1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) { 388 vma_start_write(vma); 389 mpol_rebind_policy(vma->vm_policy, new); 390 } 391 mmap_write_unlock(mm); 392 } 393 394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 395 [MPOL_DEFAULT] = { 396 .rebind = mpol_rebind_default, 397 }, 398 [MPOL_INTERLEAVE] = { 399 .create = mpol_new_nodemask, 400 .rebind = mpol_rebind_nodemask, 401 }, 402 [MPOL_PREFERRED] = { 403 .create = mpol_new_preferred, 404 .rebind = mpol_rebind_preferred, 405 }, 406 [MPOL_BIND] = { 407 .create = mpol_new_nodemask, 408 .rebind = mpol_rebind_nodemask, 409 }, 410 [MPOL_LOCAL] = { 411 .rebind = mpol_rebind_default, 412 }, 413 [MPOL_PREFERRED_MANY] = { 414 .create = mpol_new_nodemask, 415 .rebind = mpol_rebind_preferred, 416 }, 417 }; 418 419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 420 unsigned long flags); 421 422 struct queue_pages { 423 struct list_head *pagelist; 424 unsigned long flags; 425 nodemask_t *nmask; 426 unsigned long start; 427 unsigned long end; 428 struct vm_area_struct *first; 429 bool has_unmovable; 430 }; 431 432 /* 433 * Check if the folio's nid is in qp->nmask. 434 * 435 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 436 * in the invert of qp->nmask. 437 */ 438 static inline bool queue_folio_required(struct folio *folio, 439 struct queue_pages *qp) 440 { 441 int nid = folio_nid(folio); 442 unsigned long flags = qp->flags; 443 444 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 445 } 446 447 /* 448 * queue_folios_pmd() has three possible return values: 449 * 0 - folios are placed on the right node or queued successfully, or 450 * special page is met, i.e. zero page, or unmovable page is found 451 * but continue walking (indicated by queue_pages.has_unmovable). 452 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 453 * existing folio was already on a node that does not follow the 454 * policy. 455 */ 456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 457 unsigned long end, struct mm_walk *walk) 458 __releases(ptl) 459 { 460 int ret = 0; 461 struct folio *folio; 462 struct queue_pages *qp = walk->private; 463 unsigned long flags; 464 465 if (unlikely(is_pmd_migration_entry(*pmd))) { 466 ret = -EIO; 467 goto unlock; 468 } 469 folio = pfn_folio(pmd_pfn(*pmd)); 470 if (is_huge_zero_page(&folio->page)) { 471 walk->action = ACTION_CONTINUE; 472 goto unlock; 473 } 474 if (!queue_folio_required(folio, qp)) 475 goto unlock; 476 477 flags = qp->flags; 478 /* go to folio migration */ 479 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 480 if (!vma_migratable(walk->vma) || 481 migrate_folio_add(folio, qp->pagelist, flags)) { 482 qp->has_unmovable = true; 483 goto unlock; 484 } 485 } else 486 ret = -EIO; 487 unlock: 488 spin_unlock(ptl); 489 return ret; 490 } 491 492 /* 493 * Scan through pages checking if pages follow certain conditions, 494 * and move them to the pagelist if they do. 495 * 496 * queue_folios_pte_range() has three possible return values: 497 * 0 - folios are placed on the right node or queued successfully, or 498 * special page is met, i.e. zero page, or unmovable page is found 499 * but continue walking (indicated by queue_pages.has_unmovable). 500 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 501 * on a node that does not follow the policy. 502 */ 503 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 504 unsigned long end, struct mm_walk *walk) 505 { 506 struct vm_area_struct *vma = walk->vma; 507 struct folio *folio; 508 struct queue_pages *qp = walk->private; 509 unsigned long flags = qp->flags; 510 pte_t *pte, *mapped_pte; 511 pte_t ptent; 512 spinlock_t *ptl; 513 514 ptl = pmd_trans_huge_lock(pmd, vma); 515 if (ptl) 516 return queue_folios_pmd(pmd, ptl, addr, end, walk); 517 518 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 519 if (!pte) { 520 walk->action = ACTION_AGAIN; 521 return 0; 522 } 523 for (; addr != end; pte++, addr += PAGE_SIZE) { 524 ptent = ptep_get(pte); 525 if (!pte_present(ptent)) 526 continue; 527 folio = vm_normal_folio(vma, addr, ptent); 528 if (!folio || folio_is_zone_device(folio)) 529 continue; 530 /* 531 * vm_normal_folio() filters out zero pages, but there might 532 * still be reserved folios to skip, perhaps in a VDSO. 533 */ 534 if (folio_test_reserved(folio)) 535 continue; 536 if (!queue_folio_required(folio, qp)) 537 continue; 538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 539 /* 540 * MPOL_MF_STRICT must be specified if we get here. 541 * Continue walking vmas due to MPOL_MF_MOVE* flags. 542 */ 543 if (!vma_migratable(vma)) 544 qp->has_unmovable = true; 545 546 /* 547 * Do not abort immediately since there may be 548 * temporary off LRU pages in the range. Still 549 * need migrate other LRU pages. 550 */ 551 if (migrate_folio_add(folio, qp->pagelist, flags)) 552 qp->has_unmovable = true; 553 } else 554 break; 555 } 556 pte_unmap_unlock(mapped_pte, ptl); 557 cond_resched(); 558 559 return addr != end ? -EIO : 0; 560 } 561 562 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 563 unsigned long addr, unsigned long end, 564 struct mm_walk *walk) 565 { 566 int ret = 0; 567 #ifdef CONFIG_HUGETLB_PAGE 568 struct queue_pages *qp = walk->private; 569 unsigned long flags = (qp->flags & MPOL_MF_VALID); 570 struct folio *folio; 571 spinlock_t *ptl; 572 pte_t entry; 573 574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 575 entry = huge_ptep_get(pte); 576 if (!pte_present(entry)) 577 goto unlock; 578 folio = pfn_folio(pte_pfn(entry)); 579 if (!queue_folio_required(folio, qp)) 580 goto unlock; 581 582 if (flags == MPOL_MF_STRICT) { 583 /* 584 * STRICT alone means only detecting misplaced folio and no 585 * need to further check other vma. 586 */ 587 ret = -EIO; 588 goto unlock; 589 } 590 591 if (!vma_migratable(walk->vma)) { 592 /* 593 * Must be STRICT with MOVE*, otherwise .test_walk() have 594 * stopped walking current vma. 595 * Detecting misplaced folio but allow migrating folios which 596 * have been queued. 597 */ 598 qp->has_unmovable = true; 599 goto unlock; 600 } 601 602 /* 603 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 604 * is shared it is likely not worth migrating. 605 * 606 * To check if the folio is shared, ideally we want to make sure 607 * every page is mapped to the same process. Doing that is very 608 * expensive, so check the estimated mapcount of the folio instead. 609 */ 610 if (flags & (MPOL_MF_MOVE_ALL) || 611 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 612 !hugetlb_pmd_shared(pte))) { 613 if (!isolate_hugetlb(folio, qp->pagelist) && 614 (flags & MPOL_MF_STRICT)) 615 /* 616 * Failed to isolate folio but allow migrating pages 617 * which have been queued. 618 */ 619 qp->has_unmovable = true; 620 } 621 unlock: 622 spin_unlock(ptl); 623 #else 624 BUG(); 625 #endif 626 return ret; 627 } 628 629 #ifdef CONFIG_NUMA_BALANCING 630 /* 631 * This is used to mark a range of virtual addresses to be inaccessible. 632 * These are later cleared by a NUMA hinting fault. Depending on these 633 * faults, pages may be migrated for better NUMA placement. 634 * 635 * This is assuming that NUMA faults are handled using PROT_NONE. If 636 * an architecture makes a different choice, it will need further 637 * changes to the core. 638 */ 639 unsigned long change_prot_numa(struct vm_area_struct *vma, 640 unsigned long addr, unsigned long end) 641 { 642 struct mmu_gather tlb; 643 long nr_updated; 644 645 tlb_gather_mmu(&tlb, vma->vm_mm); 646 647 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 648 if (nr_updated > 0) 649 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 650 651 tlb_finish_mmu(&tlb); 652 653 return nr_updated; 654 } 655 #else 656 static unsigned long change_prot_numa(struct vm_area_struct *vma, 657 unsigned long addr, unsigned long end) 658 { 659 return 0; 660 } 661 #endif /* CONFIG_NUMA_BALANCING */ 662 663 static int queue_pages_test_walk(unsigned long start, unsigned long end, 664 struct mm_walk *walk) 665 { 666 struct vm_area_struct *next, *vma = walk->vma; 667 struct queue_pages *qp = walk->private; 668 unsigned long endvma = vma->vm_end; 669 unsigned long flags = qp->flags; 670 671 /* range check first */ 672 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 673 674 if (!qp->first) { 675 qp->first = vma; 676 if (!(flags & MPOL_MF_DISCONTIG_OK) && 677 (qp->start < vma->vm_start)) 678 /* hole at head side of range */ 679 return -EFAULT; 680 } 681 next = find_vma(vma->vm_mm, vma->vm_end); 682 if (!(flags & MPOL_MF_DISCONTIG_OK) && 683 ((vma->vm_end < qp->end) && 684 (!next || vma->vm_end < next->vm_start))) 685 /* hole at middle or tail of range */ 686 return -EFAULT; 687 688 /* 689 * Need check MPOL_MF_STRICT to return -EIO if possible 690 * regardless of vma_migratable 691 */ 692 if (!vma_migratable(vma) && 693 !(flags & MPOL_MF_STRICT)) 694 return 1; 695 696 if (endvma > end) 697 endvma = end; 698 699 if (flags & MPOL_MF_LAZY) { 700 /* Similar to task_numa_work, skip inaccessible VMAs */ 701 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 702 !(vma->vm_flags & VM_MIXEDMAP)) 703 change_prot_numa(vma, start, endvma); 704 return 1; 705 } 706 707 /* queue pages from current vma */ 708 if (flags & MPOL_MF_VALID) 709 return 0; 710 return 1; 711 } 712 713 static const struct mm_walk_ops queue_pages_walk_ops = { 714 .hugetlb_entry = queue_folios_hugetlb, 715 .pmd_entry = queue_folios_pte_range, 716 .test_walk = queue_pages_test_walk, 717 .walk_lock = PGWALK_RDLOCK, 718 }; 719 720 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 721 .hugetlb_entry = queue_folios_hugetlb, 722 .pmd_entry = queue_folios_pte_range, 723 .test_walk = queue_pages_test_walk, 724 .walk_lock = PGWALK_WRLOCK, 725 }; 726 727 /* 728 * Walk through page tables and collect pages to be migrated. 