1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = *nodes; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static int migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 /* 432 * queue_pages_pmd() has four possible return values: 433 * 0 - pages are placed on the right node or queued successfully. 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 435 * specified. 436 * 2 - THP was split. 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 438 * existing page was already on a node that does not follow the 439 * policy. 440 */ 441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 442 unsigned long end, struct mm_walk *walk) 443 { 444 int ret = 0; 445 struct page *page; 446 struct queue_pages *qp = walk->private; 447 unsigned long flags; 448 449 if (unlikely(is_pmd_migration_entry(*pmd))) { 450 ret = -EIO; 451 goto unlock; 452 } 453 page = pmd_page(*pmd); 454 if (is_huge_zero_page(page)) { 455 spin_unlock(ptl); 456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 457 ret = 2; 458 goto out; 459 } 460 if (!queue_pages_required(page, qp)) 461 goto unlock; 462 463 flags = qp->flags; 464 /* go to thp migration */ 465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 466 if (!vma_migratable(walk->vma) || 467 migrate_page_add(page, qp->pagelist, flags)) { 468 ret = 1; 469 goto unlock; 470 } 471 } else 472 ret = -EIO; 473 unlock: 474 spin_unlock(ptl); 475 out: 476 return ret; 477 } 478 479 /* 480 * Scan through pages checking if pages follow certain conditions, 481 * and move them to the pagelist if they do. 482 * 483 * queue_pages_pte_range() has three possible return values: 484 * 0 - pages are placed on the right node or queued successfully. 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 486 * specified. 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 488 * on a node that does not follow the policy. 489 */ 490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 491 unsigned long end, struct mm_walk *walk) 492 { 493 struct vm_area_struct *vma = walk->vma; 494 struct page *page; 495 struct queue_pages *qp = walk->private; 496 unsigned long flags = qp->flags; 497 int ret; 498 bool has_unmovable = false; 499 pte_t *pte; 500 spinlock_t *ptl; 501 502 ptl = pmd_trans_huge_lock(pmd, vma); 503 if (ptl) { 504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 505 if (ret != 2) 506 return ret; 507 } 508 /* THP was split, fall through to pte walk */ 509 510 if (pmd_trans_unstable(pmd)) 511 return 0; 512 513 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 514 for (; addr != end; pte++, addr += PAGE_SIZE) { 515 if (!pte_present(*pte)) 516 continue; 517 page = vm_normal_page(vma, addr, *pte); 518 if (!page) 519 continue; 520 /* 521 * vm_normal_page() filters out zero pages, but there might 522 * still be PageReserved pages to skip, perhaps in a VDSO. 523 */ 524 if (PageReserved(page)) 525 continue; 526 if (!queue_pages_required(page, qp)) 527 continue; 528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 529 /* MPOL_MF_STRICT must be specified if we get here */ 530 if (!vma_migratable(vma)) { 531 has_unmovable = true; 532 break; 533 } 534 535 /* 536 * Do not abort immediately since there may be 537 * temporary off LRU pages in the range. Still 538 * need migrate other LRU pages. 539 */ 540 if (migrate_page_add(page, qp->pagelist, flags)) 541 has_unmovable = true; 542 } else 543 break; 544 } 545 pte_unmap_unlock(pte - 1, ptl); 546 cond_resched(); 547 548 if (has_unmovable) 549 return 1; 550 551 return addr != end ? -EIO : 0; 552 } 553 554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 555 unsigned long addr, unsigned long end, 556 struct mm_walk *walk) 557 { 558 #ifdef CONFIG_HUGETLB_PAGE 559 struct queue_pages *qp = walk->private; 560 unsigned long flags = qp->flags; 561 struct page *page; 562 spinlock_t *ptl; 563 pte_t entry; 564 565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 566 entry = huge_ptep_get(pte); 567 if (!pte_present(entry)) 568 goto unlock; 569 page = pte_page(entry); 570 if (!queue_pages_required(page, qp)) 571 goto unlock; 572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 573 if (flags & (MPOL_MF_MOVE_ALL) || 574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 575 isolate_huge_page(page, qp->pagelist); 576 unlock: 577 spin_unlock(ptl); 578 #else 579 BUG(); 580 #endif 581 return 0; 582 } 583 584 #ifdef CONFIG_NUMA_BALANCING 585 /* 586 * This is used to mark a range of virtual addresses to be inaccessible. 587 * These are later cleared by a NUMA hinting fault. Depending on these 588 * faults, pages may be migrated for better NUMA placement. 589 * 590 * This is assuming that NUMA faults are handled using PROT_NONE. If 591 * an architecture makes a different choice, it will need further 592 * changes to the core. 593 */ 594 unsigned long change_prot_numa(struct vm_area_struct *vma, 595 unsigned long addr, unsigned long end) 596 { 597 int nr_updated; 598 599 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 600 if (nr_updated) 601 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 602 603 return nr_updated; 604 } 605 #else 606 static unsigned long change_prot_numa(struct vm_area_struct *vma, 607 unsigned long addr, unsigned long end) 608 { 609 return 0; 610 } 611 #endif /* CONFIG_NUMA_BALANCING */ 612 613 static int queue_pages_test_walk(unsigned long start, unsigned long end, 614 struct mm_walk *walk) 615 { 616 struct vm_area_struct *vma = walk->vma; 617 struct queue_pages *qp = walk->private; 618 unsigned long endvma = vma->vm_end; 619 unsigned long flags = qp->flags; 620 621 /* 622 * Need check MPOL_MF_STRICT to return -EIO if possible 623 * regardless of vma_migratable 624 */ 625 if (!vma_migratable(vma) && 626 !(flags & MPOL_MF_STRICT)) 627 return 1; 628 629 if (endvma > end) 630 endvma = end; 631 if (vma->vm_start > start) 632 start = vma->vm_start; 633 634 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 635 if (!vma->vm_next && vma->vm_end < end) 636 return -EFAULT; 637 if (qp->prev && qp->prev->vm_end < vma->vm_start) 638 return -EFAULT; 639 } 640 641 qp->prev = vma; 642 643 if (flags & MPOL_MF_LAZY) { 644 /* Similar to task_numa_work, skip inaccessible VMAs */ 645 if (!is_vm_hugetlb_page(vma) && 646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 647 !(vma->vm_flags & VM_MIXEDMAP)) 648 change_prot_numa(vma, start, endvma); 649 return 1; 650 } 651 652 /* queue pages from current vma */ 653 if (flags & MPOL_MF_VALID) 654 return 0; 655 return 1; 656 } 657 658 static const struct mm_walk_ops queue_pages_walk_ops = { 659 .hugetlb_entry = queue_pages_hugetlb, 660 .pmd_entry = queue_pages_pte_range, 661 .test_walk = queue_pages_test_walk, 662 }; 663 664 /* 665 * Walk through page tables and collect pages to be migrated. 666 * 667 * If pages found in a given range are on a set of nodes (determined by 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is 669 * passed via @private. 670 * 671 * queue_pages_range() has three possible return values: 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 673 * specified. 674 * 0 - queue pages successfully or no misplaced page. 675 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified. 676 */ 677 static int 678 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 679 nodemask_t *nodes, unsigned long flags, 680 struct list_head *pagelist) 681 { 682 struct queue_pages qp = { 683 .pagelist = pagelist, 684 .flags = flags, 685 .nmask = nodes, 686 .prev = NULL, 687 }; 688 689 return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 690 } 691 692 /* 693 * Apply policy to a single VMA 694 * This must be called with the mmap_sem held for writing. 