xref: /openbmc/linux/mm/mempolicy.c (revision 615c36f5)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 	int err = 0;
614 	struct mempolicy *old = vma->vm_policy;
615 
616 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 		 vma->vm_ops, vma->vm_file,
619 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620 
621 	if (vma->vm_ops && vma->vm_ops->set_policy)
622 		err = vma->vm_ops->set_policy(vma, new);
623 	if (!err) {
624 		mpol_get(new);
625 		vma->vm_policy = new;
626 		mpol_put(old);
627 	}
628 	return err;
629 }
630 
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 		       unsigned long end, struct mempolicy *new_pol)
634 {
635 	struct vm_area_struct *next;
636 	struct vm_area_struct *prev;
637 	struct vm_area_struct *vma;
638 	int err = 0;
639 	unsigned long vmstart;
640 	unsigned long vmend;
641 
642 	vma = find_vma_prev(mm, start, &prev);
643 	if (!vma || vma->vm_start > start)
644 		return -EFAULT;
645 
646 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
647 		next = vma->vm_next;
648 		vmstart = max(start, vma->vm_start);
649 		vmend   = min(end, vma->vm_end);
650 
651 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
652 				  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
653 				  new_pol);
654 		if (prev) {
655 			vma = prev;
656 			next = vma->vm_next;
657 			continue;
658 		}
659 		if (vma->vm_start != vmstart) {
660 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
661 			if (err)
662 				goto out;
663 		}
664 		if (vma->vm_end != vmend) {
665 			err = split_vma(vma->vm_mm, vma, vmend, 0);
666 			if (err)
667 				goto out;
668 		}
669 		err = policy_vma(vma, new_pol);
670 		if (err)
671 			goto out;
672 	}
673 
674  out:
675 	return err;
676 }
677 
678 /*
679  * Update task->flags PF_MEMPOLICY bit: set iff non-default
680  * mempolicy.  Allows more rapid checking of this (combined perhaps
681  * with other PF_* flag bits) on memory allocation hot code paths.
682  *
683  * If called from outside this file, the task 'p' should -only- be
684  * a newly forked child not yet visible on the task list, because
685  * manipulating the task flags of a visible task is not safe.
686  *
687  * The above limitation is why this routine has the funny name
688  * mpol_fix_fork_child_flag().
689  *
690  * It is also safe to call this with a task pointer of current,
691  * which the static wrapper mpol_set_task_struct_flag() does,
692  * for use within this file.
693  */
694 
695 void mpol_fix_fork_child_flag(struct task_struct *p)
696 {
697 	if (p->mempolicy)
698 		p->flags |= PF_MEMPOLICY;
699 	else
700 		p->flags &= ~PF_MEMPOLICY;
701 }
702 
703 static void mpol_set_task_struct_flag(void)
704 {
705 	mpol_fix_fork_child_flag(current);
706 }
707 
708 /* Set the process memory policy */
709 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
710 			     nodemask_t *nodes)
711 {
712 	struct mempolicy *new, *old;
713 	struct mm_struct *mm = current->mm;
714 	NODEMASK_SCRATCH(scratch);
715 	int ret;
716 
717 	if (!scratch)
718 		return -ENOMEM;
719 
720 	new = mpol_new(mode, flags, nodes);
721 	if (IS_ERR(new)) {
722 		ret = PTR_ERR(new);
723 		goto out;
724 	}
725 	/*
726 	 * prevent changing our mempolicy while show_numa_maps()
727 	 * is using it.
728 	 * Note:  do_set_mempolicy() can be called at init time
729 	 * with no 'mm'.
730 	 */
731 	if (mm)
732 		down_write(&mm->mmap_sem);
733 	task_lock(current);
734 	ret = mpol_set_nodemask(new, nodes, scratch);
735 	if (ret) {
736 		task_unlock(current);
737 		if (mm)
738 			up_write(&mm->mmap_sem);
739 		mpol_put(new);
740 		goto out;
741 	}
742 	old = current->mempolicy;
743 	current->mempolicy = new;
744 	mpol_set_task_struct_flag();
745 	if (new && new->mode == MPOL_INTERLEAVE &&
746 	    nodes_weight(new->v.nodes))
747 		current->il_next = first_node(new->v.nodes);
748 	task_unlock(current);
749 	if (mm)
750 		up_write(&mm->mmap_sem);
751 
752 	mpol_put(old);
753 	ret = 0;
754 out:
755 	NODEMASK_SCRATCH_FREE(scratch);
756 	return ret;
757 }
758 
759 /*
760  * Return nodemask for policy for get_mempolicy() query
761  *
762  * Called with task's alloc_lock held
763  */
764 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
765 {
766 	nodes_clear(*nodes);
767 	if (p == &default_policy)
768 		return;
769 
770 	switch (p->mode) {
771 	case MPOL_BIND:
772 		/* Fall through */
773 	case MPOL_INTERLEAVE:
774 		*nodes = p->v.nodes;
775 		break;
776 	case MPOL_PREFERRED:
777 		if (!(p->flags & MPOL_F_LOCAL))
778 			node_set(p->v.preferred_node, *nodes);
779 		/* else return empty node mask for local allocation */
780 		break;
781 	default:
782 		BUG();
783 	}
784 }
785 
786 static int lookup_node(struct mm_struct *mm, unsigned long addr)
787 {
788 	struct page *p;
789 	int err;
790 
791 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
792 	if (err >= 0) {
793 		err = page_to_nid(p);
794 		put_page(p);
795 	}
796 	return err;
797 }
798 
799 /* Retrieve NUMA policy */
800 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
801 			     unsigned long addr, unsigned long flags)
802 {
803 	int err;
804 	struct mm_struct *mm = current->mm;
805 	struct vm_area_struct *vma = NULL;
806 	struct mempolicy *pol = current->mempolicy;
807 
808 	if (flags &
809 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
810 		return -EINVAL;
811 
812 	if (flags & MPOL_F_MEMS_ALLOWED) {
813 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
814 			return -EINVAL;
815 		*policy = 0;	/* just so it's initialized */
816 		task_lock(current);
817 		*nmask  = cpuset_current_mems_allowed;
818 		task_unlock(current);
819 		return 0;
820 	}
821 
822 	if (flags & MPOL_F_ADDR) {
823 		/*
824 		 * Do NOT fall back to task policy if the
825 		 * vma/shared policy at addr is NULL.  We
826 		 * want to return MPOL_DEFAULT in this case.
827 		 */
828 		down_read(&mm->mmap_sem);
829 		vma = find_vma_intersection(mm, addr, addr+1);
830 		if (!vma) {
831 			up_read(&mm->mmap_sem);
832 			return -EFAULT;
833 		}
834 		if (vma->vm_ops && vma->vm_ops->get_policy)
835 			pol = vma->vm_ops->get_policy(vma, addr);
836 		else
837 			pol = vma->vm_policy;
838 	} else if (addr)
839 		return -EINVAL;
840 
841 	if (!pol)
842 		pol = &default_policy;	/* indicates default behavior */
843 
844 	if (flags & MPOL_F_NODE) {
845 		if (flags & MPOL_F_ADDR) {
846 			err = lookup_node(mm, addr);
847 			if (err < 0)
848 				goto out;
849 			*policy = err;
850 		} else if (pol == current->mempolicy &&
851 				pol->mode == MPOL_INTERLEAVE) {
852 			*policy = current->il_next;
853 		} else {
854 			err = -EINVAL;
855 			goto out;
856 		}
857 	} else {
858 		*policy = pol == &default_policy ? MPOL_DEFAULT :
859 						pol->mode;
860 		/*
861 		 * Internal mempolicy flags must be masked off before exposing
862 		 * the policy to userspace.
