1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_page_add(struct page *page, struct list_head *pagelist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the page's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_pages_required(struct page *page, 436 struct queue_pages *qp) 437 { 438 int nid = page_to_nid(page); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_pages_pmd() has three possible return values: 446 * 0 - pages are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing page was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct page *page; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 page = pmd_page(*pmd); 468 if (is_huge_zero_page(page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_pages_pte_range() has three possible return values: 495 * 0 - pages are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct page *page; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_pages_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page || is_zone_device_page(page)) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 if (!queue_pages_required(page, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_page_add(page, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 if (!queue_pages_required(page, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced page and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced page but allow migrating pages which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 602 if (flags & (MPOL_MF_MOVE_ALL) || 603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 604 if (isolate_hugetlb(page, qp->pagelist) && 605 (flags & MPOL_MF_STRICT)) 606 /* 607 * Failed to isolate page but allow migrating pages 608 * which have been queued. 609 */ 610 ret = 1; 611 } 612 unlock: 613 spin_unlock(ptl); 614 #else 615 BUG(); 616 #endif 617 return ret; 618 } 619 620 #ifdef CONFIG_NUMA_BALANCING 621 /* 622 * This is used to mark a range of virtual addresses to be inaccessible. 623 * These are later cleared by a NUMA hinting fault. Depending on these 624 * faults, pages may be migrated for better NUMA placement. 625 * 626 * This is assuming that NUMA faults are handled using PROT_NONE. If 627 * an architecture makes a different choice, it will need further 628 * changes to the core. 629 */ 630 unsigned long change_prot_numa(struct vm_area_struct *vma, 631 unsigned long addr, unsigned long end) 632 { 633 struct mmu_gather tlb; 634 int nr_updated; 635 636 tlb_gather_mmu(&tlb, vma->vm_mm); 637 638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE, 639 MM_CP_PROT_NUMA); 640 if (nr_updated) 641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 642 643 tlb_finish_mmu(&tlb); 644 645 return nr_updated; 646 } 647 #else 648 static unsigned long change_prot_numa(struct vm_area_struct *vma, 649 unsigned long addr, unsigned long end) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_NUMA_BALANCING */ 654 655 static int queue_pages_test_walk(unsigned long start, unsigned long end, 656 struct mm_walk *walk) 657 { 658 struct vm_area_struct *next, *vma = walk->vma; 659 struct queue_pages *qp = walk->private; 660 unsigned long endvma = vma->vm_end; 661 unsigned long flags = qp->flags; 662 663 /* range check first */ 664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 665 666 if (!qp->first) { 667 qp->first = vma; 668 if (!(flags & MPOL_MF_DISCONTIG_OK) && 669 (qp->start < vma->vm_start)) 670 /* hole at head side of range */ 671 return -EFAULT; 672 } 673 next = find_vma(vma->vm_mm, vma->vm_end); 674 if (!(flags & MPOL_MF_DISCONTIG_OK) && 675 ((vma->vm_end < qp->end) && 676 (!next || vma->vm_end < next->vm_start))) 677 /* hole at middle or tail of range */ 678 return -EFAULT; 679 680 /* 681 * Need check MPOL_MF_STRICT to return -EIO if possible 682 * regardless of vma_migratable 683 */ 684 if (!vma_migratable(vma) && 685 !(flags & MPOL_MF_STRICT)) 686 return 1; 687 688 if (endvma > end) 689 endvma = end; 690 691 if (flags & MPOL_MF_LAZY) { 692 /* Similar to task_numa_work, skip inaccessible VMAs */ 693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 694 !(vma->vm_flags & VM_MIXEDMAP)) 695 change_prot_numa(vma, start, endvma); 696 return 1; 697 } 698 699 /* queue pages from current vma */ 700 if (flags & MPOL_MF_VALID) 701 return 0; 702 return 1; 703 } 704 705 static const struct mm_walk_ops queue_pages_walk_ops = { 706 .hugetlb_entry = queue_pages_hugetlb, 707 .pmd_entry = queue_pages_pte_range, 708 .test_walk = queue_pages_test_walk, 709 }; 710 711 /* 712 * Walk through page tables and collect pages to be migrated. 713 * 714 * If pages found in a given range are on a set of nodes (determined by 715 * @nodes and @flags,) it's isolated and queued to the pagelist which is 716 * passed via @private. 717 * 718 * queue_pages_range() has three possible return values: 719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 720 * specified. 721 * 0 - queue pages successfully or no misplaced page. 722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 723 * memory range specified by nodemask and maxnode points outside 724 * your accessible address space (-EFAULT) 725 */ 726 static int 727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 728 nodemask_t *nodes, unsigned long flags, 729 struct list_head *pagelist) 730 { 731 int err; 732 struct queue_pages qp = { 733 .pagelist = pagelist, 734 .flags = flags, 735 .nmask = nodes, 736 .start = start, 737 .end = end, 738 .first = NULL, 739 }; 740 741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 742 743 if (!qp.first) 744 /* whole range in hole */ 745 err = -EFAULT; 746 747 return err; 748 } 749 750 /* 751 * Apply policy to a single VMA 752 * This must be called with the mmap_lock held for writing. 753 */ 754 static int vma_replace_policy(struct vm_area_struct *vma, 755 struct mempolicy *pol) 756 { 757 int err; 758 struct mempolicy *old; 759 struct mempolicy *new; 760 761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 762 vma->vm_start, vma->vm_end, vma->vm_pgoff, 763 vma->vm_ops, vma->vm_file, 764 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 765 766 new = mpol_dup(pol); 767 if (IS_ERR(new)) 768 return PTR_ERR(new); 769 770 if (vma->vm_ops && vma->vm_ops->set_policy) { 771 err = vma->vm_ops->set_policy(vma, new); 772 if (err) 773 goto err_out; 774 } 775 776 old = vma->vm_policy; 777 vma->vm_policy = new; /* protected by mmap_lock */ 778 mpol_put(old); 779 780 return 0; 781 err_out: 782 mpol_put(new); 783 return err; 784 } 785 786 /* Step 2: apply policy to a range and do splits. */ 787 static int mbind_range(struct mm_struct *mm, unsigned long start, 788 unsigned long end, struct mempolicy *new_pol) 789 { 790 MA_STATE(mas, &mm->mm_mt, start - 1, start - 1); 791 struct vm_area_struct *prev; 792 struct vm_area_struct *vma; 793 int err = 0; 794 pgoff_t pgoff; 795 796 prev = mas_find_rev(&mas, 0); 797 if (prev && (start < prev->vm_end)) 798 vma = prev; 799 else 800 vma = mas_next(&mas, end - 1); 801 802 for (; vma; vma = mas_next(&mas, end - 1)) { 803 unsigned long vmstart = max(start, vma->vm_start); 804 unsigned long vmend = min(end, vma->vm_end); 805 806 if (mpol_equal(vma_policy(vma), new_pol)) 807 goto next; 808 809 pgoff = vma->vm_pgoff + 810 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 812 vma->anon_vma, vma->vm_file, pgoff, 813 new_pol, vma->vm_userfaultfd_ctx, 814 anon_vma_name(vma)); 815 if (prev) { 816 /* vma_merge() invalidated the mas */ 817 mas_pause(&mas); 818 vma = prev; 819 goto replace; 820 } 821 if (vma->vm_start != vmstart) { 822 err = split_vma(vma->vm_mm, vma, vmstart, 1); 823 if (err) 824 goto out; 825 /* split_vma() invalidated the mas */ 826 mas_pause(&mas); 827 } 828 if (vma->vm_end != vmend) { 829 err = split_vma(vma->vm_mm, vma, vmend, 0); 830 if (err) 831 goto out; 832 /* split_vma() invalidated the mas */ 833 mas_pause(&mas); 834 } 835 replace: 836 err = vma_replace_policy(vma, new_pol); 837 if (err) 838 goto out; 839 next: 840 prev = vma; 841 } 842 843 out: 844 return err; 845 } 846 847 /* Set the process memory policy */ 848 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 849 nodemask_t *nodes) 850 { 851 struct mempolicy *new, *old; 852 NODEMASK_SCRATCH(scratch); 853 int ret; 854 855 if (!scratch) 856 return -ENOMEM; 857 858 new = mpol_new(mode, flags, nodes); 859 if (IS_ERR(new)) { 860 ret = PTR_ERR(new); 861 goto out; 862 } 863 864 task_lock(current); 865 ret = mpol_set_nodemask(new, nodes, scratch); 866 if (ret) { 867 task_unlock(current); 868 mpol_put(new); 869 goto out; 870 } 871 872 old = current->mempolicy; 873 current->mempolicy = new; 874 if (new && new->mode == MPOL_INTERLEAVE) 875 current->il_prev = MAX_NUMNODES-1; 876 task_unlock(current); 877 mpol_put(old); 878 ret = 0; 879 out: 880 NODEMASK_SCRATCH_FREE(scratch); 881 return ret; 882 } 883 884 /* 885 * Return nodemask for policy for get_mempolicy() query 886 * 887 * Called with task's alloc_lock held 888 */ 889 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 