695 */ 696 static int vma_replace_policy(struct vm_area_struct *vma, 697 struct mempolicy *pol) 698 { 699 int err; 700 struct mempolicy *old; 701 struct mempolicy *new; 702 703 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 704 vma->vm_start, vma->vm_end, vma->vm_pgoff, 705 vma->vm_ops, vma->vm_file, 706 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 707 708 new = mpol_dup(pol); 709 if (IS_ERR(new)) 710 return PTR_ERR(new); 711 712 if (vma->vm_ops && vma->vm_ops->set_policy) { 713 err = vma->vm_ops->set_policy(vma, new); 714 if (err) 715 goto err_out; 716 } 717 718 old = vma->vm_policy; 719 vma->vm_policy = new; /* protected by mmap_sem */ 720 mpol_put(old); 721 722 return 0; 723 err_out: 724 mpol_put(new); 725 return err; 726 } 727 728 /* Step 2: apply policy to a range and do splits. */ 729 static int mbind_range(struct mm_struct *mm, unsigned long start, 730 unsigned long end, struct mempolicy *new_pol) 731 { 732 struct vm_area_struct *next; 733 struct vm_area_struct *prev; 734 struct vm_area_struct *vma; 735 int err = 0; 736 pgoff_t pgoff; 737 unsigned long vmstart; 738 unsigned long vmend; 739 740 vma = find_vma(mm, start); 741 if (!vma || vma->vm_start > start) 742 return -EFAULT; 743 744 prev = vma->vm_prev; 745 if (start > vma->vm_start) 746 prev = vma; 747 748 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 749 next = vma->vm_next; 750 vmstart = max(start, vma->vm_start); 751 vmend = min(end, vma->vm_end); 752 753 if (mpol_equal(vma_policy(vma), new_pol)) 754 continue; 755 756 pgoff = vma->vm_pgoff + 757 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 758 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 759 vma->anon_vma, vma->vm_file, pgoff, 760 new_pol, vma->vm_userfaultfd_ctx); 761 if (prev) { 762 vma = prev; 763 next = vma->vm_next; 764 if (mpol_equal(vma_policy(vma), new_pol)) 765 continue; 766 /* vma_merge() joined vma && vma->next, case 8 */ 767 goto replace; 768 } 769 if (vma->vm_start != vmstart) { 770 err = split_vma(vma->vm_mm, vma, vmstart, 1); 771 if (err) 772 goto out; 773 } 774 if (vma->vm_end != vmend) { 775 err = split_vma(vma->vm_mm, vma, vmend, 0); 776 if (err) 777 goto out; 778 } 779 replace: 780 err = vma_replace_policy(vma, new_pol); 781 if (err) 782 goto out; 783 } 784 785 out: 786 return err; 787 } 788 789 /* Set the process memory policy */ 790 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 791 nodemask_t *nodes) 792 { 793 struct mempolicy *new, *old; 794 NODEMASK_SCRATCH(scratch); 795 int ret; 796 797 if (!scratch) 798 return -ENOMEM; 799 800 new = mpol_new(mode, flags, nodes); 801 if (IS_ERR(new)) { 802 ret = PTR_ERR(new); 803 goto out; 804 } 805 806 task_lock(current); 807 ret = mpol_set_nodemask(new, nodes, scratch); 808 if (ret) { 809 task_unlock(current); 810 mpol_put(new); 811 goto out; 812 } 813 old = current->mempolicy; 814 current->mempolicy = new; 815 if (new && new->mode == MPOL_INTERLEAVE) 816 current->il_prev = MAX_NUMNODES-1; 817 task_unlock(current); 818 mpol_put(old); 819 ret = 0; 820 out: 821 NODEMASK_SCRATCH_FREE(scratch); 822 return ret; 823 } 824 825 /* 826 * Return nodemask for policy for get_mempolicy() query 827 * 828 * Called with task's alloc_lock held 829 */ 830 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 831 { 832 nodes_clear(*nodes); 833 if (p == &default_policy) 834 return; 835 836 switch (p->mode) { 837 case MPOL_BIND: 838 /* Fall through */ 839 case MPOL_INTERLEAVE: 840 *nodes = p->v.nodes; 841 break; 842 case MPOL_PREFERRED: 843 if (!(p->flags & MPOL_F_LOCAL)) 844 node_set(p->v.preferred_node, *nodes); 845 /* else return empty node mask for local allocation */ 846 break; 847 default: 848 BUG(); 849 } 850 } 851 852 static int lookup_node(struct mm_struct *mm, unsigned long addr) 853 { 854 struct page *p; 855 int err; 856 857 int locked = 1; 858 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 859 if (err >= 0) { 860 err = page_to_nid(p); 861 put_page(p); 862 } 863 if (locked) 864 up_read(&mm->mmap_sem); 865 return err; 866 } 867 868 /* Retrieve NUMA policy */ 869 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 870 unsigned long addr, unsigned long flags) 871 { 872 int err; 873 struct mm_struct *mm = current->mm; 874 struct vm_area_struct *vma = NULL; 875 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 876 877 if (flags & 878 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 879 return -EINVAL; 880 881 if (flags & MPOL_F_MEMS_ALLOWED) { 882 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 883 return -EINVAL; 884 *policy = 0; /* just so it's initialized */ 885 task_lock(current); 886 *nmask = cpuset_current_mems_allowed; 887 task_unlock(current); 888 return 0; 889 } 890 891 if (flags & MPOL_F_ADDR) { 892 /* 893 * Do NOT fall back to task policy if the 894 * vma/shared policy at addr is NULL. We 895 * want to return MPOL_DEFAULT in this case. 896 */ 897 down_read(&mm->mmap_sem); 898 vma = find_vma_intersection(mm, addr, addr+1); 899 if (!vma) { 900 up_read(&mm->mmap_sem); 901 return -EFAULT; 902 } 903 if (vma->vm_ops && vma->vm_ops->get_policy) 904 pol = vma->vm_ops->get_policy(vma, addr); 905 else 906 pol = vma->vm_policy; 907 } else if (addr) 908 return -EINVAL; 909 910 if (!pol) 911 pol = &default_policy; /* indicates default behavior */ 912 913 if (flags & MPOL_F_NODE) { 914 if (flags & MPOL_F_ADDR) { 915 /* 916 * Take a refcount on the mpol, lookup_node() 917 * wil drop the mmap_sem, so after calling 918 * lookup_node() only "pol" remains valid, "vma" 919 * is stale. 920 */ 921 pol_refcount = pol; 922 vma = NULL; 923 mpol_get(pol); 924 err = lookup_node(mm, addr); 925 if (err < 0) 926 goto out; 927 *policy = err; 928 } else if (pol == current->mempolicy && 929 pol->mode == MPOL_INTERLEAVE) { 930 *policy = next_node_in(current->il_prev, pol->v.nodes); 931 } else { 932 err = -EINVAL; 933 goto out; 934 } 935 } else { 936 *policy = pol == &default_policy ? MPOL_DEFAULT : 937 pol->mode; 938 /* 939 * Internal mempolicy flags must be masked off before exposing 940 * the policy to userspace. 941 */ 942 *policy |= (pol->flags & MPOL_MODE_FLAGS); 943 } 944 945 err = 0; 946 if (nmask) { 947 if (mpol_store_user_nodemask(pol)) { 948 *nmask = pol->w.user_nodemask; 949 } else { 950 task_lock(current); 951 get_policy_nodemask(pol, nmask); 952 task_unlock(current); 953 } 954 } 955 956 out: 957 mpol_cond_put(pol); 958 if (vma) 959 up_read(&mm->mmap_sem); 960 if (pol_refcount) 961 mpol_put(pol_refcount); 962 return err; 963 } 964 965 #ifdef CONFIG_MIGRATION 966 /* 967 * page migration, thp tail pages can be passed. 968 */ 969 static int migrate_page_add(struct page *page, struct list_head *pagelist, 970 unsigned long flags) 971 { 972 struct page *head = compound_head(page); 973 /* 974 * Avoid migrating a page that is shared with others. 975 */ 976 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 977 if (!isolate_lru_page(head)) { 978 list_add_tail(&head->lru, pagelist); 979 mod_node_page_state(page_pgdat(head), 980 NR_ISOLATED_ANON + page_is_file_cache(head), 981 hpage_nr_pages(head)); 982 } else if (flags & MPOL_MF_STRICT) { 983 /* 984 * Non-movable page may reach here. And, there may be 985 * temporary off LRU pages or non-LRU movable pages. 986 * Treat them as unmovable pages since they can't be 987 * isolated, so they can't be moved at the moment. It 988 * should return -EIO for this case too. 989 */ 990 return -EIO; 991 } 992 } 993 994 return 0; 995 } 996 997 /* page allocation callback for NUMA node migration */ 998 struct page *alloc_new_node_page(struct page *page, unsigned long node) 999 { 1000 if (PageHuge(page)) 1001 return alloc_huge_page_node(page_hstate(compound_head(page)), 1002 node); 1003 else if (PageTransHuge(page)) { 1004 struct page *thp; 1005 1006 thp = alloc_pages_node(node, 1007 (GFP_TRANSHUGE | __GFP_THISNODE), 1008 HPAGE_PMD_ORDER); 1009 if (!thp) 1010 return NULL; 1011 prep_transhuge_page(thp); 1012 return thp; 1013 } else 1014 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1015 __GFP_THISNODE, 0); 1016 } 1017 1018 /* 1019 * Migrate pages from one node to a target node. 1020 * Returns error or the number of pages not migrated. 1021 */ 1022 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1023 int flags) 1024 { 1025 nodemask_t nmask; 1026 LIST_HEAD(pagelist); 1027 int err = 0; 1028 1029 nodes_clear(nmask); 1030 node_set(source, nmask); 1031 1032 /* 1033 * This does not "check" the range but isolates all pages that 1034 * need migration. Between passing in the full user address 1035 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1036 */ 1037 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1038 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1039 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1040 1041 if (!list_empty(&pagelist)) { 1042 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1043 MIGRATE_SYNC, MR_SYSCALL); 1044 if (err) 1045 putback_movable_pages(&pagelist); 1046 } 1047 1048 return err; 1049 } 1050 1051 /* 1052 * Move pages between the two nodesets so as to preserve the physical 1053 * layout as much as possible. 1054 * 1055 * Returns the number of page that could not be moved. 1056 */ 1057 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1058 const nodemask_t *to, int flags) 1059 { 1060 int busy = 0; 1061 int err; 1062 nodemask_t tmp; 1063 1064 err = migrate_prep(); 1065 if (err) 1066 return err; 1067 1068 down_read(&mm->mmap_sem); 1069 1070 /* 1071 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1072 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1073 * bit in 'tmp', and return that <source, dest> pair for migration. 