already occupied by some other 1033 * source node, minimizing the risk of overloading the memory on a 1034 * node that would happen if we migrated incoming memory to a node 1035 * before migrating outgoing memory source that same node. 1036 * 1037 * A single scan of tmp is sufficient. As we go, we remember the 1038 * most recent <s, d> pair that moved (s != d). If we find a pair 1039 * that not only moved, but what's better, moved to an empty slot 1040 * (d is not set in tmp), then we break out then, with that pair. 1041 * Otherwise when we finish scanning from_tmp, we at least have the 1042 * most recent <s, d> pair that moved. If we get all the way through 1043 * the scan of tmp without finding any node that moved, much less 1044 * moved to an empty node, then there is nothing left worth migrating. 1045 */ 1046 1047 tmp = *from; 1048 while (!nodes_empty(tmp)) { 1049 int s,d; 1050 int source = NUMA_NO_NODE; 1051 int dest = 0; 1052 1053 for_each_node_mask(s, tmp) { 1054 1055 /* 1056 * do_migrate_pages() tries to maintain the relative 1057 * node relationship of the pages established between 1058 * threads and memory areas. 1059 * 1060 * However if the number of source nodes is not equal to 1061 * the number of destination nodes we can not preserve 1062 * this node relative relationship. In that case, skip 1063 * copying memory from a node that is in the destination 1064 * mask. 1065 * 1066 * Example: [2,3,4] -> [3,4,5] moves everything. 1067 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1068 */ 1069 1070 if ((nodes_weight(*from) != nodes_weight(*to)) && 1071 (node_isset(s, *to))) 1072 continue; 1073 1074 d = node_remap(s, *from, *to); 1075 if (s == d) 1076 continue; 1077 1078 source = s; /* Node moved. Memorize */ 1079 dest = d; 1080 1081 /* dest not in remaining from nodes? */ 1082 if (!node_isset(dest, tmp)) 1083 break; 1084 } 1085 if (source == NUMA_NO_NODE) 1086 break; 1087 1088 node_clear(source, tmp); 1089 err = migrate_to_node(mm, source, dest, flags); 1090 if (err > 0) 1091 busy += err; 1092 if (err < 0) 1093 break; 1094 } 1095 up_read(&mm->mmap_sem); 1096 if (err < 0) 1097 return err; 1098 return busy; 1099 1100 } 1101 1102 /* 1103 * Allocate a new page for page migration based on vma policy. 1104 * Start by assuming the page is mapped by the same vma as contains @start. 1105 * Search forward from there, if not. N.B., this assumes that the 1106 * list of pages handed to migrate_pages()--which is how we get here-- 1107 * is in virtual address order. 1108 */ 1109 static struct page *new_page(struct page *page, unsigned long start, int **x) 1110 { 1111 struct vm_area_struct *vma; 1112 unsigned long uninitialized_var(address); 1113 1114 vma = find_vma(current->mm, start); 1115 while (vma) { 1116 address = page_address_in_vma(page, vma); 1117 if (address != -EFAULT) 1118 break; 1119 vma = vma->vm_next; 1120 } 1121 1122 if (PageHuge(page)) { 1123 BUG_ON(!vma); 1124 return alloc_huge_page_noerr(vma, address, 1); 1125 } else if (thp_migration_supported() && PageTransHuge(page)) { 1126 struct page *thp; 1127 1128 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1129 HPAGE_PMD_ORDER); 1130 if (!thp) 1131 return NULL; 1132 prep_transhuge_page(thp); 1133 return thp; 1134 } 1135 /* 1136 * if !vma, alloc_page_vma() will use task or system default policy 1137 */ 1138 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1139 vma, address); 1140 } 1141 #else 1142 1143 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1144 unsigned long flags) 1145 { 1146 } 1147 1148 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1149 const nodemask_t *to, int flags) 1150 { 1151 return -ENOSYS; 1152 } 1153 1154 static struct page *new_page(struct page *page, unsigned long start, int **x) 1155 { 1156 return NULL; 1157 } 1158 #endif 1159 1160 static long do_mbind(unsigned long start, unsigned long len, 1161 unsigned short mode, unsigned short mode_flags, 1162 nodemask_t *nmask, unsigned long flags) 1163 { 1164 struct mm_struct *mm = current->mm; 1165 struct mempolicy *new; 1166 unsigned long end; 1167 int err; 1168 LIST_HEAD(pagelist); 1169 1170 if (flags & ~(unsigned long)MPOL_MF_VALID) 1171 return -EINVAL; 1172 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1173 return -EPERM; 1174 1175 if (start & ~PAGE_MASK) 1176 return -EINVAL; 1177 1178 if (mode == MPOL_DEFAULT) 1179 flags &= ~MPOL_MF_STRICT; 1180 1181 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1182 end = start + len; 1183 1184 if (end < start) 1185 return -EINVAL; 1186 if (end == start) 1187 return 0; 1188 1189 new = mpol_new(mode, mode_flags, nmask); 1190 if (IS_ERR(new)) 1191 return PTR_ERR(new); 1192 1193 if (flags & MPOL_MF_LAZY) 1194 new->flags |= MPOL_F_MOF; 1195 1196 /* 1197 * If we are using the default policy then operation 1198 * on discontinuous address spaces is okay after all 1199 */ 1200 if (!new) 1201 flags |= MPOL_MF_DISCONTIG_OK; 1202 1203 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1204 start, start + len, mode, mode_flags, 1205 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1206 1207 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1208 1209 err = migrate_prep(); 1210 if (err) 1211 goto mpol_out; 1212 } 1213 { 1214 NODEMASK_SCRATCH(scratch); 1215 if (scratch) { 1216 down_write(&mm->mmap_sem); 1217 task_lock(current); 1218 err = mpol_set_nodemask(new, nmask, scratch); 1219 task_unlock(current); 1220 if (err) 1221 up_write(&mm->mmap_sem); 1222 } else 1223 err = -ENOMEM; 1224 NODEMASK_SCRATCH_FREE(scratch); 1225 } 1226 if (err) 1227 goto mpol_out; 1228 1229 err = queue_pages_range(mm, start, end, nmask, 1230 flags | MPOL_MF_INVERT, &pagelist); 1231 if (!err) 1232 err = mbind_range(mm, start, end, new); 1233 1234 if (!err) { 1235 int nr_failed = 0; 1236 1237 if (!list_empty(&pagelist)) { 1238 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1239 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1240 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1241 if (nr_failed) 1242 putback_movable_pages(&pagelist); 1243 } 1244 1245 if (nr_failed && (flags & MPOL_MF_STRICT)) 1246 err = -EIO; 1247 } else 1248 putback_movable_pages(&pagelist); 1249 1250 up_write(&mm->mmap_sem); 1251 mpol_out: 1252 mpol_put(new); 1253 return err; 1254 } 1255 1256 /* 1257 * User space interface with variable sized bitmaps for nodelists. 