863 		 */
864 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
865 	}
866 
867 	if (vma) {
868 		up_read(&current->mm->mmap_sem);
869 		vma = NULL;
870 	}
871 
872 	err = 0;
873 	if (nmask) {
874 		if (mpol_store_user_nodemask(pol)) {
875 			*nmask = pol->w.user_nodemask;
876 		} else {
877 			task_lock(current);
878 			get_policy_nodemask(pol, nmask);
879 			task_unlock(current);
880 		}
881 	}
882 
883  out:
884 	mpol_cond_put(pol);
885 	if (vma)
886 		up_read(&current->mm->mmap_sem);
887 	return err;
888 }
889 
890 #ifdef CONFIG_MIGRATION
891 /*
892  * page migration
893  */
894 static void migrate_page_add(struct page *page, struct list_head *pagelist,
895 				unsigned long flags)
896 {
897 	/*
898 	 * Avoid migrating a page that is shared with others.
899 	 */
900 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
901 		if (!isolate_lru_page(page)) {
902 			list_add_tail(&page->lru, pagelist);
903 			inc_zone_page_state(page, NR_ISOLATED_ANON +
904 					    page_is_file_cache(page));
905 		}
906 	}
907 }
908 
909 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
910 {
911 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
912 }
913 
914 /*
915  * Migrate pages from one node to a target node.
916  * Returns error or the number of pages not migrated.
917  */
918 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
919 			   int flags)
920 {
921 	nodemask_t nmask;
922 	LIST_HEAD(pagelist);
923 	int err = 0;
924 	struct vm_area_struct *vma;
925 
926 	nodes_clear(nmask);
927 	node_set(source, nmask);
928 
929 	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
930 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
931 	if (IS_ERR(vma))
932 		return PTR_ERR(vma);
933 
934 	if (!list_empty(&pagelist)) {
935 		err = migrate_pages(&pagelist, new_node_page, dest,
936 								false, true);
937 		if (err)
938 			putback_lru_pages(&pagelist);
939 	}
940 
941 	return err;
942 }
943 
944 /*
945  * Move pages between the two nodesets so as to preserve the physical
946  * layout as much as possible.
947  *
948  * Returns the number of page that could not be moved.
949  */
950 int do_migrate_pages(struct mm_struct *mm,
951 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
952 {
953 	int busy = 0;
954 	int err;
955 	nodemask_t tmp;
956 
957 	err = migrate_prep();
958 	if (err)
959 		return err;
960 
961 	down_read(&mm->mmap_sem);
962 
963 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
964 	if (err)
965 		goto out;
966 
967 	/*
968 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
969 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
970 	 * bit in 'tmp', and return that <source, dest> pair for migration.
971 	 * The pair of nodemasks 'to' and 'from' define the map.
972 	 *
973 	 * If no pair of bits is found that way, fallback to picking some
974 	 * pair of 'source' and 'dest' bits that are not the same.  If the
975 	 * 'source' and 'dest' bits are the same, this represents a node
976 	 * that will be migrating to itself, so no pages need move.
977 	 *
978 	 * If no bits are left in 'tmp', or if all remaining bits left
979 	 * in 'tmp' correspond to the same bit in 'to', return false
980 	 * (nothing left to migrate).
981 	 *
982 	 * This lets us pick a pair of nodes to migrate between, such that
983 	 * if possible the dest node is not already occupied by some other
984 	 * source node, minimizing the risk of overloading the memory on a
985 	 * node that would happen if we migrated incoming memory to a node
986 	 * before migrating outgoing memory source that same node.
987 	 *
988 	 * A single scan of tmp is sufficient.  As we go, we remember the
989 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
990 	 * that not only moved, but what's better, moved to an empty slot
991 	 * (d is not set in tmp), then we break out then, with that pair.
992 	 * Otherwise when we finish scanning from_tmp, we at least have the
993 	 * most recent <s, d> pair that moved.  If we get all the way through
994 	 * the scan of tmp without finding any node that moved, much less
995 	 * moved to an empty node, then there is nothing left worth migrating.
996 	 */
997 
998 	tmp = *from_nodes;
999 	while (!nodes_empty(tmp)) {
1000 		int s,d;
1001 		int source = -1;
1002 		int dest = 0;
1003 
1004 		for_each_node_mask(s, tmp) {
1005 			d = node_remap(s, *from_nodes, *to_nodes);
1006 			if (s == d)
1007 				continue;
1008 
1009 			source = s;	/* Node moved. Memorize */
1010 			dest = d;
1011 
1012 			/* dest not in remaining from nodes? */
1013 			if (!node_isset(dest, tmp))
1014 				break;
1015 		}
1016 		if (source == -1)
1017 			break;
1018 
1019 		node_clear(source, tmp);
1020 		err = migrate_to_node(mm, source, dest, flags);
1021 		if (err > 0)
1022 			busy += err;
1023 		if (err < 0)
1024 			break;
1025 	}
1026 out:
1027 	up_read(&mm->mmap_sem);
1028 	if (err < 0)
1029 		return err;
1030 	return busy;
1031 
1032 }
1033 
1034 /*
1035  * Allocate a new page for page migration based on vma policy.
1036  * Start assuming that page is mapped by vma pointed to by @private.
1037  * Search forward from there, if not.  N.B., this assumes that the
1038  * list of pages handed to migrate_pages()--which is how we get here--
1039  * is in virtual address order.