1074 * The pair of nodemasks 'to' and 'from' define the map. 1075 * 1076 * If no pair of bits is found that way, fallback to picking some 1077 * pair of 'source' and 'dest' bits that are not the same. If the 1078 * 'source' and 'dest' bits are the same, this represents a node 1079 * that will be migrating to itself, so no pages need move. 1080 * 1081 * If no bits are left in 'tmp', or if all remaining bits left 1082 * in 'tmp' correspond to the same bit in 'to', return false 1083 * (nothing left to migrate). 1084 * 1085 * This lets us pick a pair of nodes to migrate between, such that 1086 * if possible the dest node is not already occupied by some other 1087 * source node, minimizing the risk of overloading the memory on a 1088 * node that would happen if we migrated incoming memory to a node 1089 * before migrating outgoing memory source that same node. 1090 * 1091 * A single scan of tmp is sufficient. As we go, we remember the 1092 * most recent <s, d> pair that moved (s != d). If we find a pair 1093 * that not only moved, but what's better, moved to an empty slot 1094 * (d is not set in tmp), then we break out then, with that pair. 1095 * Otherwise when we finish scanning from_tmp, we at least have the 1096 * most recent <s, d> pair that moved. If we get all the way through 1097 * the scan of tmp without finding any node that moved, much less 1098 * moved to an empty node, then there is nothing left worth migrating. 1099 */ 1100 1101 tmp = *from; 1102 while (!nodes_empty(tmp)) { 1103 int s,d; 1104 int source = NUMA_NO_NODE; 1105 int dest = 0; 1106 1107 for_each_node_mask(s, tmp) { 1108 1109 /* 1110 * do_migrate_pages() tries to maintain the relative 1111 * node relationship of the pages established between 1112 * threads and memory areas. 1113 * 1114 * However if the number of source nodes is not equal to 1115 * the number of destination nodes we can not preserve 1116 * this node relative relationship. In that case, skip 1117 * copying memory from a node that is in the destination 1118 * mask. 1119 * 1120 * Example: [2,3,4] -> [3,4,5] moves everything. 1121 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1122 */ 1123 1124 if ((nodes_weight(*from) != nodes_weight(*to)) && 1125 (node_isset(s, *to))) 1126 continue; 1127 1128 d = node_remap(s, *from, *to); 1129 if (s == d) 1130 continue; 1131 1132 source = s; /* Node moved. Memorize */ 1133 dest = d; 1134 1135 /* dest not in remaining from nodes? */ 1136 if (!node_isset(dest, tmp)) 1137 break; 1138 } 1139 if (source == NUMA_NO_NODE) 1140 break; 1141 1142 node_clear(source, tmp); 1143 err = migrate_to_node(mm, source, dest, flags); 1144 if (err > 0) 1145 busy += err; 1146 if (err < 0) 1147 break; 1148 } 1149 up_read(&mm->mmap_sem); 1150 if (err < 0) 1151 return err; 1152 return busy; 1153 1154 } 1155 1156 /* 1157 * Allocate a new page for page migration based on vma policy. 1158 * Start by assuming the page is mapped by the same vma as contains @start. 1159 * Search forward from there, if not. N.B., this assumes that the 1160 * list of pages handed to migrate_pages()--which is how we get here-- 1161 * is in virtual address order. 1162 */ 1163 static struct page *new_page(struct page *page, unsigned long start) 1164 { 1165 struct vm_area_struct *vma; 1166 unsigned long uninitialized_var(address); 1167 1168 vma = find_vma(current->mm, start); 1169 while (vma) { 1170 address = page_address_in_vma(page, vma); 1171 if (address != -EFAULT) 1172 break; 1173 vma = vma->vm_next; 1174 } 1175 1176 if (PageHuge(page)) { 1177 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1178 vma, address); 1179 } else if (PageTransHuge(page)) { 1180 struct page *thp; 1181 1182 thp = alloc_pages_vma(GFP_TRANSHUGE, HPAGE_PMD_ORDER, vma, 1183 address, numa_node_id()); 1184 if (!thp) 1185 return NULL; 1186 prep_transhuge_page(thp); 1187 return thp; 1188 } 1189 /* 1190 * if !vma, alloc_page_vma() will use task or system default policy 1191 */ 1192 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1193 vma, address); 1194 } 1195 #else 1196 1197 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1198 unsigned long flags) 1199 { 1200 return -EIO; 1201 } 1202 1203 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1204 const nodemask_t *to, int flags) 1205 { 1206 return -ENOSYS; 1207 } 1208 1209 static struct page *new_page(struct page *page, unsigned long start) 1210 { 1211 return NULL; 1212 } 1213 #endif 1214 1215 static long do_mbind(unsigned long start, unsigned long len, 1216 unsigned short mode, unsigned short mode_flags, 1217 nodemask_t *nmask, unsigned long flags) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct mempolicy *new; 1221 unsigned long end; 1222 int err; 1223 int ret; 1224 LIST_HEAD(pagelist); 1225 1226 if (flags & ~(unsigned long)MPOL_MF_VALID) 1227 return -EINVAL; 1228 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1229 return -EPERM; 1230 1231 if (start & ~PAGE_MASK) 1232 return -EINVAL; 1233 1234 if (mode == MPOL_DEFAULT) 1235 flags &= ~MPOL_MF_STRICT; 1236 1237 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1238 end = start + len; 1239 1240 if (end < start) 1241 return -EINVAL; 1242 if (end == start) 1243 return 0; 1244 1245 new = mpol_new(mode, mode_flags, nmask); 1246 if (IS_ERR(new)) 1247 return PTR_ERR(new); 1248 1249 if (flags & MPOL_MF_LAZY) 1250 new->flags |= MPOL_F_MOF; 1251 1252 /* 1253 * If we are using the default policy then operation 1254 * on discontinuous address spaces is okay after all 1255 */ 1256 if (!new) 1257 flags |= MPOL_MF_DISCONTIG_OK; 1258 1259 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1260 start, start + len, mode, mode_flags, 1261 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1262 1263 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1264 1265 err = migrate_prep(); 1266 if (err) 1267 goto mpol_out; 1268 } 1269 { 1270 NODEMASK_SCRATCH(scratch); 1271 if (scratch) { 1272 down_write(&mm->mmap_sem); 1273 task_lock(current); 1274 err = mpol_set_nodemask(new, nmask, scratch); 1275 task_unlock(current); 1276 if (err) 1277 up_write(&mm->mmap_sem); 1278 } else 1279 err = -ENOMEM; 1280 NODEMASK_SCRATCH_FREE(scratch); 1281 } 1282 if (err) 1283 goto mpol_out; 1284 1285 ret = queue_pages_range(mm, start, end, nmask, 1286 flags | MPOL_MF_INVERT, &pagelist); 1287 1288 if (ret < 0) { 1289 err = -EIO; 1290 goto up_out; 1291 } 1292 1293 err = mbind_range(mm, start, end, new); 1294 1295 if (!err) { 1296 int nr_failed = 0; 1297 1298 if (!list_empty(&pagelist)) { 1299 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1300 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1301 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1302 if (nr_failed) 1303 putback_movable_pages(&pagelist); 1304 } 1305 1306 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1307 err = -EIO; 1308 } else 1309 putback_movable_pages(&pagelist); 1310 1311 up_out: 1312 up_write(&mm->mmap_sem); 1313 mpol_out: 1314 mpol_put(new); 1315 return err; 1316 } 1317 1318 /* 1319 * User space interface with variable sized bitmaps for nodelists. 1320 */ 1321 1322 /* Copy a node mask from user space. */ 1323 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1324 unsigned long maxnode) 1325 { 1326 unsigned long k; 1327 unsigned long t; 1328 unsigned long nlongs; 1329 unsigned long endmask; 1330 1331 --maxnode; 1332 nodes_clear(*nodes); 1333 if (maxnode == 0 || !nmask) 1334 return 0; 1335 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1336 return -EINVAL; 1337 1338 nlongs = BITS_TO_LONGS(maxnode); 1339 if ((maxnode % BITS_PER_LONG) == 0) 1340 endmask = ~0UL; 1341 else 1342 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1343 1344 /* 1345 * When the user specified more nodes than supported just check 1346 * if the non supported part is all zero. 1347 * 1348 * If maxnode have more longs than MAX_NUMNODES, check 1349 * the bits in that area first. And then go through to 1350 * check the rest bits which equal or bigger than MAX_NUMNODES. 