890 { 891 nodes_clear(*nodes); 892 if (p == &default_policy) 893 return; 894 895 switch (p->mode) { 896 case MPOL_BIND: 897 case MPOL_INTERLEAVE: 898 case MPOL_PREFERRED: 899 case MPOL_PREFERRED_MANY: 900 *nodes = p->nodes; 901 break; 902 case MPOL_LOCAL: 903 /* return empty node mask for local allocation */ 904 break; 905 default: 906 BUG(); 907 } 908 } 909 910 static int lookup_node(struct mm_struct *mm, unsigned long addr) 911 { 912 struct page *p = NULL; 913 int ret; 914 915 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 916 if (ret > 0) { 917 ret = page_to_nid(p); 918 put_page(p); 919 } 920 return ret; 921 } 922 923 /* Retrieve NUMA policy */ 924 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 925 unsigned long addr, unsigned long flags) 926 { 927 int err; 928 struct mm_struct *mm = current->mm; 929 struct vm_area_struct *vma = NULL; 930 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 931 932 if (flags & 933 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 934 return -EINVAL; 935 936 if (flags & MPOL_F_MEMS_ALLOWED) { 937 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 938 return -EINVAL; 939 *policy = 0; /* just so it's initialized */ 940 task_lock(current); 941 *nmask = cpuset_current_mems_allowed; 942 task_unlock(current); 943 return 0; 944 } 945 946 if (flags & MPOL_F_ADDR) { 947 /* 948 * Do NOT fall back to task policy if the 949 * vma/shared policy at addr is NULL. We 950 * want to return MPOL_DEFAULT in this case. 951 */ 952 mmap_read_lock(mm); 953 vma = vma_lookup(mm, addr); 954 if (!vma) { 955 mmap_read_unlock(mm); 956 return -EFAULT; 957 } 958 if (vma->vm_ops && vma->vm_ops->get_policy) 959 pol = vma->vm_ops->get_policy(vma, addr); 960 else 961 pol = vma->vm_policy; 962 } else if (addr) 963 return -EINVAL; 964 965 if (!pol) 966 pol = &default_policy; /* indicates default behavior */ 967 968 if (flags & MPOL_F_NODE) { 969 if (flags & MPOL_F_ADDR) { 970 /* 971 * Take a refcount on the mpol, because we are about to 972 * drop the mmap_lock, after which only "pol" remains 973 * valid, "vma" is stale. 974 */ 975 pol_refcount = pol; 976 vma = NULL; 977 mpol_get(pol); 978 mmap_read_unlock(mm); 979 err = lookup_node(mm, addr); 980 if (err < 0) 981 goto out; 982 *policy = err; 983 } else if (pol == current->mempolicy && 984 pol->mode == MPOL_INTERLEAVE) { 985 *policy = next_node_in(current->il_prev, pol->nodes); 986 } else { 987 err = -EINVAL; 988 goto out; 989 } 990 } else { 991 *policy = pol == &default_policy ? MPOL_DEFAULT : 992 pol->mode; 993 /* 994 * Internal mempolicy flags must be masked off before exposing 995 * the policy to userspace. 996 */ 997 *policy |= (pol->flags & MPOL_MODE_FLAGS); 998 } 999 1000 err = 0; 1001 if (nmask) { 1002 if (mpol_store_user_nodemask(pol)) { 1003 *nmask = pol->w.user_nodemask; 1004 } else { 1005 task_lock(current); 1006 get_policy_nodemask(pol, nmask); 1007 task_unlock(current); 1008 } 1009 } 1010 1011 out: 1012 mpol_cond_put(pol); 1013 if (vma) 1014 mmap_read_unlock(mm); 1015 if (pol_refcount) 1016 mpol_put(pol_refcount); 1017 return err; 1018 } 1019 1020 #ifdef CONFIG_MIGRATION 1021 /* 1022 * page migration, thp tail pages can be passed. 1023 */ 1024 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1025 unsigned long flags) 1026 { 1027 struct page *head = compound_head(page); 1028 /* 1029 * Avoid migrating a page that is shared with others. 1030 */ 1031 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1032 if (!isolate_lru_page(head)) { 1033 list_add_tail(&head->lru, pagelist); 1034 mod_node_page_state(page_pgdat(head), 1035 NR_ISOLATED_ANON + page_is_file_lru(head), 1036 thp_nr_pages(head)); 1037 } else if (flags & MPOL_MF_STRICT) { 1038 /* 1039 * Non-movable page may reach here. And, there may be 1040 * temporary off LRU pages or non-LRU movable pages. 1041 * Treat them as unmovable pages since they can't be 1042 * isolated, so they can't be moved at the moment. It 1043 * should return -EIO for this case too. 1044 */ 1045 return -EIO; 1046 } 1047 } 1048 1049 return 0; 1050 } 1051 1052 /* 1053 * Migrate pages from one node to a target node. 1054 * Returns error or the number of pages not migrated. 1055 */ 1056 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1057 int flags) 1058 { 1059 nodemask_t nmask; 1060 struct vm_area_struct *vma; 1061 LIST_HEAD(pagelist); 1062 int err = 0; 1063 struct migration_target_control mtc = { 1064 .nid = dest, 1065 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1066 }; 1067 1068 nodes_clear(nmask); 1069 node_set(source, nmask); 1070 1071 /* 1072 * This does not "check" the range but isolates all pages that 1073 * need migration. Between passing in the full user address 1074 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1075 */ 1076 vma = find_vma(mm, 0); 1077 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1078 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1079 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1080 1081 if (!list_empty(&pagelist)) { 1082 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1083 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1084 if (err) 1085 putback_movable_pages(&pagelist); 1086 } 1087 1088 return err; 1089 } 1090 1091 /* 1092 * Move pages between the two nodesets so as to preserve the physical 1093 * layout as much as possible. 1094 * 1095 * Returns the number of page that could not be moved. 1096 */ 1097 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1098 const nodemask_t *to, int flags) 1099 { 1100 int busy = 0; 1101 int err = 0; 1102 nodemask_t tmp; 1103 1104 lru_cache_disable(); 1105 1106 mmap_read_lock(mm); 1107 1108 /* 1109 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1110 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1111 * bit in 'tmp', and return that <source, dest> pair for migration. 1112 * The pair of nodemasks 'to' and 'from' define the map. 1113 * 1114 * If no pair of bits is found that way, fallback to picking some 1115 * pair of 'source' and 'dest' bits that are not the same. If the 1116 * 'source' and 'dest' bits are the same, this represents a node 1117 * that will be migrating to itself, so no pages need move. 1118 * 1119 * If no bits are left in 'tmp', or if all remaining bits left 1120 * in 'tmp' correspond to the same bit in 'to', return false 1121 * (nothing left to migrate). 1122 * 1123 * This lets us pick a pair of nodes to migrate between, such that 1124 * if possible the dest node is not already occupied by some other 1125 * source node, minimizing the risk of overloading the memory on a 1126 * node that would happen if we migrated incoming memory to a node 1127 * before migrating outgoing memory source that same node. 1128 * 1129 * A single scan of tmp is sufficient. As we go, we remember the 1130 * most recent <s, d> pair that moved (s != d). If we find a pair 1131 * that not only moved, but what's better, moved to an empty slot 1132 * (d is not set in tmp), then we break out then, with that pair. 1133 * Otherwise when we finish scanning from_tmp, we at least have the 1134 * most recent <s, d> pair that moved. If we get all the way through 1135 * the scan of tmp without finding any node that moved, much less 1136 * moved to an empty node, then there is nothing left worth migrating. 1137 */ 1138 1139 tmp = *from; 1140 while (!nodes_empty(tmp)) { 1141 int s, d; 1142 int source = NUMA_NO_NODE; 1143 int dest = 0; 1144 1145 for_each_node_mask(s, tmp) { 1146 1147 /* 1148 * do_migrate_pages() tries to maintain the relative 1149 * node relationship of the pages established between 1150 * threads and memory areas. 1151 * 1152 * However if the number of source nodes is not equal to 1153 * the number of destination nodes we can not preserve 1154 * this node relative relationship. In that case, skip 1155 * copying memory from a node that is in the destination 1156 * mask. 1157 * 1158 * Example: [2,3,4] -> [3,4,5] moves everything. 1159 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1160 */ 1161 1162 if ((nodes_weight(*from) != nodes_weight(*to)) && 1163 (node_isset(s, *to))) 1164 continue; 1165 1166 d = node_remap(s, *from, *to); 1167 if (s == d) 1168 continue; 1169 1170 source = s; /* Node moved. Memorize */ 1171 dest = d; 1172 1173 /* dest not in remaining from nodes? */ 1174 if (!node_isset(dest, tmp)) 1175 break; 1176 } 1177 if (source == NUMA_NO_NODE) 1178 break; 1179 1180 node_clear(source, tmp); 1181 err = migrate_to_node(mm, source, dest, flags); 1182 if (err > 0) 1183 busy += err; 1184 if (err < 0) 1185 break; 1186 } 1187 mmap_read_unlock(mm); 1188 1189 lru_cache_enable(); 1190 if (err < 0) 1191 return err; 1192 return busy; 1193 1194 } 1195 1196 /* 1197 * Allocate a new page for page migration based on vma policy. 1198 * Start by assuming the page is mapped by the same vma as contains @start. 1199 * Search forward from there, if not. N.B., this assumes that the 1200 * list of pages handed to migrate_pages()--which is how we get here-- 1201 * is in virtual address order. 