xref: /openbmc/linux/mm/mempolicy.c (revision 6189f1b0)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 	return pol->flags & MPOL_MODE_FLAGS;
168 }
169 
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 				   const nodemask_t *rel)
172 {
173 	nodemask_t tmp;
174 	nodes_fold(tmp, *orig, nodes_weight(*rel));
175 	nodes_onto(*ret, tmp, *rel);
176 }
177 
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 	if (nodes_empty(*nodes))
181 		return -EINVAL;
182 	pol->v.nodes = *nodes;
183 	return 0;
184 }
185 
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (!nodes)
189 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
190 	else if (nodes_empty(*nodes))
191 		return -EINVAL;			/*  no allowed nodes */
192 	else
193 		pol->v.preferred_node = first_node(*nodes);
194 	return 0;
195 }
196 
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->v.nodes = *nodes;
202 	return 0;
203 }
204 
205 /*
206  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207  * any, for the new policy.  mpol_new() has already validated the nodes
208  * parameter with respect to the policy mode and flags.  But, we need to
209  * handle an empty nodemask with MPOL_PREFERRED here.
210  *
211  * Must be called holding task's alloc_lock to protect task's mems_allowed
212  * and mempolicy.  May also be called holding the mmap_semaphore for write.
213  */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 	int ret;
218 
219 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 	if (pol == NULL)
221 		return 0;
222 	/* Check N_MEMORY */
223 	nodes_and(nsc->mask1,
224 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 
226 	VM_BUG_ON(!nodes);
227 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 		nodes = NULL;	/* explicit local allocation */
229 	else {
230 		if (pol->flags & MPOL_F_RELATIVE_NODES)
231 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 		else
233 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 
235 		if (mpol_store_user_nodemask(pol))
236 			pol->w.user_nodemask = *nodes;
237 		else
238 			pol->w.cpuset_mems_allowed =
239 						cpuset_current_mems_allowed;
240 	}
241 
242 	if (nodes)
243 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 	else
245 		ret = mpol_ops[pol->mode].create(pol, NULL);
246 	return ret;
247 }
248 
249 /*
250  * This function just creates a new policy, does some check and simple
251  * initialization. You must invoke mpol_set_nodemask() to set nodes.
252  */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 				  nodemask_t *nodes)
255 {
256 	struct mempolicy *policy;
257 
258 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 
261 	if (mode == MPOL_DEFAULT) {
262 		if (nodes && !nodes_empty(*nodes))
263 			return ERR_PTR(-EINVAL);
264 		return NULL;
265 	}
266 	VM_BUG_ON(!nodes);
267 
268 	/*
269 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 	 * All other modes require a valid pointer to a non-empty nodemask.
272 	 */
273 	if (mode == MPOL_PREFERRED) {
274 		if (nodes_empty(*nodes)) {
275 			if (((flags & MPOL_F_STATIC_NODES) ||
276 			     (flags & MPOL_F_RELATIVE_NODES)))
277 				return ERR_PTR(-EINVAL);
278 		}
279 	} else if (mode == MPOL_LOCAL) {
280 		if (!nodes_empty(*nodes))
281 			return ERR_PTR(-EINVAL);
282 		mode = MPOL_PREFERRED;
283 	} else if (nodes_empty(*nodes))
284 		return ERR_PTR(-EINVAL);
285 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 	if (!policy)
287 		return ERR_PTR(-ENOMEM);
288 	atomic_set(&policy->refcnt, 1);
289 	policy->mode = mode;
290 	policy->flags = flags;
291 
292 	return policy;
293 }
294 
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 	if (!atomic_dec_and_test(&p->refcnt))
299 		return;
300 	kmem_cache_free(policy_cache, p);
301 }
302 
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 				enum mpol_rebind_step step)
305 {
306 }
307 
308 /*
309  * step:
310  * 	MPOL_REBIND_ONCE  - do rebind work at once
311  * 	MPOL_REBIND_STEP1 - set all the newly nodes
312  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
313  */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 				 enum mpol_rebind_step step)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		/*
325 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 		 * result
327 		 */
328 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 			nodes_remap(tmp, pol->v.nodes,
330 					pol->w.cpuset_mems_allowed, *nodes);
331 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 		} else if (step == MPOL_REBIND_STEP2) {
333 			tmp = pol->w.cpuset_mems_allowed;
334 			pol->w.cpuset_mems_allowed = *nodes;
335 		} else
336 			BUG();
337 	}
338 
339 	if (nodes_empty(tmp))
340 		tmp = *nodes;
341 
342 	if (step == MPOL_REBIND_STEP1)
343 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 		pol->v.nodes = tmp;
346 	else
347 		BUG();
348 
349 	if (!node_isset(current->il_next, tmp)) {
350 		current->il_next = next_node(current->il_next, tmp);
351 		if (current->il_next >= MAX_NUMNODES)
352 			current->il_next = first_node(tmp);
353 		if (current->il_next >= MAX_NUMNODES)
354 			current->il_next = numa_node_id();
355 	}
356 }
357 
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 				  const nodemask_t *nodes,
360 				  enum mpol_rebind_step step)
361 {
362 	nodemask_t tmp;
363 
364 	if (pol->flags & MPOL_F_STATIC_NODES) {
365 		int node = first_node(pol->w.user_nodemask);
366 
367 		if (node_isset(node, *nodes)) {
368 			pol->v.preferred_node = node;
369 			pol->flags &= ~MPOL_F_LOCAL;
370 		} else
371 			pol->flags |= MPOL_F_LOCAL;
372 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 		pol->v.preferred_node = first_node(tmp);
375 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
376 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 						   pol->w.cpuset_mems_allowed,
378 						   *nodes);
379 		pol->w.cpuset_mems_allowed = *nodes;
380 	}
381 }
382 
383 /*
384  * mpol_rebind_policy - Migrate a policy to a different set of nodes
385  *
386  * If read-side task has no lock to protect task->mempolicy, write-side
387  * task will rebind the task->mempolicy by two step. The first step is
388  * setting all the newly nodes, and the second step is cleaning all the
389  * disallowed nodes. In this way, we can avoid finding no node to alloc
390  * page.
391  * If we have a lock to protect task->mempolicy in read-side, we do
392  * rebind directly.
393  *
394  * step:
395  * 	MPOL_REBIND_ONCE  - do rebind work at once
396  * 	MPOL_REBIND_STEP1 - set all the newly nodes
397  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
398  */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 				enum mpol_rebind_step step)
401 {
402 	if (!pol)
403 		return;
404 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 		return;
407 
408 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 		return;
410 
411 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 		BUG();
413 
414 	if (step == MPOL_REBIND_STEP1)
415 		pol->flags |= MPOL_F_REBINDING;
416 	else if (step == MPOL_REBIND_STEP2)
417 		pol->flags &= ~MPOL_F_REBINDING;
418 	else if (step >= MPOL_REBIND_NSTEP)
419 		BUG();
420 
421 	mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423 
424 /*
425  * Wrapper for mpol_rebind_policy() that just requires task
426  * pointer, and updates task mempolicy.
427  *
428  * Called with task's alloc_lock held.
429  */
430 
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 			enum mpol_rebind_step step)
433 {
434 	mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436 
437 /*
438  * Rebind each vma in mm to new nodemask.
439  *
440  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
441  */
442 
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 	struct vm_area_struct *vma;
446 
447 	down_write(&mm->mmap_sem);
448 	for (vma = mm->mmap; vma; vma = vma->vm_next)
449 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 	up_write(&mm->mmap_sem);
451 }
452 
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 	[MPOL_DEFAULT] = {
455 		.rebind = mpol_rebind_default,
456 	},
457 	[MPOL_INTERLEAVE] = {
458 		.create = mpol_new_interleave,
459 		.rebind = mpol_rebind_nodemask,
460 	},
461 	[MPOL_PREFERRED] = {
462 		.create = mpol_new_preferred,
463 		.rebind = mpol_rebind_preferred,
464 	},
465 	[MPOL_BIND] = {
466 		.create = mpol_new_bind,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 };
470 
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 				unsigned long flags);
473 
474 struct queue_pages {
475 	struct list_head *pagelist;
476 	unsigned long flags;
477 	nodemask_t *nmask;
478 	struct vm_area_struct *prev;
479 };
480 
481 /*
482  * Scan through pages checking if pages follow certain conditions,
483  * and move them to the pagelist if they do.
484  */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 			unsigned long end, struct mm_walk *walk)
487 {
488 	struct vm_area_struct *vma = walk->vma;
489 	struct page *page;
490 	struct queue_pages *qp = walk->private;
491 	unsigned long flags = qp->flags;
492 	int nid;
493 	pte_t *pte;
494 	spinlock_t *ptl;
495 
496 	split_huge_page_pmd(vma, addr, pmd);
497 	if (pmd_trans_unstable(pmd))
498 		return 0;
499 
500 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 	for (; addr != end; pte++, addr += PAGE_SIZE) {
502 		if (!pte_present(*pte))
503 			continue;
504 		page = vm_normal_page(vma, addr, *pte);
505 		if (!page)
506 			continue;
507 		/*
508 		 * vm_normal_page() filters out zero pages, but there might
509 		 * still be PageReserved pages to skip, perhaps in a VDSO.
510 		 */
511 		if (PageReserved(page))
512 			continue;
513 		nid = page_to_nid(page);
514 		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 			continue;
516 
517 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 			migrate_page_add(page, qp->pagelist, flags);
519 	}
520 	pte_unmap_unlock(pte - 1, ptl);
521 	cond_resched();
522 	return 0;
523 }
524 
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 			       unsigned long addr, unsigned long end,
527 			       struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 	struct queue_pages *qp = walk->private;
531 	unsigned long flags = qp->flags;
532 	int nid;
533 	struct page *page;
534 	spinlock_t *ptl;
535 	pte_t entry;
536 
537 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 	entry = huge_ptep_get(pte);
539 	if (!pte_present(entry))
540 		goto unlock;
541 	page = pte_page(entry);
542 	nid = page_to_nid(page);
543 	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 		goto unlock;
545 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 	if (flags & (MPOL_MF_MOVE_ALL) ||
547 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 		isolate_huge_page(page, qp->pagelist);
549 unlock:
550 	spin_unlock(ptl);
551 #else
552 	BUG();
553 #endif
554 	return 0;
555 }
556 
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559  * This is used to mark a range of virtual addresses to be inaccessible.