1351 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1352 */ 1353 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1354 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1355 if (get_user(t, nmask + k)) 1356 return -EFAULT; 1357 if (k == nlongs - 1) { 1358 if (t & endmask) 1359 return -EINVAL; 1360 } else if (t) 1361 return -EINVAL; 1362 } 1363 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1364 endmask = ~0UL; 1365 } 1366 1367 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1368 unsigned long valid_mask = endmask; 1369 1370 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1371 if (get_user(t, nmask + nlongs - 1)) 1372 return -EFAULT; 1373 if (t & valid_mask) 1374 return -EINVAL; 1375 } 1376 1377 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1378 return -EFAULT; 1379 nodes_addr(*nodes)[nlongs-1] &= endmask; 1380 return 0; 1381 } 1382 1383 /* Copy a kernel node mask to user space */ 1384 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1385 nodemask_t *nodes) 1386 { 1387 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1388 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1389 1390 if (copy > nbytes) { 1391 if (copy > PAGE_SIZE) 1392 return -EINVAL; 1393 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1394 return -EFAULT; 1395 copy = nbytes; 1396 } 1397 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1398 } 1399 1400 static long kernel_mbind(unsigned long start, unsigned long len, 1401 unsigned long mode, const unsigned long __user *nmask, 1402 unsigned long maxnode, unsigned int flags) 1403 { 1404 nodemask_t nodes; 1405 int err; 1406 unsigned short mode_flags; 1407 1408 mode_flags = mode & MPOL_MODE_FLAGS; 1409 mode &= ~MPOL_MODE_FLAGS; 1410 if (mode >= MPOL_MAX) 1411 return -EINVAL; 1412 if ((mode_flags & MPOL_F_STATIC_NODES) && 1413 (mode_flags & MPOL_F_RELATIVE_NODES)) 1414 return -EINVAL; 1415 err = get_nodes(&nodes, nmask, maxnode); 1416 if (err) 1417 return err; 1418 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1419 } 1420 1421 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1422 unsigned long, mode, const unsigned long __user *, nmask, 1423 unsigned long, maxnode, unsigned int, flags) 1424 { 1425 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1426 } 1427 1428 /* Set the process memory policy */ 1429 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1430 unsigned long maxnode) 1431 { 1432 int err; 1433 nodemask_t nodes; 1434 unsigned short flags; 1435 1436 flags = mode & MPOL_MODE_FLAGS; 1437 mode &= ~MPOL_MODE_FLAGS; 1438 if ((unsigned int)mode >= MPOL_MAX) 1439 return -EINVAL; 1440 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1441 return -EINVAL; 1442 err = get_nodes(&nodes, nmask, maxnode); 1443 if (err) 1444 return err; 1445 return do_set_mempolicy(mode, flags, &nodes); 1446 } 1447 1448 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1449 unsigned long, maxnode) 1450 { 1451 return kernel_set_mempolicy(mode, nmask, maxnode); 1452 } 1453 1454 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1455 const unsigned long __user *old_nodes, 1456 const unsigned long __user *new_nodes) 1457 { 1458 struct mm_struct *mm = NULL; 1459 struct task_struct *task; 1460 nodemask_t task_nodes; 1461 int err; 1462 nodemask_t *old; 1463 nodemask_t *new; 1464 NODEMASK_SCRATCH(scratch); 1465 1466 if (!scratch) 1467 return -ENOMEM; 1468 1469 old = &scratch->mask1; 1470 new = &scratch->mask2; 1471 1472 err = get_nodes(old, old_nodes, maxnode); 1473 if (err) 1474 goto out; 1475 1476 err = get_nodes(new, new_nodes, maxnode); 1477 if (err) 1478 goto out; 1479 1480 /* Find the mm_struct */ 1481 rcu_read_lock(); 1482 task = pid ? find_task_by_vpid(pid) : current; 1483 if (!task) { 1484 rcu_read_unlock(); 1485 err = -ESRCH; 1486 goto out; 1487 } 1488 get_task_struct(task); 1489 1490 err = -EINVAL; 1491 1492 /* 1493 * Check if this process has the right to modify the specified process. 1494 * Use the regular "ptrace_may_access()" checks. 1495 */ 1496 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1497 rcu_read_unlock(); 1498 err = -EPERM; 1499 goto out_put; 1500 } 1501 rcu_read_unlock(); 1502 1503 task_nodes = cpuset_mems_allowed(task); 1504 /* Is the user allowed to access the target nodes? */ 1505 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1506 err = -EPERM; 1507 goto out_put; 1508 } 1509 1510 task_nodes = cpuset_mems_allowed(current); 1511 nodes_and(*new, *new, task_nodes); 1512 if (nodes_empty(*new)) 1513 goto out_put; 1514 1515 nodes_and(*new, *new, node_states[N_MEMORY]); 1516 if (nodes_empty(*new)) 1517 goto out_put; 1518 1519 err = security_task_movememory(task); 1520 if (err) 1521 goto out_put; 1522 1523 mm = get_task_mm(task); 1524 put_task_struct(task); 1525 1526 if (!mm) { 1527 err = -EINVAL; 1528 goto out; 1529 } 1530 1531 err = do_migrate_pages(mm, old, new, 1532 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1533 1534 mmput(mm); 1535 out: 1536 NODEMASK_SCRATCH_FREE(scratch); 1537 1538 return err; 1539 1540 out_put: 1541 put_task_struct(task); 1542 goto out; 1543 1544 } 1545 1546 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1547 const unsigned long __user *, old_nodes, 1548 const unsigned long __user *, new_nodes) 1549 { 1550 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1551 } 1552 1553 1554 /* Retrieve NUMA policy */ 1555 static int kernel_get_mempolicy(int __user *policy, 1556 unsigned long __user *nmask, 1557 unsigned long maxnode, 1558 unsigned long addr, 1559 unsigned long flags) 1560 { 1561 int err; 1562 int uninitialized_var(pval); 1563 nodemask_t nodes; 1564 1565 if (nmask != NULL && maxnode < nr_node_ids) 1566 return -EINVAL; 1567 1568 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1569 1570 if (err) 1571 return err; 1572 1573 if (policy && put_user(pval, policy)) 1574 return -EFAULT; 1575 1576 if (nmask) 1577 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1578 1579 return err; 1580 } 1581 1582 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1583 unsigned long __user *, nmask, unsigned long, maxnode, 1584 unsigned long, addr, unsigned long, flags) 1585 { 1586 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1587 } 1588 1589 #ifdef CONFIG_COMPAT 1590 1591 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1592 compat_ulong_t __user *, nmask, 1593 compat_ulong_t, maxnode, 1594 compat_ulong_t, addr, compat_ulong_t, flags) 1595 { 1596 long err; 1597 unsigned long __user *nm = NULL; 1598 unsigned long nr_bits, alloc_size; 1599 DECLARE_BITMAP(bm, MAX_NUMNODES); 1600 1601 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1602 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1603 1604 if (nmask) 1605 nm = compat_alloc_user_space(alloc_size); 1606 1607 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1608 1609 if (!err && nmask) { 1610 unsigned long copy_size; 1611 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1612 err = copy_from_user(bm, nm, copy_size); 1613 /* ensure entire bitmap is zeroed */ 1614 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1615 err |= compat_put_bitmap(nmask, bm, nr_bits); 1616 } 1617 1618 return err; 1619 } 1620 1621 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1622 compat_ulong_t, maxnode) 1623 { 1624 unsigned long __user *nm = NULL; 1625 unsigned long nr_bits, alloc_size; 1626 DECLARE_BITMAP(bm, MAX_NUMNODES); 1627 1628 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1629 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1630 1631 if (nmask) { 1632 if (compat_get_bitmap(bm, nmask, nr_bits)) 1633 return -EFAULT; 1634 nm = compat_alloc_user_space(alloc_size); 1635 if (copy_to_user(nm, bm, alloc_size)) 1636 return -EFAULT; 1637 } 1638 1639 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1640 } 1641 1642 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1643 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1644 compat_ulong_t, maxnode, compat_ulong_t, flags) 1645 { 1646 unsigned long __user *nm = NULL; 1647 unsigned long nr_bits, alloc_size; 1648 nodemask_t bm; 1649 1650 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1651 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1652 1653 if (nmask) { 1654 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1655 return -EFAULT; 1656 nm = compat_alloc_user_space(alloc_size); 1657 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1658 return -EFAULT; 1659 } 1660 1661 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1662 } 1663 1664 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1665 compat_ulong_t, maxnode, 1666 const compat_ulong_t __user *, old_nodes, 1667 const compat_ulong_t __user *, new_nodes) 1668 { 1669 unsigned long __user *old = NULL; 1670 unsigned long __user *new = NULL; 1671 nodemask_t tmp_mask; 1672 unsigned long nr_bits; 1673 unsigned long size; 1674 1675 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1676 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1677 if (old_nodes) { 1678 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1679 return -EFAULT; 1680 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1681 if (new_nodes) 1682 new = old + size / sizeof(unsigned long); 1683 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1684 return -EFAULT; 1685 } 1686 if (new_nodes) { 1687 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1688 return -EFAULT; 1689 if (new == NULL) 1690 new = compat_alloc_user_space(size); 1691 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1692 return -EFAULT; 1693 } 1694 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1695 } 1696 1697 #endif /* CONFIG_COMPAT */ 1698 1699 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1700 unsigned long addr) 1701 { 1702 struct mempolicy *pol = NULL; 1703 1704 if (vma) { 1705 if (vma->vm_ops && vma->vm_ops->get_policy) { 1706 pol = vma->vm_ops->get_policy(vma, addr); 1707 } else if (vma->vm_policy) { 1708 pol = vma->vm_policy; 1709 1710 /* 1711 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1712 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1713 * count on these policies which will be dropped by 1714 * mpol_cond_put() later 1715 */ 1716 if (mpol_needs_cond_ref(pol)) 1717 mpol_get(pol); 1718 } 1719 } 1720 1721 return pol; 1722 } 1723 1724 /* 1725 * get_vma_policy(@vma, @addr) 1726 * @vma: virtual memory area whose policy is sought 1727 * @addr: address in @vma for shared policy lookup 1728 * 1729 * Returns effective policy for a VMA at specified address. 