729 * 730 * If pages found in a given range are on a set of nodes (determined by 731 * @nodes and @flags,) it's isolated and queued to the pagelist which is 732 * passed via @private. 733 * 734 * queue_pages_range() has three possible return values: 735 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 736 * specified. 737 * 0 - queue pages successfully or no misplaced page. 738 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 739 * memory range specified by nodemask and maxnode points outside 740 * your accessible address space (-EFAULT) 741 */ 742 static int 743 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 744 nodemask_t *nodes, unsigned long flags, 745 struct list_head *pagelist, bool lock_vma) 746 { 747 int err; 748 struct queue_pages qp = { 749 .pagelist = pagelist, 750 .flags = flags, 751 .nmask = nodes, 752 .start = start, 753 .end = end, 754 .first = NULL, 755 .has_unmovable = false, 756 }; 757 const struct mm_walk_ops *ops = lock_vma ? 758 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 759 760 err = walk_page_range(mm, start, end, ops, &qp); 761 762 if (qp.has_unmovable) 763 err = 1; 764 if (!qp.first) 765 /* whole range in hole */ 766 err = -EFAULT; 767 768 return err; 769 } 770 771 /* 772 * Apply policy to a single VMA 773 * This must be called with the mmap_lock held for writing. 774 */ 775 static int vma_replace_policy(struct vm_area_struct *vma, 776 struct mempolicy *pol) 777 { 778 int err; 779 struct mempolicy *old; 780 struct mempolicy *new; 781 782 vma_assert_write_locked(vma); 783 784 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 785 vma->vm_start, vma->vm_end, vma->vm_pgoff, 786 vma->vm_ops, vma->vm_file, 787 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 788 789 new = mpol_dup(pol); 790 if (IS_ERR(new)) 791 return PTR_ERR(new); 792 793 if (vma->vm_ops && vma->vm_ops->set_policy) { 794 err = vma->vm_ops->set_policy(vma, new); 795 if (err) 796 goto err_out; 797 } 798 799 old = vma->vm_policy; 800 vma->vm_policy = new; /* protected by mmap_lock */ 801 mpol_put(old); 802 803 return 0; 804 err_out: 805 mpol_put(new); 806 return err; 807 } 808 809 /* Split or merge the VMA (if required) and apply the new policy */ 810 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 811 struct vm_area_struct **prev, unsigned long start, 812 unsigned long end, struct mempolicy *new_pol) 813 { 814 struct vm_area_struct *merged; 815 unsigned long vmstart, vmend; 816 pgoff_t pgoff; 817 int err; 818 819 vmend = min(end, vma->vm_end); 820 if (start > vma->vm_start) { 821 *prev = vma; 822 vmstart = start; 823 } else { 824 vmstart = vma->vm_start; 825 } 826 827 if (mpol_equal(vma_policy(vma), new_pol)) { 828 *prev = vma; 829 return 0; 830 } 831 832 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 833 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 834 vma->anon_vma, vma->vm_file, pgoff, new_pol, 835 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 836 if (merged) { 837 *prev = merged; 838 return vma_replace_policy(merged, new_pol); 839 } 840 841 if (vma->vm_start != vmstart) { 842 err = split_vma(vmi, vma, vmstart, 1); 843 if (err) 844 return err; 845 } 846 847 if (vma->vm_end != vmend) { 848 err = split_vma(vmi, vma, vmend, 0); 849 if (err) 850 return err; 851 } 852 853 *prev = vma; 854 return vma_replace_policy(vma, new_pol); 855 } 856 857 /* Set the process memory policy */ 858 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 859 nodemask_t *nodes) 860 { 861 struct mempolicy *new, *old; 862 NODEMASK_SCRATCH(scratch); 863 int ret; 864 865 if (!scratch) 866 return -ENOMEM; 867 868 new = mpol_new(mode, flags, nodes); 869 if (IS_ERR(new)) { 870 ret = PTR_ERR(new); 871 goto out; 872 } 873 874 task_lock(current); 875 ret = mpol_set_nodemask(new, nodes, scratch); 876 if (ret) { 877 task_unlock(current); 878 mpol_put(new); 879 goto out; 880 } 881 882 old = current->mempolicy; 883 current->mempolicy = new; 884 if (new && new->mode == MPOL_INTERLEAVE) 885 current->il_prev = MAX_NUMNODES-1; 886 task_unlock(current); 887 mpol_put(old); 888 ret = 0; 889 out: 890 NODEMASK_SCRATCH_FREE(scratch); 891 return ret; 892 } 893 894 /* 895 * Return nodemask for policy for get_mempolicy() query 896 * 897 * Called with task's alloc_lock held 898 */ 899 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 900 { 901 nodes_clear(*nodes); 902 if (p == &default_policy) 903 return; 904 905 switch (p->mode) { 906 case MPOL_BIND: 907 case MPOL_INTERLEAVE: 908 case MPOL_PREFERRED: 909 case MPOL_PREFERRED_MANY: 910 *nodes = p->nodes; 911 break; 912 case MPOL_LOCAL: 913 /* return empty node mask for local allocation */ 914 break; 915 default: 916 BUG(); 917 } 918 } 919 920 static int lookup_node(struct mm_struct *mm, unsigned long addr) 921 { 922 struct page *p = NULL; 923 int ret; 924 925 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 926 if (ret > 0) { 927 ret = page_to_nid(p); 928 put_page(p); 929 } 930 return ret; 931 } 932 933 /* Retrieve NUMA policy */ 934 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 935 unsigned long addr, unsigned long flags) 936 { 937 int err; 938 struct mm_struct *mm = current->mm; 939 struct vm_area_struct *vma = NULL; 940 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 941 942 if (flags & 943 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 944 return -EINVAL; 945 946 if (flags & MPOL_F_MEMS_ALLOWED) { 947 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 948 return -EINVAL; 949 *policy = 0; /* just so it's initialized */ 950 task_lock(current); 951 *nmask = cpuset_current_mems_allowed; 952 task_unlock(current); 953 return 0; 954 } 955 956 if (flags & MPOL_F_ADDR) { 957 /* 958 * Do NOT fall back to task policy if the 959 * vma/shared policy at addr is NULL. We 960 * want to return MPOL_DEFAULT in this case. 961 */ 962 mmap_read_lock(mm); 963 vma = vma_lookup(mm, addr); 964 if (!vma) { 965 mmap_read_unlock(mm); 966 return -EFAULT; 967 } 968 if (vma->vm_ops && vma->vm_ops->get_policy) 969 pol = vma->vm_ops->get_policy(vma, addr); 970 else 971 pol = vma->vm_policy; 972 } else if (addr) 973 return -EINVAL; 974 975 if (!pol) 976 pol = &default_policy; /* indicates default behavior */ 977 978 if (flags & MPOL_F_NODE) { 979 if (flags & MPOL_F_ADDR) { 980 /* 981 * Take a refcount on the mpol, because we are about to 982 * drop the mmap_lock, after which only "pol" remains 983 * valid, "vma" is stale. 984 */ 985 pol_refcount = pol; 986 vma = NULL; 987 mpol_get(pol); 988 mmap_read_unlock(mm); 989 err = lookup_node(mm, addr); 990 if (err < 0) 991 goto out; 992 *policy = err; 993 } else if (pol == current->mempolicy && 994 pol->mode == MPOL_INTERLEAVE) { 995 *policy = next_node_in(current->il_prev, pol->nodes); 996 } else { 997 err = -EINVAL; 998 goto out; 999 } 1000 } else { 1001 *policy = pol == &default_policy ? MPOL_DEFAULT : 1002 pol->mode; 1003 /* 1004 * Internal mempolicy flags must be masked off before exposing 1005 * the policy to userspace. 1006 */ 1007 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1008 } 1009 1010 err = 0; 1011 if (nmask) { 1012 if (mpol_store_user_nodemask(pol)) { 1013 *nmask = pol->w.user_nodemask; 1014 } else { 1015 task_lock(current); 1016 get_policy_nodemask(pol, nmask); 1017 task_unlock(current); 1018 } 1019 } 1020 1021 out: 1022 mpol_cond_put(pol); 1023 if (vma) 1024 mmap_read_unlock(mm); 1025 if (pol_refcount) 1026 mpol_put(pol_refcount); 1027 return err; 1028 } 1029 1030 #ifdef CONFIG_MIGRATION 1031 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1032 unsigned long flags) 1033 { 1034 /* 1035 * We try to migrate only unshared folios. If it is shared it 1036 * is likely not worth migrating. 1037 * 1038 * To check if the folio is shared, ideally we want to make sure 1039 * every page is mapped to the same process. Doing that is very 1040 * expensive, so check the estimated mapcount of the folio instead. 1041 */ 1042 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1043 if (folio_isolate_lru(folio)) { 1044 list_add_tail(&folio->lru, foliolist); 1045 node_stat_mod_folio(folio, 1046 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1047 folio_nr_pages(folio)); 1048 } else if (flags & MPOL_MF_STRICT) { 1049 /* 1050 * Non-movable folio may reach here. And, there may be 1051 * temporary off LRU folios or non-LRU movable folios. 1052 * Treat them as unmovable folios since they can't be 1053 * isolated, so they can't be moved at the moment. It 1054 * should return -EIO for this case too. 1055 */ 1056 return -EIO; 1057 } 1058 } 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Migrate pages from one node to a target node. 1065 * Returns error or the number of pages not migrated. 1066 */ 1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1068 int flags) 1069 { 1070 nodemask_t nmask; 1071 struct vm_area_struct *vma; 1072 LIST_HEAD(pagelist); 1073 int err = 0; 1074 struct migration_target_control mtc = { 1075 .nid = dest, 1076 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1077 }; 1078 1079 nodes_clear(nmask); 1080 node_set(source, nmask); 1081 1082 /* 1083 * This does not "check" the range but isolates all pages that 1084 * need migration. Between passing in the full user address 1085 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1086 */ 1087 vma = find_vma(mm, 0); 1088 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1089 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1090 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false); 1091 1092 if (!list_empty(&pagelist)) { 1093 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1094 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1095 if (err) 1096 putback_movable_pages(&pagelist); 1097 } 1098 1099 return err; 1100 } 1101 1102 /* 1103 * Move pages between the two nodesets so as to preserve the physical 1104 * layout as much as possible. 