xref: /openbmc/linux/mm/mempolicy.c (revision 53809828)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = tmp;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 				unsigned long end, struct mm_walk *walk)
433 {
434 	int ret = 0;
435 	struct page *page;
436 	struct queue_pages *qp = walk->private;
437 	unsigned long flags;
438 
439 	if (unlikely(is_pmd_migration_entry(*pmd))) {
440 		ret = 1;
441 		goto unlock;
442 	}
443 	page = pmd_page(*pmd);
444 	if (is_huge_zero_page(page)) {
445 		spin_unlock(ptl);
446 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 		goto out;
448 	}
449 	if (!queue_pages_required(page, qp)) {
450 		ret = 1;
451 		goto unlock;
452 	}
453 
454 	ret = 1;
455 	flags = qp->flags;
456 	/* go to thp migration */
457 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
458 		migrate_page_add(page, qp->pagelist, flags);
459 unlock:
460 	spin_unlock(ptl);
461 out:
462 	return ret;
463 }
464 
465 /*
466  * Scan through pages checking if pages follow certain conditions,
467  * and move them to the pagelist if they do.
468  */
469 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 			unsigned long end, struct mm_walk *walk)
471 {
472 	struct vm_area_struct *vma = walk->vma;
473 	struct page *page;
474 	struct queue_pages *qp = walk->private;
475 	unsigned long flags = qp->flags;
476 	int ret;
477 	pte_t *pte;
478 	spinlock_t *ptl;
479 
480 	ptl = pmd_trans_huge_lock(pmd, vma);
481 	if (ptl) {
482 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
483 		if (ret)
484 			return 0;
485 	}
486 
487 	if (pmd_trans_unstable(pmd))
488 		return 0;
489 
490 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
491 	for (; addr != end; pte++, addr += PAGE_SIZE) {
492 		if (!pte_present(*pte))
493 			continue;
494 		page = vm_normal_page(vma, addr, *pte);
495 		if (!page)
496 			continue;
497 		/*
498 		 * vm_normal_page() filters out zero pages, but there might
499 		 * still be PageReserved pages to skip, perhaps in a VDSO.
500 		 */
501 		if (PageReserved(page))
502 			continue;
503 		if (!queue_pages_required(page, qp))
504 			continue;
505 		migrate_page_add(page, qp->pagelist, flags);
506 	}
507 	pte_unmap_unlock(pte - 1, ptl);
508 	cond_resched();
509 	return 0;
510 }
511 
512 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
513 			       unsigned long addr, unsigned long end,
514 			       struct mm_walk *walk)
515 {
516 #ifdef CONFIG_HUGETLB_PAGE
517 	struct queue_pages *qp = walk->private;
518 	unsigned long flags = qp->flags;
519 	struct page *page;
520 	spinlock_t *ptl;
521 	pte_t entry;
522 
523 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
524 	entry = huge_ptep_get(pte);
525 	if (!pte_present(entry))
526 		goto unlock;
527 	page = pte_page(entry);
528 	if (!queue_pages_required(page, qp))
529 		goto unlock;
530 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
531 	if (flags & (MPOL_MF_MOVE_ALL) ||
532 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
533 		isolate_huge_page(page, qp->pagelist);
534 unlock:
535 	spin_unlock(ptl);
536 #else
537 	BUG();
538 #endif
539 	return 0;
540 }
541 
542 #ifdef CONFIG_NUMA_BALANCING
543 /*
544  * This is used to mark a range of virtual addresses to be inaccessible.
545  * These are later cleared by a NUMA hinting fault. Depending on these
546  * faults, pages may be migrated for better NUMA placement.
547  *
548  * This is assuming that NUMA faults are handled using PROT_NONE. If
549  * an architecture makes a different choice, it will need further
550  * changes to the core.
551  */
552 unsigned long change_prot_numa(struct vm_area_struct *vma,
553 			unsigned long addr, unsigned long end)
554 {
555 	int nr_updated;
556 
557 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
558 	if (nr_updated)
559 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
560 
561 	return nr_updated;
562 }
563 #else
564 static unsigned long change_prot_numa(struct vm_area_struct *vma,
565 			unsigned long addr, unsigned long end)
566 {
567 	return 0;
568 }
569 #endif /* CONFIG_NUMA_BALANCING */
570 
571 static int queue_pages_test_walk(unsigned long start, unsigned long end,
572 				struct mm_walk *walk)
573 {
574 	struct vm_area_struct *vma = walk->vma;
575 	struct queue_pages *qp = walk->private;
576 	unsigned long endvma = vma->vm_end;
577 	unsigned long flags = qp->flags;
578 
579 	if (!vma_migratable(vma))
580 		return 1;
581 
582 	if (endvma > end)
583 		endvma = end;
584 	if (vma->vm_start > start)
585 		start = vma->vm_start;
586 
587 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
588 		if (!vma->vm_next && vma->vm_end < end)
589 			return -EFAULT;
590 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
591 			return -EFAULT;
592 	}
593 
594 	qp->prev = vma;
595 
596 	if (flags & MPOL_MF_LAZY) {
597 		/* Similar to task_numa_work, skip inaccessible VMAs */
598 		if (!is_vm_hugetlb_page(vma) &&
599 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
600 			!(vma->vm_flags & VM_MIXEDMAP))
601 			change_prot_numa(vma, start, endvma);
602 		return 1;
603 	}
604 
605 	/* queue pages from current vma */
606 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
607 		return 0;
608 	return 1;
609 }
610 
611 /*
612  * Walk through page tables and collect pages to be migrated.
613  *
614  * If pages found in a given range are on a set of nodes (determined by
615  * @nodes and @flags,) it's isolated and queued to the pagelist which is
616  * passed via @private.)
617  */
618 static int
619 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
620 		nodemask_t *nodes, unsigned long flags,
621 		struct list_head *pagelist)
622 {
623 	struct queue_pages qp = {
624 		.pagelist = pagelist,
625 		.flags = flags,
626 		.nmask = nodes,
627 		.prev = NULL,
628 	};
629 	struct mm_walk queue_pages_walk = {
630 		.hugetlb_entry = queue_pages_hugetlb,
631 		.pmd_entry = queue_pages_pte_range,
632 		.test_walk = queue_pages_test_walk,
633 		.mm = mm,
634 		.private = &qp,
635 	};
636 
637 	return walk_page_range(start, end, &queue_pages_walk);
638 }
639 
640 /*
641  * Apply policy to a single VMA
642  * This must be called with the mmap_sem held for writing.