1730 * Falls back to current->mempolicy or system default policy, as necessary. 1731 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1732 * count--added by the get_policy() vm_op, as appropriate--to protect against 1733 * freeing by another task. It is the caller's responsibility to free the 1734 * extra reference for shared policies. 1735 */ 1736 struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1737 unsigned long addr) 1738 { 1739 struct mempolicy *pol = __get_vma_policy(vma, addr); 1740 1741 if (!pol) 1742 pol = get_task_policy(current); 1743 1744 return pol; 1745 } 1746 1747 bool vma_policy_mof(struct vm_area_struct *vma) 1748 { 1749 struct mempolicy *pol; 1750 1751 if (vma->vm_ops && vma->vm_ops->get_policy) { 1752 bool ret = false; 1753 1754 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1755 if (pol && (pol->flags & MPOL_F_MOF)) 1756 ret = true; 1757 mpol_cond_put(pol); 1758 1759 return ret; 1760 } 1761 1762 pol = vma->vm_policy; 1763 if (!pol) 1764 pol = get_task_policy(current); 1765 1766 return pol->flags & MPOL_F_MOF; 1767 } 1768 1769 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1770 { 1771 enum zone_type dynamic_policy_zone = policy_zone; 1772 1773 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1774 1775 /* 1776 * if policy->v.nodes has movable memory only, 1777 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1778 * 1779 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1780 * so if the following test faile, it implies 1781 * policy->v.nodes has movable memory only. 1782 */ 1783 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1784 dynamic_policy_zone = ZONE_MOVABLE; 1785 1786 return zone >= dynamic_policy_zone; 1787 } 1788 1789 /* 1790 * Return a nodemask representing a mempolicy for filtering nodes for 1791 * page allocation 1792 */ 1793 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1794 { 1795 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1796 if (unlikely(policy->mode == MPOL_BIND) && 1797 apply_policy_zone(policy, gfp_zone(gfp)) && 1798 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1799 return &policy->v.nodes; 1800 1801 return NULL; 1802 } 1803 1804 /* Return the node id preferred by the given mempolicy, or the given id */ 1805 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1806 int nd) 1807 { 1808 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1809 nd = policy->v.preferred_node; 1810 else { 1811 /* 1812 * __GFP_THISNODE shouldn't even be used with the bind policy 1813 * because we might easily break the expectation to stay on the 1814 * requested node and not break the policy. 1815 */ 1816 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1817 } 1818 1819 return nd; 1820 } 1821 1822 /* Do dynamic interleaving for a process */ 1823 static unsigned interleave_nodes(struct mempolicy *policy) 1824 { 1825 unsigned next; 1826 struct task_struct *me = current; 1827 1828 next = next_node_in(me->il_prev, policy->v.nodes); 1829 if (next < MAX_NUMNODES) 1830 me->il_prev = next; 1831 return next; 1832 } 1833 1834 /* 1835 * Depending on the memory policy provide a node from which to allocate the 1836 * next slab entry. 1837 */ 1838 unsigned int mempolicy_slab_node(void) 1839 { 1840 struct mempolicy *policy; 1841 int node = numa_mem_id(); 1842 1843 if (in_interrupt()) 1844 return node; 1845 1846 policy = current->mempolicy; 1847 if (!policy || policy->flags & MPOL_F_LOCAL) 1848 return node; 1849 1850 switch (policy->mode) { 1851 case MPOL_PREFERRED: 1852 /* 1853 * handled MPOL_F_LOCAL above 1854 */ 1855 return policy->v.preferred_node; 1856 1857 case MPOL_INTERLEAVE: 1858 return interleave_nodes(policy); 1859 1860 case MPOL_BIND: { 1861 struct zoneref *z; 1862 1863 /* 1864 * Follow bind policy behavior and start allocation at the 1865 * first node. 1866 */ 1867 struct zonelist *zonelist; 1868 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1869 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1870 z = first_zones_zonelist(zonelist, highest_zoneidx, 1871 &policy->v.nodes); 1872 return z->zone ? zone_to_nid(z->zone) : node; 1873 } 1874 1875 default: 1876 BUG(); 1877 } 1878 } 1879 1880 /* 1881 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1882 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1883 * number of present nodes. 1884 */ 1885 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1886 { 1887 unsigned nnodes = nodes_weight(pol->v.nodes); 1888 unsigned target; 1889 int i; 1890 int nid; 1891 1892 if (!nnodes) 1893 return numa_node_id(); 1894 target = (unsigned int)n % nnodes; 1895 nid = first_node(pol->v.nodes); 1896 for (i = 0; i < target; i++) 1897 nid = next_node(nid, pol->v.nodes); 1898 return nid; 1899 } 1900 1901 /* Determine a node number for interleave */ 1902 static inline unsigned interleave_nid(struct mempolicy *pol, 1903 struct vm_area_struct *vma, unsigned long addr, int shift) 1904 { 1905 if (vma) { 1906 unsigned long off; 1907 1908 /* 1909 * for small pages, there is no difference between 1910 * shift and PAGE_SHIFT, so the bit-shift is safe. 1911 * for huge pages, since vm_pgoff is in units of small 1912 * pages, we need to shift off the always 0 bits to get 1913 * a useful offset. 1914 */ 1915 BUG_ON(shift < PAGE_SHIFT); 1916 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1917 off += (addr - vma->vm_start) >> shift; 1918 return offset_il_node(pol, off); 1919 } else 1920 return interleave_nodes(pol); 1921 } 1922 1923 #ifdef CONFIG_HUGETLBFS 1924 /* 1925 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1926 * @vma: virtual memory area whose policy is sought 1927 * @addr: address in @vma for shared policy lookup and interleave policy 1928 * @gfp_flags: for requested zone 1929 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1930 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1931 * 1932 * Returns a nid suitable for a huge page allocation and a pointer 1933 * to the struct mempolicy for conditional unref after allocation. 1934 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1935 * @nodemask for filtering the zonelist. 1936 * 1937 * Must be protected by read_mems_allowed_begin() 1938 */ 1939 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1940 struct mempolicy **mpol, nodemask_t **nodemask) 1941 { 1942 int nid; 1943 1944 *mpol = get_vma_policy(vma, addr); 1945 *nodemask = NULL; /* assume !MPOL_BIND */ 1946 1947 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1948 nid = interleave_nid(*mpol, vma, addr, 1949 huge_page_shift(hstate_vma(vma))); 1950 } else { 1951 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1952 if ((*mpol)->mode == MPOL_BIND) 1953 *nodemask = &(*mpol)->v.nodes; 1954 } 1955 return nid; 1956 } 1957 1958 /* 1959 * init_nodemask_of_mempolicy 1960 * 1961 * If the current task's mempolicy is "default" [NULL], return 'false' 1962 * to indicate default policy. Otherwise, extract the policy nodemask 1963 * for 'bind' or 'interleave' policy into the argument nodemask, or 1964 * initialize the argument nodemask to contain the single node for 1965 * 'preferred' or 'local' policy and return 'true' to indicate presence 1966 * of non-default mempolicy. 1967 * 1968 * We don't bother with reference counting the mempolicy [mpol_get/put] 1969 * because the current task is examining it's own mempolicy and a task's 1970 * mempolicy is only ever changed by the task itself. 