1105 * 1106 * Returns the number of page that could not be moved. 1107 */ 1108 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1109 const nodemask_t *to, int flags) 1110 { 1111 int busy = 0; 1112 int err = 0; 1113 nodemask_t tmp; 1114 1115 lru_cache_disable(); 1116 1117 mmap_read_lock(mm); 1118 1119 /* 1120 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1121 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1122 * bit in 'tmp', and return that <source, dest> pair for migration. 1123 * The pair of nodemasks 'to' and 'from' define the map. 1124 * 1125 * If no pair of bits is found that way, fallback to picking some 1126 * pair of 'source' and 'dest' bits that are not the same. If the 1127 * 'source' and 'dest' bits are the same, this represents a node 1128 * that will be migrating to itself, so no pages need move. 1129 * 1130 * If no bits are left in 'tmp', or if all remaining bits left 1131 * in 'tmp' correspond to the same bit in 'to', return false 1132 * (nothing left to migrate). 1133 * 1134 * This lets us pick a pair of nodes to migrate between, such that 1135 * if possible the dest node is not already occupied by some other 1136 * source node, minimizing the risk of overloading the memory on a 1137 * node that would happen if we migrated incoming memory to a node 1138 * before migrating outgoing memory source that same node. 1139 * 1140 * A single scan of tmp is sufficient. As we go, we remember the 1141 * most recent <s, d> pair that moved (s != d). If we find a pair 1142 * that not only moved, but what's better, moved to an empty slot 1143 * (d is not set in tmp), then we break out then, with that pair. 1144 * Otherwise when we finish scanning from_tmp, we at least have the 1145 * most recent <s, d> pair that moved. If we get all the way through 1146 * the scan of tmp without finding any node that moved, much less 1147 * moved to an empty node, then there is nothing left worth migrating. 1148 */ 1149 1150 tmp = *from; 1151 while (!nodes_empty(tmp)) { 1152 int s, d; 1153 int source = NUMA_NO_NODE; 1154 int dest = 0; 1155 1156 for_each_node_mask(s, tmp) { 1157 1158 /* 1159 * do_migrate_pages() tries to maintain the relative 1160 * node relationship of the pages established between 1161 * threads and memory areas. 1162 * 1163 * However if the number of source nodes is not equal to 1164 * the number of destination nodes we can not preserve 1165 * this node relative relationship. In that case, skip 1166 * copying memory from a node that is in the destination 1167 * mask. 1168 * 1169 * Example: [2,3,4] -> [3,4,5] moves everything. 1170 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1171 */ 1172 1173 if ((nodes_weight(*from) != nodes_weight(*to)) && 1174 (node_isset(s, *to))) 1175 continue; 1176 1177 d = node_remap(s, *from, *to); 1178 if (s == d) 1179 continue; 1180 1181 source = s; /* Node moved. Memorize */ 1182 dest = d; 1183 1184 /* dest not in remaining from nodes? */ 1185 if (!node_isset(dest, tmp)) 1186 break; 1187 } 1188 if (source == NUMA_NO_NODE) 1189 break; 1190 1191 node_clear(source, tmp); 1192 err = migrate_to_node(mm, source, dest, flags); 1193 if (err > 0) 1194 busy += err; 1195 if (err < 0) 1196 break; 1197 } 1198 mmap_read_unlock(mm); 1199 1200 lru_cache_enable(); 1201 if (err < 0) 1202 return err; 1203 return busy; 1204 1205 } 1206 1207 /* 1208 * Allocate a new page for page migration based on vma policy. 1209 * Start by assuming the page is mapped by the same vma as contains @start. 1210 * Search forward from there, if not. N.B., this assumes that the 1211 * list of pages handed to migrate_pages()--which is how we get here-- 1212 * is in virtual address order. 1213 */ 1214 static struct folio *new_folio(struct folio *src, unsigned long start) 1215 { 1216 struct vm_area_struct *vma; 1217 unsigned long address; 1218 VMA_ITERATOR(vmi, current->mm, start); 1219 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1220 1221 for_each_vma(vmi, vma) { 1222 address = page_address_in_vma(&src->page, vma); 1223 if (address != -EFAULT) 1224 break; 1225 } 1226 1227 if (folio_test_hugetlb(src)) { 1228 return alloc_hugetlb_folio_vma(folio_hstate(src), 1229 vma, address); 1230 } 1231 1232 if (folio_test_large(src)) 1233 gfp = GFP_TRANSHUGE; 1234 1235 /* 1236 * if !vma, vma_alloc_folio() will use task or system default policy 1237 */ 1238 return vma_alloc_folio(gfp, folio_order(src), vma, address, 1239 folio_test_large(src)); 1240 } 1241 #else 1242 1243 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1244 unsigned long flags) 1245 { 1246 return -EIO; 1247 } 1248 1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1250 const nodemask_t *to, int flags) 1251 { 1252 return -ENOSYS; 1253 } 1254 1255 static struct folio *new_folio(struct folio *src, unsigned long start) 1256 { 1257 return NULL; 1258 } 1259 #endif 1260 1261 static long do_mbind(unsigned long start, unsigned long len, 1262 unsigned short mode, unsigned short mode_flags, 1263 nodemask_t *nmask, unsigned long flags) 1264 { 1265 struct mm_struct *mm = current->mm; 1266 struct vm_area_struct *vma, *prev; 1267 struct vma_iterator vmi; 1268 struct mempolicy *new; 1269 unsigned long end; 1270 int err; 1271 int ret; 1272 LIST_HEAD(pagelist); 1273 1274 if (flags & ~(unsigned long)MPOL_MF_VALID) 1275 return -EINVAL; 1276 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1277 return -EPERM; 1278 1279 if (start & ~PAGE_MASK) 1280 return -EINVAL; 1281 1282 if (mode == MPOL_DEFAULT) 1283 flags &= ~MPOL_MF_STRICT; 1284 1285 len = PAGE_ALIGN(len); 1286 end = start + len; 1287 1288 if (end < start) 1289 return -EINVAL; 1290 if (end == start) 1291 return 0; 1292 1293 new = mpol_new(mode, mode_flags, nmask); 1294 if (IS_ERR(new)) 1295 return PTR_ERR(new); 1296 1297 if (flags & MPOL_MF_LAZY) 1298 new->flags |= MPOL_F_MOF; 1299 1300 /* 1301 * If we are using the default policy then operation 1302 * on discontinuous address spaces is okay after all 1303 */ 1304 if (!new) 1305 flags |= MPOL_MF_DISCONTIG_OK; 1306 1307 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1308 start, start + len, mode, mode_flags, 1309 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1310 1311 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1312 1313 lru_cache_disable(); 1314 } 1315 { 1316 NODEMASK_SCRATCH(scratch); 1317 if (scratch) { 1318 mmap_write_lock(mm); 1319 err = mpol_set_nodemask(new, nmask, scratch); 1320 if (err) 1321 mmap_write_unlock(mm); 1322 } else 1323 err = -ENOMEM; 1324 NODEMASK_SCRATCH_FREE(scratch); 1325 } 1326 if (err) 1327 goto mpol_out; 1328 1329 /* 1330 * Lock the VMAs before scanning for pages to migrate, to ensure we don't 1331 * miss a concurrently inserted page. 1332 */ 1333 ret = queue_pages_range(mm, start, end, nmask, 1334 flags | MPOL_MF_INVERT, &pagelist, true); 1335 1336 if (ret < 0) { 1337 err = ret; 1338 goto up_out; 1339 } 1340 1341 vma_iter_init(&vmi, mm, start); 1342 prev = vma_prev(&vmi); 1343 for_each_vma_range(vmi, vma, end) { 1344 err = mbind_range(&vmi, vma, &prev, start, end, new); 1345 if (err) 1346 break; 1347 } 1348 1349 if (!err) { 1350 int nr_failed = 0; 1351 1352 if (!list_empty(&pagelist)) { 1353 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1354 nr_failed = migrate_pages(&pagelist, new_folio, NULL, 1355 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1356 if (nr_failed) 1357 putback_movable_pages(&pagelist); 1358 } 1359 1360 if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT)) 1361 err = -EIO; 1362 } else { 1363 up_out: 1364 if (!list_empty(&pagelist)) 1365 putback_movable_pages(&pagelist); 1366 } 1367 1368 mmap_write_unlock(mm); 1369 mpol_out: 1370 mpol_put(new); 1371 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1372 lru_cache_enable(); 1373 return err; 1374 } 1375 1376 /* 1377 * User space interface with variable sized bitmaps for nodelists. 1378 */ 1379 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1380 unsigned long maxnode) 1381 { 1382 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1383 int ret; 1384 1385 if (in_compat_syscall()) 1386 ret = compat_get_bitmap(mask, 1387 (const compat_ulong_t __user *)nmask, 1388 maxnode); 1389 else 1390 ret = copy_from_user(mask, nmask, 1391 nlongs * sizeof(unsigned long)); 1392 1393 if (ret) 1394 return -EFAULT; 1395 1396 if (maxnode % BITS_PER_LONG) 1397 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1398 1399 return 0; 1400 } 1401 1402 /* Copy a node mask from user space. */ 1403 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1404 unsigned long maxnode) 1405 { 1406 --maxnode; 1407 nodes_clear(*nodes); 1408 if (maxnode == 0 || !nmask) 1409 return 0; 1410 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1411 return -EINVAL; 1412 1413 /* 1414 * When the user specified more nodes than supported just check 1415 * if the non supported part is all zero, one word at a time, 1416 * starting at the end. 1417 */ 1418 while (maxnode > MAX_NUMNODES) { 1419 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1420 unsigned long t; 1421 1422 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1423 return -EFAULT; 1424 1425 if (maxnode - bits >= MAX_NUMNODES) { 1426 maxnode -= bits; 1427 } else { 1428 maxnode = MAX_NUMNODES; 1429 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1430 } 1431 if (t) 1432 return -EINVAL; 1433 } 1434 1435 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1436 } 1437 1438 /* Copy a kernel node mask to user space */ 1439 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1440 nodemask_t *nodes) 1441 { 1442 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1443 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1444 bool compat = in_compat_syscall(); 1445 1446 if (compat) 1447 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1448 1449 if (copy > nbytes) { 1450 if (copy > PAGE_SIZE) 1451 return -EINVAL; 1452 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1453 return -EFAULT; 1454 copy = nbytes; 1455 maxnode = nr_node_ids; 1456 } 1457 1458 if (compat) 1459 return compat_put_bitmap((compat_ulong_t __user *)mask, 1460 nodes_addr(*nodes), maxnode); 1461 1462 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1463 } 1464 1465 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1466 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1467 { 1468 *flags = *mode & MPOL_MODE_FLAGS; 1469 *mode &= ~MPOL_MODE_FLAGS; 1470 1471 if ((unsigned int)(*mode) >= MPOL_MAX) 1472 return -EINVAL; 1473 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1474 return -EINVAL; 1475 if (*flags & MPOL_F_NUMA_BALANCING) { 1476 if (*mode != MPOL_BIND) 1477 return -EINVAL; 1478 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1479 } 1480 return 0; 1481 } 1482 1483 static long kernel_mbind(unsigned long start, unsigned long len, 1484 unsigned long mode, const unsigned long __user *nmask, 1485 unsigned long maxnode, unsigned int flags) 1486 { 1487 unsigned short mode_flags; 1488 nodemask_t nodes; 1489 int lmode = mode; 1490 int err; 1491 1492 start = untagged_addr(start); 1493 err = sanitize_mpol_flags(&lmode, &mode_flags); 1494 if (err) 1495 return err; 1496 1497 err = get_nodes(&nodes, nmask, maxnode); 1498 if (err) 1499 return err; 1500 1501 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1502 } 1503 1504 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1505 unsigned long, home_node, unsigned long, flags) 1506 { 1507 struct mm_struct *mm = current->mm; 1508 struct vm_area_struct *vma, *prev; 1509 struct mempolicy *new, *old; 1510 unsigned long end; 1511 int err = -ENOENT; 1512 VMA_ITERATOR(vmi, mm, start); 1513 1514 start = untagged_addr(start); 1515 if (start & ~PAGE_MASK) 1516 return -EINVAL; 1517 /* 1518 * flags is used for future extension if any. 1519 */ 1520 if (flags != 0) 1521 return -EINVAL; 1522 1523 /* 1524 * Check home_node is online to avoid accessing uninitialized 1525 * NODE_DATA. 1526 */ 1527 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1528 return -EINVAL; 1529 1530 len = PAGE_ALIGN(len); 1531 end = start + len; 1532 1533 if (end < start) 1534 return -EINVAL; 1535 if (end == start) 1536 return 0; 1537 mmap_write_lock(mm); 1538 prev = vma_prev(&vmi); 1539 for_each_vma_range(vmi, vma, end) { 1540 /* 1541 * If any vma in the range got policy other than MPOL_BIND 1542 * or MPOL_PREFERRED_MANY we return error. We don't reset 1543 * the home node for vmas we already updated before. 1544 */ 1545 old = vma_policy(vma); 1546 if (!old) { 1547 prev = vma; 1548 continue; 1549 } 1550 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1551 err = -EOPNOTSUPP; 1552 break; 1553 } 1554 new = mpol_dup(old); 1555 if (IS_ERR(new)) { 1556 err = PTR_ERR(new); 1557 break; 1558 } 1559 1560 vma_start_write(vma); 1561 new->home_node = home_node; 1562 err = mbind_range(&vmi, vma, &prev, start, end, new); 1563 mpol_put(new); 1564 if (err) 1565 break; 1566 } 1567 mmap_write_unlock(mm); 1568 return err; 1569 } 1570 1571 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1572 unsigned long, mode, const unsigned long __user *, nmask, 1573 unsigned long, maxnode, unsigned int, flags) 1574 { 1575 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1576 } 1577 1578 /* Set the process memory policy */ 1579 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1580 unsigned long maxnode) 1581 { 1582 unsigned short mode_flags; 1583 nodemask_t nodes; 1584 int lmode = mode; 1585 int err; 1586 1587 err = sanitize_mpol_flags(&lmode, &mode_flags); 1588 if (err) 1589 return err; 1590 1591 err = get_nodes(&nodes, nmask, maxnode); 1592 if (err) 1593 return err; 1594 1595 return do_set_mempolicy(lmode, mode_flags, &nodes); 1596 } 1597 1598 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1599 unsigned long, maxnode) 1600 { 1601 return kernel_set_mempolicy(mode, nmask, maxnode); 1602 } 1603 1604 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1605 const unsigned long __user *old_nodes, 1606 const unsigned long __user *new_nodes) 1607 { 1608 struct mm_struct *mm = NULL; 1609 struct task_struct *task; 1610 nodemask_t task_nodes; 1611 int err; 1612 nodemask_t *old; 1613 nodemask_t *new; 1614 NODEMASK_SCRATCH(scratch); 1615 1616 if (!scratch) 1617 return -ENOMEM; 1618 1619 old = &scratch->mask1; 1620 new = &scratch->mask2; 1621 1622 err = get_nodes(old, old_nodes, maxnode); 1623 if (err) 1624 goto out; 1625 1626 err = get_nodes(new, new_nodes, maxnode); 1627 if (err) 1628 goto out; 1629 1630 /* Find the mm_struct */ 1631 rcu_read_lock(); 1632 task = pid ? find_task_by_vpid(pid) : current; 1633 if (!task) { 1634 rcu_read_unlock(); 1635 err = -ESRCH; 1636 goto out; 1637 } 1638 get_task_struct(task); 1639 1640 err = -EINVAL; 1641 1642 /* 1643 * Check if this process has the right to modify the specified process. 1644 * Use the regular "ptrace_may_access()" checks. 1645 */ 1646 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1647 rcu_read_unlock(); 1648 err = -EPERM; 1649 goto out_put; 1650 } 1651 rcu_read_unlock(); 1652 1653 task_nodes = cpuset_mems_allowed(task); 1654 /* Is the user allowed to access the target nodes? */ 1655 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1656 err = -EPERM; 1657 goto out_put; 1658 } 1659 1660 task_nodes = cpuset_mems_allowed(current); 1661 nodes_and(*new, *new, task_nodes); 1662 if (nodes_empty(*new)) 1663 goto out_put; 1664 1665 err = security_task_movememory(task); 1666 if (err) 1667 goto out_put; 1668 1669 mm = get_task_mm(task); 1670 put_task_struct(task); 1671 1672 if (!mm) { 1673 err = -EINVAL; 1674 goto out; 1675 } 1676 1677 err = do_migrate_pages(mm, old, new, 1678 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1679 1680 mmput(mm); 1681 out: 1682 NODEMASK_SCRATCH_FREE(scratch); 1683 1684 return err; 1685 1686 out_put: 1687 put_task_struct(task); 1688 goto out; 1689 1690 } 1691 1692 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1693 const unsigned long __user *, old_nodes, 1694 const unsigned long __user *, new_nodes) 1695 { 1696 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1697 } 1698 1699 1700 /* Retrieve NUMA policy */ 1701 static int kernel_get_mempolicy(int __user *policy, 1702 unsigned long __user *nmask, 1703 unsigned long maxnode, 1704 unsigned long addr, 1705 unsigned long flags) 1706 { 1707 int err; 1708 int pval; 1709 nodemask_t nodes; 1710 1711 if (nmask != NULL && maxnode < nr_node_ids) 1712 return -EINVAL; 1713 1714 addr = untagged_addr(addr); 1715 1716 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1717 1718 if (err) 1719 return err; 1720 1721 if (policy && put_user(pval, policy)) 1722 return -EFAULT; 1723 1724 if (nmask) 1725 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1726 1727 return err; 1728 } 1729 1730 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1731 unsigned long __user *, nmask, unsigned long, maxnode, 1732 unsigned long, addr, unsigned long, flags) 1733 { 1734 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1735 } 1736 1737 bool vma_migratable(struct vm_area_struct *vma) 1738 { 1739 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1740 return false; 1741 1742 /* 1743 * DAX device mappings require predictable access latency, so avoid 1744 * incurring periodic faults. 1745 */ 1746 if (vma_is_dax(vma)) 1747 return false; 1748 1749 if (is_vm_hugetlb_page(vma) && 1750 !hugepage_migration_supported(hstate_vma(vma))) 1751 return false; 1752 1753 /* 1754 * Migration allocates pages in the highest zone. If we cannot 1755 * do so then migration (at least from node to node) is not 1756 * possible. 1757 */ 1758 if (vma->vm_file && 1759 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1760 < policy_zone) 1761 return false; 1762 return true; 1763 } 1764 1765 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1766 unsigned long addr) 1767 { 1768 struct mempolicy *pol = NULL; 1769 1770 if (vma) { 1771 if (vma->vm_ops && vma->vm_ops->get_policy) { 1772 pol = vma->vm_ops->get_policy(vma, addr); 1773 } else if (vma->vm_policy) { 1774 pol = vma->vm_policy; 1775 1776 /* 1777 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1778 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1779 * count on these policies which will be dropped by 1780 * mpol_cond_put() later 1781 */ 1782 if (mpol_needs_cond_ref(pol)) 1783 mpol_get(pol); 1784 } 1785 } 1786 1787 return pol; 1788 } 1789 1790 /* 1791 * get_vma_policy(@vma, @addr) 1792 * @vma: virtual memory area whose policy is sought 1793 * @addr: address in @vma for shared policy lookup 1794 * 1795 * Returns effective policy for a VMA at specified address. 1796 * Falls back to current->mempolicy or system default policy, as necessary. 1797 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1798 * count--added by the get_policy() vm_op, as appropriate--to protect against 1799 * freeing by another task. It is the caller's responsibility to free the 1800 * extra reference for shared policies. 