xref: /openbmc/linux/mm/mempolicy.c (revision 5ad1ab30)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the folio's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_folio_required(struct folio *folio,
436 					struct queue_pages *qp)
437 {
438 	int nid = folio_nid(folio);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_folios_pmd() has three possible return values:
446  * 0 - folios are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing folio was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct folio *folio;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	folio = pfn_folio(pmd_pfn(*pmd));
468 	if (is_huge_zero_page(&folio->page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_folio_required(folio, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to folio migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_folio_add(folio, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_folios_pte_range() has three possible return values:
495  * 0 - folios are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct folio *folio;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	pte_t ptent;
512 	spinlock_t *ptl;
513 
514 	ptl = pmd_trans_huge_lock(pmd, vma);
515 	if (ptl)
516 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 
518 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 	if (!pte) {
520 		walk->action = ACTION_AGAIN;
521 		return 0;
522 	}
523 	for (; addr != end; pte++, addr += PAGE_SIZE) {
524 		ptent = ptep_get(pte);
525 		if (!pte_present(ptent))
526 			continue;
527 		folio = vm_normal_folio(vma, addr, ptent);
528 		if (!folio || folio_is_zone_device(folio))
529 			continue;
530 		/*
531 		 * vm_normal_folio() filters out zero pages, but there might
532 		 * still be reserved folios to skip, perhaps in a VDSO.
533 		 */
534 		if (folio_test_reserved(folio))
535 			continue;
536 		if (!queue_folio_required(folio, qp))
537 			continue;
538 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 			/* MPOL_MF_STRICT must be specified if we get here */
540 			if (!vma_migratable(vma)) {
541 				has_unmovable = true;
542 				break;
543 			}
544 
545 			/*
546 			 * Do not abort immediately since there may be
547 			 * temporary off LRU pages in the range.  Still
548 			 * need migrate other LRU pages.
549 			 */
550 			if (migrate_folio_add(folio, qp->pagelist, flags))
551 				has_unmovable = true;
552 		} else
553 			break;
554 	}
555 	pte_unmap_unlock(mapped_pte, ptl);
556 	cond_resched();
557 
558 	if (has_unmovable)
559 		return 1;
560 
561 	return addr != end ? -EIO : 0;
562 }
563 
564 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
565 			       unsigned long addr, unsigned long end,
566 			       struct mm_walk *walk)
567 {
568 	int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 	struct queue_pages *qp = walk->private;
571 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 	struct folio *folio;
573 	spinlock_t *ptl;
574 	pte_t entry;
575 
576 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 	entry = huge_ptep_get(pte);
578 	if (!pte_present(entry))
579 		goto unlock;
580 	folio = pfn_folio(pte_pfn(entry));
581 	if (!queue_folio_required(folio, qp))
582 		goto unlock;
583 
584 	if (flags == MPOL_MF_STRICT) {
585 		/*
586 		 * STRICT alone means only detecting misplaced folio and no
587 		 * need to further check other vma.
588 		 */
589 		ret = -EIO;
590 		goto unlock;
591 	}
592 
593 	if (!vma_migratable(walk->vma)) {
594 		/*
595 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 		 * stopped walking current vma.
597 		 * Detecting misplaced folio but allow migrating folios which
598 		 * have been queued.
599 		 */
600 		ret = 1;
601 		goto unlock;
602 	}
603 
604 	/*
605 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
606 	 * is shared it is likely not worth migrating.
607 	 *
608 	 * To check if the folio is shared, ideally we want to make sure
609 	 * every page is mapped to the same process. Doing that is very
610 	 * expensive, so check the estimated mapcount of the folio instead.
611 	 */
612 	if (flags & (MPOL_MF_MOVE_ALL) ||
613 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
614 	     !hugetlb_pmd_shared(pte))) {
615 		if (!isolate_hugetlb(folio, qp->pagelist) &&
616 			(flags & MPOL_MF_STRICT))
617 			/*
618 			 * Failed to isolate folio but allow migrating pages
619 			 * which have been queued.
620 			 */
621 			ret = 1;
622 	}
623 unlock:
624 	spin_unlock(ptl);
625 #else
626 	BUG();
627 #endif
628 	return ret;
629 }
630 
631 #ifdef CONFIG_NUMA_BALANCING
632 /*
633  * This is used to mark a range of virtual addresses to be inaccessible.
634  * These are later cleared by a NUMA hinting fault. Depending on these
635  * faults, pages may be migrated for better NUMA placement.
636  *
637  * This is assuming that NUMA faults are handled using PROT_NONE. If
638  * an architecture makes a different choice, it will need further
639  * changes to the core.
640  */
641 unsigned long change_prot_numa(struct vm_area_struct *vma,
642 			unsigned long addr, unsigned long end)
643 {
644 	struct mmu_gather tlb;
645 	long nr_updated;
646 
647 	tlb_gather_mmu(&tlb, vma->vm_mm);
648 
649 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
650 	if (nr_updated > 0)
651 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
652 
653 	tlb_finish_mmu(&tlb);
654 
655 	return nr_updated;
656 }
657 #else
658 static unsigned long change_prot_numa(struct vm_area_struct *vma,
659 			unsigned long addr, unsigned long end)
660 {
661 	return 0;
662 }
663 #endif /* CONFIG_NUMA_BALANCING */
664 
665 static int queue_pages_test_walk(unsigned long start, unsigned long end,
666 				struct mm_walk *walk)
667 {
668 	struct vm_area_struct *next, *vma = walk->vma;
669 	struct queue_pages *qp = walk->private;
670 	unsigned long endvma = vma->vm_end;
671 	unsigned long flags = qp->flags;
672 
673 	/* range check first */
674 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
675 
676 	if (!qp->first) {
677 		qp->first = vma;
678 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
679 			(qp->start < vma->vm_start))
680 			/* hole at head side of range */
681 			return -EFAULT;
682 	}
683 	next = find_vma(vma->vm_mm, vma->vm_end);
684 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 		((vma->vm_end < qp->end) &&
686 		(!next || vma->vm_end < next->vm_start)))
687 		/* hole at middle or tail of range */
688 		return -EFAULT;
689 
690 	/*
691 	 * Need check MPOL_MF_STRICT to return -EIO if possible
692 	 * regardless of vma_migratable
693 	 */
694 	if (!vma_migratable(vma) &&
695 	    !(flags & MPOL_MF_STRICT))
696 		return 1;
697 
698 	if (endvma > end)
699 		endvma = end;
700 
701 	if (flags & MPOL_MF_LAZY) {
702 		/* Similar to task_numa_work, skip inaccessible VMAs */
703 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
704 			!(vma->vm_flags & VM_MIXEDMAP))
705 			change_prot_numa(vma, start, endvma);
706 		return 1;
707 	}
708 
709 	/* queue pages from current vma */
710 	if (flags & MPOL_MF_VALID)
711 		return 0;
712 	return 1;
713 }
714 
715 static const struct mm_walk_ops queue_pages_walk_ops = {
716 	.hugetlb_entry		= queue_folios_hugetlb,
717 	.pmd_entry		= queue_folios_pte_range,
718 	.test_walk		= queue_pages_test_walk,
719 };
720 
721 /*
722  * Walk through page tables and collect pages to be migrated.
723  *
724  * If pages found in a given range are on a set of nodes (determined by
725  * @nodes and @flags,) it's isolated and queued to the pagelist which is
726  * passed via @private.
727  *
728  * queue_pages_range() has three possible return values:
729  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
730  *     specified.
731  * 0 - queue pages successfully or no misplaced page.
732  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
733  *         memory range specified by nodemask and maxnode points outside
734  *         your accessible address space (-EFAULT)
735  */
736 static int
737 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
738 		nodemask_t *nodes, unsigned long flags,
739 		struct list_head *pagelist)
740 {
741 	int err;
742 	struct queue_pages qp = {
743 		.pagelist = pagelist,
744 		.flags = flags,
745 		.nmask = nodes,
746 		.start = start,
747 		.end = end,
748 		.first = NULL,
749 	};
750 
751 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
752 
753 	if (!qp.first)
754 		/* whole range in hole */
755 		err = -EFAULT;
756 
757 	return err;
758 }
759 
760 /*
761  * Apply policy to a single VMA
762  * This must be called with the mmap_lock held for writing.