1202 */ 1203 static struct page *new_page(struct page *page, unsigned long start) 1204 { 1205 struct folio *dst, *src = page_folio(page); 1206 struct vm_area_struct *vma; 1207 unsigned long address; 1208 VMA_ITERATOR(vmi, current->mm, start); 1209 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1210 1211 for_each_vma(vmi, vma) { 1212 address = page_address_in_vma(page, vma); 1213 if (address != -EFAULT) 1214 break; 1215 } 1216 1217 if (folio_test_hugetlb(src)) 1218 return alloc_huge_page_vma(page_hstate(&src->page), 1219 vma, address); 1220 1221 if (folio_test_large(src)) 1222 gfp = GFP_TRANSHUGE; 1223 1224 /* 1225 * if !vma, vma_alloc_folio() will use task or system default policy 1226 */ 1227 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1228 folio_test_large(src)); 1229 return &dst->page; 1230 } 1231 #else 1232 1233 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1234 unsigned long flags) 1235 { 1236 return -EIO; 1237 } 1238 1239 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1240 const nodemask_t *to, int flags) 1241 { 1242 return -ENOSYS; 1243 } 1244 1245 static struct page *new_page(struct page *page, unsigned long start) 1246 { 1247 return NULL; 1248 } 1249 #endif 1250 1251 static long do_mbind(unsigned long start, unsigned long len, 1252 unsigned short mode, unsigned short mode_flags, 1253 nodemask_t *nmask, unsigned long flags) 1254 { 1255 struct mm_struct *mm = current->mm; 1256 struct mempolicy *new; 1257 unsigned long end; 1258 int err; 1259 int ret; 1260 LIST_HEAD(pagelist); 1261 1262 if (flags & ~(unsigned long)MPOL_MF_VALID) 1263 return -EINVAL; 1264 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1265 return -EPERM; 1266 1267 if (start & ~PAGE_MASK) 1268 return -EINVAL; 1269 1270 if (mode == MPOL_DEFAULT) 1271 flags &= ~MPOL_MF_STRICT; 1272 1273 len = PAGE_ALIGN(len); 1274 end = start + len; 1275 1276 if (end < start) 1277 return -EINVAL; 1278 if (end == start) 1279 return 0; 1280 1281 new = mpol_new(mode, mode_flags, nmask); 1282 if (IS_ERR(new)) 1283 return PTR_ERR(new); 1284 1285 if (flags & MPOL_MF_LAZY) 1286 new->flags |= MPOL_F_MOF; 1287 1288 /* 1289 * If we are using the default policy then operation 1290 * on discontinuous address spaces is okay after all 1291 */ 1292 if (!new) 1293 flags |= MPOL_MF_DISCONTIG_OK; 1294 1295 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1296 start, start + len, mode, mode_flags, 1297 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1298 1299 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1300 1301 lru_cache_disable(); 1302 } 1303 { 1304 NODEMASK_SCRATCH(scratch); 1305 if (scratch) { 1306 mmap_write_lock(mm); 1307 err = mpol_set_nodemask(new, nmask, scratch); 1308 if (err) 1309 mmap_write_unlock(mm); 1310 } else 1311 err = -ENOMEM; 1312 NODEMASK_SCRATCH_FREE(scratch); 1313 } 1314 if (err) 1315 goto mpol_out; 1316 1317 ret = queue_pages_range(mm, start, end, nmask, 1318 flags | MPOL_MF_INVERT, &pagelist); 1319 1320 if (ret < 0) { 1321 err = ret; 1322 goto up_out; 1323 } 1324 1325 err = mbind_range(mm, start, end, new); 1326 1327 if (!err) { 1328 int nr_failed = 0; 1329 1330 if (!list_empty(&pagelist)) { 1331 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1332 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1333 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1334 if (nr_failed) 1335 putback_movable_pages(&pagelist); 1336 } 1337 1338 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1339 err = -EIO; 1340 } else { 1341 up_out: 1342 if (!list_empty(&pagelist)) 1343 putback_movable_pages(&pagelist); 1344 } 1345 1346 mmap_write_unlock(mm); 1347 mpol_out: 1348 mpol_put(new); 1349 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1350 lru_cache_enable(); 1351 return err; 1352 } 1353 1354 /* 1355 * User space interface with variable sized bitmaps for nodelists. 1356 */ 1357 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1358 unsigned long maxnode) 1359 { 1360 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1361 int ret; 1362 1363 if (in_compat_syscall()) 1364 ret = compat_get_bitmap(mask, 1365 (const compat_ulong_t __user *)nmask, 1366 maxnode); 1367 else 1368 ret = copy_from_user(mask, nmask, 1369 nlongs * sizeof(unsigned long)); 1370 1371 if (ret) 1372 return -EFAULT; 1373 1374 if (maxnode % BITS_PER_LONG) 1375 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1376 1377 return 0; 1378 } 1379 1380 /* Copy a node mask from user space. */ 1381 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1382 unsigned long maxnode) 1383 { 1384 --maxnode; 1385 nodes_clear(*nodes); 1386 if (maxnode == 0 || !nmask) 1387 return 0; 1388 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1389 return -EINVAL; 1390 1391 /* 1392 * When the user specified more nodes than supported just check 1393 * if the non supported part is all zero, one word at a time, 1394 * starting at the end. 1395 */ 1396 while (maxnode > MAX_NUMNODES) { 1397 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1398 unsigned long t; 1399 1400 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1401 return -EFAULT; 1402 1403 if (maxnode - bits >= MAX_NUMNODES) { 1404 maxnode -= bits; 1405 } else { 1406 maxnode = MAX_NUMNODES; 1407 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1408 } 1409 if (t) 1410 return -EINVAL; 1411 } 1412 1413 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1414 } 1415 1416 /* Copy a kernel node mask to user space */ 1417 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1418 nodemask_t *nodes) 1419 { 1420 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1421 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1422 bool compat = in_compat_syscall(); 1423 1424 if (compat) 1425 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1426 1427 if (copy > nbytes) { 1428 if (copy > PAGE_SIZE) 1429 return -EINVAL; 1430 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1431 return -EFAULT; 1432 copy = nbytes; 1433 maxnode = nr_node_ids; 1434 } 1435 1436 if (compat) 1437 return compat_put_bitmap((compat_ulong_t __user *)mask, 1438 nodes_addr(*nodes), maxnode); 1439 1440 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1441 } 1442 1443 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1444 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1445 { 1446 *flags = *mode & MPOL_MODE_FLAGS; 1447 *mode &= ~MPOL_MODE_FLAGS; 1448 1449 if ((unsigned int)(*mode) >= MPOL_MAX) 1450 return -EINVAL; 1451 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1452 return -EINVAL; 1453 if (*flags & MPOL_F_NUMA_BALANCING) { 1454 if (*mode != MPOL_BIND) 1455 return -EINVAL; 1456 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1457 } 1458 return 0; 1459 } 1460 1461 static long kernel_mbind(unsigned long start, unsigned long len, 1462 unsigned long mode, const unsigned long __user *nmask, 1463 unsigned long maxnode, unsigned int flags) 1464 { 1465 unsigned short mode_flags; 1466 nodemask_t nodes; 1467 int lmode = mode; 1468 int err; 1469 1470 start = untagged_addr(start); 1471 err = sanitize_mpol_flags(&lmode, &mode_flags); 1472 if (err) 1473 return err; 1474 1475 err = get_nodes(&nodes, nmask, maxnode); 1476 if (err) 1477 return err; 1478 1479 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1480 } 1481 1482 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1483 unsigned long, home_node, unsigned long, flags) 1484 { 1485 struct mm_struct *mm = current->mm; 1486 struct vm_area_struct *vma; 1487 struct mempolicy *new; 1488 unsigned long vmstart; 1489 unsigned long vmend; 1490 unsigned long end; 1491 int err = -ENOENT; 1492 VMA_ITERATOR(vmi, mm, start); 1493 1494 start = untagged_addr(start); 1495 if (start & ~PAGE_MASK) 1496 return -EINVAL; 1497 /* 1498 * flags is used for future extension if any. 1499 */ 1500 if (flags != 0) 1501 return -EINVAL; 1502 1503 /* 1504 * Check home_node is online to avoid accessing uninitialized 1505 * NODE_DATA. 1506 */ 1507 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1508 return -EINVAL; 1509 1510 len = PAGE_ALIGN(len); 1511 end = start + len; 1512 1513 if (end < start) 1514 return -EINVAL; 1515 if (end == start) 1516 return 0; 1517 mmap_write_lock(mm); 1518 for_each_vma_range(vmi, vma, end) { 1519 vmstart = max(start, vma->vm_start); 1520 vmend = min(end, vma->vm_end); 1521 new = mpol_dup(vma_policy(vma)); 1522 if (IS_ERR(new)) { 1523 err = PTR_ERR(new); 1524 break; 1525 } 1526 /* 1527 * Only update home node if there is an existing vma policy 1528 */ 1529 if (!new) 1530 continue; 1531 1532 /* 1533 * If any vma in the range got policy other than MPOL_BIND 1534 * or MPOL_PREFERRED_MANY we return error. We don't reset 1535 * the home node for vmas we already updated before. 