560  * These are later cleared by a NUMA hinting fault. Depending on these
561  * faults, pages may be migrated for better NUMA placement.
562  *
563  * This is assuming that NUMA faults are handled using PROT_NONE. If
564  * an architecture makes a different choice, it will need further
565  * changes to the core.
566  */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 			unsigned long addr, unsigned long end)
569 {
570 	int nr_updated;
571 
572 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 	if (nr_updated)
574 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575 
576 	return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 			unsigned long addr, unsigned long end)
581 {
582 	return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585 
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 				struct mm_walk *walk)
588 {
589 	struct vm_area_struct *vma = walk->vma;
590 	struct queue_pages *qp = walk->private;
591 	unsigned long endvma = vma->vm_end;
592 	unsigned long flags = qp->flags;
593 
594 	if (vma->vm_flags & VM_PFNMAP)
595 		return 1;
596 
597 	if (endvma > end)
598 		endvma = end;
599 	if (vma->vm_start > start)
600 		start = vma->vm_start;
601 
602 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 		if (!vma->vm_next && vma->vm_end < end)
604 			return -EFAULT;
605 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 			return -EFAULT;
607 	}
608 
609 	qp->prev = vma;
610 
611 	if (vma->vm_flags & VM_PFNMAP)
612 		return 1;
613 
614 	if (flags & MPOL_MF_LAZY) {
615 		/* Similar to task_numa_work, skip inaccessible VMAs */
616 		if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 			change_prot_numa(vma, start, endvma);
618 		return 1;
619 	}
620 
621 	if ((flags & MPOL_MF_STRICT) ||
622 	    ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 	     vma_migratable(vma)))
624 		/* queue pages from current vma */
625 		return 0;
626 	return 1;
627 }
628 
629 /*
630  * Walk through page tables and collect pages to be migrated.
631  *
632  * If pages found in a given range are on a set of nodes (determined by
633  * @nodes and @flags,) it's isolated and queued to the pagelist which is
634  * passed via @private.)
635  */
636 static int
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 		nodemask_t *nodes, unsigned long flags,
639 		struct list_head *pagelist)
640 {
641 	struct queue_pages qp = {
642 		.pagelist = pagelist,
643 		.flags = flags,
644 		.nmask = nodes,
645 		.prev = NULL,
646 	};
647 	struct mm_walk queue_pages_walk = {
648 		.hugetlb_entry = queue_pages_hugetlb,
649 		.pmd_entry = queue_pages_pte_range,
650 		.test_walk = queue_pages_test_walk,
651 		.mm = mm,
652 		.private = &qp,
653 	};
654 
655 	return walk_page_range(start, end, &queue_pages_walk);
656 }
657 
658 /*
659  * Apply policy to a single VMA
660  * This must be called with the mmap_sem held for writing.
661  */
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 						struct mempolicy *pol)
664 {
665 	int err;
666 	struct mempolicy *old;
667 	struct mempolicy *new;
668 
669 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 		 vma->vm_ops, vma->vm_file,
672 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
673 
674 	new = mpol_dup(pol);
675 	if (IS_ERR(new))
676 		return PTR_ERR(new);
677 
678 	if (vma->vm_ops && vma->vm_ops->set_policy) {
679 		err = vma->vm_ops->set_policy(vma, new);
680 		if (err)
681 			goto err_out;
682 	}
683 
684 	old = vma->vm_policy;
685 	vma->vm_policy = new; /* protected by mmap_sem */
686 	mpol_put(old);
687 
688 	return 0;
689  err_out:
690 	mpol_put(new);
691 	return err;
692 }
693 
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 		       unsigned long end, struct mempolicy *new_pol)
697 {
698 	struct vm_area_struct *next;
699 	struct vm_area_struct *prev;
700 	struct vm_area_struct *vma;
701 	int err = 0;
702 	pgoff_t pgoff;
703 	unsigned long vmstart;
704 	unsigned long vmend;
705 
706 	vma = find_vma(mm, start);
707 	if (!vma || vma->vm_start > start)
708 		return -EFAULT;
709 
710 	prev = vma->vm_prev;
711 	if (start > vma->vm_start)
712 		prev = vma;
713 
714 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
715 		next = vma->vm_next;
716 		vmstart = max(start, vma->vm_start);
717 		vmend   = min(end, vma->vm_end);
718 
719 		if (mpol_equal(vma_policy(vma), new_pol))
720 			continue;
721 
722 		pgoff = vma->vm_pgoff +
723 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 				  vma->anon_vma, vma->vm_file, pgoff,
726 				  new_pol);
727 		if (prev) {
728 			vma = prev;
729 			next = vma->vm_next;
730 			if (mpol_equal(vma_policy(vma), new_pol))
731 				continue;
732 			/* vma_merge() joined vma && vma->next, case 8 */
733 			goto replace;
734 		}
735 		if (vma->vm_start != vmstart) {
736 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
737 			if (err)
738 				goto out;
739 		}
740 		if (vma->vm_end != vmend) {
741 			err = split_vma(vma->vm_mm, vma, vmend, 0);
742 			if (err)
743 				goto out;
744 		}
745  replace:
746 		err = vma_replace_policy(vma, new_pol);
747 		if (err)
748 			goto out;
749 	}
750 
751  out:
752 	return err;
753 }
754 
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
757 			     nodemask_t *nodes)
758 {
759 	struct mempolicy *new, *old;
760 	NODEMASK_SCRATCH(scratch);
761 	int ret;
762 
763 	if (!scratch)
764 		return -ENOMEM;
765 
766 	new = mpol_new(mode, flags, nodes);
767 	if (IS_ERR(new)) {
768 		ret = PTR_ERR(new);
769 		goto out;
770 	}
771 
772 	task_lock(current);
773 	ret = mpol_set_nodemask(new, nodes, scratch);
774 	if (ret) {
775 		task_unlock(current);
776 		mpol_put(new);
777 		goto out;
778 	}
779 	old = current->mempolicy;
780 	current->mempolicy = new;
781 	if (new && new->mode == MPOL_INTERLEAVE &&
782 	    nodes_weight(new->v.nodes))
783 		current->il_next = first_node(new->v.nodes);
784 	task_unlock(current);
785 	mpol_put(old);
786 	ret = 0;
787 out:
788 	NODEMASK_SCRATCH_FREE(scratch);
789 	return ret;
790 }
791 
792 /*
793  * Return nodemask for policy for get_mempolicy() query
794  *
795  * Called with task's alloc_lock held
796  */
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
798 {
799 	nodes_clear(*nodes);
800 	if (p == &default_policy)
801 		return;
802 
803 	switch (p->mode) {
804 	case MPOL_BIND:
805 		/* Fall through */
806 	case MPOL_INTERLEAVE:
807 		*nodes = p->v.nodes;
808 		break;
809 	case MPOL_PREFERRED:
810 		if (!(p->flags & MPOL_F_LOCAL))
811 			node_set(p->v.preferred_node, *nodes);
812 		/* else return empty node mask for local allocation */
813 		break;
814 	default:
815 		BUG();
816 	}
817 }
818 
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
820 {
821 	struct page *p;
822 	int err;
823 
824 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
825 	if (err >= 0) {
826 		err = page_to_nid(p);
827 		put_page(p);
828 	}
829 	return err;
830 }
831 
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 			     unsigned long addr, unsigned long flags)
835 {
836 	int err;
837 	struct mm_struct *mm = current->mm;
838 	struct vm_area_struct *vma = NULL;
839 	struct mempolicy *pol = current->mempolicy;
840 
841 	if (flags &
842 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
843 		return -EINVAL;
844 
845 	if (flags & MPOL_F_MEMS_ALLOWED) {
846 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
847 			return -EINVAL;
848 		*policy = 0;	/* just so it's initialized */
849 		task_lock(current);
850 		*nmask  = cpuset_current_mems_allowed;
851 		task_unlock(current);
852 		return 0;
853 	}
854 
855 	if (flags & MPOL_F_ADDR) {
856 		/*
857 		 * Do NOT fall back to task policy if the
858 		 * vma/shared policy at addr is NULL.  We
859 		 * want to return MPOL_DEFAULT in this case.
860 		 */
861 		down_read(&mm->mmap_sem);
862 		vma = find_vma_intersection(mm, addr, addr+1);
863 		if (!vma) {
864 			up_read(&mm->mmap_sem);
865 			return -EFAULT;
866 		}
867 		if (vma->vm_ops && vma->vm_ops->get_policy)
868 			pol = vma->vm_ops->get_policy(vma, addr);
869 		else
870 			pol = vma->vm_policy;
871 	} else if (addr)
872 		return -EINVAL;
873 
874 	if (!pol)
875 		pol = &default_policy;	/* indicates default behavior */
876 
877 	if (flags & MPOL_F_NODE) {
878 		if (flags & MPOL_F_ADDR) {
879 			err = lookup_node(mm, addr);
880 			if (err < 0)
881 				goto out;
882 			*policy = err;
883 		} else if (pol == current->mempolicy &&
884 				pol->mode == MPOL_INTERLEAVE) {
885 			*policy = current->il_next;
886 		} else {
887 			err = -EINVAL;
888 			goto out;
889 		}
890 	} else {
891 		*policy = pol == &default_policy ? MPOL_DEFAULT :
892 						pol->mode;
893 		/*
894 		 * Internal mempolicy flags must be masked off before exposing
895 		 * the policy to userspace.