643  */
644 static int vma_replace_policy(struct vm_area_struct *vma,
645 						struct mempolicy *pol)
646 {
647 	int err;
648 	struct mempolicy *old;
649 	struct mempolicy *new;
650 
651 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
652 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
653 		 vma->vm_ops, vma->vm_file,
654 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
655 
656 	new = mpol_dup(pol);
657 	if (IS_ERR(new))
658 		return PTR_ERR(new);
659 
660 	if (vma->vm_ops && vma->vm_ops->set_policy) {
661 		err = vma->vm_ops->set_policy(vma, new);
662 		if (err)
663 			goto err_out;
664 	}
665 
666 	old = vma->vm_policy;
667 	vma->vm_policy = new; /* protected by mmap_sem */
668 	mpol_put(old);
669 
670 	return 0;
671  err_out:
672 	mpol_put(new);
673 	return err;
674 }
675 
676 /* Step 2: apply policy to a range and do splits. */
677 static int mbind_range(struct mm_struct *mm, unsigned long start,
678 		       unsigned long end, struct mempolicy *new_pol)
679 {
680 	struct vm_area_struct *next;
681 	struct vm_area_struct *prev;
682 	struct vm_area_struct *vma;
683 	int err = 0;
684 	pgoff_t pgoff;
685 	unsigned long vmstart;
686 	unsigned long vmend;
687 
688 	vma = find_vma(mm, start);
689 	if (!vma || vma->vm_start > start)
690 		return -EFAULT;
691 
692 	prev = vma->vm_prev;
693 	if (start > vma->vm_start)
694 		prev = vma;
695 
696 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
697 		next = vma->vm_next;
698 		vmstart = max(start, vma->vm_start);
699 		vmend   = min(end, vma->vm_end);
700 
701 		if (mpol_equal(vma_policy(vma), new_pol))
702 			continue;
703 
704 		pgoff = vma->vm_pgoff +
705 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
706 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
707 				 vma->anon_vma, vma->vm_file, pgoff,
708 				 new_pol, vma->vm_userfaultfd_ctx);
709 		if (prev) {
710 			vma = prev;
711 			next = vma->vm_next;
712 			if (mpol_equal(vma_policy(vma), new_pol))
713 				continue;
714 			/* vma_merge() joined vma && vma->next, case 8 */
715 			goto replace;
716 		}
717 		if (vma->vm_start != vmstart) {
718 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
719 			if (err)
720 				goto out;
721 		}
722 		if (vma->vm_end != vmend) {
723 			err = split_vma(vma->vm_mm, vma, vmend, 0);
724 			if (err)
725 				goto out;
726 		}
727  replace:
728 		err = vma_replace_policy(vma, new_pol);
729 		if (err)
730 			goto out;
731 	}
732 
733  out:
734 	return err;
735 }
736 
737 /* Set the process memory policy */
738 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
739 			     nodemask_t *nodes)
740 {
741 	struct mempolicy *new, *old;
742 	NODEMASK_SCRATCH(scratch);
743 	int ret;
744 
745 	if (!scratch)
746 		return -ENOMEM;
747 
748 	new = mpol_new(mode, flags, nodes);
749 	if (IS_ERR(new)) {
750 		ret = PTR_ERR(new);
751 		goto out;
752 	}
753 
754 	task_lock(current);
755 	ret = mpol_set_nodemask(new, nodes, scratch);
756 	if (ret) {
757 		task_unlock(current);
758 		mpol_put(new);
759 		goto out;
760 	}
761 	old = current->mempolicy;
762 	current->mempolicy = new;
763 	if (new && new->mode == MPOL_INTERLEAVE)
764 		current->il_prev = MAX_NUMNODES-1;
765 	task_unlock(current);
766 	mpol_put(old);
767 	ret = 0;
768 out:
769 	NODEMASK_SCRATCH_FREE(scratch);
770 	return ret;
771 }
772 
773 /*
774  * Return nodemask for policy for get_mempolicy() query
775  *
776  * Called with task's alloc_lock held
777  */
778 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
779 {
780 	nodes_clear(*nodes);
781 	if (p == &default_policy)
782 		return;
783 
784 	switch (p->mode) {
785 	case MPOL_BIND:
786 		/* Fall through */
787 	case MPOL_INTERLEAVE:
788 		*nodes = p->v.nodes;
789 		break;
790 	case MPOL_PREFERRED:
791 		if (!(p->flags & MPOL_F_LOCAL))
792 			node_set(p->v.preferred_node, *nodes);
793 		/* else return empty node mask for local allocation */
794 		break;
795 	default:
796 		BUG();
797 	}
798 }
799 
800 static int lookup_node(struct mm_struct *mm, unsigned long addr)
801 {
802 	struct page *p;
803 	int err;
804 
805 	int locked = 1;
806 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
807 	if (err >= 0) {
808 		err = page_to_nid(p);
809 		put_page(p);
810 	}
811 	if (locked)
812 		up_read(&mm->mmap_sem);
813 	return err;
814 }
815 
816 /* Retrieve NUMA policy */
817 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
818 			     unsigned long addr, unsigned long flags)
819 {
820 	int err;
821 	struct mm_struct *mm = current->mm;
822 	struct vm_area_struct *vma = NULL;
823 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
824 
825 	if (flags &
826 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
827 		return -EINVAL;
828 
829 	if (flags & MPOL_F_MEMS_ALLOWED) {
830 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
831 			return -EINVAL;
832 		*policy = 0;	/* just so it's initialized */
833 		task_lock(current);
834 		*nmask  = cpuset_current_mems_allowed;
835 		task_unlock(current);
836 		return 0;
837 	}
838 
839 	if (flags & MPOL_F_ADDR) {
840 		/*
841 		 * Do NOT fall back to task policy if the
842 		 * vma/shared policy at addr is NULL.  We
843 		 * want to return MPOL_DEFAULT in this case.
844 		 */
845 		down_read(&mm->mmap_sem);
846 		vma = find_vma_intersection(mm, addr, addr+1);
847 		if (!vma) {
848 			up_read(&mm->mmap_sem);
849 			return -EFAULT;
850 		}
851 		if (vma->vm_ops && vma->vm_ops->get_policy)
852 			pol = vma->vm_ops->get_policy(vma, addr);
853 		else
854 			pol = vma->vm_policy;
855 	} else if (addr)
856 		return -EINVAL;
857 
858 	if (!pol)
859 		pol = &default_policy;	/* indicates default behavior */
860 
861 	if (flags & MPOL_F_NODE) {
862 		if (flags & MPOL_F_ADDR) {
863 			/*
864 			 * Take a refcount on the mpol, lookup_node()
865 			 * wil drop the mmap_sem, so after calling
866 			 * lookup_node() only "pol" remains valid, "vma"
867 			 * is stale.
868 			 */
869 			pol_refcount = pol;
870 			vma = NULL;
871 			mpol_get(pol);
872 			err = lookup_node(mm, addr);
873 			if (err < 0)
874 				goto out;
875 			*policy = err;
876 		} else if (pol == current->mempolicy &&
877 				pol->mode == MPOL_INTERLEAVE) {
878 			*policy = next_node_in(current->il_prev, pol->v.nodes);
879 		} else {
880 			err = -EINVAL;
881 			goto out;
882 		}
883 	} else {
884 		*policy = pol == &default_policy ? MPOL_DEFAULT :
885 						pol->mode;
886 		/*
887 		 * Internal mempolicy flags must be masked off before exposing
888 		 * the policy to userspace.
889 		 */
890 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
891 	}
892 
893 	err = 0;
894 	if (nmask) {
895 		if (mpol_store_user_nodemask(pol)) {
896 			*nmask = pol->w.user_nodemask;
897 		} else {
898 			task_lock(current);
899 			get_policy_nodemask(pol, nmask);
900 			task_unlock(current);
901 		}
902 	}
903 
904  out:
905 	mpol_cond_put(pol);
906 	if (vma)
907 		up_read(&mm->mmap_sem);
908 	if (pol_refcount)
909 		mpol_put(pol_refcount);
910 	return err;
911 }
912 
913 #ifdef CONFIG_MIGRATION
914 /*
915  * page migration, thp tail pages can be passed.
916  */
917 static void migrate_page_add(struct page *page, struct list_head *pagelist,
918 				unsigned long flags)
919 {
920 	struct page *head = compound_head(page);
921 	/*
922 	 * Avoid migrating a page that is shared with others.
923 	 */
924 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
925 		if (!isolate_lru_page(head)) {
926 			list_add_tail(&head->lru, pagelist);
927 			mod_node_page_state(page_pgdat(head),
928 				NR_ISOLATED_ANON + page_is_file_cache(head),
929 				hpage_nr_pages(head));
930 		}
931 	}
932 }
933 
934 /* page allocation callback for NUMA node migration */
935 struct page *alloc_new_node_page(struct page *page, unsigned long node)
936 {
937 	if (PageHuge(page))
938 		return alloc_huge_page_node(page_hstate(compound_head(page)),
939 					node);
940 	else if (PageTransHuge(page)) {
941 		struct page *thp;
942 
943 		thp = alloc_pages_node(node,
944 			(GFP_TRANSHUGE | __GFP_THISNODE),
945 			HPAGE_PMD_ORDER);
946 		if (!thp)
947 			return NULL;
948 		prep_transhuge_page(thp);
949 		return thp;
950 	} else
951 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
952 						    __GFP_THISNODE, 0);
953 }
954 
955 /*
956  * Migrate pages from one node to a target node.
957  * Returns error or the number of pages not migrated.
958  */
959 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
960 			   int flags)
961 {
962 	nodemask_t nmask;
963 	LIST_HEAD(pagelist);
964 	int err = 0;
965 
966 	nodes_clear(nmask);
967 	node_set(source, nmask);
968 
969 	/*
970 	 * This does not "check" the range but isolates all pages that
971 	 * need migration.  Between passing in the full user address
972 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
973 	 */
974 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
975 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
976 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
977 
978 	if (!list_empty(&pagelist)) {
979 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
980 					MIGRATE_SYNC, MR_SYSCALL);
981 		if (err)
982 			putback_movable_pages(&pagelist);
983 	}
984 
985 	return err;
986 }
987 
988 /*
989  * Move pages between the two nodesets so as to preserve the physical
990  * layout as much as possible.
991  *
992  * Returns the number of page that could not be moved.
993  */
994 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
995 		     const nodemask_t *to, int flags)
996 {
997 	int busy = 0;
998 	int err;
999 	nodemask_t tmp;
1000 
1001 	err = migrate_prep();
1002 	if (err)
1003 		return err;
1004 
1005 	down_read(&mm->mmap_sem);
1006 
1007 	/*
1008 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1009 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1010 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1011 	 * The pair of nodemasks 'to' and 'from' define the map.
1012 	 *
1013 	 * If no pair of bits is found that way, fallback to picking some
1014 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1015 	 * 'source' and 'dest' bits are the same, this represents a node
1016 	 * that will be migrating to itself, so no pages need move.
1017 	 *
1018 	 * If no bits are left in 'tmp', or if all remaining bits left
1019 	 * in 'tmp' correspond to the same bit in 'to', return false
1020 	 * (nothing left to migrate).
1021 	 *
1022 	 * This lets us pick a pair of nodes to migrate between, such that
1023 	 * if possible the dest node is not already occupied by some other
1024 	 * source node, minimizing the risk of overloading the memory on a
1025 	 * node that would happen if we migrated incoming memory to a node
1026 	 * before migrating outgoing memory source that same node.
1027 	 *
1028 	 * A single scan of tmp is sufficient.  As we go, we remember the
1029 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1030 	 * that not only moved, but what's better, moved to an empty slot
1031 	 * (d is not set in tmp), then we break out then, with that pair.