1258 */ 1259 1260 /* Copy a node mask from user space. */ 1261 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1262 unsigned long maxnode) 1263 { 1264 unsigned long k; 1265 unsigned long nlongs; 1266 unsigned long endmask; 1267 1268 --maxnode; 1269 nodes_clear(*nodes); 1270 if (maxnode == 0 || !nmask) 1271 return 0; 1272 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1273 return -EINVAL; 1274 1275 nlongs = BITS_TO_LONGS(maxnode); 1276 if ((maxnode % BITS_PER_LONG) == 0) 1277 endmask = ~0UL; 1278 else 1279 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1280 1281 /* When the user specified more nodes than supported just check 1282 if the non supported part is all zero. */ 1283 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1284 if (nlongs > PAGE_SIZE/sizeof(long)) 1285 return -EINVAL; 1286 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1287 unsigned long t; 1288 if (get_user(t, nmask + k)) 1289 return -EFAULT; 1290 if (k == nlongs - 1) { 1291 if (t & endmask) 1292 return -EINVAL; 1293 } else if (t) 1294 return -EINVAL; 1295 } 1296 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1297 endmask = ~0UL; 1298 } 1299 1300 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1301 return -EFAULT; 1302 nodes_addr(*nodes)[nlongs-1] &= endmask; 1303 return 0; 1304 } 1305 1306 /* Copy a kernel node mask to user space */ 1307 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1308 nodemask_t *nodes) 1309 { 1310 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1311 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1312 1313 if (copy > nbytes) { 1314 if (copy > PAGE_SIZE) 1315 return -EINVAL; 1316 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1317 return -EFAULT; 1318 copy = nbytes; 1319 } 1320 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1321 } 1322 1323 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1324 unsigned long, mode, const unsigned long __user *, nmask, 1325 unsigned long, maxnode, unsigned, flags) 1326 { 1327 nodemask_t nodes; 1328 int err; 1329 unsigned short mode_flags; 1330 1331 mode_flags = mode & MPOL_MODE_FLAGS; 1332 mode &= ~MPOL_MODE_FLAGS; 1333 if (mode >= MPOL_MAX) 1334 return -EINVAL; 1335 if ((mode_flags & MPOL_F_STATIC_NODES) && 1336 (mode_flags & MPOL_F_RELATIVE_NODES)) 1337 return -EINVAL; 1338 err = get_nodes(&nodes, nmask, maxnode); 1339 if (err) 1340 return err; 1341 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1342 } 1343 1344 /* Set the process memory policy */ 1345 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1346 unsigned long, maxnode) 1347 { 1348 int err; 1349 nodemask_t nodes; 1350 unsigned short flags; 1351 1352 flags = mode & MPOL_MODE_FLAGS; 1353 mode &= ~MPOL_MODE_FLAGS; 1354 if ((unsigned int)mode >= MPOL_MAX) 1355 return -EINVAL; 1356 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1357 return -EINVAL; 1358 err = get_nodes(&nodes, nmask, maxnode); 1359 if (err) 1360 return err; 1361 return do_set_mempolicy(mode, flags, &nodes); 1362 } 1363 1364 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1365 const unsigned long __user *, old_nodes, 1366 const unsigned long __user *, new_nodes) 1367 { 1368 const struct cred *cred = current_cred(), *tcred; 1369 struct mm_struct *mm = NULL; 1370 struct task_struct *task; 1371 nodemask_t task_nodes; 1372 int err; 1373 nodemask_t *old; 1374 nodemask_t *new; 1375 NODEMASK_SCRATCH(scratch); 1376 1377 if (!scratch) 1378 return -ENOMEM; 1379 1380 old = &scratch->mask1; 1381 new = &scratch->mask2; 1382 1383 err = get_nodes(old, old_nodes, maxnode); 1384 if (err) 1385 goto out; 1386 1387 err = get_nodes(new, new_nodes, maxnode); 1388 if (err) 1389 goto out; 1390 1391 /* Find the mm_struct */ 1392 rcu_read_lock(); 1393 task = pid ? find_task_by_vpid(pid) : current; 1394 if (!task) { 1395 rcu_read_unlock(); 1396 err = -ESRCH; 1397 goto out; 1398 } 1399 get_task_struct(task); 1400 1401 err = -EINVAL; 1402 1403 /* 1404 * Check if this process has the right to modify the specified 1405 * process. The right exists if the process has administrative 1406 * capabilities, superuser privileges or the same 1407 * userid as the target process. 1408 */ 1409 tcred = __task_cred(task); 1410 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1411 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1412 !capable(CAP_SYS_NICE)) { 1413 rcu_read_unlock(); 1414 err = -EPERM; 1415 goto out_put; 1416 } 1417 rcu_read_unlock(); 1418 1419 task_nodes = cpuset_mems_allowed(task); 1420 /* Is the user allowed to access the target nodes? */ 1421 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1422 err = -EPERM; 1423 goto out_put; 1424 } 1425 1426 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1427 err = -EINVAL; 1428 goto out_put; 1429 } 1430 1431 err = security_task_movememory(task); 1432 if (err) 1433 goto out_put; 1434 1435 mm = get_task_mm(task); 1436 put_task_struct(task); 1437 1438 if (!mm) { 1439 err = -EINVAL; 1440 goto out; 1441 } 1442 1443 err = do_migrate_pages(mm, old, new, 1444 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1445 1446 mmput(mm); 1447 out: 1448 NODEMASK_SCRATCH_FREE(scratch); 1449 1450 return err; 1451 1452 out_put: 1453 put_task_struct(task); 1454 goto out; 1455 1456 } 1457 1458 1459 /* Retrieve NUMA policy */ 1460 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1461 unsigned long __user *, nmask, unsigned long, maxnode, 1462 unsigned long, addr, unsigned long, flags) 1463 { 1464 int err; 1465 int uninitialized_var(pval); 1466 nodemask_t nodes; 1467 1468 if (nmask != NULL && maxnode < MAX_NUMNODES) 1469 return -EINVAL; 1470 1471 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1472 1473 if (err) 1474 return err; 1475 1476 if (policy && put_user(pval, policy)) 1477 return -EFAULT; 1478 1479 if (nmask) 1480 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1481 1482 return err; 1483 } 1484 1485 #ifdef CONFIG_COMPAT 1486 1487 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1488 compat_ulong_t __user *, nmask, 