1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = *nodes; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static int migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 /* 432 * queue_pages_pmd() has four possible return values: 433 * 0 - pages are placed on the right node or queued successfully. 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 435 * specified. 436 * 2 - THP was split. 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 438 * existing page was already on a node that does not follow the 439 * policy. 440 */ 441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 442 unsigned long end, struct mm_walk *walk) 443 { 444 int ret = 0; 445 struct page *page; 446 struct queue_pages *qp = walk->private; 447 unsigned long flags; 448 449 if (unlikely(is_pmd_migration_entry(*pmd))) { 450 ret = -EIO; 451 goto unlock; 452 } 453 page = pmd_page(*pmd); 454 if (is_huge_zero_page(page)) { 455 spin_unlock(ptl); 456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 457 ret = 2; 458 goto out; 459 } 460 if (!queue_pages_required(page, qp)) 461 goto unlock; 462 463 flags = qp->flags; 464 /* go to thp migration */ 465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 466 if (!vma_migratable(walk->vma) || 467 migrate_page_add(page, qp->pagelist, flags)) { 468 ret = 1; 469 goto unlock; 470 } 471 } else 472 ret = -EIO; 473 unlock: 474 spin_unlock(ptl); 475 out: 476 return ret; 477 } 478 479 /* 480 * Scan through pages checking if pages follow certain conditions, 481 * and move them to the pagelist if they do. 482 * 483 * queue_pages_pte_range() has three possible return values: 484 * 0 - pages are placed on the right node or queued successfully. 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 486 * specified. 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 488 * on a node that does not follow the policy. 489 */ 490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 491 unsigned long end, struct mm_walk *walk) 492 { 493 struct vm_area_struct *vma = walk->vma; 494 struct page *page; 495 struct queue_pages *qp = walk->private; 496 unsigned long flags = qp->flags; 497 int ret; 498 bool has_unmovable = false; 499 pte_t *pte; 500 spinlock_t *ptl; 501 502 ptl = pmd_trans_huge_lock(pmd, vma); 503 if (ptl) { 504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 505 if (ret != 2) 506 return ret; 507 } 508 /* THP was split, fall through to pte walk */ 509 510 if (pmd_trans_unstable(pmd)) 511 return 0; 512 513 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 514 for (; addr != end; pte++, addr += PAGE_SIZE) { 515 if (!pte_present(*pte)) 516 continue; 517 page = vm_normal_page(vma, addr, *pte); 518 if (!page) 519 continue; 520 /* 521 * vm_normal_page() filters out zero pages, but there might 522 * still be PageReserved pages to skip, perhaps in a VDSO. 523 */ 524 if (PageReserved(page)) 525 continue; 526 if (!queue_pages_required(page, qp)) 527 continue; 528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 529 /* MPOL_MF_STRICT must be specified if we get here */ 530 if (!vma_migratable(vma)) { 531 has_unmovable = true; 532 break; 533 } 534 535 /* 536 * Do not abort immediately since there may be 537 * temporary off LRU pages in the range. Still 538 * need migrate other LRU pages. 539 */ 540 if (migrate_page_add(page, qp->pagelist, flags)) 541 has_unmovable = true; 542 } else 543 break; 544 } 545 pte_unmap_unlock(pte - 1, ptl); 546 cond_resched(); 547 548 if (has_unmovable) 549 return 1; 550 551 return addr != end ? -EIO : 0; 552 } 553 554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 555 unsigned long addr, unsigned long end, 556 struct mm_walk *walk) 557 { 558 #ifdef CONFIG_HUGETLB_PAGE 559 struct queue_pages *qp = walk->private; 560 unsigned long flags = qp->flags; 561 struct page *page; 562 spinlock_t *ptl; 563 pte_t entry; 564 565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 566 entry = huge_ptep_get(pte); 567 if (!pte_present(entry)) 568 goto unlock; 569 page = pte_page(entry); 570 if (!queue_pages_required(page, qp)) 571 goto unlock; 572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 573 if (flags & (MPOL_MF_MOVE_ALL) || 574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 575 isolate_huge_page(page, qp->pagelist); 576 unlock: 577 spin_unlock(ptl); 578 #else 579 BUG(); 580 #endif 581 return 0; 582 } 583 584 #ifdef CONFIG_NUMA_BALANCING 585 /* 586 * This is used to mark a range of virtual addresses to be inaccessible. 