1032 	 * Otherwise when we finish scanning from_tmp, we at least have the
1033 	 * most recent <s, d> pair that moved.  If we get all the way through
1034 	 * the scan of tmp without finding any node that moved, much less
1035 	 * moved to an empty node, then there is nothing left worth migrating.
1036 	 */
1037 
1038 	tmp = *from;
1039 	while (!nodes_empty(tmp)) {
1040 		int s,d;
1041 		int source = NUMA_NO_NODE;
1042 		int dest = 0;
1043 
1044 		for_each_node_mask(s, tmp) {
1045 
1046 			/*
1047 			 * do_migrate_pages() tries to maintain the relative
1048 			 * node relationship of the pages established between
1049 			 * threads and memory areas.
1050                          *
1051 			 * However if the number of source nodes is not equal to
1052 			 * the number of destination nodes we can not preserve
1053 			 * this node relative relationship.  In that case, skip
1054 			 * copying memory from a node that is in the destination
1055 			 * mask.
1056 			 *
1057 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1058 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1059 			 */
1060 
1061 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1062 						(node_isset(s, *to)))
1063 				continue;
1064 
1065 			d = node_remap(s, *from, *to);
1066 			if (s == d)
1067 				continue;
1068 
1069 			source = s;	/* Node moved. Memorize */
1070 			dest = d;
1071 
1072 			/* dest not in remaining from nodes? */
1073 			if (!node_isset(dest, tmp))
1074 				break;
1075 		}
1076 		if (source == NUMA_NO_NODE)
1077 			break;
1078 
1079 		node_clear(source, tmp);
1080 		err = migrate_to_node(mm, source, dest, flags);
1081 		if (err > 0)
1082 			busy += err;
1083 		if (err < 0)
1084 			break;
1085 	}
1086 	up_read(&mm->mmap_sem);
1087 	if (err < 0)
1088 		return err;
1089 	return busy;
1090 
1091 }
1092 
1093 /*
1094  * Allocate a new page for page migration based on vma policy.
1095  * Start by assuming the page is mapped by the same vma as contains @start.
1096  * Search forward from there, if not.  N.B., this assumes that the
1097  * list of pages handed to migrate_pages()--which is how we get here--
1098  * is in virtual address order.
1099  */
1100 static struct page *new_page(struct page *page, unsigned long start)
1101 {
1102 	struct vm_area_struct *vma;
1103 	unsigned long uninitialized_var(address);
1104 
1105 	vma = find_vma(current->mm, start);
1106 	while (vma) {
1107 		address = page_address_in_vma(page, vma);
1108 		if (address != -EFAULT)
1109 			break;
1110 		vma = vma->vm_next;
1111 	}
1112 
1113 	if (PageHuge(page)) {
1114 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1115 				vma, address);
1116 	} else if (PageTransHuge(page)) {
1117 		struct page *thp;
1118 
1119 		thp = alloc_pages_vma(GFP_TRANSHUGE, HPAGE_PMD_ORDER, vma,
1120 				address, numa_node_id());
1121 		if (!thp)
1122 			return NULL;
1123 		prep_transhuge_page(thp);
1124 		return thp;
1125 	}
1126 	/*
1127 	 * if !vma, alloc_page_vma() will use task or system default policy
1128 	 */
1129 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1130 			vma, address);
1131 }
1132 #else
1133 
1134 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1135 				unsigned long flags)
1136 {
1137 }
1138 
1139 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1140 		     const nodemask_t *to, int flags)
1141 {
1142 	return -ENOSYS;
1143 }
1144 
1145 static struct page *new_page(struct page *page, unsigned long start)
1146 {
1147 	return NULL;
1148 }
1149 #endif
1150 
1151 static long do_mbind(unsigned long start, unsigned long len,
1152 		     unsigned short mode, unsigned short mode_flags,
1153 		     nodemask_t *nmask, unsigned long flags)
1154 {
1155 	struct mm_struct *mm = current->mm;
1156 	struct mempolicy *new;
1157 	unsigned long end;
1158 	int err;
1159 	LIST_HEAD(pagelist);
1160 
1161 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1162 		return -EINVAL;
1163 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1164 		return -EPERM;
1165 
1166 	if (start & ~PAGE_MASK)
1167 		return -EINVAL;
1168 
1169 	if (mode == MPOL_DEFAULT)
1170 		flags &= ~MPOL_MF_STRICT;
1171 
1172 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1173 	end = start + len;
1174 
1175 	if (end < start)
1176 		return -EINVAL;
1177 	if (end == start)
1178 		return 0;
1179 
1180 	new = mpol_new(mode, mode_flags, nmask);
1181 	if (IS_ERR(new))
1182 		return PTR_ERR(new);
1183 
1184 	if (flags & MPOL_MF_LAZY)
1185 		new->flags |= MPOL_F_MOF;
1186 
1187 	/*
1188 	 * If we are using the default policy then operation
1189 	 * on discontinuous address spaces is okay after all
1190 	 */
1191 	if (!new)
1192 		flags |= MPOL_MF_DISCONTIG_OK;
1193 
1194 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1195 		 start, start + len, mode, mode_flags,
1196 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1197 
1198 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1199 
1200 		err = migrate_prep();
1201 		if (err)
1202 			goto mpol_out;
1203 	}
1204 	{
1205 		NODEMASK_SCRATCH(scratch);
1206 		if (scratch) {
1207 			down_write(&mm->mmap_sem);
1208 			task_lock(current);
1209 			err = mpol_set_nodemask(new, nmask, scratch);
1210 			task_unlock(current);
1211 			if (err)
1212 				up_write(&mm->mmap_sem);
1213 		} else
1214 			err = -ENOMEM;
1215 		NODEMASK_SCRATCH_FREE(scratch);
1216 	}
1217 	if (err)
1218 		goto mpol_out;
1219 
1220 	err = queue_pages_range(mm, start, end, nmask,
1221 			  flags | MPOL_MF_INVERT, &pagelist);
1222 	if (!err)
1223 		err = mbind_range(mm, start, end, new);
1224 
1225 	if (!err) {
1226 		int nr_failed = 0;
1227 
1228 		if (!list_empty(&pagelist)) {
1229 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1230 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1231 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1232 			if (nr_failed)
1233 				putback_movable_pages(&pagelist);
1234 		}
1235 
1236 		if (nr_failed && (flags & MPOL_MF_STRICT))
1237 			err = -EIO;
1238 	} else
1239 		putback_movable_pages(&pagelist);
1240 
1241 	up_write(&mm->mmap_sem);
1242  mpol_out:
1243 	mpol_put(new);
1244 	return err;
1245 }
1246 
1247 /*
1248  * User space interface with variable sized bitmaps for nodelists.
1249  */
1250 
1251 /* Copy a node mask from user space. */
1252 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1253 		     unsigned long maxnode)
1254 {
1255 	unsigned long k;
1256 	unsigned long t;
1257 	unsigned long nlongs;
1258 	unsigned long endmask;
1259 
1260 	--maxnode;
1261 	nodes_clear(*nodes);
1262 	if (maxnode == 0 || !nmask)
1263 		return 0;
1264 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1265 		return -EINVAL;
1266 
1267 	nlongs = BITS_TO_LONGS(maxnode);
1268 	if ((maxnode % BITS_PER_LONG) == 0)
1269 		endmask = ~0UL;
1270 	else
1271 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1272 
1273 	/*
1274 	 * When the user specified more nodes than supported just check
1275 	 * if the non supported part is all zero.