763  */
764 static int vma_replace_policy(struct vm_area_struct *vma,
765 						struct mempolicy *pol)
766 {
767 	int err;
768 	struct mempolicy *old;
769 	struct mempolicy *new;
770 
771 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
772 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
773 		 vma->vm_ops, vma->vm_file,
774 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
775 
776 	new = mpol_dup(pol);
777 	if (IS_ERR(new))
778 		return PTR_ERR(new);
779 
780 	if (vma->vm_ops && vma->vm_ops->set_policy) {
781 		err = vma->vm_ops->set_policy(vma, new);
782 		if (err)
783 			goto err_out;
784 	}
785 
786 	old = vma->vm_policy;
787 	vma->vm_policy = new; /* protected by mmap_lock */
788 	mpol_put(old);
789 
790 	return 0;
791  err_out:
792 	mpol_put(new);
793 	return err;
794 }
795 
796 /* Split or merge the VMA (if required) and apply the new policy */
797 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
798 		struct vm_area_struct **prev, unsigned long start,
799 		unsigned long end, struct mempolicy *new_pol)
800 {
801 	struct vm_area_struct *merged;
802 	unsigned long vmstart, vmend;
803 	pgoff_t pgoff;
804 	int err;
805 
806 	vmend = min(end, vma->vm_end);
807 	if (start > vma->vm_start) {
808 		*prev = vma;
809 		vmstart = start;
810 	} else {
811 		vmstart = vma->vm_start;
812 	}
813 
814 	if (mpol_equal(vma_policy(vma), new_pol)) {
815 		*prev = vma;
816 		return 0;
817 	}
818 
819 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
820 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
821 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
822 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
823 	if (merged) {
824 		*prev = merged;
825 		return vma_replace_policy(merged, new_pol);
826 	}
827 
828 	if (vma->vm_start != vmstart) {
829 		err = split_vma(vmi, vma, vmstart, 1);
830 		if (err)
831 			return err;
832 	}
833 
834 	if (vma->vm_end != vmend) {
835 		err = split_vma(vmi, vma, vmend, 0);
836 		if (err)
837 			return err;
838 	}
839 
840 	*prev = vma;
841 	return vma_replace_policy(vma, new_pol);
842 }
843 
844 /* Set the process memory policy */
845 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
846 			     nodemask_t *nodes)
847 {
848 	struct mempolicy *new, *old;
849 	NODEMASK_SCRATCH(scratch);
850 	int ret;
851 
852 	if (!scratch)
853 		return -ENOMEM;
854 
855 	new = mpol_new(mode, flags, nodes);
856 	if (IS_ERR(new)) {
857 		ret = PTR_ERR(new);
858 		goto out;
859 	}
860 
861 	task_lock(current);
862 	ret = mpol_set_nodemask(new, nodes, scratch);
863 	if (ret) {
864 		task_unlock(current);
865 		mpol_put(new);
866 		goto out;
867 	}
868 
869 	old = current->mempolicy;
870 	current->mempolicy = new;
871 	if (new && new->mode == MPOL_INTERLEAVE)
872 		current->il_prev = MAX_NUMNODES-1;
873 	task_unlock(current);
874 	mpol_put(old);
875 	ret = 0;
876 out:
877 	NODEMASK_SCRATCH_FREE(scratch);
878 	return ret;
879 }
880 
881 /*
882  * Return nodemask for policy for get_mempolicy() query
883  *
884  * Called with task's alloc_lock held
885  */
886 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
887 {
888 	nodes_clear(*nodes);
889 	if (p == &default_policy)
890 		return;
891 
892 	switch (p->mode) {
893 	case MPOL_BIND:
894 	case MPOL_INTERLEAVE:
895 	case MPOL_PREFERRED:
896 	case MPOL_PREFERRED_MANY:
897 		*nodes = p->nodes;
898 		break;
899 	case MPOL_LOCAL:
900 		/* return empty node mask for local allocation */
901 		break;
902 	default:
903 		BUG();
904 	}
905 }
906 
907 static int lookup_node(struct mm_struct *mm, unsigned long addr)
908 {
909 	struct page *p = NULL;
910 	int ret;
911 
912 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
913 	if (ret > 0) {
914 		ret = page_to_nid(p);
915 		put_page(p);
916 	}
917 	return ret;
918 }
919 
920 /* Retrieve NUMA policy */
921 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
922 			     unsigned long addr, unsigned long flags)
923 {
924 	int err;
925 	struct mm_struct *mm = current->mm;
926 	struct vm_area_struct *vma = NULL;
927 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
928 
929 	if (flags &
930 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
931 		return -EINVAL;
932 
933 	if (flags & MPOL_F_MEMS_ALLOWED) {
934 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
935 			return -EINVAL;
936 		*policy = 0;	/* just so it's initialized */
937 		task_lock(current);
938 		*nmask  = cpuset_current_mems_allowed;
939 		task_unlock(current);
940 		return 0;
941 	}
942 
943 	if (flags & MPOL_F_ADDR) {
944 		/*
945 		 * Do NOT fall back to task policy if the
946 		 * vma/shared policy at addr is NULL.  We
947 		 * want to return MPOL_DEFAULT in this case.
948 		 */
949 		mmap_read_lock(mm);
950 		vma = vma_lookup(mm, addr);
951 		if (!vma) {
952 			mmap_read_unlock(mm);
953 			return -EFAULT;
954 		}
955 		if (vma->vm_ops && vma->vm_ops->get_policy)
956 			pol = vma->vm_ops->get_policy(vma, addr);
957 		else
958 			pol = vma->vm_policy;
959 	} else if (addr)
960 		return -EINVAL;
961 
962 	if (!pol)
963 		pol = &default_policy;	/* indicates default behavior */
964 
965 	if (flags & MPOL_F_NODE) {
966 		if (flags & MPOL_F_ADDR) {
967 			/*
968 			 * Take a refcount on the mpol, because we are about to
969 			 * drop the mmap_lock, after which only "pol" remains
970 			 * valid, "vma" is stale.
971 			 */
972 			pol_refcount = pol;
973 			vma = NULL;
974 			mpol_get(pol);
975 			mmap_read_unlock(mm);
976 			err = lookup_node(mm, addr);
977 			if (err < 0)
978 				goto out;
979 			*policy = err;
980 		} else if (pol == current->mempolicy &&
981 				pol->mode == MPOL_INTERLEAVE) {
982 			*policy = next_node_in(current->il_prev, pol->nodes);
983 		} else {
984 			err = -EINVAL;
985 			goto out;
986 		}
987 	} else {
988 		*policy = pol == &default_policy ? MPOL_DEFAULT :
989 						pol->mode;
990 		/*
991 		 * Internal mempolicy flags must be masked off before exposing
992 		 * the policy to userspace.
993 		 */
994 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
995 	}
996 
997 	err = 0;
998 	if (nmask) {
999 		if (mpol_store_user_nodemask(pol)) {
1000 			*nmask = pol->w.user_nodemask;
1001 		} else {
1002 			task_lock(current);
1003 			get_policy_nodemask(pol, nmask);
1004 			task_unlock(current);
1005 		}
1006 	}
1007 
1008  out:
1009 	mpol_cond_put(pol);
1010 	if (vma)
1011 		mmap_read_unlock(mm);
1012 	if (pol_refcount)
1013 		mpol_put(pol_refcount);
1014 	return err;
1015 }
1016 
1017 #ifdef CONFIG_MIGRATION
1018 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1019 				unsigned long flags)
1020 {
1021 	/*
1022 	 * We try to migrate only unshared folios. If it is shared it
1023 	 * is likely not worth migrating.
1024 	 *
1025 	 * To check if the folio is shared, ideally we want to make sure
1026 	 * every page is mapped to the same process. Doing that is very
1027 	 * expensive, so check the estimated mapcount of the folio instead.
1028 	 */
1029 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1030 		if (folio_isolate_lru(folio)) {
1031 			list_add_tail(&folio->lru, foliolist);
1032 			node_stat_mod_folio(folio,
1033 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1034 				folio_nr_pages(folio));
1035 		} else if (flags & MPOL_MF_STRICT) {
1036 			/*
1037 			 * Non-movable folio may reach here.  And, there may be
1038 			 * temporary off LRU folios or non-LRU movable folios.
1039 			 * Treat them as unmovable folios since they can't be
1040 			 * isolated, so they can't be moved at the moment.  It
1041 			 * should return -EIO for this case too.
1042 			 */
1043 			return -EIO;
1044 		}
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Migrate pages from one node to a target node.
1052  * Returns error or the number of pages not migrated.
1053  */
1054 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1055 			   int flags)
1056 {
1057 	nodemask_t nmask;
1058 	struct vm_area_struct *vma;
1059 	LIST_HEAD(pagelist);
1060 	int err = 0;
1061 	struct migration_target_control mtc = {
1062 		.nid = dest,
1063 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1064 	};
1065 
1066 	nodes_clear(nmask);
1067 	node_set(source, nmask);
1068 
1069 	/*
1070 	 * This does not "check" the range but isolates all pages that
1071 	 * need migration.  Between passing in the full user address
1072 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1073 	 */
1074 	vma = find_vma(mm, 0);
1075 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1076 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1077 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1078 
1079 	if (!list_empty(&pagelist)) {
1080 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1081 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1082 		if (err)
1083 			putback_movable_pages(&pagelist);
1084 	}
1085 
1086 	return err;
1087 }
1088 
1089 /*
1090  * Move pages between the two nodesets so as to preserve the physical
1091  * layout as much as possible.
1092  *
1093  * Returns the number of page that could not be moved.
1094  */
1095 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1096 		     const nodemask_t *to, int flags)
1097 {
1098 	int busy = 0;
1099 	int err = 0;
1100 	nodemask_t tmp;
1101 
1102 	lru_cache_disable();
1103 
1104 	mmap_read_lock(mm);
1105 
1106 	/*
1107 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1108 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1109 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1110 	 * The pair of nodemasks 'to' and 'from' define the map.
1111 	 *
1112 	 * If no pair of bits is found that way, fallback to picking some
1113 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1114 	 * 'source' and 'dest' bits are the same, this represents a node
1115 	 * that will be migrating to itself, so no pages need move.
1116 	 *
1117 	 * If no bits are left in 'tmp', or if all remaining bits left
1118 	 * in 'tmp' correspond to the same bit in 'to', return false
1119 	 * (nothing left to migrate).
1120 	 *
1121 	 * This lets us pick a pair of nodes to migrate between, such that
1122 	 * if possible the dest node is not already occupied by some other
1123 	 * source node, minimizing the risk of overloading the memory on a
1124 	 * node that would happen if we migrated incoming memory to a node
1125 	 * before migrating outgoing memory source that same node.
1126 	 *
1127 	 * A single scan of tmp is sufficient.  As we go, we remember the
1128 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1129 	 * that not only moved, but what's better, moved to an empty slot
1130 	 * (d is not set in tmp), then we break out then, with that pair.
1131 	 * Otherwise when we finish scanning from_tmp, we at least have the
1132 	 * most recent <s, d> pair that moved.  If we get all the way through
1133 	 * the scan of tmp without finding any node that moved, much less
1134 	 * moved to an empty node, then there is nothing left worth migrating.
1135 	 */
1136 
1137 	tmp = *from;
1138 	while (!nodes_empty(tmp)) {
1139 		int s, d;
1140 		int source = NUMA_NO_NODE;
1141 		int dest = 0;
1142 
1143 		for_each_node_mask(s, tmp) {
1144 
1145 			/*
1146 			 * do_migrate_pages() tries to maintain the relative
1147 			 * node relationship of the pages established between
1148 			 * threads and memory areas.
1149                          *
1150 			 * However if the number of source nodes is not equal to
1151 			 * the number of destination nodes we can not preserve
1152 			 * this node relative relationship.  In that case, skip
1153 			 * copying memory from a node that is in the destination
1154 			 * mask.