1971 * 1972 * N.B., it is the caller's responsibility to free a returned nodemask. 1973 */ 1974 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1975 { 1976 struct mempolicy *mempolicy; 1977 int nid; 1978 1979 if (!(mask && current->mempolicy)) 1980 return false; 1981 1982 task_lock(current); 1983 mempolicy = current->mempolicy; 1984 switch (mempolicy->mode) { 1985 case MPOL_PREFERRED: 1986 if (mempolicy->flags & MPOL_F_LOCAL) 1987 nid = numa_node_id(); 1988 else 1989 nid = mempolicy->v.preferred_node; 1990 init_nodemask_of_node(mask, nid); 1991 break; 1992 1993 case MPOL_BIND: 1994 /* Fall through */ 1995 case MPOL_INTERLEAVE: 1996 *mask = mempolicy->v.nodes; 1997 break; 1998 1999 default: 2000 BUG(); 2001 } 2002 task_unlock(current); 2003 2004 return true; 2005 } 2006 #endif 2007 2008 /* 2009 * mempolicy_nodemask_intersects 2010 * 2011 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2012 * policy. Otherwise, check for intersection between mask and the policy 2013 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2014 * policy, always return true since it may allocate elsewhere on fallback. 2015 * 2016 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2017 */ 2018 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2019 const nodemask_t *mask) 2020 { 2021 struct mempolicy *mempolicy; 2022 bool ret = true; 2023 2024 if (!mask) 2025 return ret; 2026 task_lock(tsk); 2027 mempolicy = tsk->mempolicy; 2028 if (!mempolicy) 2029 goto out; 2030 2031 switch (mempolicy->mode) { 2032 case MPOL_PREFERRED: 2033 /* 2034 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2035 * allocate from, they may fallback to other nodes when oom. 2036 * Thus, it's possible for tsk to have allocated memory from 2037 * nodes in mask. 2038 */ 2039 break; 2040 case MPOL_BIND: 2041 case MPOL_INTERLEAVE: 2042 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2043 break; 2044 default: 2045 BUG(); 2046 } 2047 out: 2048 task_unlock(tsk); 2049 return ret; 2050 } 2051 2052 /* Allocate a page in interleaved policy. 2053 Own path because it needs to do special accounting. */ 2054 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2055 unsigned nid) 2056 { 2057 struct page *page; 2058 2059 page = __alloc_pages(gfp, order, nid); 2060 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2061 if (!static_branch_likely(&vm_numa_stat_key)) 2062 return page; 2063 if (page && page_to_nid(page) == nid) { 2064 preempt_disable(); 2065 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2066 preempt_enable(); 2067 } 2068 return page; 2069 } 2070 2071 /** 2072 * alloc_pages_vma - Allocate a page for a VMA. 2073 * 2074 * @gfp: 2075 * %GFP_USER user allocation. 2076 * %GFP_KERNEL kernel allocations, 2077 * %GFP_HIGHMEM highmem/user allocations, 2078 * %GFP_FS allocation should not call back into a file system. 2079 * %GFP_ATOMIC don't sleep. 2080 * 2081 * @order:Order of the GFP allocation. 2082 * @vma: Pointer to VMA or NULL if not available. 2083 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2084 * @node: Which node to prefer for allocation (modulo policy). 2085 * 2086 * This function allocates a page from the kernel page pool and applies 2087 * a NUMA policy associated with the VMA or the current process. 2088 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2089 * mm_struct of the VMA to prevent it from going away. Should be used for 2090 * all allocations for pages that will be mapped into user space. Returns 2091 * NULL when no page can be allocated. 2092 */ 2093 struct page * 2094 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2095 unsigned long addr, int node) 2096 { 2097 struct mempolicy *pol; 2098 struct page *page; 2099 int preferred_nid; 2100 nodemask_t *nmask; 2101 2102 pol = get_vma_policy(vma, addr); 2103 2104 if (pol->mode == MPOL_INTERLEAVE) { 2105 unsigned nid; 2106 2107 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2108 mpol_cond_put(pol); 2109 page = alloc_page_interleave(gfp, order, nid); 2110 goto out; 2111 } 2112 2113 nmask = policy_nodemask(gfp, pol); 2114 preferred_nid = policy_node(gfp, pol, node); 2115 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2116 mpol_cond_put(pol); 2117 out: 2118 return page; 2119 } 2120 EXPORT_SYMBOL(alloc_pages_vma); 2121 2122 /** 2123 * alloc_pages_current - Allocate pages. 2124 * 2125 * @gfp: 2126 * %GFP_USER user allocation, 2127 * %GFP_KERNEL kernel allocation, 2128 * %GFP_HIGHMEM highmem allocation, 2129 * %GFP_FS don't call back into a file system. 2130 * %GFP_ATOMIC don't sleep. 2131 * @order: Power of two of allocation size in pages. 0 is a single page. 2132 * 2133 * Allocate a page from the kernel page pool. When not in 2134 * interrupt context and apply the current process NUMA policy. 2135 * Returns NULL when no page can be allocated. 2136 */ 2137 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2138 { 2139 struct mempolicy *pol = &default_policy; 2140 struct page *page; 2141 2142 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2143 pol = get_task_policy(current); 2144 2145 /* 2146 * No reference counting needed for current->mempolicy 2147 * nor system default_policy 2148 */ 2149 if (pol->mode == MPOL_INTERLEAVE) 2150 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2151 else 2152 page = __alloc_pages_nodemask(gfp, order, 2153 policy_node(gfp, pol, numa_node_id()), 2154 policy_nodemask(gfp, pol)); 2155 2156 return page; 2157 } 2158 EXPORT_SYMBOL(alloc_pages_current); 2159 2160 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2161 { 2162 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2163 2164 if (IS_ERR(pol)) 2165 return PTR_ERR(pol); 2166 dst->vm_policy = pol; 2167 return 0; 2168 } 2169 2170 /* 2171 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2172 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2173 * with the mems_allowed returned by cpuset_mems_allowed(). This 2174 * keeps mempolicies cpuset relative after its cpuset moves. See 2175 * further kernel/cpuset.c update_nodemask(). 2176 * 2177 * current's mempolicy may be rebinded by the other task(the task that changes 2178 * cpuset's mems), so we needn't do rebind work for current task. 2179 */ 2180 2181 /* Slow path of a mempolicy duplicate */ 2182 struct mempolicy *__mpol_dup(struct mempolicy *old) 2183 { 2184 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2185 2186 if (!new) 2187 return ERR_PTR(-ENOMEM); 2188 2189 /* task's mempolicy is protected by alloc_lock */ 2190 if (old == current->mempolicy) { 2191 task_lock(current); 2192 *new = *old; 2193 task_unlock(current); 2194 } else 2195 *new = *old; 2196 2197 if (current_cpuset_is_being_rebound()) { 2198 nodemask_t mems = cpuset_mems_allowed(current); 2199 mpol_rebind_policy(new, &mems); 2200 } 2201 atomic_set(&new->refcnt, 1); 2202 return new; 2203 } 2204 2205 /* Slow path of a mempolicy comparison */ 2206 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2207 { 2208 if (!a || !b) 2209 return false; 2210 if (a->mode != b->mode) 2211 return false; 2212 if (a->flags != b->flags) 2213 return false; 2214 if (mpol_store_user_nodemask(a)) 2215 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2216 return false; 2217 2218 switch (a->mode) { 2219 case MPOL_BIND: 2220 /* Fall through */ 2221 case MPOL_INTERLEAVE: 2222 return !!nodes_equal(a->v.nodes, b->v.nodes); 2223 case MPOL_PREFERRED: 2224 /* a's ->flags is the same as b's */ 2225 if (a->flags & MPOL_F_LOCAL) 2226 return true; 2227 return a->v.preferred_node == b->v.preferred_node; 2228 default: 2229 BUG(); 2230 return false; 2231 } 2232 } 2233 2234 /* 2235 * Shared memory backing store policy support. 2236 * 2237 * Remember policies even when nobody has shared memory mapped. 2238 * The policies are kept in Red-Black tree linked from the inode. 2239 * They are protected by the sp->lock rwlock, which should be held 2240 * for any accesses to the tree. 2241 */ 2242 2243 /* 2244 * lookup first element intersecting start-end. Caller holds sp->lock for 2245 * reading or for writing 2246 */ 2247 static struct sp_node * 2248 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2249 { 2250 struct rb_node *n = sp->root.rb_node; 2251 2252 while (n) { 2253 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2254 2255 if (start >= p->end) 2256 n = n->rb_right; 2257 else if (end <= p->start) 2258 n = n->rb_left; 2259 else 2260 break; 2261 } 2262 if (!n) 2263 return NULL; 2264 for (;;) { 2265 struct sp_node *w = NULL; 2266 struct rb_node *prev = rb_prev(n); 2267 if (!prev) 2268 break; 2269 w = rb_entry(prev, struct sp_node, nd); 2270 if (w->end <= start) 2271 break; 2272 n = prev; 2273 } 2274 return rb_entry(n, struct sp_node, nd); 2275 } 2276 2277 /* 2278 * Insert a new shared policy into the list. Caller holds sp->lock for 2279 * writing. 