1040  */
1041 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1042 {
1043 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1044 	unsigned long uninitialized_var(address);
1045 
1046 	while (vma) {
1047 		address = page_address_in_vma(page, vma);
1048 		if (address != -EFAULT)
1049 			break;
1050 		vma = vma->vm_next;
1051 	}
1052 
1053 	/*
1054 	 * if !vma, alloc_page_vma() will use task or system default policy
1055 	 */
1056 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1057 }
1058 #else
1059 
1060 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1061 				unsigned long flags)
1062 {
1063 }
1064 
1065 int do_migrate_pages(struct mm_struct *mm,
1066 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1067 {
1068 	return -ENOSYS;
1069 }
1070 
1071 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072 {
1073 	return NULL;
1074 }
1075 #endif
1076 
1077 static long do_mbind(unsigned long start, unsigned long len,
1078 		     unsigned short mode, unsigned short mode_flags,
1079 		     nodemask_t *nmask, unsigned long flags)
1080 {
1081 	struct vm_area_struct *vma;
1082 	struct mm_struct *mm = current->mm;
1083 	struct mempolicy *new;
1084 	unsigned long end;
1085 	int err;
1086 	LIST_HEAD(pagelist);
1087 
1088 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1089 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1090 		return -EINVAL;
1091 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1092 		return -EPERM;
1093 
1094 	if (start & ~PAGE_MASK)
1095 		return -EINVAL;
1096 
1097 	if (mode == MPOL_DEFAULT)
1098 		flags &= ~MPOL_MF_STRICT;
1099 
1100 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1101 	end = start + len;
1102 
1103 	if (end < start)
1104 		return -EINVAL;
1105 	if (end == start)
1106 		return 0;
1107 
1108 	new = mpol_new(mode, mode_flags, nmask);
1109 	if (IS_ERR(new))
1110 		return PTR_ERR(new);
1111 
1112 	/*
1113 	 * If we are using the default policy then operation
1114 	 * on discontinuous address spaces is okay after all
1115 	 */
1116 	if (!new)
1117 		flags |= MPOL_MF_DISCONTIG_OK;
1118 
1119 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1120 		 start, start + len, mode, mode_flags,
1121 		 nmask ? nodes_addr(*nmask)[0] : -1);
1122 
1123 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1124 
1125 		err = migrate_prep();
1126 		if (err)
1127 			goto mpol_out;
1128 	}
1129 	{
1130 		NODEMASK_SCRATCH(scratch);
1131 		if (scratch) {
1132 			down_write(&mm->mmap_sem);
1133 			task_lock(current);
1134 			err = mpol_set_nodemask(new, nmask, scratch);
1135 			task_unlock(current);
1136 			if (err)
1137 				up_write(&mm->mmap_sem);
1138 		} else
1139 			err = -ENOMEM;
1140 		NODEMASK_SCRATCH_FREE(scratch);
1141 	}
1142 	if (err)
1143 		goto mpol_out;
1144 
1145 	vma = check_range(mm, start, end, nmask,
1146 			  flags | MPOL_MF_INVERT, &pagelist);
1147 
1148 	err = PTR_ERR(vma);
1149 	if (!IS_ERR(vma)) {
1150 		int nr_failed = 0;
1151 
1152 		err = mbind_range(mm, start, end, new);
1153 
1154 		if (!list_empty(&pagelist)) {
1155 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1156 						(unsigned long)vma,
1157 						false, true);
1158 			if (nr_failed)
1159 				putback_lru_pages(&pagelist);
1160 		}
1161 
1162 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1163 			err = -EIO;
1164 	} else
1165 		putback_lru_pages(&pagelist);
1166 
1167 	up_write(&mm->mmap_sem);
1168  mpol_out:
1169 	mpol_put(new);
1170 	return err;
1171 }
1172 
1173 /*
1174  * User space interface with variable sized bitmaps for nodelists.
1175  */
1176 
1177 /* Copy a node mask from user space. */
1178 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1179 		     unsigned long maxnode)
1180 {
1181 	unsigned long k;
1182 	unsigned long nlongs;
1183 	unsigned long endmask;
1184 
1185 	--maxnode;
1186 	nodes_clear(*nodes);
1187 	if (maxnode == 0 || !nmask)
1188 		return 0;
1189 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1190 		return -EINVAL;
1191 
1192 	nlongs = BITS_TO_LONGS(maxnode);
1193 	if ((maxnode % BITS_PER_LONG) == 0)
1194 		endmask = ~0UL;
1195 	else
1196 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1197 
1198 	/* When the user specified more nodes than supported just check
1199 	   if the non supported part is all zero. */
1200 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1201 		if (nlongs > PAGE_SIZE/sizeof(long))
1202 			return -EINVAL;
1203 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1204 			unsigned long t;
1205 			if (get_user(t, nmask + k))
1206 				return -EFAULT;
1207 			if (k == nlongs - 1) {
1208 				if (t & endmask)
1209 					return -EINVAL;
1210 			} else if (t)
1211 				return -EINVAL;
1212 		}
1213 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1214 		endmask = ~0UL;
1215 	}
1216 
1217 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1218 		return -EFAULT;
1219 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1220 	return 0;
1221 }
1222 
1223 /* Copy a kernel node mask to user space */
1224 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1225 			      nodemask_t *nodes)
1226 {
1227 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1228 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1229 
1230 	if (copy > nbytes) {
1231 		if (copy > PAGE_SIZE)
1232 			return -EINVAL;
1233 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1234 			return -EFAULT;
1235 		copy = nbytes;
1236 	}
1237 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1238 }
1239 
1240 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1241 		unsigned long, mode, unsigned long __user *, nmask,
1242 		unsigned long, maxnode, unsigned, flags)
1243 {
1244 	nodemask_t nodes;
1245 	int err;
1246 	unsigned short mode_flags;
1247 
1248 	mode_flags = mode & MPOL_MODE_FLAGS;
1249 	mode &= ~MPOL_MODE_FLAGS;
1250 	if (mode >= MPOL_MAX)
1251 		return -EINVAL;
1252 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1253 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1254 		return -EINVAL;
1255 	err = get_nodes(&nodes, nmask, maxnode);
1256 	if (err)
1257 		return err;
1258 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1259 }
1260 
1261 /* Set the process memory policy */
1262 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1263 		unsigned long, maxnode)
1264 {
1265 	int err;
1266 	nodemask_t nodes;
1267 	unsigned short flags;
1268 
1269 	flags = mode & MPOL_MODE_FLAGS;
1270 	mode &= ~MPOL_MODE_FLAGS;
1271 	if ((unsigned int)mode >= MPOL_MAX)
1272 		return -EINVAL;
1273 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1274 		return -EINVAL;
1275 	err = get_nodes(&nodes, nmask, maxnode);
1276 	if (err)
1277 		return err;
1278 	return do_set_mempolicy(mode, flags, &nodes);
1279 }
1280 
1281 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1282 		const unsigned long __user *, old_nodes,
1283 		const unsigned long __user *, new_nodes)
1284 {
1285 	const struct cred *cred = current_cred(), *tcred;
1286 	struct mm_struct *mm = NULL;
1287 	struct task_struct *task;
1288 	nodemask_t task_nodes;
1289 	int err;
1290 	nodemask_t *old;
1291 	nodemask_t *new;
1292 	NODEMASK_SCRATCH(scratch);
1293 
1294 	if (!scratch)
1295 		return -ENOMEM;
1296 
1297 	old = &scratch->mask1;
1298 	new = &scratch->mask2;
1299 
1300 	err = get_nodes(old, old_nodes, maxnode);
1301 	if (err)
1302 		goto out;
1303 
1304 	err = get_nodes(new, new_nodes, maxnode);
1305 	if (err)
1306 		goto out;
1307 
1308 	/* Find the mm_struct */
1309 	rcu_read_lock();
1310 	task = pid ? find_task_by_vpid(pid) : current;
1311 	if (!task) {
1312 		rcu_read_unlock();
1313 		err = -ESRCH;
1314 		goto out;
1315 	}
1316 	mm = get_task_mm(task);
1317 	rcu_read_unlock();
1318 
1319 	err = -EINVAL;
1320 	if (!mm)
1321 		goto out;
1322 
1323 	/*
1324 	 * Check if this process has the right to modify the specified
1325 	 * process. The right exists if the process has administrative
1326 	 * capabilities, superuser privileges or the same
1327 	 * userid as the target process.