1155 			 *
1156 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1157 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1158 			 */
1159 
1160 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1161 						(node_isset(s, *to)))
1162 				continue;
1163 
1164 			d = node_remap(s, *from, *to);
1165 			if (s == d)
1166 				continue;
1167 
1168 			source = s;	/* Node moved. Memorize */
1169 			dest = d;
1170 
1171 			/* dest not in remaining from nodes? */
1172 			if (!node_isset(dest, tmp))
1173 				break;
1174 		}
1175 		if (source == NUMA_NO_NODE)
1176 			break;
1177 
1178 		node_clear(source, tmp);
1179 		err = migrate_to_node(mm, source, dest, flags);
1180 		if (err > 0)
1181 			busy += err;
1182 		if (err < 0)
1183 			break;
1184 	}
1185 	mmap_read_unlock(mm);
1186 
1187 	lru_cache_enable();
1188 	if (err < 0)
1189 		return err;
1190 	return busy;
1191 
1192 }
1193 
1194 /*
1195  * Allocate a new page for page migration based on vma policy.
1196  * Start by assuming the page is mapped by the same vma as contains @start.
1197  * Search forward from there, if not.  N.B., this assumes that the
1198  * list of pages handed to migrate_pages()--which is how we get here--
1199  * is in virtual address order.
1200  */
1201 static struct folio *new_folio(struct folio *src, unsigned long start)
1202 {
1203 	struct vm_area_struct *vma;
1204 	unsigned long address;
1205 	VMA_ITERATOR(vmi, current->mm, start);
1206 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1207 
1208 	for_each_vma(vmi, vma) {
1209 		address = page_address_in_vma(&src->page, vma);
1210 		if (address != -EFAULT)
1211 			break;
1212 	}
1213 
1214 	if (folio_test_hugetlb(src)) {
1215 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1216 				vma, address);
1217 	}
1218 
1219 	if (folio_test_large(src))
1220 		gfp = GFP_TRANSHUGE;
1221 
1222 	/*
1223 	 * if !vma, vma_alloc_folio() will use task or system default policy
1224 	 */
1225 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1226 			folio_test_large(src));
1227 }
1228 #else
1229 
1230 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1231 				unsigned long flags)
1232 {
1233 	return -EIO;
1234 }
1235 
1236 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1237 		     const nodemask_t *to, int flags)
1238 {
1239 	return -ENOSYS;
1240 }
1241 
1242 static struct folio *new_folio(struct folio *src, unsigned long start)
1243 {
1244 	return NULL;
1245 }
1246 #endif
1247 
1248 static long do_mbind(unsigned long start, unsigned long len,
1249 		     unsigned short mode, unsigned short mode_flags,
1250 		     nodemask_t *nmask, unsigned long flags)
1251 {
1252 	struct mm_struct *mm = current->mm;
1253 	struct vm_area_struct *vma, *prev;
1254 	struct vma_iterator vmi;
1255 	struct mempolicy *new;
1256 	unsigned long end;
1257 	int err;
1258 	int ret;
1259 	LIST_HEAD(pagelist);
1260 
1261 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1262 		return -EINVAL;
1263 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1264 		return -EPERM;
1265 
1266 	if (start & ~PAGE_MASK)
1267 		return -EINVAL;
1268 
1269 	if (mode == MPOL_DEFAULT)
1270 		flags &= ~MPOL_MF_STRICT;
1271 
1272 	len = PAGE_ALIGN(len);
1273 	end = start + len;
1274 
1275 	if (end < start)
1276 		return -EINVAL;
1277 	if (end == start)
1278 		return 0;
1279 
1280 	new = mpol_new(mode, mode_flags, nmask);
1281 	if (IS_ERR(new))
1282 		return PTR_ERR(new);
1283 
1284 	if (flags & MPOL_MF_LAZY)
1285 		new->flags |= MPOL_F_MOF;
1286 
1287 	/*
1288 	 * If we are using the default policy then operation
1289 	 * on discontinuous address spaces is okay after all
1290 	 */
1291 	if (!new)
1292 		flags |= MPOL_MF_DISCONTIG_OK;
1293 
1294 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1295 		 start, start + len, mode, mode_flags,
1296 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1297 
1298 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1299 
1300 		lru_cache_disable();
1301 	}
1302 	{
1303 		NODEMASK_SCRATCH(scratch);
1304 		if (scratch) {
1305 			mmap_write_lock(mm);
1306 			err = mpol_set_nodemask(new, nmask, scratch);
1307 			if (err)
1308 				mmap_write_unlock(mm);
1309 		} else
1310 			err = -ENOMEM;
1311 		NODEMASK_SCRATCH_FREE(scratch);
1312 	}
1313 	if (err)
1314 		goto mpol_out;
1315 
1316 	ret = queue_pages_range(mm, start, end, nmask,
1317 			  flags | MPOL_MF_INVERT, &pagelist);
1318 
1319 	if (ret < 0) {
1320 		err = ret;
1321 		goto up_out;
1322 	}
1323 
1324 	vma_iter_init(&vmi, mm, start);
1325 	prev = vma_prev(&vmi);
1326 	for_each_vma_range(vmi, vma, end) {
1327 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1328 		if (err)
1329 			break;
1330 	}
1331 
1332 	if (!err) {
1333 		int nr_failed = 0;
1334 
1335 		if (!list_empty(&pagelist)) {
1336 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1338 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1339 			if (nr_failed)
1340 				putback_movable_pages(&pagelist);
1341 		}
1342 
1343 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1344 			err = -EIO;
1345 	} else {
1346 up_out:
1347 		if (!list_empty(&pagelist))
1348 			putback_movable_pages(&pagelist);
1349 	}
1350 
1351 	mmap_write_unlock(mm);
1352 mpol_out:
1353 	mpol_put(new);
1354 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1355 		lru_cache_enable();
1356 	return err;
1357 }
1358 
1359 /*
1360  * User space interface with variable sized bitmaps for nodelists.
1361  */
1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 		      unsigned long maxnode)
1364 {
1365 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1366 	int ret;
1367 
1368 	if (in_compat_syscall())
1369 		ret = compat_get_bitmap(mask,
1370 					(const compat_ulong_t __user *)nmask,
1371 					maxnode);
1372 	else
1373 		ret = copy_from_user(mask, nmask,
1374 				     nlongs * sizeof(unsigned long));
1375 
1376 	if (ret)
1377 		return -EFAULT;
1378 
1379 	if (maxnode % BITS_PER_LONG)
1380 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1381 
1382 	return 0;
1383 }
1384 
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 		     unsigned long maxnode)
1388 {
1389 	--maxnode;
1390 	nodes_clear(*nodes);
1391 	if (maxnode == 0 || !nmask)
1392 		return 0;
1393 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1394 		return -EINVAL;
1395 
1396 	/*
1397 	 * When the user specified more nodes than supported just check
1398 	 * if the non supported part is all zero, one word at a time,
1399 	 * starting at the end.
1400 	 */
1401 	while (maxnode > MAX_NUMNODES) {
1402 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1403 		unsigned long t;
1404 
1405 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1406 			return -EFAULT;
1407 
1408 		if (maxnode - bits >= MAX_NUMNODES) {
1409 			maxnode -= bits;
1410 		} else {
1411 			maxnode = MAX_NUMNODES;
1412 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1413 		}
1414 		if (t)
1415 			return -EINVAL;
1416 	}
1417 
1418 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1419 }
1420 
1421 /* Copy a kernel node mask to user space */
1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1423 			      nodemask_t *nodes)
1424 {
1425 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 	bool compat = in_compat_syscall();
1428 
1429 	if (compat)
1430 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1431 
1432 	if (copy > nbytes) {
1433 		if (copy > PAGE_SIZE)
1434 			return -EINVAL;
1435 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1436 			return -EFAULT;
1437 		copy = nbytes;
1438 		maxnode = nr_node_ids;
1439 	}
1440 
1441 	if (compat)
1442 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 					 nodes_addr(*nodes), maxnode);
1444 
1445 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1446 }
1447 
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1450 {
1451 	*flags = *mode & MPOL_MODE_FLAGS;
1452 	*mode &= ~MPOL_MODE_FLAGS;
1453 
1454 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1455 		return -EINVAL;
1456 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1457 		return -EINVAL;
1458 	if (*flags & MPOL_F_NUMA_BALANCING) {
1459 		if (*mode != MPOL_BIND)
1460 			return -EINVAL;
1461 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1462 	}
1463 	return 0;
1464 }
1465 
1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 			 unsigned long mode, const unsigned long __user *nmask,
1468 			 unsigned long maxnode, unsigned int flags)
1469 {
1470 	unsigned short mode_flags;
1471 	nodemask_t nodes;
1472 	int lmode = mode;
1473 	int err;
1474 
1475 	start = untagged_addr(start);
1476 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1477 	if (err)
1478 		return err;
1479 
1480 	err = get_nodes(&nodes, nmask, maxnode);
1481 	if (err)
1482 		return err;
1483 
1484 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1485 }
1486 
1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 		unsigned long, home_node, unsigned long, flags)
1489 {
1490 	struct mm_struct *mm = current->mm;
1491 	struct vm_area_struct *vma, *prev;
1492 	struct mempolicy *new, *old;
1493 	unsigned long end;
1494 	int err = -ENOENT;
1495 	VMA_ITERATOR(vmi, mm, start);
1496 
1497 	start = untagged_addr(start);
1498 	if (start & ~PAGE_MASK)
1499 		return -EINVAL;
1500 	/*
1501 	 * flags is used for future extension if any.
1502 	 */
1503 	if (flags != 0)
1504 		return -EINVAL;
1505 
1506 	/*
1507 	 * Check home_node is online to avoid accessing uninitialized
1508 	 * NODE_DATA.
1509 	 */
1510 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1511 		return -EINVAL;
1512 
1513 	len = PAGE_ALIGN(len);
1514 	end = start + len;
1515 
1516 	if (end < start)
1517 		return -EINVAL;
1518 	if (end == start)
1519 		return 0;
1520 	mmap_write_lock(mm);
1521 	prev = vma_prev(&vmi);
1522 	for_each_vma_range(vmi, vma, end) {
1523 		/*
1524 		 * If any vma in the range got policy other than MPOL_BIND
1525 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1526 		 * the home node for vmas we already updated before.