1276 	 *
1277 	 * If maxnode have more longs than MAX_NUMNODES, check
1278 	 * the bits in that area first. And then go through to
1279 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1280 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1281 	 */
1282 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1283 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1284 			if (get_user(t, nmask + k))
1285 				return -EFAULT;
1286 			if (k == nlongs - 1) {
1287 				if (t & endmask)
1288 					return -EINVAL;
1289 			} else if (t)
1290 				return -EINVAL;
1291 		}
1292 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1293 		endmask = ~0UL;
1294 	}
1295 
1296 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1297 		unsigned long valid_mask = endmask;
1298 
1299 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1300 		if (get_user(t, nmask + nlongs - 1))
1301 			return -EFAULT;
1302 		if (t & valid_mask)
1303 			return -EINVAL;
1304 	}
1305 
1306 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1307 		return -EFAULT;
1308 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1309 	return 0;
1310 }
1311 
1312 /* Copy a kernel node mask to user space */
1313 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1314 			      nodemask_t *nodes)
1315 {
1316 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1317 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1318 
1319 	if (copy > nbytes) {
1320 		if (copy > PAGE_SIZE)
1321 			return -EINVAL;
1322 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1323 			return -EFAULT;
1324 		copy = nbytes;
1325 	}
1326 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1327 }
1328 
1329 static long kernel_mbind(unsigned long start, unsigned long len,
1330 			 unsigned long mode, const unsigned long __user *nmask,
1331 			 unsigned long maxnode, unsigned int flags)
1332 {
1333 	nodemask_t nodes;
1334 	int err;
1335 	unsigned short mode_flags;
1336 
1337 	mode_flags = mode & MPOL_MODE_FLAGS;
1338 	mode &= ~MPOL_MODE_FLAGS;
1339 	if (mode >= MPOL_MAX)
1340 		return -EINVAL;
1341 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1342 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1343 		return -EINVAL;
1344 	err = get_nodes(&nodes, nmask, maxnode);
1345 	if (err)
1346 		return err;
1347 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1348 }
1349 
1350 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1351 		unsigned long, mode, const unsigned long __user *, nmask,
1352 		unsigned long, maxnode, unsigned int, flags)
1353 {
1354 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1355 }
1356 
1357 /* Set the process memory policy */
1358 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1359 				 unsigned long maxnode)
1360 {
1361 	int err;
1362 	nodemask_t nodes;
1363 	unsigned short flags;
1364 
1365 	flags = mode & MPOL_MODE_FLAGS;
1366 	mode &= ~MPOL_MODE_FLAGS;
1367 	if ((unsigned int)mode >= MPOL_MAX)
1368 		return -EINVAL;
1369 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1370 		return -EINVAL;
1371 	err = get_nodes(&nodes, nmask, maxnode);
1372 	if (err)
1373 		return err;
1374 	return do_set_mempolicy(mode, flags, &nodes);
1375 }
1376 
1377 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1378 		unsigned long, maxnode)
1379 {
1380 	return kernel_set_mempolicy(mode, nmask, maxnode);
1381 }
1382 
1383 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1384 				const unsigned long __user *old_nodes,
1385 				const unsigned long __user *new_nodes)
1386 {
1387 	struct mm_struct *mm = NULL;
1388 	struct task_struct *task;
1389 	nodemask_t task_nodes;
1390 	int err;
1391 	nodemask_t *old;
1392 	nodemask_t *new;
1393 	NODEMASK_SCRATCH(scratch);
1394 
1395 	if (!scratch)
1396 		return -ENOMEM;
1397 
1398 	old = &scratch->mask1;
1399 	new = &scratch->mask2;
1400 
1401 	err = get_nodes(old, old_nodes, maxnode);
1402 	if (err)
1403 		goto out;
1404 
1405 	err = get_nodes(new, new_nodes, maxnode);
1406 	if (err)
1407 		goto out;
1408 
1409 	/* Find the mm_struct */
1410 	rcu_read_lock();
1411 	task = pid ? find_task_by_vpid(pid) : current;
1412 	if (!task) {
1413 		rcu_read_unlock();
1414 		err = -ESRCH;
1415 		goto out;
1416 	}
1417 	get_task_struct(task);
1418 
1419 	err = -EINVAL;
1420 
1421 	/*
1422 	 * Check if this process has the right to modify the specified process.
1423 	 * Use the regular "ptrace_may_access()" checks.
1424 	 */
1425 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1426 		rcu_read_unlock();
1427 		err = -EPERM;
1428 		goto out_put;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 	task_nodes = cpuset_mems_allowed(task);
1433 	/* Is the user allowed to access the target nodes? */
1434 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1435 		err = -EPERM;
1436 		goto out_put;
1437 	}
1438 
1439 	task_nodes = cpuset_mems_allowed(current);
1440 	nodes_and(*new, *new, task_nodes);
1441 	if (nodes_empty(*new))
1442 		goto out_put;
1443 
1444 	nodes_and(*new, *new, node_states[N_MEMORY]);
1445 	if (nodes_empty(*new))
1446 		goto out_put;
1447 
1448 	err = security_task_movememory(task);
1449 	if (err)
1450 		goto out_put;
1451 
1452 	mm = get_task_mm(task);
1453 	put_task_struct(task);
1454 
1455 	if (!mm) {
1456 		err = -EINVAL;
1457 		goto out;
1458 	}
1459 
1460 	err = do_migrate_pages(mm, old, new,
1461 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1462 
1463 	mmput(mm);
1464 out:
1465 	NODEMASK_SCRATCH_FREE(scratch);
1466 
1467 	return err;
1468 
1469 out_put:
1470 	put_task_struct(task);
1471 	goto out;
1472 
1473 }
1474 
1475 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1476 		const unsigned long __user *, old_nodes,
1477 		const unsigned long __user *, new_nodes)
1478 {
1479 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1480 }
1481 
1482 
1483 /* Retrieve NUMA policy */
1484 static int kernel_get_mempolicy(int __user *policy,
1485 				unsigned long __user *nmask,
1486 				unsigned long maxnode,
1487 				unsigned long addr,
1488 				unsigned long flags)
1489 {
1490 	int err;
1491 	int uninitialized_var(pval);
1492 	nodemask_t nodes;
1493 
1494 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1495 		return -EINVAL;
1496 
1497 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1498 
1499 	if (err)
1500 		return err;
1501 
1502 	if (policy && put_user(pval, policy))
1503 		return -EFAULT;
1504 
1505 	if (nmask)
1506 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1507 
1508 	return err;
1509 }
1510 
1511 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1512 		unsigned long __user *, nmask, unsigned long, maxnode,
1513 		unsigned long, addr, unsigned long, flags)
1514 {
1515 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1516 }
1517 
1518 #ifdef CONFIG_COMPAT
1519 
1520 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1521 		       compat_ulong_t __user *, nmask,
1522 		       compat_ulong_t, maxnode,
1523 		       compat_ulong_t, addr, compat_ulong_t, flags)
1524 {
1525 	long err;
1526 	unsigned long __user *nm = NULL;
1527 	unsigned long nr_bits, alloc_size;
1528 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1529 
1530 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1531 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1532 
1533 	if (nmask)
1534 		nm = compat_alloc_user_space(alloc_size);
1535 
1536 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1537 
1538 	if (!err && nmask) {
1539 		unsigned long copy_size;
1540 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1541 		err = copy_from_user(bm, nm, copy_size);
1542 		/* ensure entire bitmap is zeroed */
1543 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1544 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1545 	}
1546 
1547 	return err;
1548 }
1549 
1550 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1551 		       compat_ulong_t, maxnode)
1552 {
1553 	unsigned long __user *nm = NULL;
1554 	unsigned long nr_bits, alloc_size;
1555 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1556 
1557 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1558 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1559 
1560 	if (nmask) {
1561 		if (compat_get_bitmap(bm, nmask, nr_bits))
1562 			return -EFAULT;
1563 		nm = compat_alloc_user_space(alloc_size);
1564 		if (copy_to_user(nm, bm, alloc_size))
1565 			return -EFAULT;
1566 	}
1567 
1568 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1569 }
1570 
1571 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1572 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1573 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1574 {
1575 	unsigned long __user *nm = NULL;
1576 	unsigned long nr_bits, alloc_size;
1577 	nodemask_t bm;
1578 
1579 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1580 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1581 
1582 	if (nmask) {
1583 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1584 			return -EFAULT;
1585 		nm = compat_alloc_user_space(alloc_size);
1586 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1587 			return -EFAULT;
1588 	}
1589 
1590 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1591 }
1592 
1593 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1594 		       compat_ulong_t, maxnode,
1595 		       const compat_ulong_t __user *, old_nodes,
1596 		       const compat_ulong_t __user *, new_nodes)
1597 {
1598 	unsigned long __user *old = NULL;
1599 	unsigned long __user *new = NULL;
1600 	nodemask_t tmp_mask;
1601 	unsigned long nr_bits;
1602 	unsigned long size;
1603 
1604 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1605 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1606 	if (old_nodes) {
1607 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1608 			return -EFAULT;
1609 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1610 		if (new_nodes)
1611 			new = old + size / sizeof(unsigned long);
1612 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1613 			return -EFAULT;
1614 	}
1615 	if (new_nodes) {
1616 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1617 			return -EFAULT;
1618 		if (new == NULL)
1619 			new = compat_alloc_user_space(size);
1620 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1621 			return -EFAULT;
1622 	}
1623 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1624 }
1625 
1626 #endif /* CONFIG_COMPAT */
1627 
1628 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1629 						unsigned long addr)
1630 {
1631 	struct mempolicy *pol = NULL;
1632 
1633 	if (vma) {
1634 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1635 			pol = vma->vm_ops->get_policy(vma, addr);
1636 		} else if (vma->vm_policy) {
1637 			pol = vma->vm_policy;
1638 
1639 			/*
1640 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1641 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1642 			 * count on these policies which will be dropped by
1643 			 * mpol_cond_put() later
1644 			 */
1645 			if (mpol_needs_cond_ref(pol))
1646 				mpol_get(pol);
1647 		}
1648 	}
1649 
1650 	return pol;
1651 }
1652 
1653 /*
1654  * get_vma_policy(@vma, @addr)
1655  * @vma: virtual memory area whose policy is sought
1656  * @addr: address in @vma for shared policy lookup
1657  *
1658  * Returns effective policy for a VMA at specified address.
1659  * Falls back to current->mempolicy or system default policy, as necessary.
1660  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1661  * count--added by the get_policy() vm_op, as appropriate--to protect against
1662  * freeing by another task.  It is the caller's responsibility to free the
1663  * extra reference for shared policies.