896 		 */
897 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
898 	}
899 
900 	if (vma) {
901 		up_read(&current->mm->mmap_sem);
902 		vma = NULL;
903 	}
904 
905 	err = 0;
906 	if (nmask) {
907 		if (mpol_store_user_nodemask(pol)) {
908 			*nmask = pol->w.user_nodemask;
909 		} else {
910 			task_lock(current);
911 			get_policy_nodemask(pol, nmask);
912 			task_unlock(current);
913 		}
914 	}
915 
916  out:
917 	mpol_cond_put(pol);
918 	if (vma)
919 		up_read(&current->mm->mmap_sem);
920 	return err;
921 }
922 
923 #ifdef CONFIG_MIGRATION
924 /*
925  * page migration
926  */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 				unsigned long flags)
929 {
930 	/*
931 	 * Avoid migrating a page that is shared with others.
932 	 */
933 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 		if (!isolate_lru_page(page)) {
935 			list_add_tail(&page->lru, pagelist);
936 			inc_zone_page_state(page, NR_ISOLATED_ANON +
937 					    page_is_file_cache(page));
938 		}
939 	}
940 }
941 
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
943 {
944 	if (PageHuge(page))
945 		return alloc_huge_page_node(page_hstate(compound_head(page)),
946 					node);
947 	else
948 		return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE |
949 						    __GFP_THISNODE, 0);
950 }
951 
952 /*
953  * Migrate pages from one node to a target node.
954  * Returns error or the number of pages not migrated.
955  */
956 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
957 			   int flags)
958 {
959 	nodemask_t nmask;
960 	LIST_HEAD(pagelist);
961 	int err = 0;
962 
963 	nodes_clear(nmask);
964 	node_set(source, nmask);
965 
966 	/*
967 	 * This does not "check" the range but isolates all pages that
968 	 * need migration.  Between passing in the full user address
969 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
970 	 */
971 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
972 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
973 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
974 
975 	if (!list_empty(&pagelist)) {
976 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
977 					MIGRATE_SYNC, MR_SYSCALL);
978 		if (err)
979 			putback_movable_pages(&pagelist);
980 	}
981 
982 	return err;
983 }
984 
985 /*
986  * Move pages between the two nodesets so as to preserve the physical
987  * layout as much as possible.
988  *
989  * Returns the number of page that could not be moved.
990  */
991 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
992 		     const nodemask_t *to, int flags)
993 {
994 	int busy = 0;
995 	int err;
996 	nodemask_t tmp;
997 
998 	err = migrate_prep();
999 	if (err)
1000 		return err;
1001 
1002 	down_read(&mm->mmap_sem);
1003 
1004 	/*
1005 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1006 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1007 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1008 	 * The pair of nodemasks 'to' and 'from' define the map.
1009 	 *
1010 	 * If no pair of bits is found that way, fallback to picking some
1011 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1012 	 * 'source' and 'dest' bits are the same, this represents a node
1013 	 * that will be migrating to itself, so no pages need move.
1014 	 *
1015 	 * If no bits are left in 'tmp', or if all remaining bits left
1016 	 * in 'tmp' correspond to the same bit in 'to', return false
1017 	 * (nothing left to migrate).
1018 	 *
1019 	 * This lets us pick a pair of nodes to migrate between, such that
1020 	 * if possible the dest node is not already occupied by some other
1021 	 * source node, minimizing the risk of overloading the memory on a
1022 	 * node that would happen if we migrated incoming memory to a node
1023 	 * before migrating outgoing memory source that same node.
1024 	 *
1025 	 * A single scan of tmp is sufficient.  As we go, we remember the
1026 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1027 	 * that not only moved, but what's better, moved to an empty slot
1028 	 * (d is not set in tmp), then we break out then, with that pair.
1029 	 * Otherwise when we finish scanning from_tmp, we at least have the
1030 	 * most recent <s, d> pair that moved.  If we get all the way through
1031 	 * the scan of tmp without finding any node that moved, much less
1032 	 * moved to an empty node, then there is nothing left worth migrating.
1033 	 */
1034 
1035 	tmp = *from;
1036 	while (!nodes_empty(tmp)) {
1037 		int s,d;
1038 		int source = NUMA_NO_NODE;
1039 		int dest = 0;
1040 
1041 		for_each_node_mask(s, tmp) {
1042 
1043 			/*
1044 			 * do_migrate_pages() tries to maintain the relative
1045 			 * node relationship of the pages established between
1046 			 * threads and memory areas.
1047                          *
1048 			 * However if the number of source nodes is not equal to
1049 			 * the number of destination nodes we can not preserve
1050 			 * this node relative relationship.  In that case, skip
1051 			 * copying memory from a node that is in the destination
1052 			 * mask.
1053 			 *
1054 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1055 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1056 			 */
1057 
1058 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1059 						(node_isset(s, *to)))
1060 				continue;
1061 
1062 			d = node_remap(s, *from, *to);
1063 			if (s == d)
1064 				continue;
1065 
1066 			source = s;	/* Node moved. Memorize */
1067 			dest = d;
1068 
1069 			/* dest not in remaining from nodes? */
1070 			if (!node_isset(dest, tmp))
1071 				break;
1072 		}
1073 		if (source == NUMA_NO_NODE)
1074 			break;
1075 
1076 		node_clear(source, tmp);
1077 		err = migrate_to_node(mm, source, dest, flags);
1078 		if (err > 0)
1079 			busy += err;
1080 		if (err < 0)
1081 			break;
1082 	}
1083 	up_read(&mm->mmap_sem);
1084 	if (err < 0)
1085 		return err;
1086 	return busy;
1087 
1088 }
1089 
1090 /*
1091  * Allocate a new page for page migration based on vma policy.
1092  * Start by assuming the page is mapped by the same vma as contains @start.
1093  * Search forward from there, if not.  N.B., this assumes that the
1094  * list of pages handed to migrate_pages()--which is how we get here--
1095  * is in virtual address order.
1096  */
1097 static struct page *new_page(struct page *page, unsigned long start, int **x)
1098 {
1099 	struct vm_area_struct *vma;
1100 	unsigned long uninitialized_var(address);
1101 
1102 	vma = find_vma(current->mm, start);
1103 	while (vma) {
1104 		address = page_address_in_vma(page, vma);
1105 		if (address != -EFAULT)
1106 			break;
1107 		vma = vma->vm_next;
1108 	}
1109 
1110 	if (PageHuge(page)) {
1111 		BUG_ON(!vma);
1112 		return alloc_huge_page_noerr(vma, address, 1);
1113 	}
1114 	/*
1115 	 * if !vma, alloc_page_vma() will use task or system default policy
1116 	 */
1117 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1118 }
1119 #else
1120 
1121 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1122 				unsigned long flags)
1123 {
1124 }
1125 
1126 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1127 		     const nodemask_t *to, int flags)
1128 {
1129 	return -ENOSYS;
1130 }
1131 
1132 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 {
1134 	return NULL;
1135 }
1136 #endif
1137 
1138 static long do_mbind(unsigned long start, unsigned long len,
1139 		     unsigned short mode, unsigned short mode_flags,
1140 		     nodemask_t *nmask, unsigned long flags)
1141 {
1142 	struct mm_struct *mm = current->mm;
1143 	struct mempolicy *new;
1144 	unsigned long end;
1145 	int err;
1146 	LIST_HEAD(pagelist);
1147 
1148 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1149 		return -EINVAL;
1150 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1151 		return -EPERM;
1152 
1153 	if (start & ~PAGE_MASK)
1154 		return -EINVAL;
1155 
1156 	if (mode == MPOL_DEFAULT)
1157 		flags &= ~MPOL_MF_STRICT;
1158 
1159 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1160 	end = start + len;
1161 
1162 	if (end < start)
1163 		return -EINVAL;
1164 	if (end == start)
1165 		return 0;
1166 
1167 	new = mpol_new(mode, mode_flags, nmask);
1168 	if (IS_ERR(new))
1169 		return PTR_ERR(new);
1170 
1171 	if (flags & MPOL_MF_LAZY)
1172 		new->flags |= MPOL_F_MOF;
1173 
1174 	/*
1175 	 * If we are using the default policy then operation
1176 	 * on discontinuous address spaces is okay after all
1177 	 */
1178 	if (!new)
1179 		flags |= MPOL_MF_DISCONTIG_OK;
1180 
1181 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1182 		 start, start + len, mode, mode_flags,
1183 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1184 
1185 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1186 
1187 		err = migrate_prep();
1188 		if (err)
1189 			goto mpol_out;
1190 	}
1191 	{
1192 		NODEMASK_SCRATCH(scratch);
1193 		if (scratch) {
1194 			down_write(&mm->mmap_sem);
1195 			task_lock(current);
1196 			err = mpol_set_nodemask(new, nmask, scratch);
1197 			task_unlock(current);
1198 			if (err)
1199 				up_write(&mm->mmap_sem);
1200 		} else
1201 			err = -ENOMEM;
1202 		NODEMASK_SCRATCH_FREE(scratch);
1203 	}
1204 	if (err)
1205 		goto mpol_out;
1206 
1207 	err = queue_pages_range(mm, start, end, nmask,
1208 			  flags | MPOL_MF_INVERT, &pagelist);
1209 	if (!err)
1210 		err = mbind_range(mm, start, end, new);
1211 
1212 	if (!err) {
1213 		int nr_failed = 0;
1214 
1215 		if (!list_empty(&pagelist)) {
1216 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1217 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1218 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1219 			if (nr_failed)
1220 				putback_movable_pages(&pagelist);
1221 		}
1222 
1223 		if (nr_failed && (flags & MPOL_MF_STRICT))
1224 			err = -EIO;
1225 	} else
1226 		putback_movable_pages(&pagelist);
1227 
1228 	up_write(&mm->mmap_sem);
1229  mpol_out:
1230 	mpol_put(new);
1231 	return err;
1232 }
1233 
1234 /*
1235  * User space interface with variable sized bitmaps for nodelists.