1527 		 */
1528 		old = vma_policy(vma);
1529 		if (!old)
1530 			continue;
1531 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1532 			err = -EOPNOTSUPP;
1533 			break;
1534 		}
1535 		new = mpol_dup(old);
1536 		if (IS_ERR(new)) {
1537 			err = PTR_ERR(new);
1538 			break;
1539 		}
1540 
1541 		new->home_node = home_node;
1542 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1543 		mpol_put(new);
1544 		if (err)
1545 			break;
1546 	}
1547 	mmap_write_unlock(mm);
1548 	return err;
1549 }
1550 
1551 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1552 		unsigned long, mode, const unsigned long __user *, nmask,
1553 		unsigned long, maxnode, unsigned int, flags)
1554 {
1555 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1556 }
1557 
1558 /* Set the process memory policy */
1559 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1560 				 unsigned long maxnode)
1561 {
1562 	unsigned short mode_flags;
1563 	nodemask_t nodes;
1564 	int lmode = mode;
1565 	int err;
1566 
1567 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1568 	if (err)
1569 		return err;
1570 
1571 	err = get_nodes(&nodes, nmask, maxnode);
1572 	if (err)
1573 		return err;
1574 
1575 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1576 }
1577 
1578 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1579 		unsigned long, maxnode)
1580 {
1581 	return kernel_set_mempolicy(mode, nmask, maxnode);
1582 }
1583 
1584 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1585 				const unsigned long __user *old_nodes,
1586 				const unsigned long __user *new_nodes)
1587 {
1588 	struct mm_struct *mm = NULL;
1589 	struct task_struct *task;
1590 	nodemask_t task_nodes;
1591 	int err;
1592 	nodemask_t *old;
1593 	nodemask_t *new;
1594 	NODEMASK_SCRATCH(scratch);
1595 
1596 	if (!scratch)
1597 		return -ENOMEM;
1598 
1599 	old = &scratch->mask1;
1600 	new = &scratch->mask2;
1601 
1602 	err = get_nodes(old, old_nodes, maxnode);
1603 	if (err)
1604 		goto out;
1605 
1606 	err = get_nodes(new, new_nodes, maxnode);
1607 	if (err)
1608 		goto out;
1609 
1610 	/* Find the mm_struct */
1611 	rcu_read_lock();
1612 	task = pid ? find_task_by_vpid(pid) : current;
1613 	if (!task) {
1614 		rcu_read_unlock();
1615 		err = -ESRCH;
1616 		goto out;
1617 	}
1618 	get_task_struct(task);
1619 
1620 	err = -EINVAL;
1621 
1622 	/*
1623 	 * Check if this process has the right to modify the specified process.
1624 	 * Use the regular "ptrace_may_access()" checks.
1625 	 */
1626 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1627 		rcu_read_unlock();
1628 		err = -EPERM;
1629 		goto out_put;
1630 	}
1631 	rcu_read_unlock();
1632 
1633 	task_nodes = cpuset_mems_allowed(task);
1634 	/* Is the user allowed to access the target nodes? */
1635 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1636 		err = -EPERM;
1637 		goto out_put;
1638 	}
1639 
1640 	task_nodes = cpuset_mems_allowed(current);
1641 	nodes_and(*new, *new, task_nodes);
1642 	if (nodes_empty(*new))
1643 		goto out_put;
1644 
1645 	err = security_task_movememory(task);
1646 	if (err)
1647 		goto out_put;
1648 
1649 	mm = get_task_mm(task);
1650 	put_task_struct(task);
1651 
1652 	if (!mm) {
1653 		err = -EINVAL;
1654 		goto out;
1655 	}
1656 
1657 	err = do_migrate_pages(mm, old, new,
1658 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1659 
1660 	mmput(mm);
1661 out:
1662 	NODEMASK_SCRATCH_FREE(scratch);
1663 
1664 	return err;
1665 
1666 out_put:
1667 	put_task_struct(task);
1668 	goto out;
1669 
1670 }
1671 
1672 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1673 		const unsigned long __user *, old_nodes,
1674 		const unsigned long __user *, new_nodes)
1675 {
1676 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1677 }
1678 
1679 
1680 /* Retrieve NUMA policy */
1681 static int kernel_get_mempolicy(int __user *policy,
1682 				unsigned long __user *nmask,
1683 				unsigned long maxnode,
1684 				unsigned long addr,
1685 				unsigned long flags)
1686 {
1687 	int err;
1688 	int pval;
1689 	nodemask_t nodes;
1690 
1691 	if (nmask != NULL && maxnode < nr_node_ids)
1692 		return -EINVAL;
1693 
1694 	addr = untagged_addr(addr);
1695 
1696 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1697 
1698 	if (err)
1699 		return err;
1700 
1701 	if (policy && put_user(pval, policy))
1702 		return -EFAULT;
1703 
1704 	if (nmask)
1705 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1706 
1707 	return err;
1708 }
1709 
1710 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1711 		unsigned long __user *, nmask, unsigned long, maxnode,
1712 		unsigned long, addr, unsigned long, flags)
1713 {
1714 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1715 }
1716 
1717 bool vma_migratable(struct vm_area_struct *vma)
1718 {
1719 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1720 		return false;
1721 
1722 	/*
1723 	 * DAX device mappings require predictable access latency, so avoid
1724 	 * incurring periodic faults.
1725 	 */
1726 	if (vma_is_dax(vma))
1727 		return false;
1728 
1729 	if (is_vm_hugetlb_page(vma) &&
1730 		!hugepage_migration_supported(hstate_vma(vma)))
1731 		return false;
1732 
1733 	/*
1734 	 * Migration allocates pages in the highest zone. If we cannot
1735 	 * do so then migration (at least from node to node) is not
1736 	 * possible.
1737 	 */
1738 	if (vma->vm_file &&
1739 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1740 			< policy_zone)
1741 		return false;
1742 	return true;
1743 }
1744 
1745 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1746 						unsigned long addr)
1747 {
1748 	struct mempolicy *pol = NULL;
1749 
1750 	if (vma) {
1751 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1752 			pol = vma->vm_ops->get_policy(vma, addr);
1753 		} else if (vma->vm_policy) {
1754 			pol = vma->vm_policy;
1755 
1756 			/*
1757 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1758 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1759 			 * count on these policies which will be dropped by
1760 			 * mpol_cond_put() later
1761 			 */
1762 			if (mpol_needs_cond_ref(pol))
1763 				mpol_get(pol);
1764 		}
1765 	}
1766 
1767 	return pol;
1768 }
1769 
1770 /*
1771  * get_vma_policy(@vma, @addr)
1772  * @vma: virtual memory area whose policy is sought
1773  * @addr: address in @vma for shared policy lookup
1774  *
1775  * Returns effective policy for a VMA at specified address.
1776  * Falls back to current->mempolicy or system default policy, as necessary.
1777  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1778  * count--added by the get_policy() vm_op, as appropriate--to protect against
1779  * freeing by another task.  It is the caller's responsibility to free the
1780  * extra reference for shared policies.
1781  */
1782 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1783 						unsigned long addr)
1784 {
1785 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1786 
1787 	if (!pol)
1788 		pol = get_task_policy(current);
1789 
1790 	return pol;
1791 }
1792 
1793 bool vma_policy_mof(struct vm_area_struct *vma)
1794 {
1795 	struct mempolicy *pol;
1796 
1797 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1798 		bool ret = false;
1799 
1800 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1801 		if (pol && (pol->flags & MPOL_F_MOF))
1802 			ret = true;
1803 		mpol_cond_put(pol);
1804 
1805 		return ret;
1806 	}
1807 
1808 	pol = vma->vm_policy;
1809 	if (!pol)
1810 		pol = get_task_policy(current);
1811 
1812 	return pol->flags & MPOL_F_MOF;
1813 }
1814 
1815 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1816 {
1817 	enum zone_type dynamic_policy_zone = policy_zone;
1818 
1819 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1820 
1821 	/*
1822 	 * if policy->nodes has movable memory only,
1823 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1824 	 *
1825 	 * policy->nodes is intersect with node_states[N_MEMORY].
1826 	 * so if the following test fails, it implies
1827 	 * policy->nodes has movable memory only.
1828 	 */
1829 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1830 		dynamic_policy_zone = ZONE_MOVABLE;
1831 
1832 	return zone >= dynamic_policy_zone;
1833 }
1834 
1835 /*
1836  * Return a nodemask representing a mempolicy for filtering nodes for
1837  * page allocation
1838  */
1839 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1840 {
1841 	int mode = policy->mode;
1842 
1843 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1844 	if (unlikely(mode == MPOL_BIND) &&
1845 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1846 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1847 		return &policy->nodes;
1848 
1849 	if (mode == MPOL_PREFERRED_MANY)
1850 		return &policy->nodes;
1851 
1852 	return NULL;
1853 }
1854 
1855 /*
1856  * Return the  preferred node id for 'prefer' mempolicy, and return
1857  * the given id for all other policies.
1858  *
1859  * policy_node() is always coupled with policy_nodemask(), which
1860  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1861  */
1862 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1863 {
1864 	if (policy->mode == MPOL_PREFERRED) {
1865 		nd = first_node(policy->nodes);
1866 	} else {
1867 		/*
1868 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1869 		 * because we might easily break the expectation to stay on the
1870 		 * requested node and not break the policy.
1871 		 */
1872 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1873 	}
1874 
1875 	if ((policy->mode == MPOL_BIND ||
1876 	     policy->mode == MPOL_PREFERRED_MANY) &&
1877 	    policy->home_node != NUMA_NO_NODE)
1878 		return policy->home_node;
1879 
1880 	return nd;
1881 }
1882 
1883 /* Do dynamic interleaving for a process */
1884 static unsigned interleave_nodes(struct mempolicy *policy)
1885 {
1886 	unsigned next;
1887 	struct task_struct *me = current;
1888 
1889 	next = next_node_in(me->il_prev, policy->nodes);
1890 	if (next < MAX_NUMNODES)
1891 		me->il_prev = next;
1892 	return next;
1893 }
1894 
1895 /*
1896  * Depending on the memory policy provide a node from which to allocate the
1897  * next slab entry.