1664  */
1665 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1666 						unsigned long addr)
1667 {
1668 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1669 
1670 	if (!pol)
1671 		pol = get_task_policy(current);
1672 
1673 	return pol;
1674 }
1675 
1676 bool vma_policy_mof(struct vm_area_struct *vma)
1677 {
1678 	struct mempolicy *pol;
1679 
1680 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1681 		bool ret = false;
1682 
1683 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1684 		if (pol && (pol->flags & MPOL_F_MOF))
1685 			ret = true;
1686 		mpol_cond_put(pol);
1687 
1688 		return ret;
1689 	}
1690 
1691 	pol = vma->vm_policy;
1692 	if (!pol)
1693 		pol = get_task_policy(current);
1694 
1695 	return pol->flags & MPOL_F_MOF;
1696 }
1697 
1698 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1699 {
1700 	enum zone_type dynamic_policy_zone = policy_zone;
1701 
1702 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1703 
1704 	/*
1705 	 * if policy->v.nodes has movable memory only,
1706 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1707 	 *
1708 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1709 	 * so if the following test faile, it implies
1710 	 * policy->v.nodes has movable memory only.
1711 	 */
1712 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1713 		dynamic_policy_zone = ZONE_MOVABLE;
1714 
1715 	return zone >= dynamic_policy_zone;
1716 }
1717 
1718 /*
1719  * Return a nodemask representing a mempolicy for filtering nodes for
1720  * page allocation
1721  */
1722 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1723 {
1724 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1725 	if (unlikely(policy->mode == MPOL_BIND) &&
1726 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1727 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1728 		return &policy->v.nodes;
1729 
1730 	return NULL;
1731 }
1732 
1733 /* Return the node id preferred by the given mempolicy, or the given id */
1734 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1735 								int nd)
1736 {
1737 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1738 		nd = policy->v.preferred_node;
1739 	else {
1740 		/*
1741 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1742 		 * because we might easily break the expectation to stay on the
1743 		 * requested node and not break the policy.
1744 		 */
1745 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1746 	}
1747 
1748 	return nd;
1749 }
1750 
1751 /* Do dynamic interleaving for a process */
1752 static unsigned interleave_nodes(struct mempolicy *policy)
1753 {
1754 	unsigned next;
1755 	struct task_struct *me = current;
1756 
1757 	next = next_node_in(me->il_prev, policy->v.nodes);
1758 	if (next < MAX_NUMNODES)
1759 		me->il_prev = next;
1760 	return next;
1761 }
1762 
1763 /*
1764  * Depending on the memory policy provide a node from which to allocate the
1765  * next slab entry.
1766  */
1767 unsigned int mempolicy_slab_node(void)
1768 {
1769 	struct mempolicy *policy;
1770 	int node = numa_mem_id();
1771 
1772 	if (in_interrupt())
1773 		return node;
1774 
1775 	policy = current->mempolicy;
1776 	if (!policy || policy->flags & MPOL_F_LOCAL)
1777 		return node;
1778 
1779 	switch (policy->mode) {
1780 	case MPOL_PREFERRED:
1781 		/*
1782 		 * handled MPOL_F_LOCAL above
1783 		 */
1784 		return policy->v.preferred_node;
1785 
1786 	case MPOL_INTERLEAVE:
1787 		return interleave_nodes(policy);
1788 
1789 	case MPOL_BIND: {
1790 		struct zoneref *z;
1791 
1792 		/*
1793 		 * Follow bind policy behavior and start allocation at the
1794 		 * first node.
1795 		 */
1796 		struct zonelist *zonelist;
1797 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1798 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1799 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1800 							&policy->v.nodes);
1801 		return z->zone ? zone_to_nid(z->zone) : node;
1802 	}
1803 
1804 	default:
1805 		BUG();
1806 	}
1807 }
1808 
1809 /*
1810  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1811  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1812  * number of present nodes.
1813  */
1814 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1815 {
1816 	unsigned nnodes = nodes_weight(pol->v.nodes);
1817 	unsigned target;
1818 	int i;
1819 	int nid;
1820 
1821 	if (!nnodes)
1822 		return numa_node_id();
1823 	target = (unsigned int)n % nnodes;
1824 	nid = first_node(pol->v.nodes);
1825 	for (i = 0; i < target; i++)
1826 		nid = next_node(nid, pol->v.nodes);
1827 	return nid;
1828 }
1829 
1830 /* Determine a node number for interleave */
1831 static inline unsigned interleave_nid(struct mempolicy *pol,
1832 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1833 {
1834 	if (vma) {
1835 		unsigned long off;
1836 
1837 		/*
1838 		 * for small pages, there is no difference between
1839 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1840 		 * for huge pages, since vm_pgoff is in units of small
1841 		 * pages, we need to shift off the always 0 bits to get
1842 		 * a useful offset.
1843 		 */
1844 		BUG_ON(shift < PAGE_SHIFT);
1845 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1846 		off += (addr - vma->vm_start) >> shift;
1847 		return offset_il_node(pol, off);
1848 	} else
1849 		return interleave_nodes(pol);
1850 }
1851 
1852 #ifdef CONFIG_HUGETLBFS
1853 /*
1854  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1855  * @vma: virtual memory area whose policy is sought
1856  * @addr: address in @vma for shared policy lookup and interleave policy
1857  * @gfp_flags: for requested zone
1858  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1859  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1860  *
1861  * Returns a nid suitable for a huge page allocation and a pointer
1862  * to the struct mempolicy for conditional unref after allocation.
1863  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1864  * @nodemask for filtering the zonelist.
1865  *
1866  * Must be protected by read_mems_allowed_begin()
1867  */
1868 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1869 				struct mempolicy **mpol, nodemask_t **nodemask)
1870 {
1871 	int nid;
1872 
1873 	*mpol = get_vma_policy(vma, addr);
1874 	*nodemask = NULL;	/* assume !MPOL_BIND */
1875 
1876 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1877 		nid = interleave_nid(*mpol, vma, addr,
1878 					huge_page_shift(hstate_vma(vma)));
1879 	} else {
1880 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1881 		if ((*mpol)->mode == MPOL_BIND)
1882 			*nodemask = &(*mpol)->v.nodes;
1883 	}
1884 	return nid;
1885 }
1886 
1887 /*
1888  * init_nodemask_of_mempolicy
1889  *
1890  * If the current task's mempolicy is "default" [NULL], return 'false'
1891  * to indicate default policy.  Otherwise, extract the policy nodemask
1892  * for 'bind' or 'interleave' policy into the argument nodemask, or
1893  * initialize the argument nodemask to contain the single node for
1894  * 'preferred' or 'local' policy and return 'true' to indicate presence
1895  * of non-default mempolicy.
1896  *
1897  * We don't bother with reference counting the mempolicy [mpol_get/put]
1898  * because the current task is examining it's own mempolicy and a task's
1899  * mempolicy is only ever changed by the task itself.
1900  *
1901  * N.B., it is the caller's responsibility to free a returned nodemask.
1902  */
1903 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1904 {
1905 	struct mempolicy *mempolicy;
1906 	int nid;
1907 
1908 	if (!(mask && current->mempolicy))
1909 		return false;
1910 
1911 	task_lock(current);
1912 	mempolicy = current->mempolicy;
1913 	switch (mempolicy->mode) {
1914 	case MPOL_PREFERRED:
1915 		if (mempolicy->flags & MPOL_F_LOCAL)
1916 			nid = numa_node_id();
1917 		else
1918 			nid = mempolicy->v.preferred_node;
1919 		init_nodemask_of_node(mask, nid);
1920 		break;
1921 
1922 	case MPOL_BIND:
1923 		/* Fall through */
1924 	case MPOL_INTERLEAVE:
1925 		*mask =  mempolicy->v.nodes;
1926 		break;
1927 
1928 	default:
1929 		BUG();
1930 	}
1931 	task_unlock(current);
1932 
1933 	return true;
1934 }
1935 #endif
1936 
1937 /*
1938  * mempolicy_nodemask_intersects
1939  *
1940  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1941  * policy.  Otherwise, check for intersection between mask and the policy
1942  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1943  * policy, always return true since it may allocate elsewhere on fallback.
1944  *
1945  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1946  */
1947 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1948 					const nodemask_t *mask)
1949 {
1950 	struct mempolicy *mempolicy;
1951 	bool ret = true;
1952 
1953 	if (!mask)
1954 		return ret;
1955 	task_lock(tsk);
1956 	mempolicy = tsk->mempolicy;
1957 	if (!mempolicy)
1958 		goto out;
1959 
1960 	switch (mempolicy->mode) {
1961 	case MPOL_PREFERRED:
1962 		/*
1963 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1964 		 * allocate from, they may fallback to other nodes when oom.
1965 		 * Thus, it's possible for tsk to have allocated memory from
1966 		 * nodes in mask.
1967 		 */
1968 		break;
1969 	case MPOL_BIND:
1970 	case MPOL_INTERLEAVE:
1971 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1972 		break;
1973 	default:
1974 		BUG();
1975 	}
1976 out:
1977 	task_unlock(tsk);
1978 	return ret;
1979 }
1980 
1981 /* Allocate a page in interleaved policy.