1328 	 */
1329 	rcu_read_lock();
1330 	tcred = __task_cred(task);
1331 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1332 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1333 	    !capable(CAP_SYS_NICE)) {
1334 		rcu_read_unlock();
1335 		err = -EPERM;
1336 		goto out;
1337 	}
1338 	rcu_read_unlock();
1339 
1340 	task_nodes = cpuset_mems_allowed(task);
1341 	/* Is the user allowed to access the target nodes? */
1342 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1343 		err = -EPERM;
1344 		goto out;
1345 	}
1346 
1347 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1348 		err = -EINVAL;
1349 		goto out;
1350 	}
1351 
1352 	err = security_task_movememory(task);
1353 	if (err)
1354 		goto out;
1355 
1356 	err = do_migrate_pages(mm, old, new,
1357 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1358 out:
1359 	if (mm)
1360 		mmput(mm);
1361 	NODEMASK_SCRATCH_FREE(scratch);
1362 
1363 	return err;
1364 }
1365 
1366 
1367 /* Retrieve NUMA policy */
1368 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1369 		unsigned long __user *, nmask, unsigned long, maxnode,
1370 		unsigned long, addr, unsigned long, flags)
1371 {
1372 	int err;
1373 	int uninitialized_var(pval);
1374 	nodemask_t nodes;
1375 
1376 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1377 		return -EINVAL;
1378 
1379 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1380 
1381 	if (err)
1382 		return err;
1383 
1384 	if (policy && put_user(pval, policy))
1385 		return -EFAULT;
1386 
1387 	if (nmask)
1388 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1389 
1390 	return err;
1391 }
1392 
1393 #ifdef CONFIG_COMPAT
1394 
1395 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1396 				     compat_ulong_t __user *nmask,
1397 				     compat_ulong_t maxnode,
1398 				     compat_ulong_t addr, compat_ulong_t flags)
1399 {
1400 	long err;
1401 	unsigned long __user *nm = NULL;
1402 	unsigned long nr_bits, alloc_size;
1403 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1404 
1405 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1406 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1407 
1408 	if (nmask)
1409 		nm = compat_alloc_user_space(alloc_size);
1410 
1411 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1412 
1413 	if (!err && nmask) {
1414 		unsigned long copy_size;
1415 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1416 		err = copy_from_user(bm, nm, copy_size);
1417 		/* ensure entire bitmap is zeroed */
1418 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1419 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1420 	}
1421 
1422 	return err;
1423 }
1424 
1425 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1426 				     compat_ulong_t maxnode)
1427 {
1428 	long err = 0;
1429 	unsigned long __user *nm = NULL;
1430 	unsigned long nr_bits, alloc_size;
1431 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1432 
1433 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1434 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1435 
1436 	if (nmask) {
1437 		err = compat_get_bitmap(bm, nmask, nr_bits);
1438 		nm = compat_alloc_user_space(alloc_size);
1439 		err |= copy_to_user(nm, bm, alloc_size);
1440 	}
1441 
1442 	if (err)
1443 		return -EFAULT;
1444 
1445 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1446 }
1447 
1448 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1449 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1450 			     compat_ulong_t maxnode, compat_ulong_t flags)
1451 {
1452 	long err = 0;
1453 	unsigned long __user *nm = NULL;
1454 	unsigned long nr_bits, alloc_size;
1455 	nodemask_t bm;
1456 
1457 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1458 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1459 
1460 	if (nmask) {
1461 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1462 		nm = compat_alloc_user_space(alloc_size);
1463 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1464 	}
1465 
1466 	if (err)
1467 		return -EFAULT;
1468 
1469 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1470 }
1471 
1472 #endif
1473 
1474 /*
1475  * get_vma_policy(@task, @vma, @addr)
1476  * @task - task for fallback if vma policy == default
1477  * @vma   - virtual memory area whose policy is sought
1478  * @addr  - address in @vma for shared policy lookup
1479  *
1480  * Returns effective policy for a VMA at specified address.
1481  * Falls back to @task or system default policy, as necessary.
1482  * Current or other task's task mempolicy and non-shared vma policies
1483  * are protected by the task's mmap_sem, which must be held for read by
1484  * the caller.
1485  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1486  * count--added by the get_policy() vm_op, as appropriate--to protect against
1487  * freeing by another task.  It is the caller's responsibility to free the
1488  * extra reference for shared policies.
1489  */
1490 struct mempolicy *get_vma_policy(struct task_struct *task,
1491 		struct vm_area_struct *vma, unsigned long addr)
1492 {
1493 	struct mempolicy *pol = task->mempolicy;
1494 
1495 	if (vma) {
1496 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1497 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1498 									addr);
1499 			if (vpol)
1500 				pol = vpol;
1501 		} else if (vma->vm_policy)
1502 			pol = vma->vm_policy;
1503 	}
1504 	if (!pol)
1505 		pol = &default_policy;
1506 	return pol;
1507 }
1508 
1509 /*
1510  * Return a nodemask representing a mempolicy for filtering nodes for
1511  * page allocation
1512  */
1513 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1514 {
1515 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1516 	if (unlikely(policy->mode == MPOL_BIND) &&
1517 			gfp_zone(gfp) >= policy_zone &&
1518 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1519 		return &policy->v.nodes;
1520 
1521 	return NULL;
1522 }
1523 
1524 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1525 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1526 	int nd)
1527 {
1528 	switch (policy->mode) {
1529 	case MPOL_PREFERRED:
1530 		if (!(policy->flags & MPOL_F_LOCAL))
1531 			nd = policy->v.preferred_node;
1532 		break;
1533 	case MPOL_BIND:
1534 		/*
1535 		 * Normally, MPOL_BIND allocations are node-local within the
1536 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1537 		 * current node isn't part of the mask, we use the zonelist for
1538 		 * the first node in the mask instead.
1539 		 */
1540 		if (unlikely(gfp & __GFP_THISNODE) &&
1541 				unlikely(!node_isset(nd, policy->v.nodes)))
1542 			nd = first_node(policy->v.nodes);
1543 		break;
1544 	default:
1545 		BUG();
1546 	}
1547 	return node_zonelist(nd, gfp);
1548 }
1549 
1550 /* Do dynamic interleaving for a process */
1551 static unsigned interleave_nodes(struct mempolicy *policy)
1552 {
1553 	unsigned nid, next;
1554 	struct task_struct *me = current;
1555 
1556 	nid = me->il_next;
1557 	next = next_node(nid, policy->v.nodes);
1558 	if (next >= MAX_NUMNODES)
1559 		next = first_node(policy->v.nodes);
1560 	if (next < MAX_NUMNODES)
1561 		me->il_next = next;
1562 	return nid;
1563 }
1564 
1565 /*
1566  * Depending on the memory policy provide a node from which to allocate the
1567  * next slab entry.
1568  * @policy must be protected by freeing by the caller.  If @policy is
1569  * the current task's mempolicy, this protection is implicit, as only the
1570  * task can change it's policy.  The system default policy requires no
1571  * such protection.
1572  */
1573 unsigned slab_node(struct mempolicy *policy)
1574 {
1575 	if (!policy || policy->flags & MPOL_F_LOCAL)
1576 		return numa_node_id();
1577 
1578 	switch (policy->mode) {
1579 	case MPOL_PREFERRED:
1580 		/*
1581 		 * handled MPOL_F_LOCAL above
1582 		 */
1583 		return policy->v.preferred_node;
1584 
1585 	case MPOL_INTERLEAVE:
1586 		return interleave_nodes(policy);
1587 
1588 	case MPOL_BIND: {
1589 		/*
1590 		 * Follow bind policy behavior and start allocation at the
1591 		 * first node.