1489 compat_ulong_t, maxnode, 1490 compat_ulong_t, addr, compat_ulong_t, flags) 1491 { 1492 long err; 1493 unsigned long __user *nm = NULL; 1494 unsigned long nr_bits, alloc_size; 1495 DECLARE_BITMAP(bm, MAX_NUMNODES); 1496 1497 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1498 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1499 1500 if (nmask) 1501 nm = compat_alloc_user_space(alloc_size); 1502 1503 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1504 1505 if (!err && nmask) { 1506 unsigned long copy_size; 1507 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1508 err = copy_from_user(bm, nm, copy_size); 1509 /* ensure entire bitmap is zeroed */ 1510 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1511 err |= compat_put_bitmap(nmask, bm, nr_bits); 1512 } 1513 1514 return err; 1515 } 1516 1517 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1518 compat_ulong_t, maxnode) 1519 { 1520 unsigned long __user *nm = NULL; 1521 unsigned long nr_bits, alloc_size; 1522 DECLARE_BITMAP(bm, MAX_NUMNODES); 1523 1524 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1525 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1526 1527 if (nmask) { 1528 if (compat_get_bitmap(bm, nmask, nr_bits)) 1529 return -EFAULT; 1530 nm = compat_alloc_user_space(alloc_size); 1531 if (copy_to_user(nm, bm, alloc_size)) 1532 return -EFAULT; 1533 } 1534 1535 return sys_set_mempolicy(mode, nm, nr_bits+1); 1536 } 1537 1538 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1539 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1540 compat_ulong_t, maxnode, compat_ulong_t, flags) 1541 { 1542 unsigned long __user *nm = NULL; 1543 unsigned long nr_bits, alloc_size; 1544 nodemask_t bm; 1545 1546 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1547 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1548 1549 if (nmask) { 1550 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1551 return -EFAULT; 1552 nm = compat_alloc_user_space(alloc_size); 1553 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1554 return -EFAULT; 1555 } 1556 1557 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1558 } 1559 1560 #endif 1561 1562 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1563 unsigned long addr) 1564 { 1565 struct mempolicy *pol = NULL; 1566 1567 if (vma) { 1568 if (vma->vm_ops && vma->vm_ops->get_policy) { 1569 pol = vma->vm_ops->get_policy(vma, addr); 1570 } else if (vma->vm_policy) { 1571 pol = vma->vm_policy; 1572 1573 /* 1574 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1575 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1576 * count on these policies which will be dropped by 1577 * mpol_cond_put() later 1578 */ 1579 if (mpol_needs_cond_ref(pol)) 1580 mpol_get(pol); 1581 } 1582 } 1583 1584 return pol; 1585 } 1586 1587 /* 1588 * get_vma_policy(@vma, @addr) 1589 * @vma: virtual memory area whose policy is sought 1590 * @addr: address in @vma for shared policy lookup 1591 * 1592 * Returns effective policy for a VMA at specified address. 1593 * Falls back to current->mempolicy or system default policy, as necessary. 1594 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1595 * count--added by the get_policy() vm_op, as appropriate--to protect against 1596 * freeing by another task. It is the caller's responsibility to free the 1597 * extra reference for shared policies. 1598 */ 1599 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1600 unsigned long addr) 1601 { 1602 struct mempolicy *pol = __get_vma_policy(vma, addr); 1603 1604 if (!pol) 1605 pol = get_task_policy(current); 1606 1607 return pol; 1608 } 1609 1610 bool vma_policy_mof(struct vm_area_struct *vma) 1611 { 1612 struct mempolicy *pol; 1613 1614 if (vma->vm_ops && vma->vm_ops->get_policy) { 1615 bool ret = false; 1616 1617 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1618 if (pol && (pol->flags & MPOL_F_MOF)) 1619 ret = true; 1620 mpol_cond_put(pol); 1621 1622 return ret; 1623 } 1624 1625 pol = vma->vm_policy; 1626 if (!pol) 1627 pol = get_task_policy(current); 1628 1629 return pol->flags & MPOL_F_MOF; 1630 } 1631 1632 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1633 { 1634 enum zone_type dynamic_policy_zone = policy_zone; 1635 1636 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1637 1638 /* 1639 * if policy->v.nodes has movable memory only, 1640 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1641 * 1642 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1643 * so if the following test faile, it implies 1644 * policy->v.nodes has movable memory only. 1645 */ 1646 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1647 dynamic_policy_zone = ZONE_MOVABLE; 1648 1649 return zone >= dynamic_policy_zone; 1650 } 1651 1652 /* 1653 * Return a nodemask representing a mempolicy for filtering nodes for 1654 * page allocation 1655 */ 1656 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1657 { 1658 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1659 if (unlikely(policy->mode == MPOL_BIND) && 1660 apply_policy_zone(policy, gfp_zone(gfp)) && 1661 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1662 return &policy->v.nodes; 1663 1664 return NULL; 1665 } 1666 1667 /* Return the node id preferred by the given mempolicy, or the given id */ 1668 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1669 int nd) 1670 { 1671 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1672 nd = policy->v.preferred_node; 1673 else { 1674 /* 1675 * __GFP_THISNODE shouldn't even be used with the bind policy 1676 * because we might easily break the expectation to stay on the 1677 * requested node and not break the policy. 1678 */ 1679 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1680 } 1681 1682 return nd; 1683 } 1684 1685 /* Do dynamic interleaving for a process */ 1686 static unsigned interleave_nodes(struct mempolicy *policy) 1687 { 1688 unsigned next; 1689 struct task_struct *me = current; 1690 1691 next = next_node_in(me->il_prev, policy->v.nodes); 1692 if (next < MAX_NUMNODES) 1693 me->il_prev = next; 1694 return next; 1695 } 1696 1697 /* 1698 * Depending on the memory policy provide a node from which to allocate the 1699 * next slab entry. 