1898  */
1899 unsigned int mempolicy_slab_node(void)
1900 {
1901 	struct mempolicy *policy;
1902 	int node = numa_mem_id();
1903 
1904 	if (!in_task())
1905 		return node;
1906 
1907 	policy = current->mempolicy;
1908 	if (!policy)
1909 		return node;
1910 
1911 	switch (policy->mode) {
1912 	case MPOL_PREFERRED:
1913 		return first_node(policy->nodes);
1914 
1915 	case MPOL_INTERLEAVE:
1916 		return interleave_nodes(policy);
1917 
1918 	case MPOL_BIND:
1919 	case MPOL_PREFERRED_MANY:
1920 	{
1921 		struct zoneref *z;
1922 
1923 		/*
1924 		 * Follow bind policy behavior and start allocation at the
1925 		 * first node.
1926 		 */
1927 		struct zonelist *zonelist;
1928 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1929 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1930 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1931 							&policy->nodes);
1932 		return z->zone ? zone_to_nid(z->zone) : node;
1933 	}
1934 	case MPOL_LOCAL:
1935 		return node;
1936 
1937 	default:
1938 		BUG();
1939 	}
1940 }
1941 
1942 /*
1943  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1944  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1945  * number of present nodes.
1946  */
1947 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1948 {
1949 	nodemask_t nodemask = pol->nodes;
1950 	unsigned int target, nnodes;
1951 	int i;
1952 	int nid;
1953 	/*
1954 	 * The barrier will stabilize the nodemask in a register or on
1955 	 * the stack so that it will stop changing under the code.
1956 	 *
1957 	 * Between first_node() and next_node(), pol->nodes could be changed
1958 	 * by other threads. So we put pol->nodes in a local stack.
1959 	 */
1960 	barrier();
1961 
1962 	nnodes = nodes_weight(nodemask);
1963 	if (!nnodes)
1964 		return numa_node_id();
1965 	target = (unsigned int)n % nnodes;
1966 	nid = first_node(nodemask);
1967 	for (i = 0; i < target; i++)
1968 		nid = next_node(nid, nodemask);
1969 	return nid;
1970 }
1971 
1972 /* Determine a node number for interleave */
1973 static inline unsigned interleave_nid(struct mempolicy *pol,
1974 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1975 {
1976 	if (vma) {
1977 		unsigned long off;
1978 
1979 		/*
1980 		 * for small pages, there is no difference between
1981 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1982 		 * for huge pages, since vm_pgoff is in units of small
1983 		 * pages, we need to shift off the always 0 bits to get
1984 		 * a useful offset.
1985 		 */
1986 		BUG_ON(shift < PAGE_SHIFT);
1987 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1988 		off += (addr - vma->vm_start) >> shift;
1989 		return offset_il_node(pol, off);
1990 	} else
1991 		return interleave_nodes(pol);
1992 }
1993 
1994 #ifdef CONFIG_HUGETLBFS
1995 /*
1996  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1997  * @vma: virtual memory area whose policy is sought
1998  * @addr: address in @vma for shared policy lookup and interleave policy
1999  * @gfp_flags: for requested zone
2000  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2001  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2002  *
2003  * Returns a nid suitable for a huge page allocation and a pointer
2004  * to the struct mempolicy for conditional unref after allocation.
2005  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2006  * to the mempolicy's @nodemask for filtering the zonelist.
2007  *
2008  * Must be protected by read_mems_allowed_begin()
2009  */
2010 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2011 				struct mempolicy **mpol, nodemask_t **nodemask)
2012 {
2013 	int nid;
2014 	int mode;
2015 
2016 	*mpol = get_vma_policy(vma, addr);
2017 	*nodemask = NULL;
2018 	mode = (*mpol)->mode;
2019 
2020 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2021 		nid = interleave_nid(*mpol, vma, addr,
2022 					huge_page_shift(hstate_vma(vma)));
2023 	} else {
2024 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2025 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2026 			*nodemask = &(*mpol)->nodes;
2027 	}
2028 	return nid;
2029 }
2030 
2031 /*
2032  * init_nodemask_of_mempolicy
2033  *
2034  * If the current task's mempolicy is "default" [NULL], return 'false'
2035  * to indicate default policy.  Otherwise, extract the policy nodemask
2036  * for 'bind' or 'interleave' policy into the argument nodemask, or
2037  * initialize the argument nodemask to contain the single node for
2038  * 'preferred' or 'local' policy and return 'true' to indicate presence
2039  * of non-default mempolicy.
2040  *
2041  * We don't bother with reference counting the mempolicy [mpol_get/put]
2042  * because the current task is examining it's own mempolicy and a task's
2043  * mempolicy is only ever changed by the task itself.
2044  *
2045  * N.B., it is the caller's responsibility to free a returned nodemask.
2046  */
2047 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2048 {
2049 	struct mempolicy *mempolicy;
2050 
2051 	if (!(mask && current->mempolicy))
2052 		return false;
2053 
2054 	task_lock(current);
2055 	mempolicy = current->mempolicy;
2056 	switch (mempolicy->mode) {
2057 	case MPOL_PREFERRED:
2058 	case MPOL_PREFERRED_MANY:
2059 	case MPOL_BIND:
2060 	case MPOL_INTERLEAVE:
2061 		*mask = mempolicy->nodes;
2062 		break;
2063 
2064 	case MPOL_LOCAL:
2065 		init_nodemask_of_node(mask, numa_node_id());
2066 		break;
2067 
2068 	default:
2069 		BUG();
2070 	}
2071 	task_unlock(current);
2072 
2073 	return true;
2074 }
2075 #endif
2076 
2077 /*
2078  * mempolicy_in_oom_domain
2079  *
2080  * If tsk's mempolicy is "bind", check for intersection between mask and
2081  * the policy nodemask. Otherwise, return true for all other policies
2082  * including "interleave", as a tsk with "interleave" policy may have
2083  * memory allocated from all nodes in system.
2084  *
2085  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2086  */
2087 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2088 					const nodemask_t *mask)
2089 {
2090 	struct mempolicy *mempolicy;
2091 	bool ret = true;
2092 
2093 	if (!mask)
2094 		return ret;
2095 
2096 	task_lock(tsk);
2097 	mempolicy = tsk->mempolicy;
2098 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2099 		ret = nodes_intersects(mempolicy->nodes, *mask);
2100 	task_unlock(tsk);
2101 
2102 	return ret;
2103 }
2104 
2105 /* Allocate a page in interleaved policy.
2106    Own path because it needs to do special accounting. */
2107 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2108 					unsigned nid)
2109 {
2110 	struct page *page;
2111 
2112 	page = __alloc_pages(gfp, order, nid, NULL);
2113 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2114 	if (!static_branch_likely(&vm_numa_stat_key))
2115 		return page;
2116 	if (page && page_to_nid(page) == nid) {
2117 		preempt_disable();
2118 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2119 		preempt_enable();
2120 	}
2121 	return page;
2122 }
2123 
2124 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2125 						int nid, struct mempolicy *pol)
2126 {
2127 	struct page *page;
2128 	gfp_t preferred_gfp;
2129 
2130 	/*
2131 	 * This is a two pass approach. The first pass will only try the
2132 	 * preferred nodes but skip the direct reclaim and allow the
2133 	 * allocation to fail, while the second pass will try all the
2134 	 * nodes in system.
2135 	 */
2136 	preferred_gfp = gfp | __GFP_NOWARN;
2137 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2138 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2139 	if (!page)
2140 		page = __alloc_pages(gfp, order, nid, NULL);
2141 
2142 	return page;
2143 }
2144 
2145 /**
2146  * vma_alloc_folio - Allocate a folio for a VMA.
2147  * @gfp: GFP flags.
2148  * @order: Order of the folio.
2149  * @vma: Pointer to VMA or NULL if not available.
2150  * @addr: Virtual address of the allocation.  Must be inside @vma.
2151  * @hugepage: For hugepages try only the preferred node if possible.
2152  *
2153  * Allocate a folio for a specific address in @vma, using the appropriate
2154  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2155  * of the mm_struct of the VMA to prevent it from going away.  Should be
2156  * used for all allocations for folios that will be mapped into user space.
2157  *
2158  * Return: The folio on success or NULL if allocation fails.
2159  */
2160 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2161 		unsigned long addr, bool hugepage)
2162 {
2163 	struct mempolicy *pol;
2164 	int node = numa_node_id();
2165 	struct folio *folio;
2166 	int preferred_nid;
2167 	nodemask_t *nmask;
2168 
2169 	pol = get_vma_policy(vma, addr);
2170 
2171 	if (pol->mode == MPOL_INTERLEAVE) {
2172 		struct page *page;
2173 		unsigned nid;
2174 
2175 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2176 		mpol_cond_put(pol);
2177 		gfp |= __GFP_COMP;
2178 		page = alloc_page_interleave(gfp, order, nid);
2179 		if (page && order > 1)
2180 			prep_transhuge_page(page);
2181 		folio = (struct folio *)page;
2182 		goto out;
2183 	}
2184 
2185 	if (pol->mode == MPOL_PREFERRED_MANY) {
2186 		struct page *page;
2187 
2188 		node = policy_node(gfp, pol, node);
2189 		gfp |= __GFP_COMP;
2190 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2191 		mpol_cond_put(pol);
2192 		if (page && order > 1)
2193 			prep_transhuge_page(page);
2194 		folio = (struct folio *)page;
2195 		goto out;
2196 	}
2197 
2198 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2199 		int hpage_node = node;
2200 
2201 		/*
2202 		 * For hugepage allocation and non-interleave policy which
2203 		 * allows the current node (or other explicitly preferred
2204 		 * node) we only try to allocate from the current/preferred
2205 		 * node and don't fall back to other nodes, as the cost of
2206 		 * remote accesses would likely offset THP benefits.
2207 		 *
2208 		 * If the policy is interleave or does not allow the current
2209 		 * node in its nodemask, we allocate the standard way.