1592 		 */
1593 		struct zonelist *zonelist;
1594 		struct zone *zone;
1595 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1596 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1597 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1598 							&policy->v.nodes,
1599 							&zone);
1600 		return zone ? zone->node : numa_node_id();
1601 	}
1602 
1603 	default:
1604 		BUG();
1605 	}
1606 }
1607 
1608 /* Do static interleaving for a VMA with known offset. */
1609 static unsigned offset_il_node(struct mempolicy *pol,
1610 		struct vm_area_struct *vma, unsigned long off)
1611 {
1612 	unsigned nnodes = nodes_weight(pol->v.nodes);
1613 	unsigned target;
1614 	int c;
1615 	int nid = -1;
1616 
1617 	if (!nnodes)
1618 		return numa_node_id();
1619 	target = (unsigned int)off % nnodes;
1620 	c = 0;
1621 	do {
1622 		nid = next_node(nid, pol->v.nodes);
1623 		c++;
1624 	} while (c <= target);
1625 	return nid;
1626 }
1627 
1628 /* Determine a node number for interleave */
1629 static inline unsigned interleave_nid(struct mempolicy *pol,
1630 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1631 {
1632 	if (vma) {
1633 		unsigned long off;
1634 
1635 		/*
1636 		 * for small pages, there is no difference between
1637 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1638 		 * for huge pages, since vm_pgoff is in units of small
1639 		 * pages, we need to shift off the always 0 bits to get
1640 		 * a useful offset.
1641 		 */
1642 		BUG_ON(shift < PAGE_SHIFT);
1643 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1644 		off += (addr - vma->vm_start) >> shift;
1645 		return offset_il_node(pol, vma, off);
1646 	} else
1647 		return interleave_nodes(pol);
1648 }
1649 
1650 /*
1651  * Return the bit number of a random bit set in the nodemask.
1652  * (returns -1 if nodemask is empty)
1653  */
1654 int node_random(const nodemask_t *maskp)
1655 {
1656 	int w, bit = -1;
1657 
1658 	w = nodes_weight(*maskp);
1659 	if (w)
1660 		bit = bitmap_ord_to_pos(maskp->bits,
1661 			get_random_int() % w, MAX_NUMNODES);
1662 	return bit;
1663 }
1664 
1665 #ifdef CONFIG_HUGETLBFS
1666 /*
1667  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1668  * @vma = virtual memory area whose policy is sought
1669  * @addr = address in @vma for shared policy lookup and interleave policy
1670  * @gfp_flags = for requested zone
1671  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1672  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1673  *
1674  * Returns a zonelist suitable for a huge page allocation and a pointer
1675  * to the struct mempolicy for conditional unref after allocation.
1676  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1677  * @nodemask for filtering the zonelist.
1678  *
1679  * Must be protected by get_mems_allowed()
1680  */
1681 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1682 				gfp_t gfp_flags, struct mempolicy **mpol,
1683 				nodemask_t **nodemask)
1684 {
1685 	struct zonelist *zl;
1686 
1687 	*mpol = get_vma_policy(current, vma, addr);
1688 	*nodemask = NULL;	/* assume !MPOL_BIND */
1689 
1690 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1691 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1692 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1693 	} else {
1694 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1695 		if ((*mpol)->mode == MPOL_BIND)
1696 			*nodemask = &(*mpol)->v.nodes;
1697 	}
1698 	return zl;
1699 }
1700 
1701 /*
1702  * init_nodemask_of_mempolicy
1703  *
1704  * If the current task's mempolicy is "default" [NULL], return 'false'
1705  * to indicate default policy.  Otherwise, extract the policy nodemask
1706  * for 'bind' or 'interleave' policy into the argument nodemask, or
1707  * initialize the argument nodemask to contain the single node for
1708  * 'preferred' or 'local' policy and return 'true' to indicate presence
1709  * of non-default mempolicy.
1710  *
1711  * We don't bother with reference counting the mempolicy [mpol_get/put]
1712  * because the current task is examining it's own mempolicy and a task's
1713  * mempolicy is only ever changed by the task itself.
1714  *
1715  * N.B., it is the caller's responsibility to free a returned nodemask.
1716  */
1717 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1718 {
1719 	struct mempolicy *mempolicy;
1720 	int nid;
1721 
1722 	if (!(mask && current->mempolicy))
1723 		return false;
1724 
1725 	task_lock(current);
1726 	mempolicy = current->mempolicy;
1727 	switch (mempolicy->mode) {
1728 	case MPOL_PREFERRED:
1729 		if (mempolicy->flags & MPOL_F_LOCAL)
1730 			nid = numa_node_id();
1731 		else
1732 			nid = mempolicy->v.preferred_node;
1733 		init_nodemask_of_node(mask, nid);
1734 		break;
1735 
1736 	case MPOL_BIND:
1737 		/* Fall through */
1738 	case MPOL_INTERLEAVE:
1739 		*mask =  mempolicy->v.nodes;
1740 		break;
1741 
1742 	default:
1743 		BUG();
1744 	}
1745 	task_unlock(current);
1746 
1747 	return true;
1748 }
1749 #endif
1750 
1751 /*
1752  * mempolicy_nodemask_intersects
1753  *
1754  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1755  * policy.  Otherwise, check for intersection between mask and the policy
1756  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1757  * policy, always return true since it may allocate elsewhere on fallback.
1758  *
1759  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1760  */
1761 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1762 					const nodemask_t *mask)
1763 {
1764 	struct mempolicy *mempolicy;
1765 	bool ret = true;
1766 
1767 	if (!mask)
1768 		return ret;
1769 	task_lock(tsk);
1770 	mempolicy = tsk->mempolicy;
1771 	if (!mempolicy)
1772 		goto out;
1773 
1774 	switch (mempolicy->mode) {
1775 	case MPOL_PREFERRED:
1776 		/*
1777 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1778 		 * allocate from, they may fallback to other nodes when oom.
1779 		 * Thus, it's possible for tsk to have allocated memory from
1780 		 * nodes in mask.
1781 		 */
1782 		break;
1783 	case MPOL_BIND:
1784 	case MPOL_INTERLEAVE:
1785 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1786 		break;
1787 	default:
1788 		BUG();
1789 	}
1790 out:
1791 	task_unlock(tsk);
1792 	return ret;
1793 }
1794 
1795 /* Allocate a page in interleaved policy.
1796    Own path because it needs to do special accounting. */
1797 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1798 					unsigned nid)
1799 {
1800 	struct zonelist *zl;
1801 	struct page *page;
1802 
1803 	zl = node_zonelist(nid, gfp);
1804 	page = __alloc_pages(gfp, order, zl);
1805 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1806 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1807 	return page;
1808 }
1809 
1810 /**
1811  * 	alloc_pages_vma	- Allocate a page for a VMA.
1812  *
1813  * 	@gfp:
1814  *      %GFP_USER    user allocation.
1815  *      %GFP_KERNEL  kernel allocations,
1816  *      %GFP_HIGHMEM highmem/user allocations,
1817  *      %GFP_FS      allocation should not call back into a file system.
1818  *      %GFP_ATOMIC  don't sleep.
1819  *
1820  *	@order:Order of the GFP allocation.
1821  * 	@vma:  Pointer to VMA or NULL if not available.
1822  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1823  *
1824  * 	This function allocates a page from the kernel page pool and applies
1825  *	a NUMA policy associated with the VMA or the current process.
1826  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1827  *	mm_struct of the VMA to prevent it from going away. Should be used for
1828  *	all allocations for pages that will be mapped into
1829  * 	user space. Returns NULL when no page can be allocated.
1830  *
1831  *	Should be called with the mm_sem of the vma hold.