1700 */ 1701 unsigned int mempolicy_slab_node(void) 1702 { 1703 struct mempolicy *policy; 1704 int node = numa_mem_id(); 1705 1706 if (in_interrupt()) 1707 return node; 1708 1709 policy = current->mempolicy; 1710 if (!policy || policy->flags & MPOL_F_LOCAL) 1711 return node; 1712 1713 switch (policy->mode) { 1714 case MPOL_PREFERRED: 1715 /* 1716 * handled MPOL_F_LOCAL above 1717 */ 1718 return policy->v.preferred_node; 1719 1720 case MPOL_INTERLEAVE: 1721 return interleave_nodes(policy); 1722 1723 case MPOL_BIND: { 1724 struct zoneref *z; 1725 1726 /* 1727 * Follow bind policy behavior and start allocation at the 1728 * first node. 1729 */ 1730 struct zonelist *zonelist; 1731 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1732 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1733 z = first_zones_zonelist(zonelist, highest_zoneidx, 1734 &policy->v.nodes); 1735 return z->zone ? z->zone->node : node; 1736 } 1737 1738 default: 1739 BUG(); 1740 } 1741 } 1742 1743 /* 1744 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1745 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1746 * number of present nodes. 1747 */ 1748 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1749 { 1750 unsigned nnodes = nodes_weight(pol->v.nodes); 1751 unsigned target; 1752 int i; 1753 int nid; 1754 1755 if (!nnodes) 1756 return numa_node_id(); 1757 target = (unsigned int)n % nnodes; 1758 nid = first_node(pol->v.nodes); 1759 for (i = 0; i < target; i++) 1760 nid = next_node(nid, pol->v.nodes); 1761 return nid; 1762 } 1763 1764 /* Determine a node number for interleave */ 1765 static inline unsigned interleave_nid(struct mempolicy *pol, 1766 struct vm_area_struct *vma, unsigned long addr, int shift) 1767 { 1768 if (vma) { 1769 unsigned long off; 1770 1771 /* 1772 * for small pages, there is no difference between 1773 * shift and PAGE_SHIFT, so the bit-shift is safe. 1774 * for huge pages, since vm_pgoff is in units of small 1775 * pages, we need to shift off the always 0 bits to get 1776 * a useful offset. 1777 */ 1778 BUG_ON(shift < PAGE_SHIFT); 1779 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1780 off += (addr - vma->vm_start) >> shift; 1781 return offset_il_node(pol, off); 1782 } else 1783 return interleave_nodes(pol); 1784 } 1785 1786 #ifdef CONFIG_HUGETLBFS 1787 /* 1788 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1789 * @vma: virtual memory area whose policy is sought 1790 * @addr: address in @vma for shared policy lookup and interleave policy 1791 * @gfp_flags: for requested zone 1792 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1793 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1794 * 1795 * Returns a nid suitable for a huge page allocation and a pointer 1796 * to the struct mempolicy for conditional unref after allocation. 1797 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1798 * @nodemask for filtering the zonelist. 1799 * 1800 * Must be protected by read_mems_allowed_begin() 1801 */ 1802 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1803 struct mempolicy **mpol, nodemask_t **nodemask) 1804 { 1805 int nid; 1806 1807 *mpol = get_vma_policy(vma, addr); 1808 *nodemask = NULL; /* assume !MPOL_BIND */ 1809 1810 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1811 nid = interleave_nid(*mpol, vma, addr, 1812 huge_page_shift(hstate_vma(vma))); 1813 } else { 1814 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1815 if ((*mpol)->mode == MPOL_BIND) 1816 *nodemask = &(*mpol)->v.nodes; 1817 } 1818 return nid; 1819 } 1820 1821 /* 1822 * init_nodemask_of_mempolicy 1823 * 1824 * If the current task's mempolicy is "default" [NULL], return 'false' 1825 * to indicate default policy. Otherwise, extract the policy nodemask 1826 * for 'bind' or 'interleave' policy into the argument nodemask, or 1827 * initialize the argument nodemask to contain the single node for 1828 * 'preferred' or 'local' policy and return 'true' to indicate presence 1829 * of non-default mempolicy. 1830 * 1831 * We don't bother with reference counting the mempolicy [mpol_get/put] 1832 * because the current task is examining it's own mempolicy and a task's 1833 * mempolicy is only ever changed by the task itself. 1834 * 1835 * N.B., it is the caller's responsibility to free a returned nodemask. 1836 */ 1837 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1838 { 1839 struct mempolicy *mempolicy; 1840 int nid; 1841 1842 if (!(mask && current->mempolicy)) 1843 return false; 1844 1845 task_lock(current); 1846 mempolicy = current->mempolicy; 1847 switch (mempolicy->mode) { 1848 case MPOL_PREFERRED: 1849 if (mempolicy->flags & MPOL_F_LOCAL) 1850 nid = numa_node_id(); 1851 else 1852 nid = mempolicy->v.preferred_node; 1853 init_nodemask_of_node(mask, nid); 1854 break; 1855 1856 case MPOL_BIND: 1857 /* Fall through */ 1858 case MPOL_INTERLEAVE: 1859 *mask = mempolicy->v.nodes; 1860 break; 1861 1862 default: 1863 BUG(); 1864 } 1865 task_unlock(current); 1866 1867 return true; 1868 } 1869 #endif 1870 1871 /* 1872 * mempolicy_nodemask_intersects 1873 * 1874 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1875 * policy. Otherwise, check for intersection between mask and the policy 1876 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1877 * policy, always return true since it may allocate elsewhere on fallback. 1878 * 1879 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1880 */ 1881 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1882 const nodemask_t *mask) 1883 { 1884 struct mempolicy *mempolicy; 1885 bool ret = true; 1886 1887 if (!mask) 1888 return ret; 1889 task_lock(tsk); 1890 mempolicy = tsk->mempolicy; 1891 if (!mempolicy) 1892 goto out; 1893 1894 switch (mempolicy->mode) { 1895 case MPOL_PREFERRED: 1896 /* 1897 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1898 * allocate from, they may fallback to other nodes when oom. 1899 * Thus, it's possible for tsk to have allocated memory from 1900 * nodes in mask. 1901 */ 1902 break; 1903 case MPOL_BIND: 1904 case MPOL_INTERLEAVE: 1905 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1906 break; 1907 default: 1908 BUG(); 1909 } 1910 out: 1911 task_unlock(tsk); 1912 return ret; 1913 } 1914 1915 /* Allocate a page in interleaved policy. 