1801 */ 1802 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1803 unsigned long addr) 1804 { 1805 struct mempolicy *pol = __get_vma_policy(vma, addr); 1806 1807 if (!pol) 1808 pol = get_task_policy(current); 1809 1810 return pol; 1811 } 1812 1813 bool vma_policy_mof(struct vm_area_struct *vma) 1814 { 1815 struct mempolicy *pol; 1816 1817 if (vma->vm_ops && vma->vm_ops->get_policy) { 1818 bool ret = false; 1819 1820 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1821 if (pol && (pol->flags & MPOL_F_MOF)) 1822 ret = true; 1823 mpol_cond_put(pol); 1824 1825 return ret; 1826 } 1827 1828 pol = vma->vm_policy; 1829 if (!pol) 1830 pol = get_task_policy(current); 1831 1832 return pol->flags & MPOL_F_MOF; 1833 } 1834 1835 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1836 { 1837 enum zone_type dynamic_policy_zone = policy_zone; 1838 1839 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1840 1841 /* 1842 * if policy->nodes has movable memory only, 1843 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1844 * 1845 * policy->nodes is intersect with node_states[N_MEMORY]. 1846 * so if the following test fails, it implies 1847 * policy->nodes has movable memory only. 1848 */ 1849 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1850 dynamic_policy_zone = ZONE_MOVABLE; 1851 1852 return zone >= dynamic_policy_zone; 1853 } 1854 1855 /* 1856 * Return a nodemask representing a mempolicy for filtering nodes for 1857 * page allocation 1858 */ 1859 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1860 { 1861 int mode = policy->mode; 1862 1863 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1864 if (unlikely(mode == MPOL_BIND) && 1865 apply_policy_zone(policy, gfp_zone(gfp)) && 1866 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1867 return &policy->nodes; 1868 1869 if (mode == MPOL_PREFERRED_MANY) 1870 return &policy->nodes; 1871 1872 return NULL; 1873 } 1874 1875 /* 1876 * Return the preferred node id for 'prefer' mempolicy, and return 1877 * the given id for all other policies. 1878 * 1879 * policy_node() is always coupled with policy_nodemask(), which 1880 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1881 */ 1882 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1883 { 1884 if (policy->mode == MPOL_PREFERRED) { 1885 nd = first_node(policy->nodes); 1886 } else { 1887 /* 1888 * __GFP_THISNODE shouldn't even be used with the bind policy 1889 * because we might easily break the expectation to stay on the 1890 * requested node and not break the policy. 1891 */ 1892 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1893 } 1894 1895 if ((policy->mode == MPOL_BIND || 1896 policy->mode == MPOL_PREFERRED_MANY) && 1897 policy->home_node != NUMA_NO_NODE) 1898 return policy->home_node; 1899 1900 return nd; 1901 } 1902 1903 /* Do dynamic interleaving for a process */ 1904 static unsigned interleave_nodes(struct mempolicy *policy) 1905 { 1906 unsigned next; 1907 struct task_struct *me = current; 1908 1909 next = next_node_in(me->il_prev, policy->nodes); 1910 if (next < MAX_NUMNODES) 1911 me->il_prev = next; 1912 return next; 1913 } 1914 1915 /* 1916 * Depending on the memory policy provide a node from which to allocate the 1917 * next slab entry. 1918 */ 1919 unsigned int mempolicy_slab_node(void) 1920 { 1921 struct mempolicy *policy; 1922 int node = numa_mem_id(); 1923 1924 if (!in_task()) 1925 return node; 1926 1927 policy = current->mempolicy; 1928 if (!policy) 1929 return node; 1930 1931 switch (policy->mode) { 1932 case MPOL_PREFERRED: 1933 return first_node(policy->nodes); 1934 1935 case MPOL_INTERLEAVE: 1936 return interleave_nodes(policy); 1937 1938 case MPOL_BIND: 1939 case MPOL_PREFERRED_MANY: 1940 { 1941 struct zoneref *z; 1942 1943 /* 1944 * Follow bind policy behavior and start allocation at the 1945 * first node. 1946 */ 1947 struct zonelist *zonelist; 1948 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1949 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1950 z = first_zones_zonelist(zonelist, highest_zoneidx, 1951 &policy->nodes); 1952 return z->zone ? zone_to_nid(z->zone) : node; 1953 } 1954 case MPOL_LOCAL: 1955 return node; 1956 1957 default: 1958 BUG(); 1959 } 1960 } 1961 1962 /* 1963 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1964 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1965 * number of present nodes. 1966 */ 1967 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1968 { 1969 nodemask_t nodemask = pol->nodes; 1970 unsigned int target, nnodes; 1971 int i; 1972 int nid; 1973 /* 1974 * The barrier will stabilize the nodemask in a register or on 1975 * the stack so that it will stop changing under the code. 1976 * 1977 * Between first_node() and next_node(), pol->nodes could be changed 1978 * by other threads. So we put pol->nodes in a local stack. 1979 */ 1980 barrier(); 1981 1982 nnodes = nodes_weight(nodemask); 1983 if (!nnodes) 1984 return numa_node_id(); 1985 target = (unsigned int)n % nnodes; 1986 nid = first_node(nodemask); 1987 for (i = 0; i < target; i++) 1988 nid = next_node(nid, nodemask); 1989 return nid; 1990 } 1991 1992 /* Determine a node number for interleave */ 1993 static inline unsigned interleave_nid(struct mempolicy *pol, 1994 struct vm_area_struct *vma, unsigned long addr, int shift) 1995 { 1996 if (vma) { 1997 unsigned long off; 1998 1999 /* 2000 * for small pages, there is no difference between 2001 * shift and PAGE_SHIFT, so the bit-shift is safe. 2002 * for huge pages, since vm_pgoff is in units of small 2003 * pages, we need to shift off the always 0 bits to get 2004 * a useful offset. 2005 */ 2006 BUG_ON(shift < PAGE_SHIFT); 2007 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2008 off += (addr - vma->vm_start) >> shift; 2009 return offset_il_node(pol, off); 2010 } else 2011 return interleave_nodes(pol); 2012 } 2013 2014 #ifdef CONFIG_HUGETLBFS 2015 /* 2016 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2017 * @vma: virtual memory area whose policy is sought 2018 * @addr: address in @vma for shared policy lookup and interleave policy 2019 * @gfp_flags: for requested zone 2020 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2021 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2022 * 2023 * Returns a nid suitable for a huge page allocation and a pointer 2024 * to the struct mempolicy for conditional unref after allocation. 2025 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2026 * to the mempolicy's @nodemask for filtering the zonelist. 2027 * 2028 * Must be protected by read_mems_allowed_begin() 2029 */ 2030 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2031 struct mempolicy **mpol, nodemask_t **nodemask) 2032 { 2033 int nid; 2034 int mode; 2035 2036 *mpol = get_vma_policy(vma, addr); 2037 *nodemask = NULL; 2038 mode = (*mpol)->mode; 2039 2040 if (unlikely(mode == MPOL_INTERLEAVE)) { 2041 nid = interleave_nid(*mpol, vma, addr, 2042 huge_page_shift(hstate_vma(vma))); 2043 } else { 2044 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2045 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2046 *nodemask = &(*mpol)->nodes; 2047 } 2048 return nid; 2049 } 2050 2051 /* 2052 * init_nodemask_of_mempolicy 2053 * 2054 * If the current task's mempolicy is "default" [NULL], return 'false' 2055 * to indicate default policy. Otherwise, extract the policy nodemask 2056 * for 'bind' or 'interleave' policy into the argument nodemask, or 2057 * initialize the argument nodemask to contain the single node for 2058 * 'preferred' or 'local' policy and return 'true' to indicate presence 2059 * of non-default mempolicy. 2060 * 2061 * We don't bother with reference counting the mempolicy [mpol_get/put] 2062 * because the current task is examining it's own mempolicy and a task's 2063 * mempolicy is only ever changed by the task itself. 2064 * 2065 * N.B., it is the caller's responsibility to free a returned nodemask. 2066 */ 2067 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2068 { 2069 struct mempolicy *mempolicy; 2070 2071 if (!(mask && current->mempolicy)) 2072 return false; 2073 2074 task_lock(current); 2075 mempolicy = current->mempolicy; 2076 switch (mempolicy->mode) { 2077 case MPOL_PREFERRED: 2078 case MPOL_PREFERRED_MANY: 2079 case MPOL_BIND: 2080 case MPOL_INTERLEAVE: 2081 *mask = mempolicy->nodes; 2082 break; 2083 2084 case MPOL_LOCAL: 2085 init_nodemask_of_node(mask, numa_node_id()); 2086 break; 2087 2088 default: 2089 BUG(); 2090 } 2091 task_unlock(current); 2092 2093 return true; 2094 } 2095 #endif 2096 2097 /* 2098 * mempolicy_in_oom_domain 2099 * 2100 * If tsk's mempolicy is "bind", check for intersection between mask and 2101 * the policy nodemask. Otherwise, return true for all other policies 2102 * including "interleave", as a tsk with "interleave" policy may have 2103 * memory allocated from all nodes in system. 2104 * 2105 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2106 */ 2107 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2108 const nodemask_t *mask) 2109 { 2110 struct mempolicy *mempolicy; 2111 bool ret = true; 2112 2113 if (!mask) 2114 return ret; 2115 2116 task_lock(tsk); 2117 mempolicy = tsk->mempolicy; 2118 if (mempolicy && mempolicy->mode == MPOL_BIND) 2119 ret = nodes_intersects(mempolicy->nodes, *mask); 2120 task_unlock(tsk); 2121 2122 return ret; 2123 } 2124 2125 /* Allocate a page in interleaved policy. 