1832  */
1833 struct page *
1834 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1835 		unsigned long addr, int node)
1836 {
1837 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1838 	struct zonelist *zl;
1839 	struct page *page;
1840 
1841 	get_mems_allowed();
1842 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1843 		unsigned nid;
1844 
1845 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1846 		mpol_cond_put(pol);
1847 		page = alloc_page_interleave(gfp, order, nid);
1848 		put_mems_allowed();
1849 		return page;
1850 	}
1851 	zl = policy_zonelist(gfp, pol, node);
1852 	if (unlikely(mpol_needs_cond_ref(pol))) {
1853 		/*
1854 		 * slow path: ref counted shared policy
1855 		 */
1856 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1857 						zl, policy_nodemask(gfp, pol));
1858 		__mpol_put(pol);
1859 		put_mems_allowed();
1860 		return page;
1861 	}
1862 	/*
1863 	 * fast path:  default or task policy
1864 	 */
1865 	page = __alloc_pages_nodemask(gfp, order, zl,
1866 				      policy_nodemask(gfp, pol));
1867 	put_mems_allowed();
1868 	return page;
1869 }
1870 
1871 /**
1872  * 	alloc_pages_current - Allocate pages.
1873  *
1874  *	@gfp:
1875  *		%GFP_USER   user allocation,
1876  *      	%GFP_KERNEL kernel allocation,
1877  *      	%GFP_HIGHMEM highmem allocation,
1878  *      	%GFP_FS     don't call back into a file system.
1879  *      	%GFP_ATOMIC don't sleep.
1880  *	@order: Power of two of allocation size in pages. 0 is a single page.
1881  *
1882  *	Allocate a page from the kernel page pool.  When not in
1883  *	interrupt context and apply the current process NUMA policy.
1884  *	Returns NULL when no page can be allocated.
1885  *
1886  *	Don't call cpuset_update_task_memory_state() unless
1887  *	1) it's ok to take cpuset_sem (can WAIT), and
1888  *	2) allocating for current task (not interrupt).
1889  */
1890 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1891 {
1892 	struct mempolicy *pol = current->mempolicy;
1893 	struct page *page;
1894 
1895 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1896 		pol = &default_policy;
1897 
1898 	get_mems_allowed();
1899 	/*
1900 	 * No reference counting needed for current->mempolicy
1901 	 * nor system default_policy
1902 	 */
1903 	if (pol->mode == MPOL_INTERLEAVE)
1904 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1905 	else
1906 		page = __alloc_pages_nodemask(gfp, order,
1907 				policy_zonelist(gfp, pol, numa_node_id()),
1908 				policy_nodemask(gfp, pol));
1909 	put_mems_allowed();
1910 	return page;
1911 }
1912 EXPORT_SYMBOL(alloc_pages_current);
1913 
1914 /*
1915  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1916  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1917  * with the mems_allowed returned by cpuset_mems_allowed().  This
1918  * keeps mempolicies cpuset relative after its cpuset moves.  See
1919  * further kernel/cpuset.c update_nodemask().
1920  *
1921  * current's mempolicy may be rebinded by the other task(the task that changes
1922  * cpuset's mems), so we needn't do rebind work for current task.
1923  */
1924 
1925 /* Slow path of a mempolicy duplicate */
1926 struct mempolicy *__mpol_dup(struct mempolicy *old)
1927 {
1928 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1929 
1930 	if (!new)
1931 		return ERR_PTR(-ENOMEM);
1932 
1933 	/* task's mempolicy is protected by alloc_lock */
1934 	if (old == current->mempolicy) {
1935 		task_lock(current);
1936 		*new = *old;
1937 		task_unlock(current);
1938 	} else
1939 		*new = *old;
1940 
1941 	rcu_read_lock();
1942 	if (current_cpuset_is_being_rebound()) {
1943 		nodemask_t mems = cpuset_mems_allowed(current);
1944 		if (new->flags & MPOL_F_REBINDING)
1945 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1946 		else
1947 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1948 	}
1949 	rcu_read_unlock();
1950 	atomic_set(&new->refcnt, 1);
1951 	return new;
1952 }
1953 
1954 /*
1955  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1956  * eliminate the * MPOL_F_* flags that require conditional ref and
1957  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1958  * after return.  Use the returned value.
1959  *
1960  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1961  * policy lookup, even if the policy needs/has extra ref on lookup.
1962  * shmem_readahead needs this.
1963  */
1964 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1965 						struct mempolicy *frompol)
1966 {
1967 	if (!mpol_needs_cond_ref(frompol))
1968 		return frompol;
1969 
1970 	*tompol = *frompol;
1971 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1972 	__mpol_put(frompol);
1973 	return tompol;
1974 }
1975 
1976 /* Slow path of a mempolicy comparison */
1977 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1978 {
1979 	if (!a || !b)
1980 		return 0;
1981 	if (a->mode != b->mode)
1982 		return 0;
1983 	if (a->flags != b->flags)
1984 		return 0;
1985 	if (mpol_store_user_nodemask(a))
1986 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1987 			return 0;
1988 
1989 	switch (a->mode) {
1990 	case MPOL_BIND:
1991 		/* Fall through */
1992 	case MPOL_INTERLEAVE:
1993 		return nodes_equal(a->v.nodes, b->v.nodes);
1994 	case MPOL_PREFERRED:
1995 		return a->v.preferred_node == b->v.preferred_node;
1996 	default:
1997 		BUG();
1998 		return 0;
1999 	}
2000 }
2001 
2002 /*
2003  * Shared memory backing store policy support.
2004  *
2005  * Remember policies even when nobody has shared memory mapped.
2006  * The policies are kept in Red-Black tree linked from the inode.
2007  * They are protected by the sp->lock spinlock, which should be held
2008  * for any accesses to the tree.