1236  */
1237 
1238 /* Copy a node mask from user space. */
1239 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1240 		     unsigned long maxnode)
1241 {
1242 	unsigned long k;
1243 	unsigned long nlongs;
1244 	unsigned long endmask;
1245 
1246 	--maxnode;
1247 	nodes_clear(*nodes);
1248 	if (maxnode == 0 || !nmask)
1249 		return 0;
1250 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 		return -EINVAL;
1252 
1253 	nlongs = BITS_TO_LONGS(maxnode);
1254 	if ((maxnode % BITS_PER_LONG) == 0)
1255 		endmask = ~0UL;
1256 	else
1257 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258 
1259 	/* When the user specified more nodes than supported just check
1260 	   if the non supported part is all zero. */
1261 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1262 		if (nlongs > PAGE_SIZE/sizeof(long))
1263 			return -EINVAL;
1264 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1265 			unsigned long t;
1266 			if (get_user(t, nmask + k))
1267 				return -EFAULT;
1268 			if (k == nlongs - 1) {
1269 				if (t & endmask)
1270 					return -EINVAL;
1271 			} else if (t)
1272 				return -EINVAL;
1273 		}
1274 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1275 		endmask = ~0UL;
1276 	}
1277 
1278 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1279 		return -EFAULT;
1280 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1281 	return 0;
1282 }
1283 
1284 /* Copy a kernel node mask to user space */
1285 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1286 			      nodemask_t *nodes)
1287 {
1288 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1289 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1290 
1291 	if (copy > nbytes) {
1292 		if (copy > PAGE_SIZE)
1293 			return -EINVAL;
1294 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1295 			return -EFAULT;
1296 		copy = nbytes;
1297 	}
1298 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1299 }
1300 
1301 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1302 		unsigned long, mode, const unsigned long __user *, nmask,
1303 		unsigned long, maxnode, unsigned, flags)
1304 {
1305 	nodemask_t nodes;
1306 	int err;
1307 	unsigned short mode_flags;
1308 
1309 	mode_flags = mode & MPOL_MODE_FLAGS;
1310 	mode &= ~MPOL_MODE_FLAGS;
1311 	if (mode >= MPOL_MAX)
1312 		return -EINVAL;
1313 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1314 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1315 		return -EINVAL;
1316 	err = get_nodes(&nodes, nmask, maxnode);
1317 	if (err)
1318 		return err;
1319 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1320 }
1321 
1322 /* Set the process memory policy */
1323 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1324 		unsigned long, maxnode)
1325 {
1326 	int err;
1327 	nodemask_t nodes;
1328 	unsigned short flags;
1329 
1330 	flags = mode & MPOL_MODE_FLAGS;
1331 	mode &= ~MPOL_MODE_FLAGS;
1332 	if ((unsigned int)mode >= MPOL_MAX)
1333 		return -EINVAL;
1334 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1335 		return -EINVAL;
1336 	err = get_nodes(&nodes, nmask, maxnode);
1337 	if (err)
1338 		return err;
1339 	return do_set_mempolicy(mode, flags, &nodes);
1340 }
1341 
1342 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1343 		const unsigned long __user *, old_nodes,
1344 		const unsigned long __user *, new_nodes)
1345 {
1346 	const struct cred *cred = current_cred(), *tcred;
1347 	struct mm_struct *mm = NULL;
1348 	struct task_struct *task;
1349 	nodemask_t task_nodes;
1350 	int err;
1351 	nodemask_t *old;
1352 	nodemask_t *new;
1353 	NODEMASK_SCRATCH(scratch);
1354 
1355 	if (!scratch)
1356 		return -ENOMEM;
1357 
1358 	old = &scratch->mask1;
1359 	new = &scratch->mask2;
1360 
1361 	err = get_nodes(old, old_nodes, maxnode);
1362 	if (err)
1363 		goto out;
1364 
1365 	err = get_nodes(new, new_nodes, maxnode);
1366 	if (err)
1367 		goto out;
1368 
1369 	/* Find the mm_struct */
1370 	rcu_read_lock();
1371 	task = pid ? find_task_by_vpid(pid) : current;
1372 	if (!task) {
1373 		rcu_read_unlock();
1374 		err = -ESRCH;
1375 		goto out;
1376 	}
1377 	get_task_struct(task);
1378 
1379 	err = -EINVAL;
1380 
1381 	/*
1382 	 * Check if this process has the right to modify the specified
1383 	 * process. The right exists if the process has administrative
1384 	 * capabilities, superuser privileges or the same
1385 	 * userid as the target process.
1386 	 */
1387 	tcred = __task_cred(task);
1388 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1389 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1390 	    !capable(CAP_SYS_NICE)) {
1391 		rcu_read_unlock();
1392 		err = -EPERM;
1393 		goto out_put;
1394 	}
1395 	rcu_read_unlock();
1396 
1397 	task_nodes = cpuset_mems_allowed(task);
1398 	/* Is the user allowed to access the target nodes? */
1399 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1400 		err = -EPERM;
1401 		goto out_put;
1402 	}
1403 
1404 	if (!nodes_subset(*new, node_states[N_MEMORY])) {
1405 		err = -EINVAL;
1406 		goto out_put;
1407 	}
1408 
1409 	err = security_task_movememory(task);
1410 	if (err)
1411 		goto out_put;
1412 
1413 	mm = get_task_mm(task);
1414 	put_task_struct(task);
1415 
1416 	if (!mm) {
1417 		err = -EINVAL;
1418 		goto out;
1419 	}
1420 
1421 	err = do_migrate_pages(mm, old, new,
1422 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1423 
1424 	mmput(mm);
1425 out:
1426 	NODEMASK_SCRATCH_FREE(scratch);
1427 
1428 	return err;
1429 
1430 out_put:
1431 	put_task_struct(task);
1432 	goto out;
1433 
1434 }
1435 
1436 
1437 /* Retrieve NUMA policy */
1438 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1439 		unsigned long __user *, nmask, unsigned long, maxnode,
1440 		unsigned long, addr, unsigned long, flags)
1441 {
1442 	int err;
1443 	int uninitialized_var(pval);
1444 	nodemask_t nodes;
1445 
1446 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1447 		return -EINVAL;
1448 
1449 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1450 
1451 	if (err)
1452 		return err;
1453 
1454 	if (policy && put_user(pval, policy))
1455 		return -EFAULT;
1456 
1457 	if (nmask)
1458 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1459 
1460 	return err;
1461 }
1462 
1463 #ifdef CONFIG_COMPAT
1464 
1465 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1466 		       compat_ulong_t __user *, nmask,
1467 		       compat_ulong_t, maxnode,
1468 		       compat_ulong_t, addr, compat_ulong_t, flags)
1469 {
1470 	long err;
1471 	unsigned long __user *nm = NULL;
1472 	unsigned long nr_bits, alloc_size;
1473 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1474 
1475 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1476 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1477 
1478 	if (nmask)
1479 		nm = compat_alloc_user_space(alloc_size);
1480 
1481 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1482 
1483 	if (!err && nmask) {
1484 		unsigned long copy_size;
1485 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1486 		err = copy_from_user(bm, nm, copy_size);
1487 		/* ensure entire bitmap is zeroed */
1488 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1489 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1490 	}
1491 
1492 	return err;
1493 }
1494 
1495 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1496 		       compat_ulong_t, maxnode)
1497 {
1498 	long err = 0;
1499 	unsigned long __user *nm = NULL;
1500 	unsigned long nr_bits, alloc_size;
1501 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1502 
1503 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1504 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1505 
1506 	if (nmask) {
1507 		err = compat_get_bitmap(bm, nmask, nr_bits);
1508 		nm = compat_alloc_user_space(alloc_size);
1509 		err |= copy_to_user(nm, bm, alloc_size);
1510 	}
1511 
1512 	if (err)
1513 		return -EFAULT;
1514 
1515 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1516 }
1517 
1518 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1519 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1520 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1521 {
1522 	long err = 0;
1523 	unsigned long __user *nm = NULL;
1524 	unsigned long nr_bits, alloc_size;
1525 	nodemask_t bm;
1526 
1527 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1528 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529 
1530 	if (nmask) {
1531 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1532 		nm = compat_alloc_user_space(alloc_size);
1533 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1534 	}
1535 
1536 	if (err)
1537 		return -EFAULT;
1538 
1539 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1540 }
1541 
1542 #endif
1543 
1544 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1545 						unsigned long addr)
1546 {
1547 	struct mempolicy *pol = NULL;
1548 
1549 	if (vma) {
1550 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 			pol = vma->vm_ops->get_policy(vma, addr);
1552 		} else if (vma->vm_policy) {
1553 			pol = vma->vm_policy;
1554 
1555 			/*
1556 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1557 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1558 			 * count on these policies which will be dropped by
1559 			 * mpol_cond_put() later
1560 			 */
1561 			if (mpol_needs_cond_ref(pol))
1562 				mpol_get(pol);
1563 		}
1564 	}
1565 
1566 	return pol;
1567 }
1568 
1569 /*
1570  * get_vma_policy(@vma, @addr)
1571  * @vma: virtual memory area whose policy is sought
1572  * @addr: address in @vma for shared policy lookup
1573  *
1574  * Returns effective policy for a VMA at specified address.
1575  * Falls back to current->mempolicy or system default policy, as necessary.
1576  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1577  * count--added by the get_policy() vm_op, as appropriate--to protect against
1578  * freeing by another task.  It is the caller's responsibility to free the
1579  * extra reference for shared policies.