2280 */ 2281 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2282 { 2283 struct rb_node **p = &sp->root.rb_node; 2284 struct rb_node *parent = NULL; 2285 struct sp_node *nd; 2286 2287 while (*p) { 2288 parent = *p; 2289 nd = rb_entry(parent, struct sp_node, nd); 2290 if (new->start < nd->start) 2291 p = &(*p)->rb_left; 2292 else if (new->end > nd->end) 2293 p = &(*p)->rb_right; 2294 else 2295 BUG(); 2296 } 2297 rb_link_node(&new->nd, parent, p); 2298 rb_insert_color(&new->nd, &sp->root); 2299 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2300 new->policy ? new->policy->mode : 0); 2301 } 2302 2303 /* Find shared policy intersecting idx */ 2304 struct mempolicy * 2305 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2306 { 2307 struct mempolicy *pol = NULL; 2308 struct sp_node *sn; 2309 2310 if (!sp->root.rb_node) 2311 return NULL; 2312 read_lock(&sp->lock); 2313 sn = sp_lookup(sp, idx, idx+1); 2314 if (sn) { 2315 mpol_get(sn->policy); 2316 pol = sn->policy; 2317 } 2318 read_unlock(&sp->lock); 2319 return pol; 2320 } 2321 2322 static void sp_free(struct sp_node *n) 2323 { 2324 mpol_put(n->policy); 2325 kmem_cache_free(sn_cache, n); 2326 } 2327 2328 /** 2329 * mpol_misplaced - check whether current page node is valid in policy 2330 * 2331 * @page: page to be checked 2332 * @vma: vm area where page mapped 2333 * @addr: virtual address where page mapped 2334 * 2335 * Lookup current policy node id for vma,addr and "compare to" page's 2336 * node id. 2337 * 2338 * Returns: 2339 * -1 - not misplaced, page is in the right node 2340 * node - node id where the page should be 2341 * 2342 * Policy determination "mimics" alloc_page_vma(). 2343 * Called from fault path where we know the vma and faulting address. 2344 */ 2345 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2346 { 2347 struct mempolicy *pol; 2348 struct zoneref *z; 2349 int curnid = page_to_nid(page); 2350 unsigned long pgoff; 2351 int thiscpu = raw_smp_processor_id(); 2352 int thisnid = cpu_to_node(thiscpu); 2353 int polnid = NUMA_NO_NODE; 2354 int ret = -1; 2355 2356 pol = get_vma_policy(vma, addr); 2357 if (!(pol->flags & MPOL_F_MOF)) 2358 goto out; 2359 2360 switch (pol->mode) { 2361 case MPOL_INTERLEAVE: 2362 pgoff = vma->vm_pgoff; 2363 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2364 polnid = offset_il_node(pol, pgoff); 2365 break; 2366 2367 case MPOL_PREFERRED: 2368 if (pol->flags & MPOL_F_LOCAL) 2369 polnid = numa_node_id(); 2370 else 2371 polnid = pol->v.preferred_node; 2372 break; 2373 2374 case MPOL_BIND: 2375 2376 /* 2377 * allows binding to multiple nodes. 2378 * use current page if in policy nodemask, 2379 * else select nearest allowed node, if any. 2380 * If no allowed nodes, use current [!misplaced]. 2381 */ 2382 if (node_isset(curnid, pol->v.nodes)) 2383 goto out; 2384 z = first_zones_zonelist( 2385 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2386 gfp_zone(GFP_HIGHUSER), 2387 &pol->v.nodes); 2388 polnid = zone_to_nid(z->zone); 2389 break; 2390 2391 default: 2392 BUG(); 2393 } 2394 2395 /* Migrate the page towards the node whose CPU is referencing it */ 2396 if (pol->flags & MPOL_F_MORON) { 2397 polnid = thisnid; 2398 2399 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2400 goto out; 2401 } 2402 2403 if (curnid != polnid) 2404 ret = polnid; 2405 out: 2406 mpol_cond_put(pol); 2407 2408 return ret; 2409 } 2410 2411 /* 2412 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2413 * dropped after task->mempolicy is set to NULL so that any allocation done as 2414 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2415 * policy. 2416 */ 2417 void mpol_put_task_policy(struct task_struct *task) 2418 { 2419 struct mempolicy *pol; 2420 2421 task_lock(task); 2422 pol = task->mempolicy; 2423 task->mempolicy = NULL; 2424 task_unlock(task); 2425 mpol_put(pol); 2426 } 2427 2428 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2429 { 2430 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2431 rb_erase(&n->nd, &sp->root); 2432 sp_free(n); 2433 } 2434 2435 static void sp_node_init(struct sp_node *node, unsigned long start, 2436 unsigned long end, struct mempolicy *pol) 2437 { 2438 node->start = start; 2439 node->end = end; 2440 node->policy = pol; 2441 } 2442 2443 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2444 struct mempolicy *pol) 2445 { 2446 struct sp_node *n; 2447 struct mempolicy *newpol; 2448 2449 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2450 if (!n) 2451 return NULL; 2452 2453 newpol = mpol_dup(pol); 2454 if (IS_ERR(newpol)) { 2455 kmem_cache_free(sn_cache, n); 2456 return NULL; 2457 } 2458 newpol->flags |= MPOL_F_SHARED; 2459 sp_node_init(n, start, end, newpol); 2460 2461 return n; 2462 } 2463 2464 /* Replace a policy range. */ 2465 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2466 unsigned long end, struct sp_node *new) 2467 { 2468 struct sp_node *n; 2469 struct sp_node *n_new = NULL; 2470 struct mempolicy *mpol_new = NULL; 2471 int ret = 0; 2472 2473 restart: 2474 write_lock(&sp->lock); 2475 n = sp_lookup(sp, start, end); 2476 /* Take care of old policies in the same range. */ 2477 while (n && n->start < end) { 2478 struct rb_node *next = rb_next(&n->nd); 2479 if (n->start >= start) { 2480 if (n->end <= end) 2481 sp_delete(sp, n); 2482 else 2483 n->start = end; 2484 } else { 2485 /* Old policy spanning whole new range. */ 2486 if (n->end > end) { 2487 if (!n_new) 2488 goto alloc_new; 2489 2490 *mpol_new = *n->policy; 2491 atomic_set(&mpol_new->refcnt, 1); 2492 sp_node_init(n_new, end, n->end, mpol_new); 2493 n->end = start; 2494 sp_insert(sp, n_new); 2495 n_new = NULL; 2496 mpol_new = NULL; 2497 break; 2498 } else 2499 n->end = start; 2500 } 2501 if (!next) 2502 break; 2503 n = rb_entry(next, struct sp_node, nd); 2504 } 2505 if (new) 2506 sp_insert(sp, new); 2507 write_unlock(&sp->lock); 2508 ret = 0; 2509 2510 err_out: 2511 if (mpol_new) 2512 mpol_put(mpol_new); 2513 if (n_new) 2514 kmem_cache_free(sn_cache, n_new); 2515 2516 return ret; 2517 2518 alloc_new: 2519 write_unlock(&sp->lock); 2520 ret = -ENOMEM; 2521 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2522 if (!n_new) 2523 goto err_out; 2524 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2525 if (!mpol_new) 2526 goto err_out; 2527 goto restart; 2528 } 2529 2530 /** 2531 * mpol_shared_policy_init - initialize shared policy for inode 2532 * @sp: pointer to inode shared policy 2533 * @mpol: struct mempolicy to install 2534 * 2535 * Install non-NULL @mpol in inode's shared policy rb-tree. 2536 * On entry, the current task has a reference on a non-NULL @mpol. 2537 * This must be released on exit. 2538 * This is called at get_inode() calls and we can use GFP_KERNEL. 2539 */ 2540 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2541 { 2542 int ret; 2543 2544 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2545 rwlock_init(&sp->lock); 2546 2547 if (mpol) { 2548 struct vm_area_struct pvma; 2549 struct mempolicy *new; 2550 NODEMASK_SCRATCH(scratch); 2551 2552 if (!scratch) 2553 goto put_mpol; 2554 /* contextualize the tmpfs mount point mempolicy */ 2555 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2556 if (IS_ERR(new)) 2557 goto free_scratch; /* no valid nodemask intersection */ 2558 2559 task_lock(current); 2560 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2561 task_unlock(current); 2562 if (ret) 2563 goto put_new; 2564 2565 /* Create pseudo-vma that contains just the policy */ 2566 vma_init(&pvma, NULL); 2567 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2568 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2569 2570 put_new: 2571 mpol_put(new); /* drop initial ref */ 2572 free_scratch: 2573 NODEMASK_SCRATCH_FREE(scratch); 2574 put_mpol: 2575 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2576 } 2577 } 2578 2579 int mpol_set_shared_policy(struct shared_policy *info, 2580 struct vm_area_struct *vma, struct mempolicy *npol) 2581 { 2582 int err; 2583 struct sp_node *new = NULL; 2584 unsigned long sz = vma_pages(vma); 2585 2586 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2587 vma->vm_pgoff, 2588 sz, npol ? npol->mode : -1, 2589 npol ? npol->flags : -1, 2590 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2591 2592 if (npol) { 2593 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2594 if (!new) 2595 return -ENOMEM; 2596 } 2597 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2598 if (err && new) 2599 sp_free(new); 2600 return err; 2601 } 2602 2603 /* Free a backing policy store on inode delete. */ 2604 void mpol_free_shared_policy(struct shared_policy *p) 2605 { 2606 struct sp_node *n; 2607 struct rb_node *next; 2608 2609 if (!p->root.rb_node) 2610 return; 2611 write_lock(&p->lock); 2612 next = rb_first(&p->root); 2613 while (next) { 2614 n = rb_entry(next, struct sp_node, nd); 2615 next = rb_next(&n->nd); 2616 sp_delete(p, n); 2617 } 2618 write_unlock(&p->lock); 2619 } 2620 2621 #ifdef CONFIG_NUMA_BALANCING 2622 static int __initdata numabalancing_override; 2623 2624 static void __init check_numabalancing_enable(void) 2625 { 2626 bool numabalancing_default = false; 2627 2628 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2629 numabalancing_default = true; 2630 2631 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2632 if (numabalancing_override) 2633 set_numabalancing_state(numabalancing_override == 1); 2634 2635 if (num_online_nodes() > 1 && !numabalancing_override) { 2636 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2637 numabalancing_default ? "Enabling" : "Disabling"); 2638 set_numabalancing_state(numabalancing_default); 2639 } 2640 } 2641 2642 static int __init setup_numabalancing(char *str) 2643 { 2644 int ret = 0; 2645 if (!str) 2646 goto out; 2647 2648 if (!strcmp(str, "enable")) { 2649 numabalancing_override = 1; 2650 ret = 1; 2651 } else if (!strcmp(str, "disable")) { 2652 numabalancing_override = -1; 2653 ret = 1; 2654 } 2655 out: 2656 if (!ret) 2657 pr_warn("Unable to parse numa_balancing=\n"); 2658 2659 return ret; 2660 } 2661 __setup("numa_balancing=", setup_numabalancing); 2662 #else 2663 static inline void __init check_numabalancing_enable(void) 2664 { 2665 } 2666 #endif /* CONFIG_NUMA_BALANCING */ 2667 2668 /* assumes fs == KERNEL_DS */ 2669 void __init numa_policy_init(void) 2670 { 2671 nodemask_t interleave_nodes; 2672 unsigned long largest = 0; 2673 int nid, prefer = 0; 2674 2675 policy_cache = kmem_cache_create("numa_policy", 2676 sizeof(struct mempolicy), 2677 0, SLAB_PANIC, NULL); 2678 2679 sn_cache = kmem_cache_create("shared_policy_node", 2680 sizeof(struct sp_node), 2681 0, SLAB_PANIC, NULL); 2682 2683 for_each_node(nid) { 2684 preferred_node_policy[nid] = (struct mempolicy) { 2685 .refcnt = ATOMIC_INIT(1), 2686 .mode = MPOL_PREFERRED, 2687 .flags = MPOL_F_MOF | MPOL_F_MORON, 2688 .v = { .preferred_node = nid, }, 2689 }; 2690 } 2691 2692 /* 2693 * Set interleaving policy for system init. Interleaving is only 2694 * enabled across suitably sized nodes (default is >= 16MB), or 2695 * fall back to the largest node if they're all smaller. 2696 */ 2697 nodes_clear(interleave_nodes); 2698 for_each_node_state(nid, N_MEMORY) { 2699 unsigned long total_pages = node_present_pages(nid); 2700 2701 /* Preserve the largest node */ 2702 if (largest < total_pages) { 2703 largest = total_pages; 2704 prefer = nid; 2705 } 2706 2707 /* Interleave this node? */ 2708 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2709 node_set(nid, interleave_nodes); 2710 } 2711 2712 /* All too small, use the largest */ 2713 if (unlikely(nodes_empty(interleave_nodes))) 2714 node_set(prefer, interleave_nodes); 2715 2716 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2717 pr_err("%s: interleaving failed\n", __func__); 2718 2719 check_numabalancing_enable(); 2720 } 2721 2722 /* Reset policy of current process to default */ 2723 void numa_default_policy(void) 2724 { 2725 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2726 } 2727 2728 /* 2729 * Parse and format mempolicy from/to strings 2730 */ 2731 2732 /* 2733 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2734 */ 2735 static const char * const policy_modes[] = 2736 { 2737 [MPOL_DEFAULT] = "default", 2738 [MPOL_PREFERRED] = "prefer", 2739 [MPOL_BIND] = "bind", 2740 [MPOL_INTERLEAVE] = "interleave", 2741 [MPOL_LOCAL] = "local", 2742 }; 2743 2744 2745 #ifdef CONFIG_TMPFS 2746 /** 2747 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2748 * @str: string containing mempolicy to parse 2749 * @mpol: pointer to struct mempolicy pointer, returned on success. 2750 * 2751 * Format of input: 2752 * <mode>[=<flags>][:<nodelist>] 2753 * 2754 * On success, returns 0, else 1 2755 */ 2756 int mpol_parse_str(char *str, struct mempolicy **mpol) 2757 { 2758 struct mempolicy *new = NULL; 2759 unsigned short mode_flags; 2760 nodemask_t nodes; 2761 char *nodelist = strchr(str, ':'); 2762 char *flags = strchr(str, '='); 2763 int err = 1, mode; 2764 2765 if (nodelist) { 2766 /* NUL-terminate mode or flags string */ 2767 *nodelist++ = '\0'; 2768 if (nodelist_parse(nodelist, nodes)) 2769 goto out; 2770 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2771 goto out; 2772 } else 2773 nodes_clear(nodes); 2774 2775 if (flags) 2776 *flags++ = '\0'; /* terminate mode string */ 2777 2778 mode = match_string(policy_modes, MPOL_MAX, str); 2779 if (mode < 0) 2780 goto out; 2781 2782 switch (mode) { 2783 case MPOL_PREFERRED: 2784 /* 2785 * Insist on a nodelist of one node only 2786 */ 2787 if (nodelist) { 2788 char *rest = nodelist; 2789 while (isdigit(*rest)) 2790 rest++; 2791 if (*rest) 2792 goto out; 2793 } 2794 break; 2795 case MPOL_INTERLEAVE: 2796 /* 2797 * Default to online nodes with memory if no nodelist 2798 */ 2799 if (!nodelist) 2800 nodes = node_states[N_MEMORY]; 2801 break; 2802 case MPOL_LOCAL: 2803 /* 2804 * Don't allow a nodelist; mpol_new() checks flags 2805 */ 2806 if (nodelist) 2807 goto out; 2808 mode = MPOL_PREFERRED; 2809 break; 2810 case MPOL_DEFAULT: 2811 /* 2812 * Insist on a empty nodelist 2813 */ 2814 if (!nodelist) 2815 err = 0; 2816 goto out; 2817 case MPOL_BIND: 2818 /* 2819 * Insist on a nodelist 2820 */ 2821 if (!nodelist) 2822 goto out; 2823 } 2824 2825 mode_flags = 0; 2826 if (flags) { 2827 /* 2828 * Currently, we only support two mutually exclusive 2829 * mode flags. 2830 */ 2831 if (!strcmp(flags, "static")) 2832 mode_flags |= MPOL_F_STATIC_NODES; 2833 else if (!strcmp(flags, "relative")) 2834 mode_flags |= MPOL_F_RELATIVE_NODES; 2835 else 2836 goto out; 2837 } 2838 2839 new = mpol_new(mode, mode_flags, &nodes); 2840 if (IS_ERR(new)) 2841 goto out; 2842 2843 /* 2844 * Save nodes for mpol_to_str() to show the tmpfs mount options 2845 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2846 */ 2847 if (mode != MPOL_PREFERRED) 2848 new->v.nodes = nodes; 2849 else if (nodelist) 2850 new->v.preferred_node = first_node(nodes); 2851 else 2852 new->flags |= MPOL_F_LOCAL; 2853 2854 /* 2855 * Save nodes for contextualization: this will be used to "clone" 2856 * the mempolicy in a specific context [cpuset] at a later time. 2857 */ 2858 new->w.user_nodemask = nodes; 2859 2860 err = 0; 2861 2862 out: 2863 /* Restore string for error message */ 2864 if (nodelist) 2865 *--nodelist = ':'; 2866 if (flags) 2867 *--flags = '='; 2868 if (!err) 2869 *mpol = new; 2870 return err; 2871 } 2872 #endif /* CONFIG_TMPFS */ 2873 2874 /** 2875 * mpol_to_str - format a mempolicy structure for printing 2876 * @buffer: to contain formatted mempolicy string 2877 * @maxlen: length of @buffer 2878 * @pol: pointer to mempolicy to be formatted 2879 * 2880 * Convert @pol into a string. If @buffer is too short, truncate the string. 2881 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2882 * longest flag, "relative", and to display at least a few node ids. 2883 */ 2884 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2885 { 2886 char *p = buffer; 2887 nodemask_t nodes = NODE_MASK_NONE; 2888 unsigned short mode = MPOL_DEFAULT; 2889 unsigned short flags = 0; 2890 2891 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2892 mode = pol->mode; 2893 flags = pol->flags; 2894 } 2895 2896 switch (mode) { 2897 case MPOL_DEFAULT: 2898 break; 2899 case MPOL_PREFERRED: 2900 if (flags & MPOL_F_LOCAL) 2901 mode = MPOL_LOCAL; 2902 else 2903 node_set(pol->v.preferred_node, nodes); 2904 break; 2905 case MPOL_BIND: 2906 case MPOL_INTERLEAVE: 2907 nodes = pol->v.nodes; 2908 break; 2909 default: 2910 WARN_ON_ONCE(1); 2911 snprintf(p, maxlen, "unknown"); 2912 return; 2913 } 2914 2915 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2916 2917 if (flags & MPOL_MODE_FLAGS) { 2918 p += snprintf(p, buffer + maxlen - p, "="); 2919 2920 /* 2921 * Currently, the only defined flags are mutually exclusive 2922 */ 2923 if (flags & MPOL_F_STATIC_NODES) 2924 p += snprintf(p, buffer + maxlen - p, "static"); 2925 else if (flags & MPOL_F_RELATIVE_NODES) 2926 p += snprintf(p, buffer + maxlen - p, "relative"); 2927 } 2928 2929 if (!nodes_empty(nodes)) 2930 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2931 nodemask_pr_args(&nodes)); 2932 } 2933