2126 Own path because it needs to do special accounting. */ 2127 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2128 unsigned nid) 2129 { 2130 struct page *page; 2131 2132 page = __alloc_pages(gfp, order, nid, NULL); 2133 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2134 if (!static_branch_likely(&vm_numa_stat_key)) 2135 return page; 2136 if (page && page_to_nid(page) == nid) { 2137 preempt_disable(); 2138 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2139 preempt_enable(); 2140 } 2141 return page; 2142 } 2143 2144 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2145 int nid, struct mempolicy *pol) 2146 { 2147 struct page *page; 2148 gfp_t preferred_gfp; 2149 2150 /* 2151 * This is a two pass approach. The first pass will only try the 2152 * preferred nodes but skip the direct reclaim and allow the 2153 * allocation to fail, while the second pass will try all the 2154 * nodes in system. 2155 */ 2156 preferred_gfp = gfp | __GFP_NOWARN; 2157 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2158 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2159 if (!page) 2160 page = __alloc_pages(gfp, order, nid, NULL); 2161 2162 return page; 2163 } 2164 2165 /** 2166 * vma_alloc_folio - Allocate a folio for a VMA. 2167 * @gfp: GFP flags. 2168 * @order: Order of the folio. 2169 * @vma: Pointer to VMA or NULL if not available. 2170 * @addr: Virtual address of the allocation. Must be inside @vma. 2171 * @hugepage: For hugepages try only the preferred node if possible. 2172 * 2173 * Allocate a folio for a specific address in @vma, using the appropriate 2174 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2175 * of the mm_struct of the VMA to prevent it from going away. Should be 2176 * used for all allocations for folios that will be mapped into user space. 2177 * 2178 * Return: The folio on success or NULL if allocation fails. 2179 */ 2180 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2181 unsigned long addr, bool hugepage) 2182 { 2183 struct mempolicy *pol; 2184 int node = numa_node_id(); 2185 struct folio *folio; 2186 int preferred_nid; 2187 nodemask_t *nmask; 2188 2189 pol = get_vma_policy(vma, addr); 2190 2191 if (pol->mode == MPOL_INTERLEAVE) { 2192 struct page *page; 2193 unsigned nid; 2194 2195 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2196 mpol_cond_put(pol); 2197 gfp |= __GFP_COMP; 2198 page = alloc_page_interleave(gfp, order, nid); 2199 folio = (struct folio *)page; 2200 if (folio && order > 1) 2201 folio_prep_large_rmappable(folio); 2202 goto out; 2203 } 2204 2205 if (pol->mode == MPOL_PREFERRED_MANY) { 2206 struct page *page; 2207 2208 node = policy_node(gfp, pol, node); 2209 gfp |= __GFP_COMP; 2210 page = alloc_pages_preferred_many(gfp, order, node, pol); 2211 mpol_cond_put(pol); 2212 folio = (struct folio *)page; 2213 if (folio && order > 1) 2214 folio_prep_large_rmappable(folio); 2215 goto out; 2216 } 2217 2218 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2219 int hpage_node = node; 2220 2221 /* 2222 * For hugepage allocation and non-interleave policy which 2223 * allows the current node (or other explicitly preferred 2224 * node) we only try to allocate from the current/preferred 2225 * node and don't fall back to other nodes, as the cost of 2226 * remote accesses would likely offset THP benefits. 2227 * 2228 * If the policy is interleave or does not allow the current 2229 * node in its nodemask, we allocate the standard way. 2230 */ 2231 if (pol->mode == MPOL_PREFERRED) 2232 hpage_node = first_node(pol->nodes); 2233 2234 nmask = policy_nodemask(gfp, pol); 2235 if (!nmask || node_isset(hpage_node, *nmask)) { 2236 mpol_cond_put(pol); 2237 /* 2238 * First, try to allocate THP only on local node, but 2239 * don't reclaim unnecessarily, just compact. 2240 */ 2241 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2242 __GFP_NORETRY, order, hpage_node); 2243 2244 /* 2245 * If hugepage allocations are configured to always 2246 * synchronous compact or the vma has been madvised 2247 * to prefer hugepage backing, retry allowing remote 2248 * memory with both reclaim and compact as well. 2249 */ 2250 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2251 folio = __folio_alloc(gfp, order, hpage_node, 2252 nmask); 2253 2254 goto out; 2255 } 2256 } 2257 2258 nmask = policy_nodemask(gfp, pol); 2259 preferred_nid = policy_node(gfp, pol, node); 2260 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2261 mpol_cond_put(pol); 2262 out: 2263 return folio; 2264 } 2265 EXPORT_SYMBOL(vma_alloc_folio); 2266 2267 /** 2268 * alloc_pages - Allocate pages. 2269 * @gfp: GFP flags. 2270 * @order: Power of two of number of pages to allocate. 2271 * 2272 * Allocate 1 << @order contiguous pages. The physical address of the 2273 * first page is naturally aligned (eg an order-3 allocation will be aligned 2274 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2275 * process is honoured when in process context. 2276 * 2277 * Context: Can be called from any context, providing the appropriate GFP 2278 * flags are used. 2279 * Return: The page on success or NULL if allocation fails. 2280 */ 2281 struct page *alloc_pages(gfp_t gfp, unsigned order) 2282 { 2283 struct mempolicy *pol = &default_policy; 2284 struct page *page; 2285 2286 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2287 pol = get_task_policy(current); 2288 2289 /* 2290 * No reference counting needed for current->mempolicy 2291 * nor system default_policy 2292 */ 2293 if (pol->mode == MPOL_INTERLEAVE) 2294 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2295 else if (pol->mode == MPOL_PREFERRED_MANY) 2296 page = alloc_pages_preferred_many(gfp, order, 2297 policy_node(gfp, pol, numa_node_id()), pol); 2298 else 2299 page = __alloc_pages(gfp, order, 2300 policy_node(gfp, pol, numa_node_id()), 2301 policy_nodemask(gfp, pol)); 2302 2303 return page; 2304 } 2305 EXPORT_SYMBOL(alloc_pages); 2306 2307 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2308 { 2309 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2310 struct folio *folio = (struct folio *)page; 2311 2312 if (folio && order > 1) 2313 folio_prep_large_rmappable(folio); 2314 return folio; 2315 } 2316 EXPORT_SYMBOL(folio_alloc); 2317 2318 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2319 struct mempolicy *pol, unsigned long nr_pages, 2320 struct page **page_array) 2321 { 2322 int nodes; 2323 unsigned long nr_pages_per_node; 2324 int delta; 2325 int i; 2326 unsigned long nr_allocated; 2327 unsigned long total_allocated = 0; 2328 2329 nodes = nodes_weight(pol->nodes); 2330 nr_pages_per_node = nr_pages / nodes; 2331 delta = nr_pages - nodes * nr_pages_per_node; 2332 2333 for (i = 0; i < nodes; i++) { 2334 if (delta) { 2335 nr_allocated = __alloc_pages_bulk(gfp, 2336 interleave_nodes(pol), NULL, 2337 nr_pages_per_node + 1, NULL, 2338 page_array); 2339 delta--; 2340 } else { 2341 nr_allocated = __alloc_pages_bulk(gfp, 2342 interleave_nodes(pol), NULL, 2343 nr_pages_per_node, NULL, page_array); 2344 } 2345 2346 page_array += nr_allocated; 2347 total_allocated += nr_allocated; 2348 } 2349 2350 return total_allocated; 2351 } 2352 2353 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2354 struct mempolicy *pol, unsigned long nr_pages, 2355 struct page **page_array) 2356 { 2357 gfp_t preferred_gfp; 2358 unsigned long nr_allocated = 0; 2359 2360 preferred_gfp = gfp | __GFP_NOWARN; 2361 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2362 2363 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2364 nr_pages, NULL, page_array); 2365 2366 if (nr_allocated < nr_pages) 2367 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2368 nr_pages - nr_allocated, NULL, 2369 page_array + nr_allocated); 2370 return nr_allocated; 2371 } 2372 2373 /* alloc pages bulk and mempolicy should be considered at the 2374 * same time in some situation such as vmalloc. 2375 * 2376 * It can accelerate memory allocation especially interleaving 2377 * allocate memory. 2378 */ 2379 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2380 unsigned long nr_pages, struct page **page_array) 2381 { 2382 struct mempolicy *pol = &default_policy; 2383 2384 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2385 pol = get_task_policy(current); 2386 2387 if (pol->mode == MPOL_INTERLEAVE) 2388 return alloc_pages_bulk_array_interleave(gfp, pol, 2389 nr_pages, page_array); 2390 2391 if (pol->mode == MPOL_PREFERRED_MANY) 2392 return alloc_pages_bulk_array_preferred_many(gfp, 2393 numa_node_id(), pol, nr_pages, page_array); 2394 2395 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2396 policy_nodemask(gfp, pol), nr_pages, NULL, 2397 page_array); 2398 } 2399 2400 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2401 { 2402 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2403 2404 if (IS_ERR(pol)) 2405 return PTR_ERR(pol); 2406 dst->vm_policy = pol; 2407 return 0; 2408 } 2409 2410 /* 2411 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2412 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2413 * with the mems_allowed returned by cpuset_mems_allowed(). This 2414 * keeps mempolicies cpuset relative after its cpuset moves. See 2415 * further kernel/cpuset.c update_nodemask(). 2416 * 2417 * current's mempolicy may be rebinded by the other task(the task that changes 2418 * cpuset's mems), so we needn't do rebind work for current task. 2419 */ 2420 2421 /* Slow path of a mempolicy duplicate */ 2422 struct mempolicy *__mpol_dup(struct mempolicy *old) 2423 { 2424 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2425 2426 if (!new) 2427 return ERR_PTR(-ENOMEM); 2428 2429 /* task's mempolicy is protected by alloc_lock */ 2430 if (old == current->mempolicy) { 2431 task_lock(current); 2432 *new = *old; 2433 task_unlock(current); 2434 } else 2435 *new = *old; 2436 2437 if (current_cpuset_is_being_rebound()) { 2438 nodemask_t mems = cpuset_mems_allowed(current); 2439 mpol_rebind_policy(new, &mems); 2440 } 2441 atomic_set(&new->refcnt, 1); 2442 return new; 2443 } 2444 2445 /* Slow path of a mempolicy comparison */ 2446 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2447 { 2448 if (!a || !b) 2449 return false; 2450 if (a->mode != b->mode) 2451 return false; 2452 if (a->flags != b->flags) 2453 return false; 2454 if (a->home_node != b->home_node) 2455 return false; 2456 if (mpol_store_user_nodemask(a)) 2457 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2458 return false; 2459 2460 switch (a->mode) { 2461 case MPOL_BIND: 2462 case MPOL_INTERLEAVE: 2463 case MPOL_PREFERRED: 2464 case MPOL_PREFERRED_MANY: 2465 return !!nodes_equal(a->nodes, b->nodes); 2466 case MPOL_LOCAL: 2467 return true; 2468 default: 2469 BUG(); 2470 return false; 2471 } 2472 } 2473 2474 /* 2475 * Shared memory backing store policy support. 