1580  */
1581 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1582 						unsigned long addr)
1583 {
1584 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1585 
1586 	if (!pol)
1587 		pol = get_task_policy(current);
1588 
1589 	return pol;
1590 }
1591 
1592 bool vma_policy_mof(struct vm_area_struct *vma)
1593 {
1594 	struct mempolicy *pol;
1595 
1596 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1597 		bool ret = false;
1598 
1599 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1600 		if (pol && (pol->flags & MPOL_F_MOF))
1601 			ret = true;
1602 		mpol_cond_put(pol);
1603 
1604 		return ret;
1605 	}
1606 
1607 	pol = vma->vm_policy;
1608 	if (!pol)
1609 		pol = get_task_policy(current);
1610 
1611 	return pol->flags & MPOL_F_MOF;
1612 }
1613 
1614 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1615 {
1616 	enum zone_type dynamic_policy_zone = policy_zone;
1617 
1618 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1619 
1620 	/*
1621 	 * if policy->v.nodes has movable memory only,
1622 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1623 	 *
1624 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1625 	 * so if the following test faile, it implies
1626 	 * policy->v.nodes has movable memory only.
1627 	 */
1628 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1629 		dynamic_policy_zone = ZONE_MOVABLE;
1630 
1631 	return zone >= dynamic_policy_zone;
1632 }
1633 
1634 /*
1635  * Return a nodemask representing a mempolicy for filtering nodes for
1636  * page allocation
1637  */
1638 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1639 {
1640 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1641 	if (unlikely(policy->mode == MPOL_BIND) &&
1642 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1643 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1644 		return &policy->v.nodes;
1645 
1646 	return NULL;
1647 }
1648 
1649 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1650 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1651 	int nd)
1652 {
1653 	switch (policy->mode) {
1654 	case MPOL_PREFERRED:
1655 		if (!(policy->flags & MPOL_F_LOCAL))
1656 			nd = policy->v.preferred_node;
1657 		break;
1658 	case MPOL_BIND:
1659 		/*
1660 		 * Normally, MPOL_BIND allocations are node-local within the
1661 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1662 		 * current node isn't part of the mask, we use the zonelist for
1663 		 * the first node in the mask instead.
1664 		 */
1665 		if (unlikely(gfp & __GFP_THISNODE) &&
1666 				unlikely(!node_isset(nd, policy->v.nodes)))
1667 			nd = first_node(policy->v.nodes);
1668 		break;
1669 	default:
1670 		BUG();
1671 	}
1672 	return node_zonelist(nd, gfp);
1673 }
1674 
1675 /* Do dynamic interleaving for a process */
1676 static unsigned interleave_nodes(struct mempolicy *policy)
1677 {
1678 	unsigned nid, next;
1679 	struct task_struct *me = current;
1680 
1681 	nid = me->il_next;
1682 	next = next_node(nid, policy->v.nodes);
1683 	if (next >= MAX_NUMNODES)
1684 		next = first_node(policy->v.nodes);
1685 	if (next < MAX_NUMNODES)
1686 		me->il_next = next;
1687 	return nid;
1688 }
1689 
1690 /*
1691  * Depending on the memory policy provide a node from which to allocate the
1692  * next slab entry.
1693  */
1694 unsigned int mempolicy_slab_node(void)
1695 {
1696 	struct mempolicy *policy;
1697 	int node = numa_mem_id();
1698 
1699 	if (in_interrupt())
1700 		return node;
1701 
1702 	policy = current->mempolicy;
1703 	if (!policy || policy->flags & MPOL_F_LOCAL)
1704 		return node;
1705 
1706 	switch (policy->mode) {
1707 	case MPOL_PREFERRED:
1708 		/*
1709 		 * handled MPOL_F_LOCAL above
1710 		 */
1711 		return policy->v.preferred_node;
1712 
1713 	case MPOL_INTERLEAVE:
1714 		return interleave_nodes(policy);
1715 
1716 	case MPOL_BIND: {
1717 		/*
1718 		 * Follow bind policy behavior and start allocation at the
1719 		 * first node.
1720 		 */
1721 		struct zonelist *zonelist;
1722 		struct zone *zone;
1723 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1724 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1725 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1726 							&policy->v.nodes,
1727 							&zone);
1728 		return zone ? zone->node : node;
1729 	}
1730 
1731 	default:
1732 		BUG();
1733 	}
1734 }
1735 
1736 /* Do static interleaving for a VMA with known offset. */
1737 static unsigned offset_il_node(struct mempolicy *pol,
1738 		struct vm_area_struct *vma, unsigned long off)
1739 {
1740 	unsigned nnodes = nodes_weight(pol->v.nodes);
1741 	unsigned target;
1742 	int c;
1743 	int nid = NUMA_NO_NODE;
1744 
1745 	if (!nnodes)
1746 		return numa_node_id();
1747 	target = (unsigned int)off % nnodes;
1748 	c = 0;
1749 	do {
1750 		nid = next_node(nid, pol->v.nodes);
1751 		c++;
1752 	} while (c <= target);
1753 	return nid;
1754 }
1755 
1756 /* Determine a node number for interleave */
1757 static inline unsigned interleave_nid(struct mempolicy *pol,
1758 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1759 {
1760 	if (vma) {
1761 		unsigned long off;
1762 
1763 		/*
1764 		 * for small pages, there is no difference between
1765 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1766 		 * for huge pages, since vm_pgoff is in units of small
1767 		 * pages, we need to shift off the always 0 bits to get
1768 		 * a useful offset.
1769 		 */
1770 		BUG_ON(shift < PAGE_SHIFT);
1771 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1772 		off += (addr - vma->vm_start) >> shift;
1773 		return offset_il_node(pol, vma, off);
1774 	} else
1775 		return interleave_nodes(pol);
1776 }
1777 
1778 /*
1779  * Return the bit number of a random bit set in the nodemask.
1780  * (returns NUMA_NO_NODE if nodemask is empty)
1781  */
1782 int node_random(const nodemask_t *maskp)
1783 {
1784 	int w, bit = NUMA_NO_NODE;
1785 
1786 	w = nodes_weight(*maskp);
1787 	if (w)
1788 		bit = bitmap_ord_to_pos(maskp->bits,
1789 			get_random_int() % w, MAX_NUMNODES);
1790 	return bit;
1791 }
1792 
1793 #ifdef CONFIG_HUGETLBFS
1794 /*
1795  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1796  * @vma: virtual memory area whose policy is sought
1797  * @addr: address in @vma for shared policy lookup and interleave policy
1798  * @gfp_flags: for requested zone
1799  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1800  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1801  *
1802  * Returns a zonelist suitable for a huge page allocation and a pointer
1803  * to the struct mempolicy for conditional unref after allocation.
1804  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1805  * @nodemask for filtering the zonelist.
1806  *
1807  * Must be protected by read_mems_allowed_begin()
1808  */
1809 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1810 				gfp_t gfp_flags, struct mempolicy **mpol,
1811 				nodemask_t **nodemask)
1812 {
1813 	struct zonelist *zl;
1814 
1815 	*mpol = get_vma_policy(vma, addr);
1816 	*nodemask = NULL;	/* assume !MPOL_BIND */
1817 
1818 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1819 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1820 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1821 	} else {
1822 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1823 		if ((*mpol)->mode == MPOL_BIND)
1824 			*nodemask = &(*mpol)->v.nodes;
1825 	}
1826 	return zl;
1827 }
1828 
1829 /*
1830  * init_nodemask_of_mempolicy
1831  *
1832  * If the current task's mempolicy is "default" [NULL], return 'false'
1833  * to indicate default policy.  Otherwise, extract the policy nodemask
1834  * for 'bind' or 'interleave' policy into the argument nodemask, or
1835  * initialize the argument nodemask to contain the single node for
1836  * 'preferred' or 'local' policy and return 'true' to indicate presence
1837  * of non-default mempolicy.
1838  *
1839  * We don't bother with reference counting the mempolicy [mpol_get/put]
1840  * because the current task is examining it's own mempolicy and a task's
1841  * mempolicy is only ever changed by the task itself.
1842  *
1843  * N.B., it is the caller's responsibility to free a returned nodemask.
1844  */
1845 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1846 {
1847 	struct mempolicy *mempolicy;
1848 	int nid;
1849 
1850 	if (!(mask && current->mempolicy))
1851 		return false;
1852 
1853 	task_lock(current);
1854 	mempolicy = current->mempolicy;
1855 	switch (mempolicy->mode) {
1856 	case MPOL_PREFERRED:
1857 		if (mempolicy->flags & MPOL_F_LOCAL)
1858 			nid = numa_node_id();
1859 		else
1860 			nid = mempolicy->v.preferred_node;
1861 		init_nodemask_of_node(mask, nid);
1862 		break;
1863 
1864 	case MPOL_BIND:
1865 		/* Fall through */
1866 	case MPOL_INTERLEAVE:
1867 		*mask =  mempolicy->v.nodes;
1868 		break;
1869 
1870 	default:
1871 		BUG();
1872 	}
1873 	task_unlock(current);
1874 
1875 	return true;
1876 }
1877 #endif
1878 
1879 /*
1880  * mempolicy_nodemask_intersects
1881  *
1882  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1883  * policy.  Otherwise, check for intersection between mask and the policy
1884  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1885  * policy, always return true since it may allocate elsewhere on fallback.
1886  *
1887  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1888  */
1889 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1890 					const nodemask_t *mask)
1891 {
1892 	struct mempolicy *mempolicy;
1893 	bool ret = true;
1894 
1895 	if (!mask)
1896 		return ret;
1897 	task_lock(tsk);
1898 	mempolicy = tsk->mempolicy;
1899 	if (!mempolicy)
1900 		goto out;
1901 
1902 	switch (mempolicy->mode) {
1903 	case MPOL_PREFERRED:
1904 		/*
1905 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1906 		 * allocate from, they may fallback to other nodes when oom.
1907 		 * Thus, it's possible for tsk to have allocated memory from
1908 		 * nodes in mask.