1536 */ 1537 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1538 err = -EOPNOTSUPP; 1539 break; 1540 } 1541 1542 new->home_node = home_node; 1543 err = mbind_range(mm, vmstart, vmend, new); 1544 mpol_put(new); 1545 if (err) 1546 break; 1547 } 1548 mmap_write_unlock(mm); 1549 return err; 1550 } 1551 1552 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1553 unsigned long, mode, const unsigned long __user *, nmask, 1554 unsigned long, maxnode, unsigned int, flags) 1555 { 1556 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1557 } 1558 1559 /* Set the process memory policy */ 1560 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1561 unsigned long maxnode) 1562 { 1563 unsigned short mode_flags; 1564 nodemask_t nodes; 1565 int lmode = mode; 1566 int err; 1567 1568 err = sanitize_mpol_flags(&lmode, &mode_flags); 1569 if (err) 1570 return err; 1571 1572 err = get_nodes(&nodes, nmask, maxnode); 1573 if (err) 1574 return err; 1575 1576 return do_set_mempolicy(lmode, mode_flags, &nodes); 1577 } 1578 1579 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1580 unsigned long, maxnode) 1581 { 1582 return kernel_set_mempolicy(mode, nmask, maxnode); 1583 } 1584 1585 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1586 const unsigned long __user *old_nodes, 1587 const unsigned long __user *new_nodes) 1588 { 1589 struct mm_struct *mm = NULL; 1590 struct task_struct *task; 1591 nodemask_t task_nodes; 1592 int err; 1593 nodemask_t *old; 1594 nodemask_t *new; 1595 NODEMASK_SCRATCH(scratch); 1596 1597 if (!scratch) 1598 return -ENOMEM; 1599 1600 old = &scratch->mask1; 1601 new = &scratch->mask2; 1602 1603 err = get_nodes(old, old_nodes, maxnode); 1604 if (err) 1605 goto out; 1606 1607 err = get_nodes(new, new_nodes, maxnode); 1608 if (err) 1609 goto out; 1610 1611 /* Find the mm_struct */ 1612 rcu_read_lock(); 1613 task = pid ? find_task_by_vpid(pid) : current; 1614 if (!task) { 1615 rcu_read_unlock(); 1616 err = -ESRCH; 1617 goto out; 1618 } 1619 get_task_struct(task); 1620 1621 err = -EINVAL; 1622 1623 /* 1624 * Check if this process has the right to modify the specified process. 1625 * Use the regular "ptrace_may_access()" checks. 1626 */ 1627 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1628 rcu_read_unlock(); 1629 err = -EPERM; 1630 goto out_put; 1631 } 1632 rcu_read_unlock(); 1633 1634 task_nodes = cpuset_mems_allowed(task); 1635 /* Is the user allowed to access the target nodes? */ 1636 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1637 err = -EPERM; 1638 goto out_put; 1639 } 1640 1641 task_nodes = cpuset_mems_allowed(current); 1642 nodes_and(*new, *new, task_nodes); 1643 if (nodes_empty(*new)) 1644 goto out_put; 1645 1646 err = security_task_movememory(task); 1647 if (err) 1648 goto out_put; 1649 1650 mm = get_task_mm(task); 1651 put_task_struct(task); 1652 1653 if (!mm) { 1654 err = -EINVAL; 1655 goto out; 1656 } 1657 1658 err = do_migrate_pages(mm, old, new, 1659 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1660 1661 mmput(mm); 1662 out: 1663 NODEMASK_SCRATCH_FREE(scratch); 1664 1665 return err; 1666 1667 out_put: 1668 put_task_struct(task); 1669 goto out; 1670 1671 } 1672 1673 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1674 const unsigned long __user *, old_nodes, 1675 const unsigned long __user *, new_nodes) 1676 { 1677 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1678 } 1679 1680 1681 /* Retrieve NUMA policy */ 1682 static int kernel_get_mempolicy(int __user *policy, 1683 unsigned long __user *nmask, 1684 unsigned long maxnode, 1685 unsigned long addr, 1686 unsigned long flags) 1687 { 1688 int err; 1689 int pval; 1690 nodemask_t nodes; 1691 1692 if (nmask != NULL && maxnode < nr_node_ids) 1693 return -EINVAL; 1694 1695 addr = untagged_addr(addr); 1696 1697 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1698 1699 if (err) 1700 return err; 1701 1702 if (policy && put_user(pval, policy)) 1703 return -EFAULT; 1704 1705 if (nmask) 1706 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1707 1708 return err; 1709 } 1710 1711 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1712 unsigned long __user *, nmask, unsigned long, maxnode, 1713 unsigned long, addr, unsigned long, flags) 1714 { 1715 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1716 } 1717 1718 bool vma_migratable(struct vm_area_struct *vma) 1719 { 1720 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1721 return false; 1722 1723 /* 1724 * DAX device mappings require predictable access latency, so avoid 1725 * incurring periodic faults. 1726 */ 1727 if (vma_is_dax(vma)) 1728 return false; 1729 1730 if (is_vm_hugetlb_page(vma) && 1731 !hugepage_migration_supported(hstate_vma(vma))) 1732 return false; 1733 1734 /* 1735 * Migration allocates pages in the highest zone. If we cannot 1736 * do so then migration (at least from node to node) is not 1737 * possible. 1738 */ 1739 if (vma->vm_file && 1740 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1741 < policy_zone) 1742 return false; 1743 return true; 1744 } 1745 1746 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1747 unsigned long addr) 1748 { 1749 struct mempolicy *pol = NULL; 1750 1751 if (vma) { 1752 if (vma->vm_ops && vma->vm_ops->get_policy) { 1753 pol = vma->vm_ops->get_policy(vma, addr); 1754 } else if (vma->vm_policy) { 1755 pol = vma->vm_policy; 1756 1757 /* 1758 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1759 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1760 * count on these policies which will be dropped by 1761 * mpol_cond_put() later 1762 */ 1763 if (mpol_needs_cond_ref(pol)) 1764 mpol_get(pol); 1765 } 1766 } 1767 1768 return pol; 1769 } 1770 1771 /* 1772 * get_vma_policy(@vma, @addr) 1773 * @vma: virtual memory area whose policy is sought 1774 * @addr: address in @vma for shared policy lookup 1775 * 1776 * Returns effective policy for a VMA at specified address. 1777 * Falls back to current->mempolicy or system default policy, as necessary. 1778 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1779 * count--added by the get_policy() vm_op, as appropriate--to protect against 1780 * freeing by another task. It is the caller's responsibility to free the 1781 * extra reference for shared policies. 1782 */ 1783 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1784 unsigned long addr) 1785 { 1786 struct mempolicy *pol = __get_vma_policy(vma, addr); 1787 1788 if (!pol) 1789 pol = get_task_policy(current); 1790 1791 return pol; 1792 } 1793 1794 bool vma_policy_mof(struct vm_area_struct *vma) 1795 { 1796 struct mempolicy *pol; 1797 1798 if (vma->vm_ops && vma->vm_ops->get_policy) { 1799 bool ret = false; 1800 1801 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1802 if (pol && (pol->flags & MPOL_F_MOF)) 1803 ret = true; 1804 mpol_cond_put(pol); 1805 1806 return ret; 1807 } 1808 1809 pol = vma->vm_policy; 1810 if (!pol) 1811 pol = get_task_policy(current); 1812 1813 return pol->flags & MPOL_F_MOF; 1814 } 1815 1816 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1817 { 1818 enum zone_type dynamic_policy_zone = policy_zone; 1819 1820 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1821 1822 /* 1823 * if policy->nodes has movable memory only, 1824 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1825 * 1826 * policy->nodes is intersect with node_states[N_MEMORY]. 1827 * so if the following test fails, it implies 1828 * policy->nodes has movable memory only. 1829 */ 1830 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1831 dynamic_policy_zone = ZONE_MOVABLE; 1832 1833 return zone >= dynamic_policy_zone; 1834 } 1835 1836 /* 1837 * Return a nodemask representing a mempolicy for filtering nodes for 1838 * page allocation 1839 */ 1840 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1841 { 1842 int mode = policy->mode; 1843 1844 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1845 if (unlikely(mode == MPOL_BIND) && 1846 apply_policy_zone(policy, gfp_zone(gfp)) && 1847 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1848 return &policy->nodes; 1849 1850 if (mode == MPOL_PREFERRED_MANY) 1851 return &policy->nodes; 1852 1853 return NULL; 1854 } 1855 1856 /* 1857 * Return the preferred node id for 'prefer' mempolicy, and return 1858 * the given id for all other policies. 1859 * 1860 * policy_node() is always coupled with policy_nodemask(), which 1861 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1862 */ 1863 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1864 { 1865 if (policy->mode == MPOL_PREFERRED) { 1866 nd = first_node(policy->nodes); 1867 } else { 1868 /* 1869 * __GFP_THISNODE shouldn't even be used with the bind policy 1870 * because we might easily break the expectation to stay on the 1871 * requested node and not break the policy. 1872 */ 1873 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1874 } 1875 1876 if ((policy->mode == MPOL_BIND || 1877 policy->mode == MPOL_PREFERRED_MANY) && 1878 policy->home_node != NUMA_NO_NODE) 1879 return policy->home_node; 1880 1881 return nd; 1882 } 1883 1884 /* Do dynamic interleaving for a process */ 1885 static unsigned interleave_nodes(struct mempolicy *policy) 1886 { 1887 unsigned next; 1888 struct task_struct *me = current; 1889 1890 next = next_node_in(me->il_prev, policy->nodes); 1891 if (next < MAX_NUMNODES) 1892 me->il_prev = next; 1893 return next; 1894 } 1895 1896 /* 1897 * Depending on the memory policy provide a node from which to allocate the 1898 * next slab entry. 