2210 		 */
2211 		if (pol->mode == MPOL_PREFERRED)
2212 			hpage_node = first_node(pol->nodes);
2213 
2214 		nmask = policy_nodemask(gfp, pol);
2215 		if (!nmask || node_isset(hpage_node, *nmask)) {
2216 			mpol_cond_put(pol);
2217 			/*
2218 			 * First, try to allocate THP only on local node, but
2219 			 * don't reclaim unnecessarily, just compact.
2220 			 */
2221 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2222 					__GFP_NORETRY, order, hpage_node);
2223 
2224 			/*
2225 			 * If hugepage allocations are configured to always
2226 			 * synchronous compact or the vma has been madvised
2227 			 * to prefer hugepage backing, retry allowing remote
2228 			 * memory with both reclaim and compact as well.
2229 			 */
2230 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2231 				folio = __folio_alloc(gfp, order, hpage_node,
2232 						      nmask);
2233 
2234 			goto out;
2235 		}
2236 	}
2237 
2238 	nmask = policy_nodemask(gfp, pol);
2239 	preferred_nid = policy_node(gfp, pol, node);
2240 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2241 	mpol_cond_put(pol);
2242 out:
2243 	return folio;
2244 }
2245 EXPORT_SYMBOL(vma_alloc_folio);
2246 
2247 /**
2248  * alloc_pages - Allocate pages.
2249  * @gfp: GFP flags.
2250  * @order: Power of two of number of pages to allocate.
2251  *
2252  * Allocate 1 << @order contiguous pages.  The physical address of the
2253  * first page is naturally aligned (eg an order-3 allocation will be aligned
2254  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2255  * process is honoured when in process context.
2256  *
2257  * Context: Can be called from any context, providing the appropriate GFP
2258  * flags are used.
2259  * Return: The page on success or NULL if allocation fails.
2260  */
2261 struct page *alloc_pages(gfp_t gfp, unsigned order)
2262 {
2263 	struct mempolicy *pol = &default_policy;
2264 	struct page *page;
2265 
2266 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2267 		pol = get_task_policy(current);
2268 
2269 	/*
2270 	 * No reference counting needed for current->mempolicy
2271 	 * nor system default_policy
2272 	 */
2273 	if (pol->mode == MPOL_INTERLEAVE)
2274 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2275 	else if (pol->mode == MPOL_PREFERRED_MANY)
2276 		page = alloc_pages_preferred_many(gfp, order,
2277 				  policy_node(gfp, pol, numa_node_id()), pol);
2278 	else
2279 		page = __alloc_pages(gfp, order,
2280 				policy_node(gfp, pol, numa_node_id()),
2281 				policy_nodemask(gfp, pol));
2282 
2283 	return page;
2284 }
2285 EXPORT_SYMBOL(alloc_pages);
2286 
2287 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2288 {
2289 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2290 
2291 	if (page && order > 1)
2292 		prep_transhuge_page(page);
2293 	return (struct folio *)page;
2294 }
2295 EXPORT_SYMBOL(folio_alloc);
2296 
2297 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2298 		struct mempolicy *pol, unsigned long nr_pages,
2299 		struct page **page_array)
2300 {
2301 	int nodes;
2302 	unsigned long nr_pages_per_node;
2303 	int delta;
2304 	int i;
2305 	unsigned long nr_allocated;
2306 	unsigned long total_allocated = 0;
2307 
2308 	nodes = nodes_weight(pol->nodes);
2309 	nr_pages_per_node = nr_pages / nodes;
2310 	delta = nr_pages - nodes * nr_pages_per_node;
2311 
2312 	for (i = 0; i < nodes; i++) {
2313 		if (delta) {
2314 			nr_allocated = __alloc_pages_bulk(gfp,
2315 					interleave_nodes(pol), NULL,
2316 					nr_pages_per_node + 1, NULL,
2317 					page_array);
2318 			delta--;
2319 		} else {
2320 			nr_allocated = __alloc_pages_bulk(gfp,
2321 					interleave_nodes(pol), NULL,
2322 					nr_pages_per_node, NULL, page_array);
2323 		}
2324 
2325 		page_array += nr_allocated;
2326 		total_allocated += nr_allocated;
2327 	}
2328 
2329 	return total_allocated;
2330 }
2331 
2332 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2333 		struct mempolicy *pol, unsigned long nr_pages,
2334 		struct page **page_array)
2335 {
2336 	gfp_t preferred_gfp;
2337 	unsigned long nr_allocated = 0;
2338 
2339 	preferred_gfp = gfp | __GFP_NOWARN;
2340 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2341 
2342 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2343 					   nr_pages, NULL, page_array);
2344 
2345 	if (nr_allocated < nr_pages)
2346 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2347 				nr_pages - nr_allocated, NULL,
2348 				page_array + nr_allocated);
2349 	return nr_allocated;
2350 }
2351 
2352 /* alloc pages bulk and mempolicy should be considered at the
2353  * same time in some situation such as vmalloc.
2354  *
2355  * It can accelerate memory allocation especially interleaving
2356  * allocate memory.
2357  */
2358 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2359 		unsigned long nr_pages, struct page **page_array)
2360 {
2361 	struct mempolicy *pol = &default_policy;
2362 
2363 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2364 		pol = get_task_policy(current);
2365 
2366 	if (pol->mode == MPOL_INTERLEAVE)
2367 		return alloc_pages_bulk_array_interleave(gfp, pol,
2368 							 nr_pages, page_array);
2369 
2370 	if (pol->mode == MPOL_PREFERRED_MANY)
2371 		return alloc_pages_bulk_array_preferred_many(gfp,
2372 				numa_node_id(), pol, nr_pages, page_array);
2373 
2374 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2375 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2376 				  page_array);
2377 }
2378 
2379 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2380 {
2381 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2382 
2383 	if (IS_ERR(pol))
2384 		return PTR_ERR(pol);
2385 	dst->vm_policy = pol;
2386 	return 0;
2387 }
2388 
2389 /*
2390  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2391  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2392  * with the mems_allowed returned by cpuset_mems_allowed().  This
2393  * keeps mempolicies cpuset relative after its cpuset moves.  See
2394  * further kernel/cpuset.c update_nodemask().
2395  *
2396  * current's mempolicy may be rebinded by the other task(the task that changes
2397  * cpuset's mems), so we needn't do rebind work for current task.
2398  */
2399 
2400 /* Slow path of a mempolicy duplicate */
2401 struct mempolicy *__mpol_dup(struct mempolicy *old)
2402 {
2403 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2404 
2405 	if (!new)
2406 		return ERR_PTR(-ENOMEM);
2407 
2408 	/* task's mempolicy is protected by alloc_lock */
2409 	if (old == current->mempolicy) {
2410 		task_lock(current);
2411 		*new = *old;
2412 		task_unlock(current);
2413 	} else
2414 		*new = *old;
2415 
2416 	if (current_cpuset_is_being_rebound()) {
2417 		nodemask_t mems = cpuset_mems_allowed(current);
2418 		mpol_rebind_policy(new, &mems);
2419 	}
2420 	atomic_set(&new->refcnt, 1);
2421 	return new;
2422 }
2423 
2424 /* Slow path of a mempolicy comparison */
2425 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2426 {
2427 	if (!a || !b)
2428 		return false;
2429 	if (a->mode != b->mode)
2430 		return false;
2431 	if (a->flags != b->flags)
2432 		return false;
2433 	if (a->home_node != b->home_node)
2434 		return false;
2435 	if (mpol_store_user_nodemask(a))
2436 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2437 			return false;
2438 
2439 	switch (a->mode) {
2440 	case MPOL_BIND:
2441 	case MPOL_INTERLEAVE:
2442 	case MPOL_PREFERRED:
2443 	case MPOL_PREFERRED_MANY:
2444 		return !!nodes_equal(a->nodes, b->nodes);
2445 	case MPOL_LOCAL:
2446 		return true;
2447 	default:
2448 		BUG();
2449 		return false;
2450 	}
2451 }
2452 
2453 /*
2454  * Shared memory backing store policy support.
2455  *
2456  * Remember policies even when nobody has shared memory mapped.
2457  * The policies are kept in Red-Black tree linked from the inode.
2458  * They are protected by the sp->lock rwlock, which should be held
2459  * for any accesses to the tree.
2460  */
2461 
2462 /*
2463  * lookup first element intersecting start-end.  Caller holds sp->lock for
2464  * reading or for writing
2465  */
2466 static struct sp_node *
2467 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2468 {
2469 	struct rb_node *n = sp->root.rb_node;
2470 
2471 	while (n) {
2472 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2473 
2474 		if (start >= p->end)
2475 			n = n->rb_right;
2476 		else if (end <= p->start)
2477 			n = n->rb_left;
2478 		else
2479 			break;
2480 	}
2481 	if (!n)
2482 		return NULL;
2483 	for (;;) {
2484 		struct sp_node *w = NULL;
2485 		struct rb_node *prev = rb_prev(n);
2486 		if (!prev)
2487 			break;
2488 		w = rb_entry(prev, struct sp_node, nd);
2489 		if (w->end <= start)
2490 			break;
2491 		n = prev;
2492 	}
2493 	return rb_entry(n, struct sp_node, nd);
2494 }
2495 
2496 /*
2497  * Insert a new shared policy into the list.  Caller holds sp->lock for
2498  * writing.