1909 		 */
1910 		break;
1911 	case MPOL_BIND:
1912 	case MPOL_INTERLEAVE:
1913 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1914 		break;
1915 	default:
1916 		BUG();
1917 	}
1918 out:
1919 	task_unlock(tsk);
1920 	return ret;
1921 }
1922 
1923 /* Allocate a page in interleaved policy.
1924    Own path because it needs to do special accounting. */
1925 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1926 					unsigned nid)
1927 {
1928 	struct zonelist *zl;
1929 	struct page *page;
1930 
1931 	zl = node_zonelist(nid, gfp);
1932 	page = __alloc_pages(gfp, order, zl);
1933 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1934 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1935 	return page;
1936 }
1937 
1938 /**
1939  * 	alloc_pages_vma	- Allocate a page for a VMA.
1940  *
1941  * 	@gfp:
1942  *      %GFP_USER    user allocation.
1943  *      %GFP_KERNEL  kernel allocations,
1944  *      %GFP_HIGHMEM highmem/user allocations,
1945  *      %GFP_FS      allocation should not call back into a file system.
1946  *      %GFP_ATOMIC  don't sleep.
1947  *
1948  *	@order:Order of the GFP allocation.
1949  * 	@vma:  Pointer to VMA or NULL if not available.
1950  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1951  *	@node: Which node to prefer for allocation (modulo policy).
1952  *	@hugepage: for hugepages try only the preferred node if possible
1953  *
1954  * 	This function allocates a page from the kernel page pool and applies
1955  *	a NUMA policy associated with the VMA or the current process.
1956  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1957  *	mm_struct of the VMA to prevent it from going away. Should be used for
1958  *	all allocations for pages that will be mapped into user space. Returns
1959  *	NULL when no page can be allocated.
1960  */
1961 struct page *
1962 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1963 		unsigned long addr, int node, bool hugepage)
1964 {
1965 	struct mempolicy *pol;
1966 	struct page *page;
1967 	unsigned int cpuset_mems_cookie;
1968 	struct zonelist *zl;
1969 	nodemask_t *nmask;
1970 
1971 retry_cpuset:
1972 	pol = get_vma_policy(vma, addr);
1973 	cpuset_mems_cookie = read_mems_allowed_begin();
1974 
1975 	if (pol->mode == MPOL_INTERLEAVE) {
1976 		unsigned nid;
1977 
1978 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1979 		mpol_cond_put(pol);
1980 		page = alloc_page_interleave(gfp, order, nid);
1981 		goto out;
1982 	}
1983 
1984 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1985 		int hpage_node = node;
1986 
1987 		/*
1988 		 * For hugepage allocation and non-interleave policy which
1989 		 * allows the current node (or other explicitly preferred
1990 		 * node) we only try to allocate from the current/preferred
1991 		 * node and don't fall back to other nodes, as the cost of
1992 		 * remote accesses would likely offset THP benefits.
1993 		 *
1994 		 * If the policy is interleave, or does not allow the current
1995 		 * node in its nodemask, we allocate the standard way.
1996 		 */
1997 		if (pol->mode == MPOL_PREFERRED &&
1998 						!(pol->flags & MPOL_F_LOCAL))
1999 			hpage_node = pol->v.preferred_node;
2000 
2001 		nmask = policy_nodemask(gfp, pol);
2002 		if (!nmask || node_isset(hpage_node, *nmask)) {
2003 			mpol_cond_put(pol);
2004 			page = alloc_pages_exact_node(hpage_node,
2005 						gfp | __GFP_THISNODE, order);
2006 			goto out;
2007 		}
2008 	}
2009 
2010 	nmask = policy_nodemask(gfp, pol);
2011 	zl = policy_zonelist(gfp, pol, node);
2012 	mpol_cond_put(pol);
2013 	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2014 out:
2015 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2016 		goto retry_cpuset;
2017 	return page;
2018 }
2019 
2020 /**
2021  * 	alloc_pages_current - Allocate pages.
2022  *
2023  *	@gfp:
2024  *		%GFP_USER   user allocation,
2025  *      	%GFP_KERNEL kernel allocation,
2026  *      	%GFP_HIGHMEM highmem allocation,
2027  *      	%GFP_FS     don't call back into a file system.
2028  *      	%GFP_ATOMIC don't sleep.
2029  *	@order: Power of two of allocation size in pages. 0 is a single page.
2030  *
2031  *	Allocate a page from the kernel page pool.  When not in
2032  *	interrupt context and apply the current process NUMA policy.
2033  *	Returns NULL when no page can be allocated.
2034  *
2035  *	Don't call cpuset_update_task_memory_state() unless
2036  *	1) it's ok to take cpuset_sem (can WAIT), and
2037  *	2) allocating for current task (not interrupt).
2038  */
2039 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2040 {
2041 	struct mempolicy *pol = &default_policy;
2042 	struct page *page;
2043 	unsigned int cpuset_mems_cookie;
2044 
2045 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2046 		pol = get_task_policy(current);
2047 
2048 retry_cpuset:
2049 	cpuset_mems_cookie = read_mems_allowed_begin();
2050 
2051 	/*
2052 	 * No reference counting needed for current->mempolicy
2053 	 * nor system default_policy
2054 	 */
2055 	if (pol->mode == MPOL_INTERLEAVE)
2056 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2057 	else
2058 		page = __alloc_pages_nodemask(gfp, order,
2059 				policy_zonelist(gfp, pol, numa_node_id()),
2060 				policy_nodemask(gfp, pol));
2061 
2062 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2063 		goto retry_cpuset;
2064 
2065 	return page;
2066 }
2067 EXPORT_SYMBOL(alloc_pages_current);
2068 
2069 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2070 {
2071 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2072 
2073 	if (IS_ERR(pol))
2074 		return PTR_ERR(pol);
2075 	dst->vm_policy = pol;
2076 	return 0;
2077 }
2078 
2079 /*
2080  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2081  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2082  * with the mems_allowed returned by cpuset_mems_allowed().  This
2083  * keeps mempolicies cpuset relative after its cpuset moves.  See
2084  * further kernel/cpuset.c update_nodemask().
2085  *
2086  * current's mempolicy may be rebinded by the other task(the task that changes
2087  * cpuset's mems), so we needn't do rebind work for current task.
2088  */
2089 
2090 /* Slow path of a mempolicy duplicate */
2091 struct mempolicy *__mpol_dup(struct mempolicy *old)
2092 {
2093 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2094 
2095 	if (!new)
2096 		return ERR_PTR(-ENOMEM);
2097 
2098 	/* task's mempolicy is protected by alloc_lock */
2099 	if (old == current->mempolicy) {
2100 		task_lock(current);
2101 		*new = *old;
2102 		task_unlock(current);
2103 	} else
2104 		*new = *old;
2105 
2106 	if (current_cpuset_is_being_rebound()) {
2107 		nodemask_t mems = cpuset_mems_allowed(current);
2108 		if (new->flags & MPOL_F_REBINDING)
2109 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2110 		else
2111 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2112 	}
2113 	atomic_set(&new->refcnt, 1);
2114 	return new;
2115 }
2116 
2117 /* Slow path of a mempolicy comparison */
2118 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2119 {
2120 	if (!a || !b)
2121 		return false;
2122 	if (a->mode != b->mode)
2123 		return false;
2124 	if (a->flags != b->flags)
2125 		return false;
2126 	if (mpol_store_user_nodemask(a))
2127 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2128 			return false;
2129 
2130 	switch (a->mode) {
2131 	case MPOL_BIND:
2132 		/* Fall through */
2133 	case MPOL_INTERLEAVE:
2134 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2135 	case MPOL_PREFERRED:
2136 		return a->v.preferred_node == b->v.preferred_node;
2137 	default:
2138 		BUG();
2139 		return false;
2140 	}
2141 }
2142 
2143 /*
2144  * Shared memory backing store policy support.
2145  *
2146  * Remember policies even when nobody has shared memory mapped.
2147  * The policies are kept in Red-Black tree linked from the inode.
2148  * They are protected by the sp->lock spinlock, which should be held
2149  * for any accesses to the tree.
2150  */
2151 
2152 /* lookup first element intersecting start-end */
2153 /* Caller holds sp->lock */
2154 static struct sp_node *
2155 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2156 {
2157 	struct rb_node *n = sp->root.rb_node;
2158 
2159 	while (n) {
2160 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2161 
2162 		if (start >= p->end)
2163 			n = n->rb_right;
2164 		else if (end <= p->start)
2165 			n = n->rb_left;
2166 		else
2167 			break;
2168 	}
2169 	if (!n)
2170 		return NULL;
2171 	for (;;) {
2172 		struct sp_node *w = NULL;
2173 		struct rb_node *prev = rb_prev(n);
2174 		if (!prev)
2175 			break;
2176 		w = rb_entry(prev, struct sp_node, nd);
2177 		if (w->end <= start)
2178 			break;
2179 		n = prev;
2180 	}
2181 	return rb_entry(n, struct sp_node, nd);
2182 }
2183 
2184 /* Insert a new shared policy into the list. */
2185 /* Caller holds sp->lock */
2186 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2187 {
2188 	struct rb_node **p = &sp->root.rb_node;
2189 	struct rb_node *parent = NULL;
2190 	struct sp_node *nd;
2191 
2192 	while (*p) {
2193 		parent = *p;
2194 		nd = rb_entry(parent, struct sp_node, nd);
2195 		if (new->start < nd->start)
2196 			p = &(*p)->rb_left;
2197 		else if (new->end > nd->end)
2198 			p = &(*p)->rb_right;
2199 		else
2200 			BUG();
2201 	}
2202 	rb_link_node(&new->nd, parent, p);
2203 	rb_insert_color(&new->nd, &sp->root);
2204 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2205 		 new->policy ? new->policy->mode : 0);
2206 }
2207 
2208 /* Find shared policy intersecting idx */
2209 struct mempolicy *
2210 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2211 {
2212 	struct mempolicy *pol = NULL;
2213 	struct sp_node *sn;
2214 
2215 	if (!sp->root.rb_node)
2216 		return NULL;
2217 	spin_lock(&sp->lock);
2218 	sn = sp_lookup(sp, idx, idx+1);
2219 	if (sn) {
2220 		mpol_get(sn->policy);
2221 		pol = sn->policy;
2222 	}
2223 	spin_unlock(&sp->lock);
2224 	return pol;
2225 }
2226 
2227 static void sp_free(struct sp_node *n)
2228 {
2229 	mpol_put(n->policy);
2230 	kmem_cache_free(sn_cache, n);
2231 }
2232 
2233 /**
2234  * mpol_misplaced - check whether current page node is valid in policy
2235  *
2236  * @page: page to be checked
2237  * @vma: vm area where page mapped
2238  * @addr: virtual address where page mapped
2239  *
2240  * Lookup current policy node id for vma,addr and "compare to" page's
2241  * node id.