1899 */ 1900 unsigned int mempolicy_slab_node(void) 1901 { 1902 struct mempolicy *policy; 1903 int node = numa_mem_id(); 1904 1905 if (!in_task()) 1906 return node; 1907 1908 policy = current->mempolicy; 1909 if (!policy) 1910 return node; 1911 1912 switch (policy->mode) { 1913 case MPOL_PREFERRED: 1914 return first_node(policy->nodes); 1915 1916 case MPOL_INTERLEAVE: 1917 return interleave_nodes(policy); 1918 1919 case MPOL_BIND: 1920 case MPOL_PREFERRED_MANY: 1921 { 1922 struct zoneref *z; 1923 1924 /* 1925 * Follow bind policy behavior and start allocation at the 1926 * first node. 1927 */ 1928 struct zonelist *zonelist; 1929 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1930 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1931 z = first_zones_zonelist(zonelist, highest_zoneidx, 1932 &policy->nodes); 1933 return z->zone ? zone_to_nid(z->zone) : node; 1934 } 1935 case MPOL_LOCAL: 1936 return node; 1937 1938 default: 1939 BUG(); 1940 } 1941 } 1942 1943 /* 1944 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1945 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1946 * number of present nodes. 1947 */ 1948 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1949 { 1950 nodemask_t nodemask = pol->nodes; 1951 unsigned int target, nnodes; 1952 int i; 1953 int nid; 1954 /* 1955 * The barrier will stabilize the nodemask in a register or on 1956 * the stack so that it will stop changing under the code. 1957 * 1958 * Between first_node() and next_node(), pol->nodes could be changed 1959 * by other threads. So we put pol->nodes in a local stack. 1960 */ 1961 barrier(); 1962 1963 nnodes = nodes_weight(nodemask); 1964 if (!nnodes) 1965 return numa_node_id(); 1966 target = (unsigned int)n % nnodes; 1967 nid = first_node(nodemask); 1968 for (i = 0; i < target; i++) 1969 nid = next_node(nid, nodemask); 1970 return nid; 1971 } 1972 1973 /* Determine a node number for interleave */ 1974 static inline unsigned interleave_nid(struct mempolicy *pol, 1975 struct vm_area_struct *vma, unsigned long addr, int shift) 1976 { 1977 if (vma) { 1978 unsigned long off; 1979 1980 /* 1981 * for small pages, there is no difference between 1982 * shift and PAGE_SHIFT, so the bit-shift is safe. 1983 * for huge pages, since vm_pgoff is in units of small 1984 * pages, we need to shift off the always 0 bits to get 1985 * a useful offset. 1986 */ 1987 BUG_ON(shift < PAGE_SHIFT); 1988 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1989 off += (addr - vma->vm_start) >> shift; 1990 return offset_il_node(pol, off); 1991 } else 1992 return interleave_nodes(pol); 1993 } 1994 1995 #ifdef CONFIG_HUGETLBFS 1996 /* 1997 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1998 * @vma: virtual memory area whose policy is sought 1999 * @addr: address in @vma for shared policy lookup and interleave policy 2000 * @gfp_flags: for requested zone 2001 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2002 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2003 * 2004 * Returns a nid suitable for a huge page allocation and a pointer 2005 * to the struct mempolicy for conditional unref after allocation. 2006 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2007 * to the mempolicy's @nodemask for filtering the zonelist. 2008 * 2009 * Must be protected by read_mems_allowed_begin() 2010 */ 2011 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2012 struct mempolicy **mpol, nodemask_t **nodemask) 2013 { 2014 int nid; 2015 int mode; 2016 2017 *mpol = get_vma_policy(vma, addr); 2018 *nodemask = NULL; 2019 mode = (*mpol)->mode; 2020 2021 if (unlikely(mode == MPOL_INTERLEAVE)) { 2022 nid = interleave_nid(*mpol, vma, addr, 2023 huge_page_shift(hstate_vma(vma))); 2024 } else { 2025 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2026 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2027 *nodemask = &(*mpol)->nodes; 2028 } 2029 return nid; 2030 } 2031 2032 /* 2033 * init_nodemask_of_mempolicy 2034 * 2035 * If the current task's mempolicy is "default" [NULL], return 'false' 2036 * to indicate default policy. Otherwise, extract the policy nodemask 2037 * for 'bind' or 'interleave' policy into the argument nodemask, or 2038 * initialize the argument nodemask to contain the single node for 2039 * 'preferred' or 'local' policy and return 'true' to indicate presence 2040 * of non-default mempolicy. 2041 * 2042 * We don't bother with reference counting the mempolicy [mpol_get/put] 2043 * because the current task is examining it's own mempolicy and a task's 2044 * mempolicy is only ever changed by the task itself. 2045 * 2046 * N.B., it is the caller's responsibility to free a returned nodemask. 2047 */ 2048 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2049 { 2050 struct mempolicy *mempolicy; 2051 2052 if (!(mask && current->mempolicy)) 2053 return false; 2054 2055 task_lock(current); 2056 mempolicy = current->mempolicy; 2057 switch (mempolicy->mode) { 2058 case MPOL_PREFERRED: 2059 case MPOL_PREFERRED_MANY: 2060 case MPOL_BIND: 2061 case MPOL_INTERLEAVE: 2062 *mask = mempolicy->nodes; 2063 break; 2064 2065 case MPOL_LOCAL: 2066 init_nodemask_of_node(mask, numa_node_id()); 2067 break; 2068 2069 default: 2070 BUG(); 2071 } 2072 task_unlock(current); 2073 2074 return true; 2075 } 2076 #endif 2077 2078 /* 2079 * mempolicy_in_oom_domain 2080 * 2081 * If tsk's mempolicy is "bind", check for intersection between mask and 2082 * the policy nodemask. Otherwise, return true for all other policies 2083 * including "interleave", as a tsk with "interleave" policy may have 2084 * memory allocated from all nodes in system. 2085 * 2086 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2087 */ 2088 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2089 const nodemask_t *mask) 2090 { 2091 struct mempolicy *mempolicy; 2092 bool ret = true; 2093 2094 if (!mask) 2095 return ret; 2096 2097 task_lock(tsk); 2098 mempolicy = tsk->mempolicy; 2099 if (mempolicy && mempolicy->mode == MPOL_BIND) 2100 ret = nodes_intersects(mempolicy->nodes, *mask); 2101 task_unlock(tsk); 2102 2103 return ret; 2104 } 2105 2106 /* Allocate a page in interleaved policy. 2107 Own path because it needs to do special accounting. */ 2108 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2109 unsigned nid) 2110 { 2111 struct page *page; 2112 2113 page = __alloc_pages(gfp, order, nid, NULL); 2114 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2115 if (!static_branch_likely(&vm_numa_stat_key)) 2116 return page; 2117 if (page && page_to_nid(page) == nid) { 2118 preempt_disable(); 2119 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2120 preempt_enable(); 2121 } 2122 return page; 2123 } 2124 2125 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2126 int nid, struct mempolicy *pol) 2127 { 2128 struct page *page; 2129 gfp_t preferred_gfp; 2130 2131 /* 2132 * This is a two pass approach. The first pass will only try the 2133 * preferred nodes but skip the direct reclaim and allow the 2134 * allocation to fail, while the second pass will try all the 2135 * nodes in system. 2136 */ 2137 preferred_gfp = gfp | __GFP_NOWARN; 2138 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2139 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2140 if (!page) 2141 page = __alloc_pages(gfp, order, nid, NULL); 2142 2143 return page; 2144 } 2145 2146 /** 2147 * vma_alloc_folio - Allocate a folio for a VMA. 2148 * @gfp: GFP flags. 2149 * @order: Order of the folio. 2150 * @vma: Pointer to VMA or NULL if not available. 2151 * @addr: Virtual address of the allocation. Must be inside @vma. 2152 * @hugepage: For hugepages try only the preferred node if possible. 2153 * 2154 * Allocate a folio for a specific address in @vma, using the appropriate 2155 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2156 * of the mm_struct of the VMA to prevent it from going away. Should be 2157 * used for all allocations for folios that will be mapped into user space. 2158 * 2159 * Return: The folio on success or NULL if allocation fails. 