2476 * 2477 * Remember policies even when nobody has shared memory mapped. 2478 * The policies are kept in Red-Black tree linked from the inode. 2479 * They are protected by the sp->lock rwlock, which should be held 2480 * for any accesses to the tree. 2481 */ 2482 2483 /* 2484 * lookup first element intersecting start-end. Caller holds sp->lock for 2485 * reading or for writing 2486 */ 2487 static struct sp_node * 2488 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2489 { 2490 struct rb_node *n = sp->root.rb_node; 2491 2492 while (n) { 2493 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2494 2495 if (start >= p->end) 2496 n = n->rb_right; 2497 else if (end <= p->start) 2498 n = n->rb_left; 2499 else 2500 break; 2501 } 2502 if (!n) 2503 return NULL; 2504 for (;;) { 2505 struct sp_node *w = NULL; 2506 struct rb_node *prev = rb_prev(n); 2507 if (!prev) 2508 break; 2509 w = rb_entry(prev, struct sp_node, nd); 2510 if (w->end <= start) 2511 break; 2512 n = prev; 2513 } 2514 return rb_entry(n, struct sp_node, nd); 2515 } 2516 2517 /* 2518 * Insert a new shared policy into the list. Caller holds sp->lock for 2519 * writing. 2520 */ 2521 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2522 { 2523 struct rb_node **p = &sp->root.rb_node; 2524 struct rb_node *parent = NULL; 2525 struct sp_node *nd; 2526 2527 while (*p) { 2528 parent = *p; 2529 nd = rb_entry(parent, struct sp_node, nd); 2530 if (new->start < nd->start) 2531 p = &(*p)->rb_left; 2532 else if (new->end > nd->end) 2533 p = &(*p)->rb_right; 2534 else 2535 BUG(); 2536 } 2537 rb_link_node(&new->nd, parent, p); 2538 rb_insert_color(&new->nd, &sp->root); 2539 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2540 new->policy ? new->policy->mode : 0); 2541 } 2542 2543 /* Find shared policy intersecting idx */ 2544 struct mempolicy * 2545 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2546 { 2547 struct mempolicy *pol = NULL; 2548 struct sp_node *sn; 2549 2550 if (!sp->root.rb_node) 2551 return NULL; 2552 read_lock(&sp->lock); 2553 sn = sp_lookup(sp, idx, idx+1); 2554 if (sn) { 2555 mpol_get(sn->policy); 2556 pol = sn->policy; 2557 } 2558 read_unlock(&sp->lock); 2559 return pol; 2560 } 2561 2562 static void sp_free(struct sp_node *n) 2563 { 2564 mpol_put(n->policy); 2565 kmem_cache_free(sn_cache, n); 2566 } 2567 2568 /** 2569 * mpol_misplaced - check whether current page node is valid in policy 2570 * 2571 * @page: page to be checked 2572 * @vma: vm area where page mapped 2573 * @addr: virtual address where page mapped 2574 * 2575 * Lookup current policy node id for vma,addr and "compare to" page's 2576 * node id. Policy determination "mimics" alloc_page_vma(). 2577 * Called from fault path where we know the vma and faulting address. 2578 * 2579 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2580 * policy, or a suitable node ID to allocate a replacement page from. 2581 */ 2582 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2583 { 2584 struct mempolicy *pol; 2585 struct zoneref *z; 2586 int curnid = page_to_nid(page); 2587 unsigned long pgoff; 2588 int thiscpu = raw_smp_processor_id(); 2589 int thisnid = cpu_to_node(thiscpu); 2590 int polnid = NUMA_NO_NODE; 2591 int ret = NUMA_NO_NODE; 2592 2593 pol = get_vma_policy(vma, addr); 2594 if (!(pol->flags & MPOL_F_MOF)) 2595 goto out; 2596 2597 switch (pol->mode) { 2598 case MPOL_INTERLEAVE: 2599 pgoff = vma->vm_pgoff; 2600 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2601 polnid = offset_il_node(pol, pgoff); 2602 break; 2603 2604 case MPOL_PREFERRED: 2605 if (node_isset(curnid, pol->nodes)) 2606 goto out; 2607 polnid = first_node(pol->nodes); 2608 break; 2609 2610 case MPOL_LOCAL: 2611 polnid = numa_node_id(); 2612 break; 2613 2614 case MPOL_BIND: 2615 /* Optimize placement among multiple nodes via NUMA balancing */ 2616 if (pol->flags & MPOL_F_MORON) { 2617 if (node_isset(thisnid, pol->nodes)) 2618 break; 2619 goto out; 2620 } 2621 fallthrough; 2622 2623 case MPOL_PREFERRED_MANY: 2624 /* 2625 * use current page if in policy nodemask, 2626 * else select nearest allowed node, if any. 2627 * If no allowed nodes, use current [!misplaced]. 2628 */ 2629 if (node_isset(curnid, pol->nodes)) 2630 goto out; 2631 z = first_zones_zonelist( 2632 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2633 gfp_zone(GFP_HIGHUSER), 2634 &pol->nodes); 2635 polnid = zone_to_nid(z->zone); 2636 break; 2637 2638 default: 2639 BUG(); 2640 } 2641 2642 /* Migrate the page towards the node whose CPU is referencing it */ 2643 if (pol->flags & MPOL_F_MORON) { 2644 polnid = thisnid; 2645 2646 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2647 goto out; 2648 } 2649 2650 if (curnid != polnid) 2651 ret = polnid; 2652 out: 2653 mpol_cond_put(pol); 2654 2655 return ret; 2656 } 2657 2658 /* 2659 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2660 * dropped after task->mempolicy is set to NULL so that any allocation done as 2661 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2662 * policy. 2663 */ 2664 void mpol_put_task_policy(struct task_struct *task) 2665 { 2666 struct mempolicy *pol; 2667 2668 task_lock(task); 2669 pol = task->mempolicy; 2670 task->mempolicy = NULL; 2671 task_unlock(task); 2672 mpol_put(pol); 2673 } 2674 2675 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2676 { 2677 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2678 rb_erase(&n->nd, &sp->root); 2679 sp_free(n); 2680 } 2681 2682 static void sp_node_init(struct sp_node *node, unsigned long start, 2683 unsigned long end, struct mempolicy *pol) 2684 { 2685 node->start = start; 2686 node->end = end; 2687 node->policy = pol; 2688 } 2689 2690 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2691 struct mempolicy *pol) 2692 { 2693 struct sp_node *n; 2694 struct mempolicy *newpol; 2695 2696 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2697 if (!n) 2698 return NULL; 2699 2700 newpol = mpol_dup(pol); 2701 if (IS_ERR(newpol)) { 2702 kmem_cache_free(sn_cache, n); 2703 return NULL; 2704 } 2705 newpol->flags |= MPOL_F_SHARED; 2706 sp_node_init(n, start, end, newpol); 2707 2708 return n; 2709 } 2710 2711 /* Replace a policy range. */ 2712 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2713 unsigned long end, struct sp_node *new) 2714 { 2715 struct sp_node *n; 2716 struct sp_node *n_new = NULL; 2717 struct mempolicy *mpol_new = NULL; 2718 int ret = 0; 2719 2720 restart: 2721 write_lock(&sp->lock); 2722 n = sp_lookup(sp, start, end); 2723 /* Take care of old policies in the same range. */ 2724 while (n && n->start < end) { 2725 struct rb_node *next = rb_next(&n->nd); 2726 if (n->start >= start) { 2727 if (n->end <= end) 2728 sp_delete(sp, n); 2729 else 2730 n->start = end; 2731 } else { 2732 /* Old policy spanning whole new range. */ 2733 if (n->end > end) { 2734 if (!n_new) 2735 goto alloc_new; 2736 2737 *mpol_new = *n->policy; 2738 atomic_set(&mpol_new->refcnt, 1); 2739 sp_node_init(n_new, end, n->end, mpol_new); 2740 n->end = start; 2741 sp_insert(sp, n_new); 2742 n_new = NULL; 2743 mpol_new = NULL; 2744 break; 2745 } else 2746 n->end = start; 2747 } 2748 if (!next) 2749 break; 2750 n = rb_entry(next, struct sp_node, nd); 2751 } 2752 if (new) 2753 sp_insert(sp, new); 2754 write_unlock(&sp->lock); 2755 ret = 0; 2756 2757 err_out: 2758 if (mpol_new) 2759 mpol_put(mpol_new); 2760 if (n_new) 2761 kmem_cache_free(sn_cache, n_new); 2762 2763 return ret; 2764 2765 alloc_new: 2766 write_unlock(&sp->lock); 2767 ret = -ENOMEM; 2768 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2769 if (!n_new) 2770 goto err_out; 2771 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2772 if (!mpol_new) 2773 goto err_out; 2774 atomic_set(&mpol_new->refcnt, 1); 2775 goto restart; 2776 } 2777 2778 /** 2779 * mpol_shared_policy_init - initialize shared policy for inode 2780 * @sp: pointer to inode shared policy 2781 * @mpol: struct mempolicy to install 2782 * 2783 * Install non-NULL @mpol in inode's shared policy rb-tree. 2784 * On entry, the current task has a reference on a non-NULL @mpol. 2785 * This must be released on exit. 2786 * This is called at get_inode() calls and we can use GFP_KERNEL. 