2499  */
2500 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2501 {
2502 	struct rb_node **p = &sp->root.rb_node;
2503 	struct rb_node *parent = NULL;
2504 	struct sp_node *nd;
2505 
2506 	while (*p) {
2507 		parent = *p;
2508 		nd = rb_entry(parent, struct sp_node, nd);
2509 		if (new->start < nd->start)
2510 			p = &(*p)->rb_left;
2511 		else if (new->end > nd->end)
2512 			p = &(*p)->rb_right;
2513 		else
2514 			BUG();
2515 	}
2516 	rb_link_node(&new->nd, parent, p);
2517 	rb_insert_color(&new->nd, &sp->root);
2518 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2519 		 new->policy ? new->policy->mode : 0);
2520 }
2521 
2522 /* Find shared policy intersecting idx */
2523 struct mempolicy *
2524 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2525 {
2526 	struct mempolicy *pol = NULL;
2527 	struct sp_node *sn;
2528 
2529 	if (!sp->root.rb_node)
2530 		return NULL;
2531 	read_lock(&sp->lock);
2532 	sn = sp_lookup(sp, idx, idx+1);
2533 	if (sn) {
2534 		mpol_get(sn->policy);
2535 		pol = sn->policy;
2536 	}
2537 	read_unlock(&sp->lock);
2538 	return pol;
2539 }
2540 
2541 static void sp_free(struct sp_node *n)
2542 {
2543 	mpol_put(n->policy);
2544 	kmem_cache_free(sn_cache, n);
2545 }
2546 
2547 /**
2548  * mpol_misplaced - check whether current page node is valid in policy
2549  *
2550  * @page: page to be checked
2551  * @vma: vm area where page mapped
2552  * @addr: virtual address where page mapped
2553  *
2554  * Lookup current policy node id for vma,addr and "compare to" page's
2555  * node id.  Policy determination "mimics" alloc_page_vma().
2556  * Called from fault path where we know the vma and faulting address.
2557  *
2558  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2559  * policy, or a suitable node ID to allocate a replacement page from.
2560  */
2561 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2562 {
2563 	struct mempolicy *pol;
2564 	struct zoneref *z;
2565 	int curnid = page_to_nid(page);
2566 	unsigned long pgoff;
2567 	int thiscpu = raw_smp_processor_id();
2568 	int thisnid = cpu_to_node(thiscpu);
2569 	int polnid = NUMA_NO_NODE;
2570 	int ret = NUMA_NO_NODE;
2571 
2572 	pol = get_vma_policy(vma, addr);
2573 	if (!(pol->flags & MPOL_F_MOF))
2574 		goto out;
2575 
2576 	switch (pol->mode) {
2577 	case MPOL_INTERLEAVE:
2578 		pgoff = vma->vm_pgoff;
2579 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2580 		polnid = offset_il_node(pol, pgoff);
2581 		break;
2582 
2583 	case MPOL_PREFERRED:
2584 		if (node_isset(curnid, pol->nodes))
2585 			goto out;
2586 		polnid = first_node(pol->nodes);
2587 		break;
2588 
2589 	case MPOL_LOCAL:
2590 		polnid = numa_node_id();
2591 		break;
2592 
2593 	case MPOL_BIND:
2594 		/* Optimize placement among multiple nodes via NUMA balancing */
2595 		if (pol->flags & MPOL_F_MORON) {
2596 			if (node_isset(thisnid, pol->nodes))
2597 				break;
2598 			goto out;
2599 		}
2600 		fallthrough;
2601 
2602 	case MPOL_PREFERRED_MANY:
2603 		/*
2604 		 * use current page if in policy nodemask,
2605 		 * else select nearest allowed node, if any.
2606 		 * If no allowed nodes, use current [!misplaced].
2607 		 */
2608 		if (node_isset(curnid, pol->nodes))
2609 			goto out;
2610 		z = first_zones_zonelist(
2611 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2612 				gfp_zone(GFP_HIGHUSER),
2613 				&pol->nodes);
2614 		polnid = zone_to_nid(z->zone);
2615 		break;
2616 
2617 	default:
2618 		BUG();
2619 	}
2620 
2621 	/* Migrate the page towards the node whose CPU is referencing it */
2622 	if (pol->flags & MPOL_F_MORON) {
2623 		polnid = thisnid;
2624 
2625 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2626 			goto out;
2627 	}
2628 
2629 	if (curnid != polnid)
2630 		ret = polnid;
2631 out:
2632 	mpol_cond_put(pol);
2633 
2634 	return ret;
2635 }
2636 
2637 /*
2638  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2639  * dropped after task->mempolicy is set to NULL so that any allocation done as
2640  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2641  * policy.
2642  */
2643 void mpol_put_task_policy(struct task_struct *task)
2644 {
2645 	struct mempolicy *pol;
2646 
2647 	task_lock(task);
2648 	pol = task->mempolicy;
2649 	task->mempolicy = NULL;
2650 	task_unlock(task);
2651 	mpol_put(pol);
2652 }
2653 
2654 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2655 {
2656 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2657 	rb_erase(&n->nd, &sp->root);
2658 	sp_free(n);
2659 }
2660 
2661 static void sp_node_init(struct sp_node *node, unsigned long start,
2662 			unsigned long end, struct mempolicy *pol)
2663 {
2664 	node->start = start;
2665 	node->end = end;
2666 	node->policy = pol;
2667 }
2668 
2669 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2670 				struct mempolicy *pol)
2671 {
2672 	struct sp_node *n;
2673 	struct mempolicy *newpol;
2674 
2675 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2676 	if (!n)
2677 		return NULL;
2678 
2679 	newpol = mpol_dup(pol);
2680 	if (IS_ERR(newpol)) {
2681 		kmem_cache_free(sn_cache, n);
2682 		return NULL;
2683 	}
2684 	newpol->flags |= MPOL_F_SHARED;
2685 	sp_node_init(n, start, end, newpol);
2686 
2687 	return n;
2688 }
2689 
2690 /* Replace a policy range. */
2691 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2692 				 unsigned long end, struct sp_node *new)
2693 {
2694 	struct sp_node *n;
2695 	struct sp_node *n_new = NULL;
2696 	struct mempolicy *mpol_new = NULL;
2697 	int ret = 0;
2698 
2699 restart:
2700 	write_lock(&sp->lock);
2701 	n = sp_lookup(sp, start, end);
2702 	/* Take care of old policies in the same range. */
2703 	while (n && n->start < end) {
2704 		struct rb_node *next = rb_next(&n->nd);
2705 		if (n->start >= start) {
2706 			if (n->end <= end)
2707 				sp_delete(sp, n);
2708 			else
2709 				n->start = end;
2710 		} else {
2711 			/* Old policy spanning whole new range. */
2712 			if (n->end > end) {
2713 				if (!n_new)
2714 					goto alloc_new;
2715 
2716 				*mpol_new = *n->policy;
2717 				atomic_set(&mpol_new->refcnt, 1);
2718 				sp_node_init(n_new, end, n->end, mpol_new);
2719 				n->end = start;
2720 				sp_insert(sp, n_new);
2721 				n_new = NULL;
2722 				mpol_new = NULL;
2723 				break;
2724 			} else
2725 				n->end = start;
2726 		}
2727 		if (!next)
2728 			break;
2729 		n = rb_entry(next, struct sp_node, nd);
2730 	}
2731 	if (new)
2732 		sp_insert(sp, new);
2733 	write_unlock(&sp->lock);
2734 	ret = 0;
2735 
2736 err_out:
2737 	if (mpol_new)
2738 		mpol_put(mpol_new);
2739 	if (n_new)
2740 		kmem_cache_free(sn_cache, n_new);
2741 
2742 	return ret;
2743 
2744 alloc_new:
2745 	write_unlock(&sp->lock);
2746 	ret = -ENOMEM;
2747 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2748 	if (!n_new)
2749 		goto err_out;
2750 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2751 	if (!mpol_new)
2752 		goto err_out;
2753 	atomic_set(&mpol_new->refcnt, 1);
2754 	goto restart;
2755 }
2756 
2757 /**
2758  * mpol_shared_policy_init - initialize shared policy for inode
2759  * @sp: pointer to inode shared policy
2760  * @mpol:  struct mempolicy to install
2761  *
2762  * Install non-NULL @mpol in inode's shared policy rb-tree.
2763  * On entry, the current task has a reference on a non-NULL @mpol.
2764  * This must be released on exit.
2765  * This is called at get_inode() calls and we can use GFP_KERNEL.