2160 */ 2161 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2162 unsigned long addr, bool hugepage) 2163 { 2164 struct mempolicy *pol; 2165 int node = numa_node_id(); 2166 struct folio *folio; 2167 int preferred_nid; 2168 nodemask_t *nmask; 2169 2170 pol = get_vma_policy(vma, addr); 2171 2172 if (pol->mode == MPOL_INTERLEAVE) { 2173 struct page *page; 2174 unsigned nid; 2175 2176 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2177 mpol_cond_put(pol); 2178 gfp |= __GFP_COMP; 2179 page = alloc_page_interleave(gfp, order, nid); 2180 if (page && order > 1) 2181 prep_transhuge_page(page); 2182 folio = (struct folio *)page; 2183 goto out; 2184 } 2185 2186 if (pol->mode == MPOL_PREFERRED_MANY) { 2187 struct page *page; 2188 2189 node = policy_node(gfp, pol, node); 2190 gfp |= __GFP_COMP; 2191 page = alloc_pages_preferred_many(gfp, order, node, pol); 2192 mpol_cond_put(pol); 2193 if (page && order > 1) 2194 prep_transhuge_page(page); 2195 folio = (struct folio *)page; 2196 goto out; 2197 } 2198 2199 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2200 int hpage_node = node; 2201 2202 /* 2203 * For hugepage allocation and non-interleave policy which 2204 * allows the current node (or other explicitly preferred 2205 * node) we only try to allocate from the current/preferred 2206 * node and don't fall back to other nodes, as the cost of 2207 * remote accesses would likely offset THP benefits. 2208 * 2209 * If the policy is interleave or does not allow the current 2210 * node in its nodemask, we allocate the standard way. 2211 */ 2212 if (pol->mode == MPOL_PREFERRED) 2213 hpage_node = first_node(pol->nodes); 2214 2215 nmask = policy_nodemask(gfp, pol); 2216 if (!nmask || node_isset(hpage_node, *nmask)) { 2217 mpol_cond_put(pol); 2218 /* 2219 * First, try to allocate THP only on local node, but 2220 * don't reclaim unnecessarily, just compact. 2221 */ 2222 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2223 __GFP_NORETRY, order, hpage_node); 2224 2225 /* 2226 * If hugepage allocations are configured to always 2227 * synchronous compact or the vma has been madvised 2228 * to prefer hugepage backing, retry allowing remote 2229 * memory with both reclaim and compact as well. 2230 */ 2231 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2232 folio = __folio_alloc(gfp, order, hpage_node, 2233 nmask); 2234 2235 goto out; 2236 } 2237 } 2238 2239 nmask = policy_nodemask(gfp, pol); 2240 preferred_nid = policy_node(gfp, pol, node); 2241 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2242 mpol_cond_put(pol); 2243 out: 2244 return folio; 2245 } 2246 EXPORT_SYMBOL(vma_alloc_folio); 2247 2248 /** 2249 * alloc_pages - Allocate pages. 2250 * @gfp: GFP flags. 2251 * @order: Power of two of number of pages to allocate. 2252 * 2253 * Allocate 1 << @order contiguous pages. The physical address of the 2254 * first page is naturally aligned (eg an order-3 allocation will be aligned 2255 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2256 * process is honoured when in process context. 2257 * 2258 * Context: Can be called from any context, providing the appropriate GFP 2259 * flags are used. 2260 * Return: The page on success or NULL if allocation fails. 2261 */ 2262 struct page *alloc_pages(gfp_t gfp, unsigned order) 2263 { 2264 struct mempolicy *pol = &default_policy; 2265 struct page *page; 2266 2267 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2268 pol = get_task_policy(current); 2269 2270 /* 2271 * No reference counting needed for current->mempolicy 2272 * nor system default_policy 2273 */ 2274 if (pol->mode == MPOL_INTERLEAVE) 2275 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2276 else if (pol->mode == MPOL_PREFERRED_MANY) 2277 page = alloc_pages_preferred_many(gfp, order, 2278 policy_node(gfp, pol, numa_node_id()), pol); 2279 else 2280 page = __alloc_pages(gfp, order, 2281 policy_node(gfp, pol, numa_node_id()), 2282 policy_nodemask(gfp, pol)); 2283 2284 return page; 2285 } 2286 EXPORT_SYMBOL(alloc_pages); 2287 2288 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2289 { 2290 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2291 2292 if (page && order > 1) 2293 prep_transhuge_page(page); 2294 return (struct folio *)page; 2295 } 2296 EXPORT_SYMBOL(folio_alloc); 2297 2298 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2299 struct mempolicy *pol, unsigned long nr_pages, 2300 struct page **page_array) 2301 { 2302 int nodes; 2303 unsigned long nr_pages_per_node; 2304 int delta; 2305 int i; 2306 unsigned long nr_allocated; 2307 unsigned long total_allocated = 0; 2308 2309 nodes = nodes_weight(pol->nodes); 2310 nr_pages_per_node = nr_pages / nodes; 2311 delta = nr_pages - nodes * nr_pages_per_node; 2312 2313 for (i = 0; i < nodes; i++) { 2314 if (delta) { 2315 nr_allocated = __alloc_pages_bulk(gfp, 2316 interleave_nodes(pol), NULL, 2317 nr_pages_per_node + 1, NULL, 2318 page_array); 2319 delta--; 2320 } else { 2321 nr_allocated = __alloc_pages_bulk(gfp, 2322 interleave_nodes(pol), NULL, 2323 nr_pages_per_node, NULL, page_array); 2324 } 2325 2326 page_array += nr_allocated; 2327 total_allocated += nr_allocated; 2328 } 2329 2330 return total_allocated; 2331 } 2332 2333 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2334 struct mempolicy *pol, unsigned long nr_pages, 2335 struct page **page_array) 2336 { 2337 gfp_t preferred_gfp; 2338 unsigned long nr_allocated = 0; 2339 2340 preferred_gfp = gfp | __GFP_NOWARN; 2341 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2342 2343 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2344 nr_pages, NULL, page_array); 2345 2346 if (nr_allocated < nr_pages) 2347 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2348 nr_pages - nr_allocated, NULL, 2349 page_array + nr_allocated); 2350 return nr_allocated; 2351 } 2352 2353 /* alloc pages bulk and mempolicy should be considered at the 2354 * same time in some situation such as vmalloc. 2355 * 2356 * It can accelerate memory allocation especially interleaving 2357 * allocate memory. 2358 */ 2359 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2360 unsigned long nr_pages, struct page **page_array) 2361 { 2362 struct mempolicy *pol = &default_policy; 2363 2364 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2365 pol = get_task_policy(current); 2366 2367 if (pol->mode == MPOL_INTERLEAVE) 2368 return alloc_pages_bulk_array_interleave(gfp, pol, 2369 nr_pages, page_array); 2370 2371 if (pol->mode == MPOL_PREFERRED_MANY) 2372 return alloc_pages_bulk_array_preferred_many(gfp, 2373 numa_node_id(), pol, nr_pages, page_array); 2374 2375 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2376 policy_nodemask(gfp, pol), nr_pages, NULL, 2377 page_array); 2378 } 2379 2380 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2381 { 2382 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2383 2384 if (IS_ERR(pol)) 2385 return PTR_ERR(pol); 2386 dst->vm_policy = pol; 2387 return 0; 2388 } 2389 2390 /* 2391 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2392 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2393 * with the mems_allowed returned by cpuset_mems_allowed(). This 2394 * keeps mempolicies cpuset relative after its cpuset moves. See 2395 * further kernel/cpuset.c update_nodemask(). 2396 * 2397 * current's mempolicy may be rebinded by the other task(the task that changes 2398 * cpuset's mems), so we needn't do rebind work for current task. 2399 */ 2400 2401 /* Slow path of a mempolicy duplicate */ 2402 struct mempolicy *__mpol_dup(struct mempolicy *old) 2403 { 2404 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2405 2406 if (!new) 2407 return ERR_PTR(-ENOMEM); 2408 2409 /* task's mempolicy is protected by alloc_lock */ 2410 if (old == current->mempolicy) { 2411 task_lock(current); 2412 *new = *old; 2413 task_unlock(current); 2414 } else 2415 *new = *old; 2416 2417 if (current_cpuset_is_being_rebound()) { 2418 nodemask_t mems = cpuset_mems_allowed(current); 2419 mpol_rebind_policy(new, &mems); 2420 } 2421 atomic_set(&new->refcnt, 1); 2422 return new; 2423 } 2424 2425 /* Slow path of a mempolicy comparison */ 2426 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2427 { 2428 if (!a || !b) 2429 return false; 2430 if (a->mode != b->mode) 2431 return false; 2432 if (a->flags != b->flags) 2433 return false; 2434 if (a->home_node != b->home_node) 2435 return false; 2436 if (mpol_store_user_nodemask(a)) 2437 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2438 return false; 2439 2440 switch (a->mode) { 2441 case MPOL_BIND: 2442 case MPOL_INTERLEAVE: 2443 case MPOL_PREFERRED: 2444 case MPOL_PREFERRED_MANY: 2445 return !!nodes_equal(a->nodes, b->nodes); 2446 case MPOL_LOCAL: 2447 return true; 2448 default: 2449 BUG(); 2450 return false; 2451 } 2452 } 2453 2454 /* 2455 * Shared memory backing store policy support. 2456 * 2457 * Remember policies even when nobody has shared memory mapped. 2458 * The policies are kept in Red-Black tree linked from the inode. 2459 * They are protected by the sp->lock rwlock, which should be held 2460 * for any accesses to the tree. 2461 */ 2462 2463 /* 2464 * lookup first element intersecting start-end. Caller holds sp->lock for 2465 * reading or for writing 2466 */ 2467 static struct sp_node * 2468 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2469 { 2470 struct rb_node *n = sp->root.rb_node; 2471 2472 while (n) { 2473 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2474 2475 if (start >= p->end) 2476 n = n->rb_right; 2477 else if (end <= p->start) 2478 n = n->rb_left; 2479 else 2480 break; 2481 } 2482 if (!n) 2483 return NULL; 2484 for (;;) { 2485 struct sp_node *w = NULL; 2486 struct rb_node *prev = rb_prev(n); 2487 if (!prev) 2488 break; 2489 w = rb_entry(prev, struct sp_node, nd); 2490 if (w->end <= start) 2491 break; 2492 n = prev; 2493 } 2494 return rb_entry(n, struct sp_node, nd); 2495 } 2496 2497 /* 2498 * Insert a new shared policy into the list. Caller holds sp->lock for 2499 * writing. 