1916 Own path because it needs to do special accounting. */ 1917 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1918 unsigned nid) 1919 { 1920 struct page *page; 1921 1922 page = __alloc_pages(gfp, order, nid); 1923 if (page && page_to_nid(page) == nid) 1924 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1925 return page; 1926 } 1927 1928 /** 1929 * alloc_pages_vma - Allocate a page for a VMA. 1930 * 1931 * @gfp: 1932 * %GFP_USER user allocation. 1933 * %GFP_KERNEL kernel allocations, 1934 * %GFP_HIGHMEM highmem/user allocations, 1935 * %GFP_FS allocation should not call back into a file system. 1936 * %GFP_ATOMIC don't sleep. 1937 * 1938 * @order:Order of the GFP allocation. 1939 * @vma: Pointer to VMA or NULL if not available. 1940 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1941 * @node: Which node to prefer for allocation (modulo policy). 1942 * @hugepage: for hugepages try only the preferred node if possible 1943 * 1944 * This function allocates a page from the kernel page pool and applies 1945 * a NUMA policy associated with the VMA or the current process. 1946 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1947 * mm_struct of the VMA to prevent it from going away. Should be used for 1948 * all allocations for pages that will be mapped into user space. Returns 1949 * NULL when no page can be allocated. 1950 */ 1951 struct page * 1952 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1953 unsigned long addr, int node, bool hugepage) 1954 { 1955 struct mempolicy *pol; 1956 struct page *page; 1957 int preferred_nid; 1958 nodemask_t *nmask; 1959 1960 pol = get_vma_policy(vma, addr); 1961 1962 if (pol->mode == MPOL_INTERLEAVE) { 1963 unsigned nid; 1964 1965 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1966 mpol_cond_put(pol); 1967 page = alloc_page_interleave(gfp, order, nid); 1968 goto out; 1969 } 1970 1971 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1972 int hpage_node = node; 1973 1974 /* 1975 * For hugepage allocation and non-interleave policy which 1976 * allows the current node (or other explicitly preferred 1977 * node) we only try to allocate from the current/preferred 1978 * node and don't fall back to other nodes, as the cost of 1979 * remote accesses would likely offset THP benefits. 1980 * 1981 * If the policy is interleave, or does not allow the current 1982 * node in its nodemask, we allocate the standard way. 1983 */ 1984 if (pol->mode == MPOL_PREFERRED && 1985 !(pol->flags & MPOL_F_LOCAL)) 1986 hpage_node = pol->v.preferred_node; 1987 1988 nmask = policy_nodemask(gfp, pol); 1989 if (!nmask || node_isset(hpage_node, *nmask)) { 1990 mpol_cond_put(pol); 1991 page = __alloc_pages_node(hpage_node, 1992 gfp | __GFP_THISNODE, order); 1993 goto out; 1994 } 1995 } 1996 1997 nmask = policy_nodemask(gfp, pol); 1998 preferred_nid = policy_node(gfp, pol, node); 1999 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2000 mpol_cond_put(pol); 2001 out: 2002 return page; 2003 } 2004 2005 /** 2006 * alloc_pages_current - Allocate pages. 2007 * 2008 * @gfp: 2009 * %GFP_USER user allocation, 2010 * %GFP_KERNEL kernel allocation, 2011 * %GFP_HIGHMEM highmem allocation, 2012 * %GFP_FS don't call back into a file system. 2013 * %GFP_ATOMIC don't sleep. 2014 * @order: Power of two of allocation size in pages. 0 is a single page. 2015 * 2016 * Allocate a page from the kernel page pool. When not in 2017 * interrupt context and apply the current process NUMA policy. 2018 * Returns NULL when no page can be allocated. 2019 */ 2020 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2021 { 2022 struct mempolicy *pol = &default_policy; 2023 struct page *page; 2024 2025 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2026 pol = get_task_policy(current); 2027 2028 /* 2029 * No reference counting needed for current->mempolicy 2030 * nor system default_policy 2031 */ 2032 if (pol->mode == MPOL_INTERLEAVE) 2033 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2034 else 2035 page = __alloc_pages_nodemask(gfp, order, 2036 policy_node(gfp, pol, numa_node_id()), 2037 policy_nodemask(gfp, pol)); 2038 2039 return page; 2040 } 2041 EXPORT_SYMBOL(alloc_pages_current); 2042 2043 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2044 { 2045 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2046 2047 if (IS_ERR(pol)) 2048 return PTR_ERR(pol); 2049 dst->vm_policy = pol; 2050 return 0; 2051 } 2052 2053 /* 2054 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2055 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2056 * with the mems_allowed returned by cpuset_mems_allowed(). This 2057 * keeps mempolicies cpuset relative after its cpuset moves. See 2058 * further kernel/cpuset.c update_nodemask(). 2059 * 2060 * current's mempolicy may be rebinded by the other task(the task that changes 2061 * cpuset's mems), so we needn't do rebind work for current task. 2062 */ 2063 2064 /* Slow path of a mempolicy duplicate */ 2065 struct mempolicy *__mpol_dup(struct mempolicy *old) 2066 { 2067 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2068 2069 if (!new) 2070 return ERR_PTR(-ENOMEM); 2071 2072 /* task's mempolicy is protected by alloc_lock */ 2073 if (old == current->mempolicy) { 2074 task_lock(current); 2075 *new = *old; 2076 task_unlock(current); 2077 } else 2078 *new = *old; 2079 2080 if (current_cpuset_is_being_rebound()) { 2081 nodemask_t mems = cpuset_mems_allowed(current); 2082 mpol_rebind_policy(new, &mems); 2083 } 2084 atomic_set(&new->refcnt, 1); 2085 return new; 2086 } 2087 2088 /* Slow path of a mempolicy comparison */ 2089 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2090 { 2091 if (!a || !b) 2092 return false; 2093 if (a->mode != b->mode) 2094 return false; 2095 if (a->flags != b->flags) 2096 return false; 2097 if (mpol_store_user_nodemask(a)) 2098 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2099 return false; 2100 2101 switch (a->mode) { 2102 case MPOL_BIND: 2103 /* Fall through */ 2104 case MPOL_INTERLEAVE: 2105 return !!nodes_equal(a->v.nodes, b->v.nodes); 2106 case MPOL_PREFERRED: 2107 return a->v.preferred_node == b->v.preferred_node; 2108 default: 2109 BUG(); 2110 return false; 2111 } 2112 } 2113 2114 /* 2115 * Shared memory backing store policy support. 