2787 */ 2788 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2789 { 2790 int ret; 2791 2792 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2793 rwlock_init(&sp->lock); 2794 2795 if (mpol) { 2796 struct vm_area_struct pvma; 2797 struct mempolicy *new; 2798 NODEMASK_SCRATCH(scratch); 2799 2800 if (!scratch) 2801 goto put_mpol; 2802 /* contextualize the tmpfs mount point mempolicy */ 2803 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2804 if (IS_ERR(new)) 2805 goto free_scratch; /* no valid nodemask intersection */ 2806 2807 task_lock(current); 2808 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2809 task_unlock(current); 2810 if (ret) 2811 goto put_new; 2812 2813 /* Create pseudo-vma that contains just the policy */ 2814 vma_init(&pvma, NULL); 2815 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2816 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2817 2818 put_new: 2819 mpol_put(new); /* drop initial ref */ 2820 free_scratch: 2821 NODEMASK_SCRATCH_FREE(scratch); 2822 put_mpol: 2823 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2824 } 2825 } 2826 2827 int mpol_set_shared_policy(struct shared_policy *info, 2828 struct vm_area_struct *vma, struct mempolicy *npol) 2829 { 2830 int err; 2831 struct sp_node *new = NULL; 2832 unsigned long sz = vma_pages(vma); 2833 2834 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2835 vma->vm_pgoff, 2836 sz, npol ? npol->mode : -1, 2837 npol ? npol->flags : -1, 2838 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2839 2840 if (npol) { 2841 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2842 if (!new) 2843 return -ENOMEM; 2844 } 2845 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2846 if (err && new) 2847 sp_free(new); 2848 return err; 2849 } 2850 2851 /* Free a backing policy store on inode delete. */ 2852 void mpol_free_shared_policy(struct shared_policy *p) 2853 { 2854 struct sp_node *n; 2855 struct rb_node *next; 2856 2857 if (!p->root.rb_node) 2858 return; 2859 write_lock(&p->lock); 2860 next = rb_first(&p->root); 2861 while (next) { 2862 n = rb_entry(next, struct sp_node, nd); 2863 next = rb_next(&n->nd); 2864 sp_delete(p, n); 2865 } 2866 write_unlock(&p->lock); 2867 } 2868 2869 #ifdef CONFIG_NUMA_BALANCING 2870 static int __initdata numabalancing_override; 2871 2872 static void __init check_numabalancing_enable(void) 2873 { 2874 bool numabalancing_default = false; 2875 2876 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2877 numabalancing_default = true; 2878 2879 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2880 if (numabalancing_override) 2881 set_numabalancing_state(numabalancing_override == 1); 2882 2883 if (num_online_nodes() > 1 && !numabalancing_override) { 2884 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2885 numabalancing_default ? "Enabling" : "Disabling"); 2886 set_numabalancing_state(numabalancing_default); 2887 } 2888 } 2889 2890 static int __init setup_numabalancing(char *str) 2891 { 2892 int ret = 0; 2893 if (!str) 2894 goto out; 2895 2896 if (!strcmp(str, "enable")) { 2897 numabalancing_override = 1; 2898 ret = 1; 2899 } else if (!strcmp(str, "disable")) { 2900 numabalancing_override = -1; 2901 ret = 1; 2902 } 2903 out: 2904 if (!ret) 2905 pr_warn("Unable to parse numa_balancing=\n"); 2906 2907 return ret; 2908 } 2909 __setup("numa_balancing=", setup_numabalancing); 2910 #else 2911 static inline void __init check_numabalancing_enable(void) 2912 { 2913 } 2914 #endif /* CONFIG_NUMA_BALANCING */ 2915 2916 /* assumes fs == KERNEL_DS */ 2917 void __init numa_policy_init(void) 2918 { 2919 nodemask_t interleave_nodes; 2920 unsigned long largest = 0; 2921 int nid, prefer = 0; 2922 2923 policy_cache = kmem_cache_create("numa_policy", 2924 sizeof(struct mempolicy), 2925 0, SLAB_PANIC, NULL); 2926 2927 sn_cache = kmem_cache_create("shared_policy_node", 2928 sizeof(struct sp_node), 2929 0, SLAB_PANIC, NULL); 2930 2931 for_each_node(nid) { 2932 preferred_node_policy[nid] = (struct mempolicy) { 2933 .refcnt = ATOMIC_INIT(1), 2934 .mode = MPOL_PREFERRED, 2935 .flags = MPOL_F_MOF | MPOL_F_MORON, 2936 .nodes = nodemask_of_node(nid), 2937 }; 2938 } 2939 2940 /* 2941 * Set interleaving policy for system init. Interleaving is only 2942 * enabled across suitably sized nodes (default is >= 16MB), or 2943 * fall back to the largest node if they're all smaller. 2944 */ 2945 nodes_clear(interleave_nodes); 2946 for_each_node_state(nid, N_MEMORY) { 2947 unsigned long total_pages = node_present_pages(nid); 2948 2949 /* Preserve the largest node */ 2950 if (largest < total_pages) { 2951 largest = total_pages; 2952 prefer = nid; 2953 } 2954 2955 /* Interleave this node? */ 2956 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2957 node_set(nid, interleave_nodes); 2958 } 2959 2960 /* All too small, use the largest */ 2961 if (unlikely(nodes_empty(interleave_nodes))) 2962 node_set(prefer, interleave_nodes); 2963 2964 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2965 pr_err("%s: interleaving failed\n", __func__); 2966 2967 check_numabalancing_enable(); 2968 } 2969 2970 /* Reset policy of current process to default */ 2971 void numa_default_policy(void) 2972 { 2973 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2974 } 2975 2976 /* 2977 * Parse and format mempolicy from/to strings 2978 */ 2979 2980 static const char * const policy_modes[] = 2981 { 2982 [MPOL_DEFAULT] = "default", 2983 [MPOL_PREFERRED] = "prefer", 2984 [MPOL_BIND] = "bind", 2985 [MPOL_INTERLEAVE] = "interleave", 2986 [MPOL_LOCAL] = "local", 2987 [MPOL_PREFERRED_MANY] = "prefer (many)", 2988 }; 2989 2990 2991 #ifdef CONFIG_TMPFS 2992 /** 2993 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2994 * @str: string containing mempolicy to parse 2995 * @mpol: pointer to struct mempolicy pointer, returned on success. 2996 * 2997 * Format of input: 2998 * <mode>[=<flags>][:<nodelist>] 2999 * 3000 * Return: %0 on success, else %1 3001 */ 3002 int mpol_parse_str(char *str, struct mempolicy **mpol) 3003 { 3004 struct mempolicy *new = NULL; 3005 unsigned short mode_flags; 3006 nodemask_t nodes; 3007 char *nodelist = strchr(str, ':'); 3008 char *flags = strchr(str, '='); 3009 int err = 1, mode; 3010 3011 if (flags) 3012 *flags++ = '\0'; /* terminate mode string */ 3013 3014 if (nodelist) { 3015 /* NUL-terminate mode or flags string */ 3016 *nodelist++ = '\0'; 3017 if (nodelist_parse(nodelist, nodes)) 3018 goto out; 3019 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3020 goto out; 3021 } else 3022 nodes_clear(nodes); 3023 3024 mode = match_string(policy_modes, MPOL_MAX, str); 3025 if (mode < 0) 3026 goto out; 3027 3028 switch (mode) { 3029 case MPOL_PREFERRED: 3030 /* 3031 * Insist on a nodelist of one node only, although later 3032 * we use first_node(nodes) to grab a single node, so here 3033 * nodelist (or nodes) cannot be empty. 3034 */ 3035 if (nodelist) { 3036 char *rest = nodelist; 3037 while (isdigit(*rest)) 3038 rest++; 3039 if (*rest) 3040 goto out; 3041 if (nodes_empty(nodes)) 3042 goto out; 3043 } 3044 break; 3045 case MPOL_INTERLEAVE: 3046 /* 3047 * Default to online nodes with memory if no nodelist 3048 */ 3049 if (!nodelist) 3050 nodes = node_states[N_MEMORY]; 3051 break; 3052 case MPOL_LOCAL: 3053 /* 3054 * Don't allow a nodelist; mpol_new() checks flags 3055 */ 3056 if (nodelist) 3057 goto out; 3058 break; 3059 case MPOL_DEFAULT: 3060 /* 3061 * Insist on a empty nodelist 3062 */ 3063 if (!nodelist) 3064 err = 0; 3065 goto out; 3066 case MPOL_PREFERRED_MANY: 3067 case MPOL_BIND: 3068 /* 3069 * Insist on a nodelist 3070 */ 3071 if (!nodelist) 3072 goto out; 3073 } 3074 3075 mode_flags = 0; 3076 if (flags) { 3077 /* 3078 * Currently, we only support two mutually exclusive 3079 * mode flags. 3080 */ 3081 if (!strcmp(flags, "static")) 3082 mode_flags |= MPOL_F_STATIC_NODES; 3083 else if (!strcmp(flags, "relative")) 3084 mode_flags |= MPOL_F_RELATIVE_NODES; 3085 else 3086 goto out; 3087 } 3088 3089 new = mpol_new(mode, mode_flags, &nodes); 3090 if (IS_ERR(new)) 3091 goto out; 3092 3093 /* 3094 * Save nodes for mpol_to_str() to show the tmpfs mount options 3095 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3096 */ 3097 if (mode != MPOL_PREFERRED) { 3098 new->nodes = nodes; 3099 } else if (nodelist) { 3100 nodes_clear(new->nodes); 3101 node_set(first_node(nodes), new->nodes); 3102 } else { 3103 new->mode = MPOL_LOCAL; 3104 } 3105 3106 /* 3107 * Save nodes for contextualization: this will be used to "clone" 3108 * the mempolicy in a specific context [cpuset] at a later time. 3109 */ 3110 new->w.user_nodemask = nodes; 3111 3112 err = 0; 3113 3114 out: 3115 /* Restore string for error message */ 3116 if (nodelist) 3117 *--nodelist = ':'; 3118 if (flags) 3119 *--flags = '='; 3120 if (!err) 3121 *mpol = new; 3122 return err; 3123 } 3124 #endif /* CONFIG_TMPFS */ 3125 3126 /** 3127 * mpol_to_str - format a mempolicy structure for printing 3128 * @buffer: to contain formatted mempolicy string 3129 * @maxlen: length of @buffer 3130 * @pol: pointer to mempolicy to be formatted 3131 * 3132 * Convert @pol into a string. If @buffer is too short, truncate the string. 3133 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3134 * longest flag, "relative", and to display at least a few node ids. 3135 */ 3136 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3137 { 3138 char *p = buffer; 3139 nodemask_t nodes = NODE_MASK_NONE; 3140 unsigned short mode = MPOL_DEFAULT; 3141 unsigned short flags = 0; 3142 3143 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3144 mode = pol->mode; 3145 flags = pol->flags; 3146 } 3147 3148 switch (mode) { 3149 case MPOL_DEFAULT: 3150 case MPOL_LOCAL: 3151 break; 3152 case MPOL_PREFERRED: 3153 case MPOL_PREFERRED_MANY: 3154 case MPOL_BIND: 3155 case MPOL_INTERLEAVE: 3156 nodes = pol->nodes; 3157 break; 3158 default: 3159 WARN_ON_ONCE(1); 3160 snprintf(p, maxlen, "unknown"); 3161 return; 3162 } 3163 3164 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3165 3166 if (flags & MPOL_MODE_FLAGS) { 3167 p += snprintf(p, buffer + maxlen - p, "="); 3168 3169 /* 3170 * Currently, the only defined flags are mutually exclusive 3171 */ 3172 if (flags & MPOL_F_STATIC_NODES) 3173 p += snprintf(p, buffer + maxlen - p, "static"); 3174 else if (flags & MPOL_F_RELATIVE_NODES) 3175 p += snprintf(p, buffer + maxlen - p, "relative"); 3176 } 3177 3178 if (!nodes_empty(nodes)) 3179 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3180 nodemask_pr_args(&nodes)); 3181 } 3182