2009  */
2010 
2011 /* lookup first element intersecting start-end */
2012 /* Caller holds sp->lock */
2013 static struct sp_node *
2014 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2015 {
2016 	struct rb_node *n = sp->root.rb_node;
2017 
2018 	while (n) {
2019 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2020 
2021 		if (start >= p->end)
2022 			n = n->rb_right;
2023 		else if (end <= p->start)
2024 			n = n->rb_left;
2025 		else
2026 			break;
2027 	}
2028 	if (!n)
2029 		return NULL;
2030 	for (;;) {
2031 		struct sp_node *w = NULL;
2032 		struct rb_node *prev = rb_prev(n);
2033 		if (!prev)
2034 			break;
2035 		w = rb_entry(prev, struct sp_node, nd);
2036 		if (w->end <= start)
2037 			break;
2038 		n = prev;
2039 	}
2040 	return rb_entry(n, struct sp_node, nd);
2041 }
2042 
2043 /* Insert a new shared policy into the list. */
2044 /* Caller holds sp->lock */
2045 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2046 {
2047 	struct rb_node **p = &sp->root.rb_node;
2048 	struct rb_node *parent = NULL;
2049 	struct sp_node *nd;
2050 
2051 	while (*p) {
2052 		parent = *p;
2053 		nd = rb_entry(parent, struct sp_node, nd);
2054 		if (new->start < nd->start)
2055 			p = &(*p)->rb_left;
2056 		else if (new->end > nd->end)
2057 			p = &(*p)->rb_right;
2058 		else
2059 			BUG();
2060 	}
2061 	rb_link_node(&new->nd, parent, p);
2062 	rb_insert_color(&new->nd, &sp->root);
2063 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2064 		 new->policy ? new->policy->mode : 0);
2065 }
2066 
2067 /* Find shared policy intersecting idx */
2068 struct mempolicy *
2069 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2070 {
2071 	struct mempolicy *pol = NULL;
2072 	struct sp_node *sn;
2073 
2074 	if (!sp->root.rb_node)
2075 		return NULL;
2076 	spin_lock(&sp->lock);
2077 	sn = sp_lookup(sp, idx, idx+1);
2078 	if (sn) {
2079 		mpol_get(sn->policy);
2080 		pol = sn->policy;
2081 	}
2082 	spin_unlock(&sp->lock);
2083 	return pol;
2084 }
2085 
2086 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2087 {
2088 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2089 	rb_erase(&n->nd, &sp->root);
2090 	mpol_put(n->policy);
2091 	kmem_cache_free(sn_cache, n);
2092 }
2093 
2094 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2095 				struct mempolicy *pol)
2096 {
2097 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2098 
2099 	if (!n)
2100 		return NULL;
2101 	n->start = start;
2102 	n->end = end;
2103 	mpol_get(pol);
2104 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2105 	n->policy = pol;
2106 	return n;
2107 }
2108 
2109 /* Replace a policy range. */
2110 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2111 				 unsigned long end, struct sp_node *new)
2112 {
2113 	struct sp_node *n, *new2 = NULL;
2114 
2115 restart:
2116 	spin_lock(&sp->lock);
2117 	n = sp_lookup(sp, start, end);
2118 	/* Take care of old policies in the same range. */
2119 	while (n && n->start < end) {
2120 		struct rb_node *next = rb_next(&n->nd);
2121 		if (n->start >= start) {
2122 			if (n->end <= end)
2123 				sp_delete(sp, n);
2124 			else
2125 				n->start = end;
2126 		} else {
2127 			/* Old policy spanning whole new range. */
2128 			if (n->end > end) {
2129 				if (!new2) {
2130 					spin_unlock(&sp->lock);
2131 					new2 = sp_alloc(end, n->end, n->policy);
2132 					if (!new2)
2133 						return -ENOMEM;
2134 					goto restart;
2135 				}
2136 				n->end = start;
2137 				sp_insert(sp, new2);
2138 				new2 = NULL;
2139 				break;
2140 			} else
2141 				n->end = start;
2142 		}
2143 		if (!next)
2144 			break;
2145 		n = rb_entry(next, struct sp_node, nd);
2146 	}
2147 	if (new)
2148 		sp_insert(sp, new);
2149 	spin_unlock(&sp->lock);
2150 	if (new2) {
2151 		mpol_put(new2->policy);
2152 		kmem_cache_free(sn_cache, new2);
2153 	}
2154 	return 0;
2155 }
2156 
2157 /**
2158  * mpol_shared_policy_init - initialize shared policy for inode
2159  * @sp: pointer to inode shared policy
2160  * @mpol:  struct mempolicy to install
2161  *
2162  * Install non-NULL @mpol in inode's shared policy rb-tree.
2163  * On entry, the current task has a reference on a non-NULL @mpol.
2164  * This must be released on exit.
2165  * This is called at get_inode() calls and we can use GFP_KERNEL.
2166  */
2167 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2168 {
2169 	int ret;
2170 
2171 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2172 	spin_lock_init(&sp->lock);
2173 
2174 	if (mpol) {
2175 		struct vm_area_struct pvma;
2176 		struct mempolicy *new;
2177 		NODEMASK_SCRATCH(scratch);
2178 
2179 		if (!scratch)
2180 			goto put_mpol;
2181 		/* contextualize the tmpfs mount point mempolicy */
2182 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2183 		if (IS_ERR(new))
2184 			goto free_scratch; /* no valid nodemask intersection */
2185 
2186 		task_lock(current);
2187 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2188 		task_unlock(current);
2189 		if (ret)
2190 			goto put_new;
2191 
2192 		/* Create pseudo-vma that contains just the policy */
2193 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2194 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2195 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2196 
2197 put_new:
2198 		mpol_put(new);			/* drop initial ref */
2199 free_scratch:
2200 		NODEMASK_SCRATCH_FREE(scratch);
2201 put_mpol:
2202 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2203 	}
2204 }
2205 
2206 int mpol_set_shared_policy(struct shared_policy *info,
2207 			struct vm_area_struct *vma, struct mempolicy *npol)
2208 {
2209 	int err;
2210 	struct sp_node *new = NULL;
2211 	unsigned long sz = vma_pages(vma);
2212 
2213 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2214 		 vma->vm_pgoff,
2215 		 sz, npol ? npol->mode : -1,
2216 		 npol ? npol->flags : -1,
2217 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2218 
2219 	if (npol) {
2220 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2221 		if (!new)
2222 			return -ENOMEM;
2223 	}
2224 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2225 	if (err && new)
2226 		kmem_cache_free(sn_cache, new);
2227 	return err;
2228 }
2229 
2230 /* Free a backing policy store on inode delete. */
2231 void mpol_free_shared_policy(struct shared_policy *p)
2232 {
2233 	struct sp_node *n;
2234 	struct rb_node *next;
2235 
2236 	if (!p->root.rb_node)
2237 		return;
2238 	spin_lock(&p->lock);
2239 	next = rb_first(&p->root);
2240 	while (next) {
2241 		n = rb_entry(next, struct sp_node, nd);
2242 		next = rb_next(&n->nd);
2243 		rb_erase(&n->nd, &p->root);
2244 		mpol_put(n->policy);
2245 		kmem_cache_free(sn_cache, n);
2246 	}
2247 	spin_unlock(&p->lock);
2248 }
2249 
2250 /* assumes fs == KERNEL_DS */
2251 void __init numa_policy_init(void)
2252 {
2253 	nodemask_t interleave_nodes;
2254 	unsigned long largest = 0;
2255 	int nid, prefer = 0;
2256 
2257 	policy_cache = kmem_cache_create("numa_policy",
2258 					 sizeof(struct mempolicy),
2259 					 0, SLAB_PANIC, NULL);
2260 
2261 	sn_cache = kmem_cache_create("shared_policy_node",
2262 				     sizeof(struct sp_node),
2263 				     0, SLAB_PANIC, NULL);
2264 
2265 	/*
2266 	 * Set interleaving policy for system init. Interleaving is only
2267 	 * enabled across suitably sized nodes (default is >= 16MB), or
2268 	 * fall back to the largest node if they're all smaller.
2269 	 */
2270 	nodes_clear(interleave_nodes);
2271 	for_each_node_state(nid, N_HIGH_MEMORY) {
2272 		unsigned long total_pages = node_present_pages(nid);
2273 
2274 		/* Preserve the largest node */
2275 		if (largest < total_pages) {
2276 			largest = total_pages;
2277 			prefer = nid;
2278 		}
2279 
2280 		/* Interleave this node? */
2281 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2282 			node_set(nid, interleave_nodes);
2283 	}
2284 
2285 	/* All too small, use the largest */
2286 	if (unlikely(nodes_empty(interleave_nodes)))
2287 		node_set(prefer, interleave_nodes);
2288 
2289 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2290 		printk("numa_policy_init: interleaving failed\n");
2291 }
2292 
2293 /* Reset policy of current process to default */
2294 void numa_default_policy(void)
2295 {
2296 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2297 }
2298 
2299 /*
2300  * Parse and format mempolicy from/to strings
2301  */
2302 
2303 /*
2304  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2305  * Used only for mpol_parse_str() and mpol_to_str()
2306  */
2307 #define MPOL_LOCAL MPOL_MAX
2308 static const char * const policy_modes[] =
2309 {
2310 	[MPOL_DEFAULT]    = "default",
2311 	[MPOL_PREFERRED]  = "prefer",
2312 	[MPOL_BIND]       = "bind",
2313 	[MPOL_INTERLEAVE] = "interleave",
2314 	[MPOL_LOCAL]      = "local"
2315 };
2316 
2317 
2318 #ifdef CONFIG_TMPFS
2319 /**
2320  * mpol_parse_str - parse string to mempolicy
2321  * @str:  string containing mempolicy to parse
2322  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2323  * @no_context:  flag whether to "contextualize" the mempolicy
2324  *
2325  * Format of input:
2326  *	<mode>[=<flags>][:<nodelist>]
2327  *
2328  * if @no_context is true, save the input nodemask in w.user_nodemask in
2329  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2330  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2331  * mount option.  Note that if 'static' or 'relative' mode flags were
2332  * specified, the input nodemask will already have been saved.  Saving
2333  * it again is redundant, but safe.