2116 * 2117 * Remember policies even when nobody has shared memory mapped. 2118 * The policies are kept in Red-Black tree linked from the inode. 2119 * They are protected by the sp->lock rwlock, which should be held 2120 * for any accesses to the tree. 2121 */ 2122 2123 /* 2124 * lookup first element intersecting start-end. Caller holds sp->lock for 2125 * reading or for writing 2126 */ 2127 static struct sp_node * 2128 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2129 { 2130 struct rb_node *n = sp->root.rb_node; 2131 2132 while (n) { 2133 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2134 2135 if (start >= p->end) 2136 n = n->rb_right; 2137 else if (end <= p->start) 2138 n = n->rb_left; 2139 else 2140 break; 2141 } 2142 if (!n) 2143 return NULL; 2144 for (;;) { 2145 struct sp_node *w = NULL; 2146 struct rb_node *prev = rb_prev(n); 2147 if (!prev) 2148 break; 2149 w = rb_entry(prev, struct sp_node, nd); 2150 if (w->end <= start) 2151 break; 2152 n = prev; 2153 } 2154 return rb_entry(n, struct sp_node, nd); 2155 } 2156 2157 /* 2158 * Insert a new shared policy into the list. Caller holds sp->lock for 2159 * writing. 2160 */ 2161 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2162 { 2163 struct rb_node **p = &sp->root.rb_node; 2164 struct rb_node *parent = NULL; 2165 struct sp_node *nd; 2166 2167 while (*p) { 2168 parent = *p; 2169 nd = rb_entry(parent, struct sp_node, nd); 2170 if (new->start < nd->start) 2171 p = &(*p)->rb_left; 2172 else if (new->end > nd->end) 2173 p = &(*p)->rb_right; 2174 else 2175 BUG(); 2176 } 2177 rb_link_node(&new->nd, parent, p); 2178 rb_insert_color(&new->nd, &sp->root); 2179 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2180 new->policy ? new->policy->mode : 0); 2181 } 2182 2183 /* Find shared policy intersecting idx */ 2184 struct mempolicy * 2185 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2186 { 2187 struct mempolicy *pol = NULL; 2188 struct sp_node *sn; 2189 2190 if (!sp->root.rb_node) 2191 return NULL; 2192 read_lock(&sp->lock); 2193 sn = sp_lookup(sp, idx, idx+1); 2194 if (sn) { 2195 mpol_get(sn->policy); 2196 pol = sn->policy; 2197 } 2198 read_unlock(&sp->lock); 2199 return pol; 2200 } 2201 2202 static void sp_free(struct sp_node *n) 2203 { 2204 mpol_put(n->policy); 2205 kmem_cache_free(sn_cache, n); 2206 } 2207 2208 /** 2209 * mpol_misplaced - check whether current page node is valid in policy 2210 * 2211 * @page: page to be checked 2212 * @vma: vm area where page mapped 2213 * @addr: virtual address where page mapped 2214 * 2215 * Lookup current policy node id for vma,addr and "compare to" page's 2216 * node id. 2217 * 2218 * Returns: 2219 * -1 - not misplaced, page is in the right node 2220 * node - node id where the page should be 2221 * 2222 * Policy determination "mimics" alloc_page_vma(). 2223 * Called from fault path where we know the vma and faulting address. 2224 */ 2225 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2226 { 2227 struct mempolicy *pol; 2228 struct zoneref *z; 2229 int curnid = page_to_nid(page); 2230 unsigned long pgoff; 2231 int thiscpu = raw_smp_processor_id(); 2232 int thisnid = cpu_to_node(thiscpu); 2233 int polnid = -1; 2234 int ret = -1; 2235 2236 pol = get_vma_policy(vma, addr); 2237 if (!(pol->flags & MPOL_F_MOF)) 2238 goto out; 2239 2240 switch (pol->mode) { 2241 case MPOL_INTERLEAVE: 2242 pgoff = vma->vm_pgoff; 2243 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2244 polnid = offset_il_node(pol, pgoff); 2245 break; 2246 2247 case MPOL_PREFERRED: 2248 if (pol->flags & MPOL_F_LOCAL) 2249 polnid = numa_node_id(); 2250 else 2251 polnid = pol->v.preferred_node; 2252 break; 2253 2254 case MPOL_BIND: 2255 2256 /* 2257 * allows binding to multiple nodes. 2258 * use current page if in policy nodemask, 2259 * else select nearest allowed node, if any. 2260 * If no allowed nodes, use current [!misplaced]. 2261 */ 2262 if (node_isset(curnid, pol->v.nodes)) 2263 goto out; 2264 z = first_zones_zonelist( 2265 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2266 gfp_zone(GFP_HIGHUSER), 2267 &pol->v.nodes); 2268 polnid = z->zone->node; 2269 break; 2270 2271 default: 2272 BUG(); 2273 } 2274 2275 /* Migrate the page towards the node whose CPU is referencing it */ 2276 if (pol->flags & MPOL_F_MORON) { 2277 polnid = thisnid; 2278 2279 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2280 goto out; 2281 } 2282 2283 if (curnid != polnid) 2284 ret = polnid; 2285 out: 2286 mpol_cond_put(pol); 2287 2288 return ret; 2289 } 2290 2291 /* 2292 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2293 * dropped after task->mempolicy is set to NULL so that any allocation done as 2294 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2295 * policy. 2296 */ 2297 void mpol_put_task_policy(struct task_struct *task) 2298 { 2299 struct mempolicy *pol; 2300 2301 task_lock(task); 2302 pol = task->mempolicy; 2303 task->mempolicy = NULL; 2304 task_unlock(task); 2305 mpol_put(pol); 2306 } 2307 2308 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2309 { 2310 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2311 rb_erase(&n->nd, &sp->root); 2312 sp_free(n); 2313 } 2314 2315 static void sp_node_init(struct sp_node *node, unsigned long start, 2316 unsigned long end, struct mempolicy *pol) 2317 { 2318 node->start = start; 2319 node->end = end; 2320 node->policy = pol; 2321 } 2322 2323 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2324 struct mempolicy *pol) 2325 { 2326 struct sp_node *n; 2327 struct mempolicy *newpol; 2328 2329 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2330 if (!n) 2331 return NULL; 2332 2333 newpol = mpol_dup(pol); 2334 if (IS_ERR(newpol)) { 2335 kmem_cache_free(sn_cache, n); 2336 return NULL; 2337 } 2338 newpol->flags |= MPOL_F_SHARED; 2339 sp_node_init(n, start, end, newpol); 2340 2341 return n; 2342 } 2343 2344 /* Replace a policy range. */ 2345 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2346 unsigned long end, struct sp_node *new) 2347 { 2348 