1982    Own path because it needs to do special accounting. */
1983 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1984 					unsigned nid)
1985 {
1986 	struct page *page;
1987 
1988 	page = __alloc_pages(gfp, order, nid);
1989 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1990 	if (!static_branch_likely(&vm_numa_stat_key))
1991 		return page;
1992 	if (page && page_to_nid(page) == nid) {
1993 		preempt_disable();
1994 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1995 		preempt_enable();
1996 	}
1997 	return page;
1998 }
1999 
2000 /**
2001  * 	alloc_pages_vma	- Allocate a page for a VMA.
2002  *
2003  * 	@gfp:
2004  *      %GFP_USER    user allocation.
2005  *      %GFP_KERNEL  kernel allocations,
2006  *      %GFP_HIGHMEM highmem/user allocations,
2007  *      %GFP_FS      allocation should not call back into a file system.
2008  *      %GFP_ATOMIC  don't sleep.
2009  *
2010  *	@order:Order of the GFP allocation.
2011  * 	@vma:  Pointer to VMA or NULL if not available.
2012  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2013  *	@node: Which node to prefer for allocation (modulo policy).
2014  *
2015  * 	This function allocates a page from the kernel page pool and applies
2016  *	a NUMA policy associated with the VMA or the current process.
2017  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2018  *	mm_struct of the VMA to prevent it from going away. Should be used for
2019  *	all allocations for pages that will be mapped into user space. Returns
2020  *	NULL when no page can be allocated.
2021  */
2022 struct page *
2023 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2024 		unsigned long addr, int node)
2025 {
2026 	struct mempolicy *pol;
2027 	struct page *page;
2028 	int preferred_nid;
2029 	nodemask_t *nmask;
2030 
2031 	pol = get_vma_policy(vma, addr);
2032 
2033 	if (pol->mode == MPOL_INTERLEAVE) {
2034 		unsigned nid;
2035 
2036 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2037 		mpol_cond_put(pol);
2038 		page = alloc_page_interleave(gfp, order, nid);
2039 		goto out;
2040 	}
2041 
2042 	nmask = policy_nodemask(gfp, pol);
2043 	preferred_nid = policy_node(gfp, pol, node);
2044 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2045 	mpol_cond_put(pol);
2046 out:
2047 	return page;
2048 }
2049 
2050 /**
2051  * 	alloc_pages_current - Allocate pages.
2052  *
2053  *	@gfp:
2054  *		%GFP_USER   user allocation,
2055  *      	%GFP_KERNEL kernel allocation,
2056  *      	%GFP_HIGHMEM highmem allocation,
2057  *      	%GFP_FS     don't call back into a file system.
2058  *      	%GFP_ATOMIC don't sleep.
2059  *	@order: Power of two of allocation size in pages. 0 is a single page.
2060  *
2061  *	Allocate a page from the kernel page pool.  When not in
2062  *	interrupt context and apply the current process NUMA policy.
2063  *	Returns NULL when no page can be allocated.
2064  */
2065 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2066 {
2067 	struct mempolicy *pol = &default_policy;
2068 	struct page *page;
2069 
2070 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2071 		pol = get_task_policy(current);
2072 
2073 	/*
2074 	 * No reference counting needed for current->mempolicy
2075 	 * nor system default_policy
2076 	 */
2077 	if (pol->mode == MPOL_INTERLEAVE)
2078 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2079 	else
2080 		page = __alloc_pages_nodemask(gfp, order,
2081 				policy_node(gfp, pol, numa_node_id()),
2082 				policy_nodemask(gfp, pol));
2083 
2084 	return page;
2085 }
2086 EXPORT_SYMBOL(alloc_pages_current);
2087 
2088 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2089 {
2090 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2091 
2092 	if (IS_ERR(pol))
2093 		return PTR_ERR(pol);
2094 	dst->vm_policy = pol;
2095 	return 0;
2096 }
2097 
2098 /*
2099  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2100  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2101  * with the mems_allowed returned by cpuset_mems_allowed().  This
2102  * keeps mempolicies cpuset relative after its cpuset moves.  See
2103  * further kernel/cpuset.c update_nodemask().
2104  *
2105  * current's mempolicy may be rebinded by the other task(the task that changes
2106  * cpuset's mems), so we needn't do rebind work for current task.
2107  */
2108 
2109 /* Slow path of a mempolicy duplicate */
2110 struct mempolicy *__mpol_dup(struct mempolicy *old)
2111 {
2112 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2113 
2114 	if (!new)
2115 		return ERR_PTR(-ENOMEM);
2116 
2117 	/* task's mempolicy is protected by alloc_lock */
2118 	if (old == current->mempolicy) {
2119 		task_lock(current);
2120 		*new = *old;
2121 		task_unlock(current);
2122 	} else
2123 		*new = *old;
2124 
2125 	if (current_cpuset_is_being_rebound()) {
2126 		nodemask_t mems = cpuset_mems_allowed(current);
2127 		mpol_rebind_policy(new, &mems);
2128 	}
2129 	atomic_set(&new->refcnt, 1);
2130 	return new;
2131 }
2132 
2133 /* Slow path of a mempolicy comparison */
2134 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2135 {
2136 	if (!a || !b)
2137 		return false;
2138 	if (a->mode != b->mode)
2139 		return false;
2140 	if (a->flags != b->flags)
2141 		return false;
2142 	if (mpol_store_user_nodemask(a))
2143 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2144 			return false;
2145 
2146 	switch (a->mode) {
2147 	case MPOL_BIND:
2148 		/* Fall through */
2149 	case MPOL_INTERLEAVE:
2150 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2151 	case MPOL_PREFERRED:
2152 		/* a's ->flags is the same as b's */
2153 		if (a->flags & MPOL_F_LOCAL)
2154 			return true;
2155 		return a->v.preferred_node == b->v.preferred_node;
2156 	default:
2157 		BUG();
2158 		return false;
2159 	}
2160 }
2161 
2162 /*
2163  * Shared memory backing store policy support.
2164  *
2165  * Remember policies even when nobody has shared memory mapped.
2166  * The policies are kept in Red-Black tree linked from the inode.
2167  * They are protected by the sp->lock rwlock, which should be held
2168  * for any accesses to the tree.
2169  */
2170 
2171 /*
2172  * lookup first element intersecting start-end.  Caller holds sp->lock for
2173  * reading or for writing
2174  */
2175 static struct sp_node *
2176 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2177 {
2178 	struct rb_node *n = sp->root.rb_node;
2179 
2180 	while (n) {
2181 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2182 
2183 		if (start >= p->end)
2184 			n = n->rb_right;
2185 		else if (end <= p->start)
2186 			n = n->rb_left;
2187 		else
2188 			break;
2189 	}
2190 	if (!n)
2191 		return NULL;
2192 	for (;;) {
2193 		struct sp_node *w = NULL;
2194 		struct rb_node *prev = rb_prev(n);
2195 		if (!prev)
2196 			break;
2197 		w = rb_entry(prev, struct sp_node, nd);
2198 		if (w->end <= start)
2199 			break;
2200 		n = prev;
2201 	}
2202 	return rb_entry(n, struct sp_node, nd);
2203 }
2204 
2205 /*
2206  * Insert a new shared policy into the list.  Caller holds sp->lock for
2207  * writing.
2208  */
2209 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2210 {
2211 	struct rb_node **p = &sp->root.rb_node;
2212 	struct rb_node *parent = NULL;
2213 	struct sp_node *nd;
2214 
2215 	while (*p) {
2216 		parent = *p;
2217 		nd = rb_entry(parent, struct sp_node, nd);
2218 		if (new->start < nd->start)
2219 			p = &(*p)->rb_left;
2220 		else if (new->end > nd->end)
2221 			p = &(*p)->rb_right;
2222 		else
2223 			BUG();
2224 	}
2225 	rb_link_node(&new->nd, parent, p);
2226 	rb_insert_color(&new->nd, &sp->root);
2227 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2228 		 new->policy ? new->policy->mode : 0);
2229 }
2230 
2231 /* Find shared policy intersecting idx */
2232 struct mempolicy *
2233 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2234 {
2235 	struct mempolicy *pol = NULL;
2236 	struct sp_node *sn;
2237 
2238 	if (!sp->root.rb_node)
2239 		return NULL;
2240 	read_lock(&sp->lock);
2241 	sn = sp_lookup(sp, idx, idx+1);
2242 	if (sn) {
2243 		mpol_get(sn->policy);
2244 		pol = sn->policy;
2245 	}
2246 	read_unlock(&sp->lock);
2247 	return pol;
2248 }
2249 
2250 static void sp_free(struct sp_node *n)
2251 {
2252 	mpol_put(n->policy);
2253 	kmem_cache_free(sn_cache, n);
2254 }
2255 
2256 /**
2257  * mpol_misplaced - check whether current page node is valid in policy
2258  *
2259  * @page: page to be checked
2260  * @vma: vm area where page mapped
2261  * @addr: virtual address where page mapped
2262  *
2263  * Lookup current policy node id for vma,addr and "compare to" page's
2264  * node id.
2265  *
2266  * Returns:
2267  *	-1	- not misplaced, page is in the right node
2268  *	node	- node id where the page should be
2269  *
2270  * Policy determination "mimics" alloc_page_vma().
2271  * Called from fault path where we know the vma and faulting address.