2334  *
2335  * On success, returns 0, else 1
2336  */
2337 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2338 {
2339 	struct mempolicy *new = NULL;
2340 	unsigned short mode;
2341 	unsigned short uninitialized_var(mode_flags);
2342 	nodemask_t nodes;
2343 	char *nodelist = strchr(str, ':');
2344 	char *flags = strchr(str, '=');
2345 	int err = 1;
2346 
2347 	if (nodelist) {
2348 		/* NUL-terminate mode or flags string */
2349 		*nodelist++ = '\0';
2350 		if (nodelist_parse(nodelist, nodes))
2351 			goto out;
2352 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2353 			goto out;
2354 	} else
2355 		nodes_clear(nodes);
2356 
2357 	if (flags)
2358 		*flags++ = '\0';	/* terminate mode string */
2359 
2360 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2361 		if (!strcmp(str, policy_modes[mode])) {
2362 			break;
2363 		}
2364 	}
2365 	if (mode > MPOL_LOCAL)
2366 		goto out;
2367 
2368 	switch (mode) {
2369 	case MPOL_PREFERRED:
2370 		/*
2371 		 * Insist on a nodelist of one node only
2372 		 */
2373 		if (nodelist) {
2374 			char *rest = nodelist;
2375 			while (isdigit(*rest))
2376 				rest++;
2377 			if (*rest)
2378 				goto out;
2379 		}
2380 		break;
2381 	case MPOL_INTERLEAVE:
2382 		/*
2383 		 * Default to online nodes with memory if no nodelist
2384 		 */
2385 		if (!nodelist)
2386 			nodes = node_states[N_HIGH_MEMORY];
2387 		break;
2388 	case MPOL_LOCAL:
2389 		/*
2390 		 * Don't allow a nodelist;  mpol_new() checks flags
2391 		 */
2392 		if (nodelist)
2393 			goto out;
2394 		mode = MPOL_PREFERRED;
2395 		break;
2396 	case MPOL_DEFAULT:
2397 		/*
2398 		 * Insist on a empty nodelist
2399 		 */
2400 		if (!nodelist)
2401 			err = 0;
2402 		goto out;
2403 	case MPOL_BIND:
2404 		/*
2405 		 * Insist on a nodelist
2406 		 */
2407 		if (!nodelist)
2408 			goto out;
2409 	}
2410 
2411 	mode_flags = 0;
2412 	if (flags) {
2413 		/*
2414 		 * Currently, we only support two mutually exclusive
2415 		 * mode flags.
2416 		 */
2417 		if (!strcmp(flags, "static"))
2418 			mode_flags |= MPOL_F_STATIC_NODES;
2419 		else if (!strcmp(flags, "relative"))
2420 			mode_flags |= MPOL_F_RELATIVE_NODES;
2421 		else
2422 			goto out;
2423 	}
2424 
2425 	new = mpol_new(mode, mode_flags, &nodes);
2426 	if (IS_ERR(new))
2427 		goto out;
2428 
2429 	if (no_context) {
2430 		/* save for contextualization */
2431 		new->w.user_nodemask = nodes;
2432 	} else {
2433 		int ret;
2434 		NODEMASK_SCRATCH(scratch);
2435 		if (scratch) {
2436 			task_lock(current);
2437 			ret = mpol_set_nodemask(new, &nodes, scratch);
2438 			task_unlock(current);
2439 		} else
2440 			ret = -ENOMEM;
2441 		NODEMASK_SCRATCH_FREE(scratch);
2442 		if (ret) {
2443 			mpol_put(new);
2444 			goto out;
2445 		}
2446 	}
2447 	err = 0;
2448 
2449 out:
2450 	/* Restore string for error message */
2451 	if (nodelist)
2452 		*--nodelist = ':';
2453 	if (flags)
2454 		*--flags = '=';
2455 	if (!err)
2456 		*mpol = new;
2457 	return err;
2458 }
2459 #endif /* CONFIG_TMPFS */
2460 
2461 /**
2462  * mpol_to_str - format a mempolicy structure for printing
2463  * @buffer:  to contain formatted mempolicy string
2464  * @maxlen:  length of @buffer
2465  * @pol:  pointer to mempolicy to be formatted
2466  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2467  *
2468  * Convert a mempolicy into a string.
2469  * Returns the number of characters in buffer (if positive)
2470  * or an error (negative)
2471  */
2472 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2473 {
2474 	char *p = buffer;
2475 	int l;
2476 	nodemask_t nodes;
2477 	unsigned short mode;
2478 	unsigned short flags = pol ? pol->flags : 0;
2479 
2480 	/*
2481 	 * Sanity check:  room for longest mode, flag and some nodes
2482 	 */
2483 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2484 
2485 	if (!pol || pol == &default_policy)
2486 		mode = MPOL_DEFAULT;
2487 	else
2488 		mode = pol->mode;
2489 
2490 	switch (mode) {
2491 	case MPOL_DEFAULT:
2492 		nodes_clear(nodes);
2493 		break;
2494 
2495 	case MPOL_PREFERRED:
2496 		nodes_clear(nodes);
2497 		if (flags & MPOL_F_LOCAL)
2498 			mode = MPOL_LOCAL;	/* pseudo-policy */
2499 		else
2500 			node_set(pol->v.preferred_node, nodes);
2501 		break;
2502 
2503 	case MPOL_BIND:
2504 		/* Fall through */
2505 	case MPOL_INTERLEAVE:
2506 		if (no_context)
2507 			nodes = pol->w.user_nodemask;
2508 		else
2509 			nodes = pol->v.nodes;
2510 		break;
2511 
2512 	default:
2513 		BUG();
2514 	}
2515 
2516 	l = strlen(policy_modes[mode]);
2517 	if (buffer + maxlen < p + l + 1)
2518 		return -ENOSPC;
2519 
2520 	strcpy(p, policy_modes[mode]);
2521 	p += l;
2522 
2523 	if (flags & MPOL_MODE_FLAGS) {
2524 		if (buffer + maxlen < p + 2)
2525 			return -ENOSPC;
2526 		*p++ = '=';
2527 
2528 		/*
2529 		 * Currently, the only defined flags are mutually exclusive
2530 		 */
2531 		if (flags & MPOL_F_STATIC_NODES)
2532 			p += snprintf(p, buffer + maxlen - p, "static");
2533 		else if (flags & MPOL_F_RELATIVE_NODES)
2534 			p += snprintf(p, buffer + maxlen - p, "relative");
2535 	}
2536 
2537 	if (!nodes_empty(nodes)) {
2538 		if (buffer + maxlen < p + 2)
2539 			return -ENOSPC;
2540 		*p++ = ':';
2541 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2542 	}
2543 	return p - buffer;
2544 }
2545