587 * These are later cleared by a NUMA hinting fault. Depending on these 588 * faults, pages may be migrated for better NUMA placement. 589 * 590 * This is assuming that NUMA faults are handled using PROT_NONE. If 591 * an architecture makes a different choice, it will need further 592 * changes to the core. 593 */ 594 unsigned long change_prot_numa(struct vm_area_struct *vma, 595 unsigned long addr, unsigned long end) 596 { 597 int nr_updated; 598 599 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 600 if (nr_updated) 601 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 602 603 return nr_updated; 604 } 605 #else 606 static unsigned long change_prot_numa(struct vm_area_struct *vma, 607 unsigned long addr, unsigned long end) 608 { 609 return 0; 610 } 611 #endif /* CONFIG_NUMA_BALANCING */ 612 613 static int queue_pages_test_walk(unsigned long start, unsigned long end, 614 struct mm_walk *walk) 615 { 616 struct vm_area_struct *vma = walk->vma; 617 struct queue_pages *qp = walk->private; 618 unsigned long endvma = vma->vm_end; 619 unsigned long flags = qp->flags; 620 621 /* 622 * Need check MPOL_MF_STRICT to return -EIO if possible 623 * regardless of vma_migratable 624 */ 625 if (!vma_migratable(vma) && 626 !(flags & MPOL_MF_STRICT)) 627 return 1; 628 629 if (endvma > end) 630 endvma = end; 631 if (vma->vm_start > start) 632 start = vma->vm_start; 633 634 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 635 if (!vma->vm_next && vma->vm_end < end) 636 return -EFAULT; 637 if (qp->prev && qp->prev->vm_end < vma->vm_start) 638 return -EFAULT; 639 } 640 641 qp->prev = vma; 642 643 if (flags & MPOL_MF_LAZY) { 644 /* Similar to task_numa_work, skip inaccessible VMAs */ 645 if (!is_vm_hugetlb_page(vma) && 646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 647 !(vma->vm_flags & VM_MIXEDMAP)) 648 change_prot_numa(vma, start, endvma); 649 return 1; 650 } 651 652 /* queue pages from current vma */ 653 if (flags & MPOL_MF_VALID) 654 return 0; 655 return 1; 656 } 657 658 static const struct mm_walk_ops queue_pages_walk_ops = { 659 .hugetlb_entry = queue_pages_hugetlb, 660 .pmd_entry = queue_pages_pte_range, 661 .test_walk = queue_pages_test_walk, 662 }; 663 664 /* 665 * Walk through page tables and collect pages to be migrated. 666 * 667 * If pages found in a given range are on a set of nodes (determined by 668 * @nodes and @flags,) it's isolated and queued to the pagelist which is 669 * passed via @private. 670 * 671 * queue_pages_range() has three possible return values: 672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 673 * specified. 674 * 0 - queue pages successfully or no misplaced page. 675 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified. 676 */ 677 static int 678 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 679 nodemask_t *nodes, unsigned long flags, 680 struct list_head *pagelist) 681 { 682 struct queue_pages qp = { 683 .pagelist = pagelist, 684 .flags = flags, 685 .nmask = nodes, 686 .prev = NULL, 687 }; 688 689 return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 690 } 691 692 /* 693 * Apply policy to a single VMA 694 * This must be called with the mmap_sem held for writing. 