2242  *
2243  * Returns:
2244  *	-1	- not misplaced, page is in the right node
2245  *	node	- node id where the page should be
2246  *
2247  * Policy determination "mimics" alloc_page_vma().
2248  * Called from fault path where we know the vma and faulting address.
2249  */
2250 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2251 {
2252 	struct mempolicy *pol;
2253 	struct zone *zone;
2254 	int curnid = page_to_nid(page);
2255 	unsigned long pgoff;
2256 	int thiscpu = raw_smp_processor_id();
2257 	int thisnid = cpu_to_node(thiscpu);
2258 	int polnid = -1;
2259 	int ret = -1;
2260 
2261 	BUG_ON(!vma);
2262 
2263 	pol = get_vma_policy(vma, addr);
2264 	if (!(pol->flags & MPOL_F_MOF))
2265 		goto out;
2266 
2267 	switch (pol->mode) {
2268 	case MPOL_INTERLEAVE:
2269 		BUG_ON(addr >= vma->vm_end);
2270 		BUG_ON(addr < vma->vm_start);
2271 
2272 		pgoff = vma->vm_pgoff;
2273 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2274 		polnid = offset_il_node(pol, vma, pgoff);
2275 		break;
2276 
2277 	case MPOL_PREFERRED:
2278 		if (pol->flags & MPOL_F_LOCAL)
2279 			polnid = numa_node_id();
2280 		else
2281 			polnid = pol->v.preferred_node;
2282 		break;
2283 
2284 	case MPOL_BIND:
2285 		/*
2286 		 * allows binding to multiple nodes.
2287 		 * use current page if in policy nodemask,
2288 		 * else select nearest allowed node, if any.
2289 		 * If no allowed nodes, use current [!misplaced].
2290 		 */
2291 		if (node_isset(curnid, pol->v.nodes))
2292 			goto out;
2293 		(void)first_zones_zonelist(
2294 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2295 				gfp_zone(GFP_HIGHUSER),
2296 				&pol->v.nodes, &zone);
2297 		polnid = zone->node;
2298 		break;
2299 
2300 	default:
2301 		BUG();
2302 	}
2303 
2304 	/* Migrate the page towards the node whose CPU is referencing it */
2305 	if (pol->flags & MPOL_F_MORON) {
2306 		polnid = thisnid;
2307 
2308 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2309 			goto out;
2310 	}
2311 
2312 	if (curnid != polnid)
2313 		ret = polnid;
2314 out:
2315 	mpol_cond_put(pol);
2316 
2317 	return ret;
2318 }
2319 
2320 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2321 {
2322 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2323 	rb_erase(&n->nd, &sp->root);
2324 	sp_free(n);
2325 }
2326 
2327 static void sp_node_init(struct sp_node *node, unsigned long start,
2328 			unsigned long end, struct mempolicy *pol)
2329 {
2330 	node->start = start;
2331 	node->end = end;
2332 	node->policy = pol;
2333 }
2334 
2335 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2336 				struct mempolicy *pol)
2337 {
2338 	struct sp_node *n;
2339 	struct mempolicy *newpol;
2340 
2341 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2342 	if (!n)
2343 		return NULL;
2344 
2345 	newpol = mpol_dup(pol);
2346 	if (IS_ERR(newpol)) {
2347 		kmem_cache_free(sn_cache, n);
2348 		return NULL;
2349 	}
2350 	newpol->flags |= MPOL_F_SHARED;
2351 	sp_node_init(n, start, end, newpol);
2352 
2353 	return n;
2354 }
2355 
2356 /* Replace a policy range. */
2357 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2358 				 unsigned long end, struct sp_node *new)
2359 {
2360 	struct sp_node *n;
2361 	struct sp_node *n_new = NULL;
2362 	struct mempolicy *mpol_new = NULL;
2363 	int ret = 0;
2364 
2365 restart:
2366 	spin_lock(&sp->lock);
2367 	n = sp_lookup(sp, start, end);
2368 	/* Take care of old policies in the same range. */
2369 	while (n && n->start < end) {
2370 		struct rb_node *next = rb_next(&n->nd);
2371 		if (n->start >= start) {
2372 			if (n->end <= end)
2373 				sp_delete(sp, n);
2374 			else
2375 				n->start = end;
2376 		} else {
2377 			/* Old policy spanning whole new range. */
2378 			if (n->end > end) {
2379 				if (!n_new)
2380 					goto alloc_new;
2381 
2382 				*mpol_new = *n->policy;
2383 				atomic_set(&mpol_new->refcnt, 1);
2384 				sp_node_init(n_new, end, n->end, mpol_new);
2385 				n->end = start;
2386 				sp_insert(sp, n_new);
2387 				n_new = NULL;
2388 				mpol_new = NULL;
2389 				break;
2390 			} else
2391 				n->end = start;
2392 		}
2393 		if (!next)
2394 			break;
2395 		n = rb_entry(next, struct sp_node, nd);
2396 	}
2397 	if (new)
2398 		sp_insert(sp, new);
2399 	spin_unlock(&sp->lock);
2400 	ret = 0;
2401 
2402 err_out:
2403 	if (mpol_new)
2404 		mpol_put(mpol_new);
2405 	if (n_new)
2406 		kmem_cache_free(sn_cache, n_new);
2407 
2408 	return ret;
2409 
2410 alloc_new:
2411 	spin_unlock(&sp->lock);
2412 	ret = -ENOMEM;
2413 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2414 	if (!n_new)
2415 		goto err_out;
2416 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2417 	if (!mpol_new)
2418 		goto err_out;
2419 	goto restart;
2420 }
2421 
2422 /**
2423  * mpol_shared_policy_init - initialize shared policy for inode
2424  * @sp: pointer to inode shared policy
2425  * @mpol:  struct mempolicy to install
2426  *
2427  * Install non-NULL @mpol in inode's shared policy rb-tree.
2428  * On entry, the current task has a reference on a non-NULL @mpol.
2429  * This must be released on exit.
2430  * This is called at get_inode() calls and we can use GFP_KERNEL.
2431  */
2432 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2433 {
2434 	int ret;
2435 
2436 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2437 	spin_lock_init(&sp->lock);
2438 
2439 	if (mpol) {
2440 		struct vm_area_struct pvma;
2441 		struct mempolicy *new;
2442 		NODEMASK_SCRATCH(scratch);
2443 
2444 		if (!scratch)
2445 			goto put_mpol;
2446 		/* contextualize the tmpfs mount point mempolicy */
2447 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2448 		if (IS_ERR(new))
2449 			goto free_scratch; /* no valid nodemask intersection */
2450 
2451 		task_lock(current);
2452 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2453 		task_unlock(current);
2454 		if (ret)
2455 			goto put_new;
2456 
2457 		/* Create pseudo-vma that contains just the policy */
2458 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2459 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2460 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2461 
2462 put_new:
2463 		mpol_put(new);			/* drop initial ref */
2464 free_scratch:
2465 		NODEMASK_SCRATCH_FREE(scratch);
2466 put_mpol:
2467 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2468 	}
2469 }
2470 
2471 int mpol_set_shared_policy(struct shared_policy *info,
2472 			struct vm_area_struct *vma, struct mempolicy *npol)
2473 {
2474 	int err;
2475 	struct sp_node *new = NULL;
2476 	unsigned long sz = vma_pages(vma);
2477 
2478 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2479 		 vma->vm_pgoff,
2480 		 sz, npol ? npol->mode : -1,
2481 		 npol ? npol->flags : -1,
2482 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2483 
2484 	if (npol) {
2485 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2486 		if (!new)
2487 			return -ENOMEM;
2488 	}
2489 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2490 	if (err && new)
2491 		sp_free(new);
2492 	return err;
2493 }
2494 
2495 /* Free a backing policy store on inode delete. */
2496 void mpol_free_shared_policy(struct shared_policy *p)
2497 {
2498 	struct sp_node *n;
2499 	struct rb_node *next;
2500 
2501 	if (!p->root.rb_node)
2502 		return;
2503 	spin_lock(&p->lock);
2504 	next = rb_first(&p->root);
2505 	while (next) {
2506 		n = rb_entry(next, struct sp_node, nd);
2507 		next = rb_next(&n->nd);
2508 		sp_delete(p, n);
2509 	}
2510 	spin_unlock(&p->lock);
2511 }
2512 
2513 #ifdef CONFIG_NUMA_BALANCING
2514 static int __initdata numabalancing_override;
2515 
2516 static void __init check_numabalancing_enable(void)
2517 {
2518 	bool numabalancing_default = false;
2519 
2520 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2521 		numabalancing_default = true;
2522 
2523 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2524 	if (numabalancing_override)
2525 		set_numabalancing_state(numabalancing_override == 1);
2526 
2527 	if (num_online_nodes() > 1 && !numabalancing_override) {
2528 		pr_info("%s automatic NUMA balancing. "
2529 			"Configure with numa_balancing= or the "
2530 			"kernel.numa_balancing sysctl",
2531 			numabalancing_default ? "Enabling" : "Disabling");
2532 		set_numabalancing_state(numabalancing_default);
2533 	}
2534 }
2535 
2536 static int __init setup_numabalancing(char *str)
2537 {
2538 	int ret = 0;
2539 	if (!str)
2540 		goto out;
2541 
2542 	if (!strcmp(str, "enable")) {
2543 		numabalancing_override = 1;
2544 		ret = 1;
2545 	} else if (!strcmp(str, "disable")) {
2546 		numabalancing_override = -1;
2547 		ret = 1;
2548 	}
2549 out:
2550 	if (!ret)
2551 		pr_warn("Unable to parse numa_balancing=\n");
2552 
2553 	return ret;
2554 }
2555 __setup("numa_balancing=", setup_numabalancing);
2556 #else
2557 static inline void __init check_numabalancing_enable(void)
2558 {
2559 }
2560 #endif /* CONFIG_NUMA_BALANCING */
2561 
2562 /* assumes fs == KERNEL_DS */
2563 void __init numa_policy_init(void)
2564 {
2565 	nodemask_t interleave_nodes;
2566 	unsigned long largest = 0;
2567 	int nid, prefer = 0;
2568 
2569 	policy_cache = kmem_cache_create("numa_policy",
2570 					 sizeof(struct mempolicy),
2571 					 0, SLAB_PANIC, NULL);
2572 
2573 	sn_cache = kmem_cache_create("shared_policy_node",
2574 				     sizeof(struct sp_node),
2575 				     0, SLAB_PANIC, NULL);
2576 
2577 	for_each_node(nid) {
2578 		preferred_node_policy[nid] = (struct mempolicy) {
2579 			.refcnt = ATOMIC_INIT(1),
2580 			.mode = MPOL_PREFERRED,
2581 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2582 			.v = { .preferred_node = nid, },
2583 		};
2584 	}
2585 
2586 	/*
2587 	 * Set interleaving policy for system init. Interleaving is only
2588 	 * enabled across suitably sized nodes (default is >= 16MB), or
2589 	 * fall back to the largest node if they're all smaller.