2500 */ 2501 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2502 { 2503 struct rb_node **p = &sp->root.rb_node; 2504 struct rb_node *parent = NULL; 2505 struct sp_node *nd; 2506 2507 while (*p) { 2508 parent = *p; 2509 nd = rb_entry(parent, struct sp_node, nd); 2510 if (new->start < nd->start) 2511 p = &(*p)->rb_left; 2512 else if (new->end > nd->end) 2513 p = &(*p)->rb_right; 2514 else 2515 BUG(); 2516 } 2517 rb_link_node(&new->nd, parent, p); 2518 rb_insert_color(&new->nd, &sp->root); 2519 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2520 new->policy ? new->policy->mode : 0); 2521 } 2522 2523 /* Find shared policy intersecting idx */ 2524 struct mempolicy * 2525 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2526 { 2527 struct mempolicy *pol = NULL; 2528 struct sp_node *sn; 2529 2530 if (!sp->root.rb_node) 2531 return NULL; 2532 read_lock(&sp->lock); 2533 sn = sp_lookup(sp, idx, idx+1); 2534 if (sn) { 2535 mpol_get(sn->policy); 2536 pol = sn->policy; 2537 } 2538 read_unlock(&sp->lock); 2539 return pol; 2540 } 2541 2542 static void sp_free(struct sp_node *n) 2543 { 2544 mpol_put(n->policy); 2545 kmem_cache_free(sn_cache, n); 2546 } 2547 2548 /** 2549 * mpol_misplaced - check whether current page node is valid in policy 2550 * 2551 * @page: page to be checked 2552 * @vma: vm area where page mapped 2553 * @addr: virtual address where page mapped 2554 * 2555 * Lookup current policy node id for vma,addr and "compare to" page's 2556 * node id. Policy determination "mimics" alloc_page_vma(). 2557 * Called from fault path where we know the vma and faulting address. 2558 * 2559 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2560 * policy, or a suitable node ID to allocate a replacement page from. 2561 */ 2562 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2563 { 2564 struct mempolicy *pol; 2565 struct zoneref *z; 2566 int curnid = page_to_nid(page); 2567 unsigned long pgoff; 2568 int thiscpu = raw_smp_processor_id(); 2569 int thisnid = cpu_to_node(thiscpu); 2570 int polnid = NUMA_NO_NODE; 2571 int ret = NUMA_NO_NODE; 2572 2573 pol = get_vma_policy(vma, addr); 2574 if (!(pol->flags & MPOL_F_MOF)) 2575 goto out; 2576 2577 switch (pol->mode) { 2578 case MPOL_INTERLEAVE: 2579 pgoff = vma->vm_pgoff; 2580 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2581 polnid = offset_il_node(pol, pgoff); 2582 break; 2583 2584 case MPOL_PREFERRED: 2585 if (node_isset(curnid, pol->nodes)) 2586 goto out; 2587 polnid = first_node(pol->nodes); 2588 break; 2589 2590 case MPOL_LOCAL: 2591 polnid = numa_node_id(); 2592 break; 2593 2594 case MPOL_BIND: 2595 /* Optimize placement among multiple nodes via NUMA balancing */ 2596 if (pol->flags & MPOL_F_MORON) { 2597 if (node_isset(thisnid, pol->nodes)) 2598 break; 2599 goto out; 2600 } 2601 fallthrough; 2602 2603 case MPOL_PREFERRED_MANY: 2604 /* 2605 * use current page if in policy nodemask, 2606 * else select nearest allowed node, if any. 2607 * If no allowed nodes, use current [!misplaced]. 2608 */ 2609 if (node_isset(curnid, pol->nodes)) 2610 goto out; 2611 z = first_zones_zonelist( 2612 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2613 gfp_zone(GFP_HIGHUSER), 2614 &pol->nodes); 2615 polnid = zone_to_nid(z->zone); 2616 break; 2617 2618 default: 2619 BUG(); 2620 } 2621 2622 /* Migrate the page towards the node whose CPU is referencing it */ 2623 if (pol->flags & MPOL_F_MORON) { 2624 polnid = thisnid; 2625 2626 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2627 goto out; 2628 } 2629 2630 if (curnid != polnid) 2631 ret = polnid; 2632 out: 2633 mpol_cond_put(pol); 2634 2635 return ret; 2636 } 2637 2638 /* 2639 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2640 * dropped after task->mempolicy is set to NULL so that any allocation done as 2641 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2642 * policy. 2643 */ 2644 void mpol_put_task_policy(struct task_struct *task) 2645 { 2646 struct mempolicy *pol; 2647 2648 task_lock(task); 2649 pol = task->mempolicy; 2650 task->mempolicy = NULL; 2651 task_unlock(task); 2652 mpol_put(pol); 2653 } 2654 2655 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2656 { 2657 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2658 rb_erase(&n->nd, &sp->root); 2659 sp_free(n); 2660 } 2661 2662 static void sp_node_init(struct sp_node *node, unsigned long start, 2663 unsigned long end, struct mempolicy *pol) 2664 { 2665 node->start = start; 2666 node->end = end; 2667 node->policy = pol; 2668 } 2669 2670 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2671 struct mempolicy *pol) 2672 { 2673 struct sp_node *n; 2674 struct mempolicy *newpol; 2675 2676 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2677 if (!n) 2678 return NULL; 2679 2680 newpol = mpol_dup(pol); 2681 if (IS_ERR(newpol)) { 2682 kmem_cache_free(sn_cache, n); 2683 return NULL; 2684 } 2685 newpol->flags |= MPOL_F_SHARED; 2686 sp_node_init(n, start, end, newpol); 2687 2688 return n; 2689 } 2690 2691 /* Replace a policy range. */ 2692 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2693 unsigned long end, struct sp_node *new) 2694 { 2695 struct sp_node *n; 2696 struct sp_node *n_new = NULL; 2697 struct mempolicy *mpol_new = NULL; 2698 int ret = 0; 2699 2700 restart: 2701 write_lock(&sp->lock); 2702 n = sp_lookup(sp, start, end); 2703 /* Take care of old policies in the same range. */ 2704 while (n && n->start < end) { 2705 struct rb_node *next = rb_next(&n->nd); 2706 if (n->start >= start) { 2707 if (n->end <= end) 2708 sp_delete(sp, n); 2709 else 2710 n->start = end; 2711 } else { 2712 /* Old policy spanning whole new range. */ 2713 if (n->end > end) { 2714 if (!n_new) 2715 goto alloc_new; 2716 2717 *mpol_new = *n->policy; 2718 atomic_set(&mpol_new->refcnt, 1); 2719 sp_node_init(n_new, end, n->end, mpol_new); 2720 n->end = start; 2721 sp_insert(sp, n_new); 2722 n_new = NULL; 2723 mpol_new = NULL; 2724 break; 2725 } else 2726 n->end = start; 2727 } 2728 if (!next) 2729 break; 2730 n = rb_entry(next, struct sp_node, nd); 2731 } 2732 if (new) 2733 sp_insert(sp, new); 2734 write_unlock(&sp->lock); 2735 ret = 0; 2736 2737 err_out: 2738 if (mpol_new) 2739 mpol_put(mpol_new); 2740 if (n_new) 2741 kmem_cache_free(sn_cache, n_new); 2742 2743 return ret; 2744 2745 alloc_new: 2746 write_unlock(&sp->lock); 2747 ret = -ENOMEM; 2748 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2749 if (!n_new) 2750 goto err_out; 2751 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2752 if (!mpol_new) 2753 goto err_out; 2754 atomic_set(&mpol_new->refcnt, 1); 2755 goto restart; 2756 } 2757 2758 /** 2759 * mpol_shared_policy_init - initialize shared policy for inode 2760 * @sp: pointer to inode shared policy 2761 * @mpol: struct mempolicy to install 2762 * 2763 * Install non-NULL @mpol in inode's shared policy rb-tree. 2764 * On entry, the current task has a reference on a non-NULL @mpol. 2765 * This must be released on exit. 2766 * This is called at get_inode() calls and we can use GFP_KERNEL. 2767 */ 2768 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2769 { 2770 int ret; 2771 2772 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2773 rwlock_init(&sp->lock); 2774 2775 if (mpol) { 2776 struct vm_area_struct pvma; 2777 struct mempolicy *new; 2778 NODEMASK_SCRATCH(scratch); 2779 2780 if (!scratch) 2781 goto put_mpol; 2782 /* contextualize the tmpfs mount point mempolicy */ 2783 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2784 if (IS_ERR(new)) 2785 goto free_scratch; /* no valid nodemask intersection */ 2786 2787 task_lock(current); 2788 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2789 task_unlock(current); 2790 if (ret) 2791 goto put_new; 2792 2793 /* Create pseudo-vma that contains just the policy */ 2794 vma_init(&pvma, NULL); 2795 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2796 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2797 2798 put_new: 2799 mpol_put(new); /* drop initial ref */ 2800 free_scratch: 2801 NODEMASK_SCRATCH_FREE(scratch); 2802 put_mpol: 2803 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2804 } 2805 } 2806 2807 int mpol_set_shared_policy(struct shared_policy *info, 2808 struct vm_area_struct *vma, struct mempolicy *npol) 2809 { 2810 int err; 2811 struct sp_node *new = NULL; 2812 unsigned long sz = vma_pages(vma); 2813 2814 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2815 vma->vm_pgoff, 2816 sz, npol ? npol->mode : -1, 2817 npol ? npol->flags : -1, 2818 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2819 2820 if (npol) { 2821 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2822 if (!new) 2823 return -ENOMEM; 2824 } 2825 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2826 if (err && new) 2827 sp_free(new); 2828 return err; 2829 } 2830 2831 /* Free a backing policy store on inode delete. */ 2832 void mpol_free_shared_policy(struct shared_policy *p) 2833 { 2834 struct sp_node *n; 2835 struct rb_node *next; 2836 2837 if (!p->root.rb_node) 2838 return; 2839 write_lock(&p->lock); 2840 next = rb_first(&p->root); 2841 while (next) { 2842 n = rb_entry(next, struct sp_node, nd); 2843 next = rb_next(&n->nd); 2844 sp_delete(p, n); 2845 } 2846 write_unlock(&p->lock); 2847 } 2848 2849 #ifdef CONFIG_NUMA_BALANCING 2850 static int __initdata numabalancing_override; 2851 2852 static void __init check_numabalancing_enable(void) 2853 { 2854 bool numabalancing_default = false; 2855 2856 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2857 numabalancing_default = true; 2858 2859 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2860 if (numabalancing_override) 2861 set_numabalancing_state(numabalancing_override == 1); 2862 2863 if (num_online_nodes() > 1 && !numabalancing_override) { 2864 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2865 numabalancing_default ? "Enabling" : "Disabling"); 2866 set_numabalancing_state(numabalancing_default); 2867 } 2868 } 2869 2870 static int __init setup_numabalancing(char *str) 2871 { 2872 int ret = 0; 2873 if (!str) 2874 goto out; 2875 2876 if (!strcmp(str, "enable")) { 2877 numabalancing_override = 1; 2878 ret = 1; 2879 } else if (!strcmp(str, "disable")) { 2880 numabalancing_override = -1; 2881 ret = 1; 2882 } 2883 out: 2884 if (!ret) 2885 pr_warn("Unable to parse numa_balancing=\n"); 2886 2887 return ret; 2888 } 2889 __setup("numa_balancing=", setup_numabalancing); 2890 #else 2891 static inline void __init check_numabalancing_enable(void) 2892 { 2893 } 2894 #endif /* CONFIG_NUMA_BALANCING */ 2895 2896 /* assumes fs == KERNEL_DS */ 2897 void __init numa_policy_init(void) 2898 { 2899 nodemask_t interleave_nodes; 2900 unsigned long largest = 0; 2901 int nid, prefer = 0; 2902 2903 policy_cache = kmem_cache_create("numa_policy", 2904 sizeof(struct mempolicy), 2905 0, SLAB_PANIC, NULL); 2906 2907 sn_cache = kmem_cache_create("shared_policy_node", 2908 sizeof(struct sp_node), 2909 0, SLAB_PANIC, NULL); 2910 2911 for_each_node(nid) { 2912 preferred_node_policy[nid] = (struct mempolicy) { 2913 .refcnt = ATOMIC_INIT(1), 2914 .mode = MPOL_PREFERRED, 2915 .flags = MPOL_F_MOF | MPOL_F_MORON, 2916 .nodes = nodemask_of_node(nid), 2917 }; 2918 } 2919 2920 /* 2921 * Set interleaving policy for system init. Interleaving is only 2922 * enabled across suitably sized nodes (default is >= 16MB), or 2923 * fall back to the largest node if they're all smaller. 2924 */ 2925 nodes_clear(interleave_nodes); 2926 for_each_node_state(nid, N_MEMORY) { 2927 unsigned long total_pages = node_present_pages(nid); 2928 2929 /* Preserve the largest node */ 2930 if (largest < total_pages) { 2931 largest = total_pages; 2932 prefer = nid; 2933 } 2934 2935 /* Interleave this node? */ 2936 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2937 node_set(nid, interleave_nodes); 2938 } 2939 2940 /* All too small, use the largest */ 2941 if (unlikely(nodes_empty(interleave_nodes))) 2942 node_set(prefer, interleave_nodes); 2943 2944 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2945 pr_err("%s: interleaving failed\n", __func__); 2946 2947 check_numabalancing_enable(); 2948 } 2949 2950 /* Reset policy of current process to default */ 2951 void numa_default_policy(void) 2952 { 2953 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2954 } 2955 2956 /* 2957 * Parse and format mempolicy from/to strings 2958 */ 2959 2960 static const char * const policy_modes[] = 2961 { 2962 [MPOL_DEFAULT] = "default", 2963 [MPOL_PREFERRED] = "prefer", 2964 [MPOL_BIND] = "bind", 2965 [MPOL_INTERLEAVE] = "interleave", 2966 [MPOL_LOCAL] = "local", 2967 [MPOL_PREFERRED_MANY] = "prefer (many)", 2968 }; 2969 2970 2971 #ifdef CONFIG_TMPFS 2972 /** 2973 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2974 * @str: string containing mempolicy to parse 2975 * @mpol: pointer to struct mempolicy pointer, returned on success. 2976 * 2977 * Format of input: 2978 * <mode>[=<flags>][:<nodelist>] 2979 * 2980 * Return: %0 on success, else %1 2981 */ 2982 int mpol_parse_str(char *str, struct mempolicy **mpol) 2983 { 2984 struct mempolicy *new = NULL; 2985 unsigned short mode_flags; 2986 nodemask_t nodes; 2987 char *nodelist = strchr(str, ':'); 2988 char *flags = strchr(str, '='); 2989 int err = 1, mode; 2990 2991 if (flags) 2992 *flags++ = '\0'; /* terminate mode string */ 2993 2994 if (nodelist) { 2995 /* NUL-terminate mode or flags string */ 2996 *nodelist++ = '\0'; 2997 if (nodelist_parse(nodelist, nodes)) 2998 goto out; 2999 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3000 goto out; 3001 } else 3002 nodes_clear(nodes); 3003 3004 mode = match_string(policy_modes, MPOL_MAX, str); 3005 if (mode < 0) 3006 goto out; 3007 3008 switch (mode) { 3009 case MPOL_PREFERRED: 3010 /* 3011 * Insist on a nodelist of one node only, although later 3012 * we use first_node(nodes) to grab a single node, so here 3013 * nodelist (or nodes) cannot be empty. 3014 */ 3015 if (nodelist) { 3016 char *rest = nodelist; 3017 while (isdigit(*rest)) 3018 rest++; 3019 if (*rest) 3020 goto out; 3021 if (nodes_empty(nodes)) 3022 goto out; 3023 } 3024 break; 3025 case MPOL_INTERLEAVE: 3026 /* 3027 * Default to online nodes with memory if no nodelist 3028 */ 3029 if (!nodelist) 3030 nodes = node_states[N_MEMORY]; 3031 break; 3032 case MPOL_LOCAL: 3033 /* 3034 * Don't allow a nodelist; mpol_new() checks flags 3035 */ 3036 if (nodelist) 3037 goto out; 3038 break; 3039 case MPOL_DEFAULT: 3040 /* 3041 * Insist on a empty nodelist 3042 */ 3043 if (!nodelist) 3044 err = 0; 3045 goto out; 3046 case MPOL_PREFERRED_MANY: 3047 case MPOL_BIND: 3048 /* 3049 * Insist on a nodelist 3050 */ 3051 if (!nodelist) 3052 goto out; 3053 } 3054 3055 mode_flags = 0; 3056 if (flags) { 3057 /* 3058 * Currently, we only support two mutually exclusive 3059 * mode flags. 3060 */ 3061 if (!strcmp(flags, "static")) 3062 mode_flags |= MPOL_F_STATIC_NODES; 3063 else if (!strcmp(flags, "relative")) 3064 mode_flags |= MPOL_F_RELATIVE_NODES; 3065 else 3066 goto out; 3067 } 3068 3069 new = mpol_new(mode, mode_flags, &nodes); 3070 if (IS_ERR(new)) 3071 goto out; 3072 3073 /* 3074 * Save nodes for mpol_to_str() to show the tmpfs mount options 3075 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3076 */ 3077 if (mode != MPOL_PREFERRED) { 3078 new->nodes = nodes; 3079 } else if (nodelist) { 3080 nodes_clear(new->nodes); 3081 node_set(first_node(nodes), new->nodes); 3082 } else { 3083 new->mode = MPOL_LOCAL; 3084 } 3085 3086 /* 3087 * Save nodes for contextualization: this will be used to "clone" 3088 * the mempolicy in a specific context [cpuset] at a later time. 3089 */ 3090 new->w.user_nodemask = nodes; 3091 3092 err = 0; 3093 3094 out: 3095 /* Restore string for error message */ 3096 if (nodelist) 3097 *--nodelist = ':'; 3098 if (flags) 3099 *--flags = '='; 3100 if (!err) 3101 *mpol = new; 3102 return err; 3103 } 3104 #endif /* CONFIG_TMPFS */ 3105 3106 /** 3107 * mpol_to_str - format a mempolicy structure for printing 3108 * @buffer: to contain formatted mempolicy string 3109 * @maxlen: length of @buffer 3110 * @pol: pointer to mempolicy to be formatted 3111 * 3112 * Convert @pol into a string. If @buffer is too short, truncate the string. 3113 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3114 * longest flag, "relative", and to display at least a few node ids. 3115 */ 3116 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3117 { 3118 char *p = buffer; 3119 nodemask_t nodes = NODE_MASK_NONE; 3120 unsigned short mode = MPOL_DEFAULT; 3121 unsigned short flags = 0; 3122 3123 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3124 mode = pol->mode; 3125 flags = pol->flags; 3126 } 3127 3128 switch (mode) { 3129 case MPOL_DEFAULT: 3130 case MPOL_LOCAL: 3131 break; 3132 case MPOL_PREFERRED: 3133 case MPOL_PREFERRED_MANY: 3134 case MPOL_BIND: 3135 case MPOL_INTERLEAVE: 3136 nodes = pol->nodes; 3137 break; 3138 default: 3139 WARN_ON_ONCE(1); 3140 snprintf(p, maxlen, "unknown"); 3141 return; 3142 } 3143 3144 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3145 3146 if (flags & MPOL_MODE_FLAGS) { 3147 p += snprintf(p, buffer + maxlen - p, "="); 3148 3149 /* 3150 * Currently, the only defined flags are mutually exclusive 3151 */ 3152 if (flags & MPOL_F_STATIC_NODES) 3153 p += snprintf(p, buffer + maxlen - p, "static"); 3154 else if (flags & MPOL_F_RELATIVE_NODES) 3155 p += snprintf(p, buffer + maxlen - p, "relative"); 3156 } 3157 3158 if (!nodes_empty(nodes)) 3159 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3160 nodemask_pr_args(&nodes)); 3161 } 3162