2272  */
2273 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2274 {
2275 	struct mempolicy *pol;
2276 	struct zoneref *z;
2277 	int curnid = page_to_nid(page);
2278 	unsigned long pgoff;
2279 	int thiscpu = raw_smp_processor_id();
2280 	int thisnid = cpu_to_node(thiscpu);
2281 	int polnid = -1;
2282 	int ret = -1;
2283 
2284 	pol = get_vma_policy(vma, addr);
2285 	if (!(pol->flags & MPOL_F_MOF))
2286 		goto out;
2287 
2288 	switch (pol->mode) {
2289 	case MPOL_INTERLEAVE:
2290 		pgoff = vma->vm_pgoff;
2291 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2292 		polnid = offset_il_node(pol, pgoff);
2293 		break;
2294 
2295 	case MPOL_PREFERRED:
2296 		if (pol->flags & MPOL_F_LOCAL)
2297 			polnid = numa_node_id();
2298 		else
2299 			polnid = pol->v.preferred_node;
2300 		break;
2301 
2302 	case MPOL_BIND:
2303 
2304 		/*
2305 		 * allows binding to multiple nodes.
2306 		 * use current page if in policy nodemask,
2307 		 * else select nearest allowed node, if any.
2308 		 * If no allowed nodes, use current [!misplaced].
2309 		 */
2310 		if (node_isset(curnid, pol->v.nodes))
2311 			goto out;
2312 		z = first_zones_zonelist(
2313 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2314 				gfp_zone(GFP_HIGHUSER),
2315 				&pol->v.nodes);
2316 		polnid = zone_to_nid(z->zone);
2317 		break;
2318 
2319 	default:
2320 		BUG();
2321 	}
2322 
2323 	/* Migrate the page towards the node whose CPU is referencing it */
2324 	if (pol->flags & MPOL_F_MORON) {
2325 		polnid = thisnid;
2326 
2327 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2328 			goto out;
2329 	}
2330 
2331 	if (curnid != polnid)
2332 		ret = polnid;
2333 out:
2334 	mpol_cond_put(pol);
2335 
2336 	return ret;
2337 }
2338 
2339 /*
2340  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2341  * dropped after task->mempolicy is set to NULL so that any allocation done as
2342  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2343  * policy.
2344  */
2345 void mpol_put_task_policy(struct task_struct *task)
2346 {
2347 	struct mempolicy *pol;
2348 
2349 	task_lock(task);
2350 	pol = task->mempolicy;
2351 	task->mempolicy = NULL;
2352 	task_unlock(task);
2353 	mpol_put(pol);
2354 }
2355 
2356 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2357 {
2358 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2359 	rb_erase(&n->nd, &sp->root);
2360 	sp_free(n);
2361 }
2362 
2363 static void sp_node_init(struct sp_node *node, unsigned long start,
2364 			unsigned long end, struct mempolicy *pol)
2365 {
2366 	node->start = start;
2367 	node->end = end;
2368 	node->policy = pol;
2369 }
2370 
2371 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2372 				struct mempolicy *pol)
2373 {
2374 	struct sp_node *n;
2375 	struct mempolicy *newpol;
2376 
2377 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2378 	if (!n)
2379 		return NULL;
2380 
2381 	newpol = mpol_dup(pol);
2382 	if (IS_ERR(newpol)) {
2383 		kmem_cache_free(sn_cache, n);
2384 		return NULL;
2385 	}
2386 	newpol->flags |= MPOL_F_SHARED;
2387 	sp_node_init(n, start, end, newpol);
2388 
2389 	return n;
2390 }
2391 
2392 /* Replace a policy range. */
2393 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2394 				 unsigned long end, struct sp_node *new)
2395 {
2396 	struct sp_node *n;
2397 	struct sp_node *n_new = NULL;
2398 	struct mempolicy *mpol_new = NULL;
2399 	int ret = 0;
2400 
2401 restart:
2402 	write_lock(&sp->lock);
2403 	n = sp_lookup(sp, start, end);
2404 	/* Take care of old policies in the same range. */
2405 	while (n && n->start < end) {
2406 		struct rb_node *next = rb_next(&n->nd);
2407 		if (n->start >= start) {
2408 			if (n->end <= end)
2409 				sp_delete(sp, n);
2410 			else
2411 				n->start = end;
2412 		} else {
2413 			/* Old policy spanning whole new range. */
2414 			if (n->end > end) {
2415 				if (!n_new)
2416 					goto alloc_new;
2417 
2418 				*mpol_new = *n->policy;
2419 				atomic_set(&mpol_new->refcnt, 1);
2420 				sp_node_init(n_new, end, n->end, mpol_new);
2421 				n->end = start;
2422 				sp_insert(sp, n_new);
2423 				n_new = NULL;
2424 				mpol_new = NULL;
2425 				break;
2426 			} else
2427 				n->end = start;
2428 		}
2429 		if (!next)
2430 			break;
2431 		n = rb_entry(next, struct sp_node, nd);
2432 	}
2433 	if (new)
2434 		sp_insert(sp, new);
2435 	write_unlock(&sp->lock);
2436 	ret = 0;
2437 
2438 err_out:
2439 	if (mpol_new)
2440 		mpol_put(mpol_new);
2441 	if (n_new)
2442 		kmem_cache_free(sn_cache, n_new);
2443 
2444 	return ret;
2445 
2446 alloc_new:
2447 	write_unlock(&sp->lock);
2448 	ret = -ENOMEM;
2449 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2450 	if (!n_new)
2451 		goto err_out;
2452 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2453 	if (!mpol_new)
2454 		goto err_out;
2455 	goto restart;
2456 }
2457 
2458 /**
2459  * mpol_shared_policy_init - initialize shared policy for inode
2460  * @sp: pointer to inode shared policy
2461  * @mpol:  struct mempolicy to install
2462  *
2463  * Install non-NULL @mpol in inode's shared policy rb-tree.
2464  * On entry, the current task has a reference on a non-NULL @mpol.
2465  * This must be released on exit.
2466  * This is called at get_inode() calls and we can use GFP_KERNEL.
2467  */
2468 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2469 {
2470 	int ret;
2471 
2472 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2473 	rwlock_init(&sp->lock);
2474 
2475 	if (mpol) {
2476 		struct vm_area_struct pvma;
2477 		struct mempolicy *new;
2478 		NODEMASK_SCRATCH(scratch);
2479 
2480 		if (!scratch)
2481 			goto put_mpol;
2482 		/* contextualize the tmpfs mount point mempolicy */
2483 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2484 		if (IS_ERR(new))
2485 			goto free_scratch; /* no valid nodemask intersection */
2486 
2487 		task_lock(current);
2488 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2489 		task_unlock(current);
2490 		if (ret)
2491 			goto put_new;
2492 
2493 		/* Create pseudo-vma that contains just the policy */
2494 		vma_init(&pvma, NULL);
2495 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2496 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2497 
2498 put_new:
2499 		mpol_put(new);			/* drop initial ref */
2500 free_scratch:
2501 		NODEMASK_SCRATCH_FREE(scratch);
2502 put_mpol:
2503 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2504 	}
2505 }
2506 
2507 int mpol_set_shared_policy(struct shared_policy *info,
2508 			struct vm_area_struct *vma, struct mempolicy *npol)
2509 {
2510 	int err;
2511 	struct sp_node *new = NULL;
2512 	unsigned long sz = vma_pages(vma);
2513 
2514 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2515 		 vma->vm_pgoff,
2516 		 sz, npol ? npol->mode : -1,
2517 		 npol ? npol->flags : -1,
2518 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2519 
2520 	if (npol) {
2521 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2522 		if (!new)
2523 			return -ENOMEM;
2524 	}
2525 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2526 	if (err && new)
2527 		sp_free(new);
2528 	return err;
2529 }
2530 
2531 /* Free a backing policy store on inode delete. */
2532 void mpol_free_shared_policy(struct shared_policy *p)
2533 {
2534 	struct sp_node *n;
2535 	struct rb_node *next;
2536 
2537 	if (!p->root.rb_node)
2538 		return;
2539 	write_lock(&p->lock);
2540 	next = rb_first(&p->root);
2541 	while (next) {
2542 		n = rb_entry(next, struct sp_node, nd);
2543 		next = rb_next(&n->nd);
2544 		sp_delete(p, n);
2545 	}
2546 	write_unlock(&p->lock);
2547 }
2548 
2549 #ifdef CONFIG_NUMA_BALANCING
2550 static int __initdata numabalancing_override;
2551 
2552 static void __init check_numabalancing_enable(void)
2553 {
2554 	bool numabalancing_default = false;
2555 
2556 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2557 		numabalancing_default = true;
2558 
2559 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2560 	if (numabalancing_override)
2561 		set_numabalancing_state(numabalancing_override == 1);
2562 
2563 	if (num_online_nodes() > 1 && !numabalancing_override) {
2564 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2565 			numabalancing_default ? "Enabling" : "Disabling");
2566 		set_numabalancing_state(numabalancing_default);
2567 	}
2568 }
2569 
2570 static int __init setup_numabalancing(char *str)
2571 {
2572 	int ret = 0;
2573 	if (!str)
2574 		goto out;
2575 
2576 	if (!strcmp(str, "enable")) {
2577 		numabalancing_override = 1;
2578 		ret = 1;
2579 	} else if (!strcmp(str, "disable")) {
2580 		numabalancing_override = -1;
2581 		ret = 1;
2582 	}
2583 out:
2584 	if (!ret)
2585 		pr_warn("Unable to parse numa_balancing=\n");
2586 
2587 	return ret;
2588 }
2589 __setup("numa_balancing=", setup_numabalancing);
2590 #else
2591 static inline void __init check_numabalancing_enable(void)
2592 {
2593 }
2594 #endif /* CONFIG_NUMA_BALANCING */
2595 
2596 /* assumes fs == KERNEL_DS */
2597 void __init numa_policy_init(void)
2598 {
2599 	nodemask_t interleave_nodes;
2600 	unsigned long largest = 0;
2601 	int nid, prefer = 0;
2602 
2603 	policy_cache = kmem_cache_create("numa_policy",
2604 					 sizeof(struct mempolicy),
2605 					 0, SLAB_PANIC, NULL);
2606 
2607 	sn_cache = kmem_cache_create("shared_policy_node",
2608 				     sizeof(struct sp_node),
2609 				     0, SLAB_PANIC, NULL);
2610 
2611 	for_each_node(nid) {
2612 		preferred_node_policy[nid] = (struct mempolicy) {
2613 			.refcnt = ATOMIC_INIT(1),
2614 			.mode = MPOL_PREFERRED,
2615 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2616 			.v = { .preferred_node = nid, },
2617 		};
2618 	}
2619 
2620 	/*
2621 	 * Set interleaving policy for system init. Interleaving is only
2622 	 * enabled across suitably sized nodes (default is >= 16MB), or
2623 	 * fall back to the largest node if they're all smaller.