2590 	 */
2591 	nodes_clear(interleave_nodes);
2592 	for_each_node_state(nid, N_MEMORY) {
2593 		unsigned long total_pages = node_present_pages(nid);
2594 
2595 		/* Preserve the largest node */
2596 		if (largest < total_pages) {
2597 			largest = total_pages;
2598 			prefer = nid;
2599 		}
2600 
2601 		/* Interleave this node? */
2602 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2603 			node_set(nid, interleave_nodes);
2604 	}
2605 
2606 	/* All too small, use the largest */
2607 	if (unlikely(nodes_empty(interleave_nodes)))
2608 		node_set(prefer, interleave_nodes);
2609 
2610 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2611 		pr_err("%s: interleaving failed\n", __func__);
2612 
2613 	check_numabalancing_enable();
2614 }
2615 
2616 /* Reset policy of current process to default */
2617 void numa_default_policy(void)
2618 {
2619 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2620 }
2621 
2622 /*
2623  * Parse and format mempolicy from/to strings
2624  */
2625 
2626 /*
2627  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2628  */
2629 static const char * const policy_modes[] =
2630 {
2631 	[MPOL_DEFAULT]    = "default",
2632 	[MPOL_PREFERRED]  = "prefer",
2633 	[MPOL_BIND]       = "bind",
2634 	[MPOL_INTERLEAVE] = "interleave",
2635 	[MPOL_LOCAL]      = "local",
2636 };
2637 
2638 
2639 #ifdef CONFIG_TMPFS
2640 /**
2641  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2642  * @str:  string containing mempolicy to parse
2643  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2644  *
2645  * Format of input:
2646  *	<mode>[=<flags>][:<nodelist>]
2647  *
2648  * On success, returns 0, else 1
2649  */
2650 int mpol_parse_str(char *str, struct mempolicy **mpol)
2651 {
2652 	struct mempolicy *new = NULL;
2653 	unsigned short mode;
2654 	unsigned short mode_flags;
2655 	nodemask_t nodes;
2656 	char *nodelist = strchr(str, ':');
2657 	char *flags = strchr(str, '=');
2658 	int err = 1;
2659 
2660 	if (nodelist) {
2661 		/* NUL-terminate mode or flags string */
2662 		*nodelist++ = '\0';
2663 		if (nodelist_parse(nodelist, nodes))
2664 			goto out;
2665 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2666 			goto out;
2667 	} else
2668 		nodes_clear(nodes);
2669 
2670 	if (flags)
2671 		*flags++ = '\0';	/* terminate mode string */
2672 
2673 	for (mode = 0; mode < MPOL_MAX; mode++) {
2674 		if (!strcmp(str, policy_modes[mode])) {
2675 			break;
2676 		}
2677 	}
2678 	if (mode >= MPOL_MAX)
2679 		goto out;
2680 
2681 	switch (mode) {
2682 	case MPOL_PREFERRED:
2683 		/*
2684 		 * Insist on a nodelist of one node only
2685 		 */
2686 		if (nodelist) {
2687 			char *rest = nodelist;
2688 			while (isdigit(*rest))
2689 				rest++;
2690 			if (*rest)
2691 				goto out;
2692 		}
2693 		break;
2694 	case MPOL_INTERLEAVE:
2695 		/*
2696 		 * Default to online nodes with memory if no nodelist
2697 		 */
2698 		if (!nodelist)
2699 			nodes = node_states[N_MEMORY];
2700 		break;
2701 	case MPOL_LOCAL:
2702 		/*
2703 		 * Don't allow a nodelist;  mpol_new() checks flags
2704 		 */
2705 		if (nodelist)
2706 			goto out;
2707 		mode = MPOL_PREFERRED;
2708 		break;
2709 	case MPOL_DEFAULT:
2710 		/*
2711 		 * Insist on a empty nodelist
2712 		 */
2713 		if (!nodelist)
2714 			err = 0;
2715 		goto out;
2716 	case MPOL_BIND:
2717 		/*
2718 		 * Insist on a nodelist
2719 		 */
2720 		if (!nodelist)
2721 			goto out;
2722 	}
2723 
2724 	mode_flags = 0;
2725 	if (flags) {
2726 		/*
2727 		 * Currently, we only support two mutually exclusive
2728 		 * mode flags.
2729 		 */
2730 		if (!strcmp(flags, "static"))
2731 			mode_flags |= MPOL_F_STATIC_NODES;
2732 		else if (!strcmp(flags, "relative"))
2733 			mode_flags |= MPOL_F_RELATIVE_NODES;
2734 		else
2735 			goto out;
2736 	}
2737 
2738 	new = mpol_new(mode, mode_flags, &nodes);
2739 	if (IS_ERR(new))
2740 		goto out;
2741 
2742 	/*
2743 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2744 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2745 	 */
2746 	if (mode != MPOL_PREFERRED)
2747 		new->v.nodes = nodes;
2748 	else if (nodelist)
2749 		new->v.preferred_node = first_node(nodes);
2750 	else
2751 		new->flags |= MPOL_F_LOCAL;
2752 
2753 	/*
2754 	 * Save nodes for contextualization: this will be used to "clone"
2755 	 * the mempolicy in a specific context [cpuset] at a later time.
2756 	 */
2757 	new->w.user_nodemask = nodes;
2758 
2759 	err = 0;
2760 
2761 out:
2762 	/* Restore string for error message */
2763 	if (nodelist)
2764 		*--nodelist = ':';
2765 	if (flags)
2766 		*--flags = '=';
2767 	if (!err)
2768 		*mpol = new;
2769 	return err;
2770 }
2771 #endif /* CONFIG_TMPFS */
2772 
2773 /**
2774  * mpol_to_str - format a mempolicy structure for printing
2775  * @buffer:  to contain formatted mempolicy string
2776  * @maxlen:  length of @buffer
2777  * @pol:  pointer to mempolicy to be formatted
2778  *
2779  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2780  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2781  * longest flag, "relative", and to display at least a few node ids.
2782  */
2783 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2784 {
2785 	char *p = buffer;
2786 	nodemask_t nodes = NODE_MASK_NONE;
2787 	unsigned short mode = MPOL_DEFAULT;
2788 	unsigned short flags = 0;
2789 
2790 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2791 		mode = pol->mode;
2792 		flags = pol->flags;
2793 	}
2794 
2795 	switch (mode) {
2796 	case MPOL_DEFAULT:
2797 		break;
2798 	case MPOL_PREFERRED:
2799 		if (flags & MPOL_F_LOCAL)
2800 			mode = MPOL_LOCAL;
2801 		else
2802 			node_set(pol->v.preferred_node, nodes);
2803 		break;
2804 	case MPOL_BIND:
2805 	case MPOL_INTERLEAVE:
2806 		nodes = pol->v.nodes;
2807 		break;
2808 	default:
2809 		WARN_ON_ONCE(1);
2810 		snprintf(p, maxlen, "unknown");
2811 		return;
2812 	}
2813 
2814 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2815 
2816 	if (flags & MPOL_MODE_FLAGS) {
2817 		p += snprintf(p, buffer + maxlen - p, "=");
2818 
2819 		/*
2820 		 * Currently, the only defined flags are mutually exclusive
2821 		 */
2822 		if (flags & MPOL_F_STATIC_NODES)
2823 			p += snprintf(p, buffer + maxlen - p, "static");
2824 		else if (flags & MPOL_F_RELATIVE_NODES)
2825 			p += snprintf(p, buffer + maxlen - p, "relative");
2826 	}
2827 
2828 	if (!nodes_empty(nodes))
2829 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2830 			       nodemask_pr_args(&nodes));
2831 }
2832