struct sp_node *n; 2349 struct sp_node *n_new = NULL; 2350 struct mempolicy *mpol_new = NULL; 2351 int ret = 0; 2352 2353 restart: 2354 write_lock(&sp->lock); 2355 n = sp_lookup(sp, start, end); 2356 /* Take care of old policies in the same range. */ 2357 while (n && n->start < end) { 2358 struct rb_node *next = rb_next(&n->nd); 2359 if (n->start >= start) { 2360 if (n->end <= end) 2361 sp_delete(sp, n); 2362 else 2363 n->start = end; 2364 } else { 2365 /* Old policy spanning whole new range. */ 2366 if (n->end > end) { 2367 if (!n_new) 2368 goto alloc_new; 2369 2370 *mpol_new = *n->policy; 2371 atomic_set(&mpol_new->refcnt, 1); 2372 sp_node_init(n_new, end, n->end, mpol_new); 2373 n->end = start; 2374 sp_insert(sp, n_new); 2375 n_new = NULL; 2376 mpol_new = NULL; 2377 break; 2378 } else 2379 n->end = start; 2380 } 2381 if (!next) 2382 break; 2383 n = rb_entry(next, struct sp_node, nd); 2384 } 2385 if (new) 2386 sp_insert(sp, new); 2387 write_unlock(&sp->lock); 2388 ret = 0; 2389 2390 err_out: 2391 if (mpol_new) 2392 mpol_put(mpol_new); 2393 if (n_new) 2394 kmem_cache_free(sn_cache, n_new); 2395 2396 return ret; 2397 2398 alloc_new: 2399 write_unlock(&sp->lock); 2400 ret = -ENOMEM; 2401 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2402 if (!n_new) 2403 goto err_out; 2404 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2405 if (!mpol_new) 2406 goto err_out; 2407 goto restart; 2408 } 2409 2410 /** 2411 * mpol_shared_policy_init - initialize shared policy for inode 2412 * @sp: pointer to inode shared policy 2413 * @mpol: struct mempolicy to install 2414 * 2415 * Install non-NULL @mpol in inode's shared policy rb-tree. 2416 * On entry, the current task has a reference on a non-NULL @mpol. 2417 * This must be released on exit. 2418 * This is called at get_inode() calls and we can use GFP_KERNEL. 2419 */ 2420 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2421 { 2422 int ret; 2423 2424 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2425 rwlock_init(&sp->lock); 2426 2427 if (mpol) { 2428 struct vm_area_struct pvma; 2429 struct mempolicy *new; 2430 NODEMASK_SCRATCH(scratch); 2431 2432 if (!scratch) 2433 goto put_mpol; 2434 /* contextualize the tmpfs mount point mempolicy */ 2435 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2436 if (IS_ERR(new)) 2437 goto free_scratch; /* no valid nodemask intersection */ 2438 2439 task_lock(current); 2440 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2441 task_unlock(current); 2442 if (ret) 2443 goto put_new; 2444 2445 /* Create pseudo-vma that contains just the policy */ 2446 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2447 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2448 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2449 2450 put_new: 2451 mpol_put(new); /* drop initial ref */ 2452 free_scratch: 2453 NODEMASK_SCRATCH_FREE(scratch); 2454 put_mpol: 2455 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2456 } 2457 } 2458 2459 int mpol_set_shared_policy(struct shared_policy *info, 2460 struct vm_area_struct *vma, struct mempolicy *npol) 2461 { 2462 int err; 2463 struct sp_node *new = NULL; 2464 unsigned long sz = vma_pages(vma); 2465 2466 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2467 vma->vm_pgoff, 2468 sz, npol ? npol->mode : -1, 2469 npol ? npol->flags : -1, 2470 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2471 2472 if (npol) { 2473 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2474 if (!new) 2475 return -ENOMEM; 2476 } 2477 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2478 if (err && new) 2479 sp_free(new); 2480 return err; 2481 } 2482 2483 /* Free a backing policy store on inode delete. */ 2484 void mpol_free_shared_policy(struct shared_policy *p) 2485 { 2486 struct sp_node *n; 2487 struct rb_node *next; 2488 2489 if (!p->root.rb_node) 2490 return; 2491 write_lock(&p->lock); 2492 next = rb_first(&p->root); 2493 while (next) { 2494 n = rb_entry(next, struct sp_node, nd); 2495 next = rb_next(&n->nd); 2496 sp_delete(p, n); 2497 } 2498 write_unlock(&p->lock); 2499 } 2500 2501 #ifdef CONFIG_NUMA_BALANCING 2502 static int __initdata numabalancing_override; 2503 2504 static void __init check_numabalancing_enable(void) 2505 { 2506 bool numabalancing_default = false; 2507 2508 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2509 numabalancing_default = true; 2510 2511 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2512 if (numabalancing_override) 2513 set_numabalancing_state(numabalancing_override == 1); 2514 2515 if (num_online_nodes() > 1 && !numabalancing_override) { 2516 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2517 numabalancing_default ? "Enabling" : "Disabling"); 2518 set_numabalancing_state(numabalancing_default); 2519 } 2520 } 2521 2522 static int __init setup_numabalancing(char *str) 2523 { 2524 int ret = 0; 2525 if (!str) 2526 goto out; 2527 2528 if (!strcmp(str, "enable")) { 2529 numabalancing_override = 1; 2530 ret = 1; 2531 } else if (!strcmp(str, "disable")) { 2532 numabalancing_override = -1; 2533 ret = 1; 2534 } 2535 out: 2536 if (!ret) 2537 pr_warn("Unable to parse numa_balancing=\n"); 2538 2539 return ret; 2540 } 2541 __setup("numa_balancing=", setup_numabalancing); 2542 #else 2543 static inline void __init check_numabalancing_enable(void) 2544 { 2545 } 2546 #endif /* CONFIG_NUMA_BALANCING */ 2547 2548 /* assumes fs == KERNEL_DS */ 2549 void __init numa_policy_init(void) 2550 { 2551 nodemask_t interleave_nodes; 2552 unsigned long largest = 0; 2553 int nid, prefer = 0; 2554 2555 policy_cache = kmem_cache_create("numa_policy", 2556 sizeof(struct mempolicy), 2557 0, SLAB_PANIC, NULL); 2558 2559 sn_cache = kmem_cache_create("shared_policy_node", 2560 sizeof(struct sp_node), 2561 0, SLAB_PANIC, NULL); 2562 2563 for_each_node(nid) { 2564 preferred_node_policy[nid] = (struct mempolicy) { 2565 .refcnt = ATOMIC_INIT(1), 2566 .mode = MPOL_PREFERRED, 2567 .flags = MPOL_F_MOF | MPOL_F_MORON, 2568 .v = { .preferred_node = nid, }, 2569 }; 2570 } 2571 2572 /* 2573 * Set interleaving policy for system init. Interleaving is only 2574 * enabled across suitably sized nodes (default is >= 16MB), or 2575 * fall back to the largest node if they're all smaller. 