2766  */
2767 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2768 {
2769 	int ret;
2770 
2771 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2772 	rwlock_init(&sp->lock);
2773 
2774 	if (mpol) {
2775 		struct vm_area_struct pvma;
2776 		struct mempolicy *new;
2777 		NODEMASK_SCRATCH(scratch);
2778 
2779 		if (!scratch)
2780 			goto put_mpol;
2781 		/* contextualize the tmpfs mount point mempolicy */
2782 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2783 		if (IS_ERR(new))
2784 			goto free_scratch; /* no valid nodemask intersection */
2785 
2786 		task_lock(current);
2787 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2788 		task_unlock(current);
2789 		if (ret)
2790 			goto put_new;
2791 
2792 		/* Create pseudo-vma that contains just the policy */
2793 		vma_init(&pvma, NULL);
2794 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2795 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2796 
2797 put_new:
2798 		mpol_put(new);			/* drop initial ref */
2799 free_scratch:
2800 		NODEMASK_SCRATCH_FREE(scratch);
2801 put_mpol:
2802 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2803 	}
2804 }
2805 
2806 int mpol_set_shared_policy(struct shared_policy *info,
2807 			struct vm_area_struct *vma, struct mempolicy *npol)
2808 {
2809 	int err;
2810 	struct sp_node *new = NULL;
2811 	unsigned long sz = vma_pages(vma);
2812 
2813 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2814 		 vma->vm_pgoff,
2815 		 sz, npol ? npol->mode : -1,
2816 		 npol ? npol->flags : -1,
2817 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2818 
2819 	if (npol) {
2820 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2821 		if (!new)
2822 			return -ENOMEM;
2823 	}
2824 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2825 	if (err && new)
2826 		sp_free(new);
2827 	return err;
2828 }
2829 
2830 /* Free a backing policy store on inode delete. */
2831 void mpol_free_shared_policy(struct shared_policy *p)
2832 {
2833 	struct sp_node *n;
2834 	struct rb_node *next;
2835 
2836 	if (!p->root.rb_node)
2837 		return;
2838 	write_lock(&p->lock);
2839 	next = rb_first(&p->root);
2840 	while (next) {
2841 		n = rb_entry(next, struct sp_node, nd);
2842 		next = rb_next(&n->nd);
2843 		sp_delete(p, n);
2844 	}
2845 	write_unlock(&p->lock);
2846 }
2847 
2848 #ifdef CONFIG_NUMA_BALANCING
2849 static int __initdata numabalancing_override;
2850 
2851 static void __init check_numabalancing_enable(void)
2852 {
2853 	bool numabalancing_default = false;
2854 
2855 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2856 		numabalancing_default = true;
2857 
2858 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2859 	if (numabalancing_override)
2860 		set_numabalancing_state(numabalancing_override == 1);
2861 
2862 	if (num_online_nodes() > 1 && !numabalancing_override) {
2863 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2864 			numabalancing_default ? "Enabling" : "Disabling");
2865 		set_numabalancing_state(numabalancing_default);
2866 	}
2867 }
2868 
2869 static int __init setup_numabalancing(char *str)
2870 {
2871 	int ret = 0;
2872 	if (!str)
2873 		goto out;
2874 
2875 	if (!strcmp(str, "enable")) {
2876 		numabalancing_override = 1;
2877 		ret = 1;
2878 	} else if (!strcmp(str, "disable")) {
2879 		numabalancing_override = -1;
2880 		ret = 1;
2881 	}
2882 out:
2883 	if (!ret)
2884 		pr_warn("Unable to parse numa_balancing=\n");
2885 
2886 	return ret;
2887 }
2888 __setup("numa_balancing=", setup_numabalancing);
2889 #else
2890 static inline void __init check_numabalancing_enable(void)
2891 {
2892 }
2893 #endif /* CONFIG_NUMA_BALANCING */
2894 
2895 /* assumes fs == KERNEL_DS */
2896 void __init numa_policy_init(void)
2897 {
2898 	nodemask_t interleave_nodes;
2899 	unsigned long largest = 0;
2900 	int nid, prefer = 0;
2901 
2902 	policy_cache = kmem_cache_create("numa_policy",
2903 					 sizeof(struct mempolicy),
2904 					 0, SLAB_PANIC, NULL);
2905 
2906 	sn_cache = kmem_cache_create("shared_policy_node",
2907 				     sizeof(struct sp_node),
2908 				     0, SLAB_PANIC, NULL);
2909 
2910 	for_each_node(nid) {
2911 		preferred_node_policy[nid] = (struct mempolicy) {
2912 			.refcnt = ATOMIC_INIT(1),
2913 			.mode = MPOL_PREFERRED,
2914 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2915 			.nodes = nodemask_of_node(nid),
2916 		};
2917 	}
2918 
2919 	/*
2920 	 * Set interleaving policy for system init. Interleaving is only
2921 	 * enabled across suitably sized nodes (default is >= 16MB), or
2922 	 * fall back to the largest node if they're all smaller.
2923 	 */
2924 	nodes_clear(interleave_nodes);
2925 	for_each_node_state(nid, N_MEMORY) {
2926 		unsigned long total_pages = node_present_pages(nid);
2927 
2928 		/* Preserve the largest node */
2929 		if (largest < total_pages) {
2930 			largest = total_pages;
2931 			prefer = nid;
2932 		}
2933 
2934 		/* Interleave this node? */
2935 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2936 			node_set(nid, interleave_nodes);
2937 	}
2938 
2939 	/* All too small, use the largest */
2940 	if (unlikely(nodes_empty(interleave_nodes)))
2941 		node_set(prefer, interleave_nodes);
2942 
2943 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2944 		pr_err("%s: interleaving failed\n", __func__);
2945 
2946 	check_numabalancing_enable();
2947 }
2948 
2949 /* Reset policy of current process to default */
2950 void numa_default_policy(void)
2951 {
2952 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2953 }
2954 
2955 /*
2956  * Parse and format mempolicy from/to strings
2957  */
2958 
2959 static const char * const policy_modes[] =
2960 {
2961 	[MPOL_DEFAULT]    = "default",
2962 	[MPOL_PREFERRED]  = "prefer",
2963 	[MPOL_BIND]       = "bind",
2964 	[MPOL_INTERLEAVE] = "interleave",
2965 	[MPOL_LOCAL]      = "local",
2966 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2967 };
2968 
2969 
2970 #ifdef CONFIG_TMPFS
2971 /**
2972  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2973  * @str:  string containing mempolicy to parse
2974  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2975  *
2976  * Format of input:
2977  *	<mode>[=<flags>][:<nodelist>]
2978  *
2979  * Return: %0 on success, else %1
2980  */
2981 int mpol_parse_str(char *str, struct mempolicy **mpol)
2982 {
2983 	struct mempolicy *new = NULL;
2984 	unsigned short mode_flags;
2985 	nodemask_t nodes;
2986 	char *nodelist = strchr(str, ':');
2987 	char *flags = strchr(str, '=');
2988 	int err = 1, mode;
2989 
2990 	if (flags)
2991 		*flags++ = '\0';	/* terminate mode string */
2992 
2993 	if (nodelist) {
2994 		/* NUL-terminate mode or flags string */
2995 		*nodelist++ = '\0';
2996 		if (nodelist_parse(nodelist, nodes))
2997 			goto out;
2998 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2999 			goto out;
3000 	} else
3001 		nodes_clear(nodes);
3002 
3003 	mode = match_string(policy_modes, MPOL_MAX, str);
3004 	if (mode < 0)
3005 		goto out;
3006 
3007 	switch (mode) {
3008 	case MPOL_PREFERRED:
3009 		/*
3010 		 * Insist on a nodelist of one node only, although later
3011 		 * we use first_node(nodes) to grab a single node, so here
3012 		 * nodelist (or nodes) cannot be empty.
3013 		 */
3014 		if (nodelist) {
3015 			char *rest = nodelist;
3016 			while (isdigit(*rest))
3017 				rest++;
3018 			if (*rest)
3019 				goto out;
3020 			if (nodes_empty(nodes))
3021 				goto out;
3022 		}
3023 		break;
3024 	case MPOL_INTERLEAVE:
3025 		/*
3026 		 * Default to online nodes with memory if no nodelist
3027 		 */
3028 		if (!nodelist)
3029 			nodes = node_states[N_MEMORY];
3030 		break;
3031 	case MPOL_LOCAL:
3032 		/*
3033 		 * Don't allow a nodelist;  mpol_new() checks flags
3034 		 */
3035 		if (nodelist)
3036 			goto out;
3037 		break;
3038 	case MPOL_DEFAULT:
3039 		/*
3040 		 * Insist on a empty nodelist
3041 		 */
3042 		if (!nodelist)
3043 			err = 0;
3044 		goto out;
3045 	case MPOL_PREFERRED_MANY:
3046 	case MPOL_BIND:
3047 		/*
3048 		 * Insist on a nodelist
3049 		 */
3050 		if (!nodelist)
3051 			goto out;
3052 	}
3053 
3054 	mode_flags = 0;
3055 	if (flags) {
3056 		/*
3057 		 * Currently, we only support two mutually exclusive
3058 		 * mode flags.
3059 		 */
3060 		if (!strcmp(flags, "static"))
3061 			mode_flags |= MPOL_F_STATIC_NODES;
3062 		else if (!strcmp(flags, "relative"))
3063 			mode_flags |= MPOL_F_RELATIVE_NODES;
3064 		else
3065 			goto out;
3066 	}
3067 
3068 	new = mpol_new(mode, mode_flags, &nodes);
3069 	if (IS_ERR(new))
3070 		goto out;
3071 
3072 	/*
3073 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3074 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3075 	 */
3076 	if (mode != MPOL_PREFERRED) {
3077 		new->nodes = nodes;
3078 	} else if (nodelist) {
3079 		nodes_clear(new->nodes);
3080 		node_set(first_node(nodes), new->nodes);
3081 	} else {
3082 		new->mode = MPOL_LOCAL;
3083 	}
3084 
3085 	/*
3086 	 * Save nodes for contextualization: this will be used to "clone"
3087 	 * the mempolicy in a specific context [cpuset] at a later time.
3088 	 */
3089 	new->w.user_nodemask = nodes;
3090 
3091 	err = 0;
3092 
3093 out:
3094 	/* Restore string for error message */
3095 	if (nodelist)
3096 		*--nodelist = ':';
3097 	if (flags)
3098 		*--flags = '=';
3099 	if (!err)
3100 		*mpol = new;
3101 	return err;
3102 }
3103 #endif /* CONFIG_TMPFS */
3104 
3105 /**
3106  * mpol_to_str - format a mempolicy structure for printing
3107  * @buffer:  to contain formatted mempolicy string
3108  * @maxlen:  length of @buffer
3109  * @pol:  pointer to mempolicy to be formatted
3110  *
3111  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3112  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3113  * longest flag, "relative", and to display at least a few node ids.
3114  */
3115 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3116 {
3117 	char *p = buffer;
3118 	nodemask_t nodes = NODE_MASK_NONE;
3119 	unsigned short mode = MPOL_DEFAULT;
3120 	unsigned short flags = 0;
3121 
3122 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3123 		mode = pol->mode;
3124 		flags = pol->flags;
3125 	}
3126 
3127 	switch (mode) {
3128 	case MPOL_DEFAULT:
3129 	case MPOL_LOCAL:
3130 		break;
3131 	case MPOL_PREFERRED:
3132 	case MPOL_PREFERRED_MANY:
3133 	case MPOL_BIND:
3134 	case MPOL_INTERLEAVE:
3135 		nodes = pol->nodes;
3136 		break;
3137 	default:
3138 		WARN_ON_ONCE(1);
3139 		snprintf(p, maxlen, "unknown");
3140 		return;
3141 	}
3142 
3143 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3144 
3145 	if (flags & MPOL_MODE_FLAGS) {
3146 		p += snprintf(p, buffer + maxlen - p, "=");
3147 
3148 		/*
3149 		 * Currently, the only defined flags are mutually exclusive
3150 		 */
3151 		if (flags & MPOL_F_STATIC_NODES)
3152 			p += snprintf(p, buffer + maxlen - p, "static");
3153 		else if (flags & MPOL_F_RELATIVE_NODES)
3154 			p += snprintf(p, buffer + maxlen - p, "relative");
3155 	}
3156 
3157 	if (!nodes_empty(nodes))
3158 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3159 			       nodemask_pr_args(&nodes));
3160 }
3161