2624 	 */
2625 	nodes_clear(interleave_nodes);
2626 	for_each_node_state(nid, N_MEMORY) {
2627 		unsigned long total_pages = node_present_pages(nid);
2628 
2629 		/* Preserve the largest node */
2630 		if (largest < total_pages) {
2631 			largest = total_pages;
2632 			prefer = nid;
2633 		}
2634 
2635 		/* Interleave this node? */
2636 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2637 			node_set(nid, interleave_nodes);
2638 	}
2639 
2640 	/* All too small, use the largest */
2641 	if (unlikely(nodes_empty(interleave_nodes)))
2642 		node_set(prefer, interleave_nodes);
2643 
2644 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2645 		pr_err("%s: interleaving failed\n", __func__);
2646 
2647 	check_numabalancing_enable();
2648 }
2649 
2650 /* Reset policy of current process to default */
2651 void numa_default_policy(void)
2652 {
2653 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2654 }
2655 
2656 /*
2657  * Parse and format mempolicy from/to strings
2658  */
2659 
2660 /*
2661  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2662  */
2663 static const char * const policy_modes[] =
2664 {
2665 	[MPOL_DEFAULT]    = "default",
2666 	[MPOL_PREFERRED]  = "prefer",
2667 	[MPOL_BIND]       = "bind",
2668 	[MPOL_INTERLEAVE] = "interleave",
2669 	[MPOL_LOCAL]      = "local",
2670 };
2671 
2672 
2673 #ifdef CONFIG_TMPFS
2674 /**
2675  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2676  * @str:  string containing mempolicy to parse
2677  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2678  *
2679  * Format of input:
2680  *	<mode>[=<flags>][:<nodelist>]
2681  *
2682  * On success, returns 0, else 1
2683  */
2684 int mpol_parse_str(char *str, struct mempolicy **mpol)
2685 {
2686 	struct mempolicy *new = NULL;
2687 	unsigned short mode_flags;
2688 	nodemask_t nodes;
2689 	char *nodelist = strchr(str, ':');
2690 	char *flags = strchr(str, '=');
2691 	int err = 1, mode;
2692 
2693 	if (nodelist) {
2694 		/* NUL-terminate mode or flags string */
2695 		*nodelist++ = '\0';
2696 		if (nodelist_parse(nodelist, nodes))
2697 			goto out;
2698 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2699 			goto out;
2700 	} else
2701 		nodes_clear(nodes);
2702 
2703 	if (flags)
2704 		*flags++ = '\0';	/* terminate mode string */
2705 
2706 	mode = match_string(policy_modes, MPOL_MAX, str);
2707 	if (mode < 0)
2708 		goto out;
2709 
2710 	switch (mode) {
2711 	case MPOL_PREFERRED:
2712 		/*
2713 		 * Insist on a nodelist of one node only
2714 		 */
2715 		if (nodelist) {
2716 			char *rest = nodelist;
2717 			while (isdigit(*rest))
2718 				rest++;
2719 			if (*rest)
2720 				goto out;
2721 		}
2722 		break;
2723 	case MPOL_INTERLEAVE:
2724 		/*
2725 		 * Default to online nodes with memory if no nodelist
2726 		 */
2727 		if (!nodelist)
2728 			nodes = node_states[N_MEMORY];
2729 		break;
2730 	case MPOL_LOCAL:
2731 		/*
2732 		 * Don't allow a nodelist;  mpol_new() checks flags
2733 		 */
2734 		if (nodelist)
2735 			goto out;
2736 		mode = MPOL_PREFERRED;
2737 		break;
2738 	case MPOL_DEFAULT:
2739 		/*
2740 		 * Insist on a empty nodelist
2741 		 */
2742 		if (!nodelist)
2743 			err = 0;
2744 		goto out;
2745 	case MPOL_BIND:
2746 		/*
2747 		 * Insist on a nodelist
2748 		 */
2749 		if (!nodelist)
2750 			goto out;
2751 	}
2752 
2753 	mode_flags = 0;
2754 	if (flags) {
2755 		/*
2756 		 * Currently, we only support two mutually exclusive
2757 		 * mode flags.
2758 		 */
2759 		if (!strcmp(flags, "static"))
2760 			mode_flags |= MPOL_F_STATIC_NODES;
2761 		else if (!strcmp(flags, "relative"))
2762 			mode_flags |= MPOL_F_RELATIVE_NODES;
2763 		else
2764 			goto out;
2765 	}
2766 
2767 	new = mpol_new(mode, mode_flags, &nodes);
2768 	if (IS_ERR(new))
2769 		goto out;
2770 
2771 	/*
2772 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2773 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2774 	 */
2775 	if (mode != MPOL_PREFERRED)
2776 		new->v.nodes = nodes;
2777 	else if (nodelist)
2778 		new->v.preferred_node = first_node(nodes);
2779 	else
2780 		new->flags |= MPOL_F_LOCAL;
2781 
2782 	/*
2783 	 * Save nodes for contextualization: this will be used to "clone"
2784 	 * the mempolicy in a specific context [cpuset] at a later time.
2785 	 */
2786 	new->w.user_nodemask = nodes;
2787 
2788 	err = 0;
2789 
2790 out:
2791 	/* Restore string for error message */
2792 	if (nodelist)
2793 		*--nodelist = ':';
2794 	if (flags)
2795 		*--flags = '=';
2796 	if (!err)
2797 		*mpol = new;
2798 	return err;
2799 }
2800 #endif /* CONFIG_TMPFS */
2801 
2802 /**
2803  * mpol_to_str - format a mempolicy structure for printing
2804  * @buffer:  to contain formatted mempolicy string
2805  * @maxlen:  length of @buffer
2806  * @pol:  pointer to mempolicy to be formatted
2807  *
2808  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2809  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2810  * longest flag, "relative", and to display at least a few node ids.
2811  */
2812 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2813 {
2814 	char *p = buffer;
2815 	nodemask_t nodes = NODE_MASK_NONE;
2816 	unsigned short mode = MPOL_DEFAULT;
2817 	unsigned short flags = 0;
2818 
2819 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2820 		mode = pol->mode;
2821 		flags = pol->flags;
2822 	}
2823 
2824 	switch (mode) {
2825 	case MPOL_DEFAULT:
2826 		break;
2827 	case MPOL_PREFERRED:
2828 		if (flags & MPOL_F_LOCAL)
2829 			mode = MPOL_LOCAL;
2830 		else
2831 			node_set(pol->v.preferred_node, nodes);
2832 		break;
2833 	case MPOL_BIND:
2834 	case MPOL_INTERLEAVE:
2835 		nodes = pol->v.nodes;
2836 		break;
2837 	default:
2838 		WARN_ON_ONCE(1);
2839 		snprintf(p, maxlen, "unknown");
2840 		return;
2841 	}
2842 
2843 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2844 
2845 	if (flags & MPOL_MODE_FLAGS) {
2846 		p += snprintf(p, buffer + maxlen - p, "=");
2847 
2848 		/*
2849 		 * Currently, the only defined flags are mutually exclusive
2850 		 */
2851 		if (flags & MPOL_F_STATIC_NODES)
2852 			p += snprintf(p, buffer + maxlen - p, "static");
2853 		else if (flags & MPOL_F_RELATIVE_NODES)
2854 			p += snprintf(p, buffer + maxlen - p, "relative");
2855 	}
2856 
2857 	if (!nodes_empty(nodes))
2858 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2859 			       nodemask_pr_args(&nodes));
2860 }
2861