2576 */ 2577 nodes_clear(interleave_nodes); 2578 for_each_node_state(nid, N_MEMORY) { 2579 unsigned long total_pages = node_present_pages(nid); 2580 2581 /* Preserve the largest node */ 2582 if (largest < total_pages) { 2583 largest = total_pages; 2584 prefer = nid; 2585 } 2586 2587 /* Interleave this node? */ 2588 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2589 node_set(nid, interleave_nodes); 2590 } 2591 2592 /* All too small, use the largest */ 2593 if (unlikely(nodes_empty(interleave_nodes))) 2594 node_set(prefer, interleave_nodes); 2595 2596 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2597 pr_err("%s: interleaving failed\n", __func__); 2598 2599 check_numabalancing_enable(); 2600 } 2601 2602 /* Reset policy of current process to default */ 2603 void numa_default_policy(void) 2604 { 2605 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2606 } 2607 2608 /* 2609 * Parse and format mempolicy from/to strings 2610 */ 2611 2612 /* 2613 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2614 */ 2615 static const char * const policy_modes[] = 2616 { 2617 [MPOL_DEFAULT] = "default", 2618 [MPOL_PREFERRED] = "prefer", 2619 [MPOL_BIND] = "bind", 2620 [MPOL_INTERLEAVE] = "interleave", 2621 [MPOL_LOCAL] = "local", 2622 }; 2623 2624 2625 #ifdef CONFIG_TMPFS 2626 /** 2627 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2628 * @str: string containing mempolicy to parse 2629 * @mpol: pointer to struct mempolicy pointer, returned on success. 2630 * 2631 * Format of input: 2632 * <mode>[=<flags>][:<nodelist>] 2633 * 2634 * On success, returns 0, else 1 2635 */ 2636 int mpol_parse_str(char *str, struct mempolicy **mpol) 2637 { 2638 struct mempolicy *new = NULL; 2639 unsigned short mode; 2640 unsigned short mode_flags; 2641 nodemask_t nodes; 2642 char *nodelist = strchr(str, ':'); 2643 char *flags = strchr(str, '='); 2644 int err = 1; 2645 2646 if (nodelist) { 2647 /* NUL-terminate mode or flags string */ 2648 *nodelist++ = '\0'; 2649 if (nodelist_parse(nodelist, nodes)) 2650 goto out; 2651 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2652 goto out; 2653 } else 2654 nodes_clear(nodes); 2655 2656 if (flags) 2657 *flags++ = '\0'; /* terminate mode string */ 2658 2659 for (mode = 0; mode < MPOL_MAX; mode++) { 2660 if (!strcmp(str, policy_modes[mode])) { 2661 break; 2662 } 2663 } 2664 if (mode >= MPOL_MAX) 2665 goto out; 2666 2667 switch (mode) { 2668 case MPOL_PREFERRED: 2669 /* 2670 * Insist on a nodelist of one node only 2671 */ 2672 if (nodelist) { 2673 char *rest = nodelist; 2674 while (isdigit(*rest)) 2675 rest++; 2676 if (*rest) 2677 goto out; 2678 } 2679 break; 2680 case MPOL_INTERLEAVE: 2681 /* 2682 * Default to online nodes with memory if no nodelist 2683 */ 2684 if (!nodelist) 2685 nodes = node_states[N_MEMORY]; 2686 break; 2687 case MPOL_LOCAL: 2688 /* 2689 * Don't allow a nodelist; mpol_new() checks flags 2690 */ 2691 if (nodelist) 2692 goto out; 2693 mode = MPOL_PREFERRED; 2694 break; 2695 case MPOL_DEFAULT: 2696 /* 2697 * Insist on a empty nodelist 2698 */ 2699 if (!nodelist) 2700 err = 0; 2701 goto out; 2702 case MPOL_BIND: 2703 /* 2704 * Insist on a nodelist 2705 */ 2706 if (!nodelist) 2707 goto out; 2708 } 2709 2710 mode_flags = 0; 2711 if (flags) { 2712 /* 2713 * Currently, we only support two mutually exclusive 2714 * mode flags. 2715 */ 2716 if (!strcmp(flags, "static")) 2717 mode_flags |= MPOL_F_STATIC_NODES; 2718 else if (!strcmp(flags, "relative")) 2719 mode_flags |= MPOL_F_RELATIVE_NODES; 2720 else 2721 goto out; 2722 } 2723 2724 new = mpol_new(mode, mode_flags, &nodes); 2725 if (IS_ERR(new)) 2726 goto out; 2727 2728 /* 2729 * Save nodes for mpol_to_str() to show the tmpfs mount options 2730 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2731 */ 2732 if (mode != MPOL_PREFERRED) 2733 new->v.nodes = nodes; 2734 else if (nodelist) 2735 new->v.preferred_node = first_node(nodes); 2736 else 2737 new->flags |= MPOL_F_LOCAL; 2738 2739 /* 2740 * Save nodes for contextualization: this will be used to "clone" 2741 * the mempolicy in a specific context [cpuset] at a later time. 2742 */ 2743 new->w.user_nodemask = nodes; 2744 2745 err = 0; 2746 2747 out: 2748 /* Restore string for error message */ 2749 if (nodelist) 2750 *--nodelist = ':'; 2751 if (flags) 2752 *--flags = '='; 2753 if (!err) 2754 *mpol = new; 2755 return err; 2756 } 2757 #endif /* CONFIG_TMPFS */ 2758 2759 /** 2760 * mpol_to_str - format a mempolicy structure for printing 2761 * @buffer: to contain formatted mempolicy string 2762 * @maxlen: length of @buffer 2763 * @pol: pointer to mempolicy to be formatted 2764 * 2765 * Convert @pol into a string. If @buffer is too short, truncate the string. 2766 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2767 * longest flag, "relative", and to display at least a few node ids. 2768 */ 2769 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2770 { 2771 char *p = buffer; 2772 nodemask_t nodes = NODE_MASK_NONE; 2773 unsigned short mode = MPOL_DEFAULT; 2774 unsigned short flags = 0; 2775 2776 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2777 mode = pol->mode; 2778 flags = pol->flags; 2779 } 2780 2781 switch (mode) { 2782 case MPOL_DEFAULT: 2783 break; 2784 case MPOL_PREFERRED: 2785 if (flags & MPOL_F_LOCAL) 2786 mode = MPOL_LOCAL; 2787 else 2788 node_set(pol->v.preferred_node, nodes); 2789 break; 2790 case MPOL_BIND: 2791 case MPOL_INTERLEAVE: 2792 nodes = pol->v.nodes; 2793 break; 2794 default: 2795 WARN_ON_ONCE(1); 2796 snprintf(p, maxlen, "unknown"); 2797 return; 2798 } 2799 2800 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2801 2802 if (flags & MPOL_MODE_FLAGS) { 2803 p += snprintf(p, buffer + maxlen - p, "="); 2804 2805 /* 2806 * Currently, the only defined flags are mutually exclusive 2807 */ 2808 if (flags & MPOL_F_STATIC_NODES) 2809 p += snprintf(p, buffer + maxlen - p, "static"); 2810 else if (flags & MPOL_F_RELATIVE_NODES) 2811 p += snprintf(p, buffer + maxlen - p, "relative"); 2812 } 2813 2814 if (!nodes_empty(nodes)) 2815 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2816 nodemask_pr_args(&nodes)); 2817 } 2818