695 */ 696 static int vma_replace_policy(struct vm_area_struct *vma, 697 struct mempolicy *pol) 698 { 699 int err; 700 struct mempolicy *old; 701 struct mempolicy *new; 702 703 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 704 vma->vm_start, vma->vm_end, vma->vm_pgoff, 705 vma->vm_ops, vma->vm_file, 706 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 707 708 new = mpol_dup(pol); 709 if (IS_ERR(new)) 710 return PTR_ERR(new); 711 712 if (vma->vm_ops && vma->vm_ops->set_policy) { 713 err = vma->vm_ops->set_policy(vma, new); 714 if (err) 715 goto err_out; 716 } 717 718 old = vma->vm_policy; 719 vma->vm_policy = new; /* protected by mmap_sem */ 720 mpol_put(old); 721 722 return 0; 723 err_out: 724 mpol_put(new); 725 return err; 726 } 727 728 /* Step 2: apply policy to a range and do splits. */ 729 static int mbind_range(struct mm_struct *mm, unsigned long start, 730 unsigned long end, struct mempolicy *new_pol) 731 { 732 struct vm_area_struct *next; 733 struct vm_area_struct *prev; 734 struct vm_area_struct *vma; 735 int err = 0; 736 pgoff_t pgoff; 737 unsigned long vmstart; 738 unsigned long vmend; 739 740 vma = find_vma(mm, start); 741 if (!vma || vma->vm_start > start) 742 return -EFAULT; 743 744 prev = vma->vm_prev; 745 if (start > vma->vm_start) 746 prev = vma; 747 748 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 749 next = vma->vm_next; 750 vmstart = max(start, vma->vm_start); 751 vmend = min(end, vma->vm_end); 752 753 if (mpol_equal(vma_policy(vma), new_pol)) 754 continue; 755 756 pgoff = vma->vm_pgoff + 757 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 758 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 759 vma->anon_vma, vma->vm_file, pgoff, 760 new_pol, vma->vm_userfaultfd_ctx); 761 if (prev) { 762 vma = prev; 763 next = vma->vm_next; 764 if (mpol_equal(vma_policy(vma), new_pol)) 765 continue; 766 /* vma_merge() joined vma && vma->next, case 8 */ 767 goto replace; 768 } 769 if (vma->vm_start != vmstart) { 770 err = split_vma(vma->vm_mm, vma, vmstart, 1); 771 if (err) 772 goto out; 773 } 774 if (vma->vm_end != vmend) { 775 err = split_vma(vma->vm_mm, vma, vmend, 0); 776 if (err) 777 goto out; 778 } 779 replace: 780 err = vma_replace_policy(vma, new_pol); 781 if (err) 782 goto out; 783 } 784 785 out: 786 return err; 787 } 788 789 /* Set the process memory policy */ 790 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 791 nodemask_t *nodes) 792 { 793 struct mempolicy *new, *old; 794 NODEMASK_SCRATCH(scratch); 795 int ret; 796 797 if (!scratch) 798 return -ENOMEM; 799 800 new = mpol_new(mode, flags, nodes); 801 if (IS_ERR(new)) { 802 ret = PTR_ERR(new); 803 goto out; 804 } 805 806 task_lock(current); 807 ret = mpol_set_nodemask(new, nodes, scratch); 808 if (ret) { 809 task_unlock(current); 810 mpol_put(new); 811 goto out; 812 } 813 old = current->mempolicy; 814 current->mempolicy = new; 815 if (new && new->mode == MPOL_INTERLEAVE) 816 current->il_prev = MAX_NUMNODES-1; 817 task_unlock(current); 818 mpol_put(old); 819 ret = 0; 820 out: 821 NODEMASK_SCRATCH_FREE(scratch); 822 return ret; 823 } 824 825 /* 826 * Return nodemask for policy for get_mempolicy() query 827 * 828 * Called with task's alloc_lock held 829 */ 830 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 831 { 832 nodes_clear(*nodes); 833 if (p == &default_policy) 834 return; 835 836 switch (p->mode) { 837 case MPOL_BIND: 838 /* Fall through */ 839 case MPOL_INTERLEAVE: 840 *nodes = p->v.nodes; 841 break; 842 case MPOL_PREFERRED: 843 if (!(p->flags & MPOL_F_LOCAL)) 844 node_set(p->v.preferred_node, *nodes); 845 /* else return empty node mask for local allocation */ 846 break; 847 default: 848 BUG(); 849 } 850 } 851 852 static int lookup_node(struct mm_struct *mm, unsigned long addr) 853 { 854 struct page *p; 855 int err; 856 857 int locked = 1; 858 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 859 if (err >= 0) { 860 err = page_to_nid(p); 861 put_page(p); 862 } 863 if (locked) 864 up_read(&mm->mmap_sem); 865 return err; 866 } 867 868 /* Retrieve NUMA policy */ 869 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 870 unsigned long addr, unsigned long flags) 871 { 872 int err; 873 struct mm_struct *mm = current->mm; 874 struct vm_area_struct *vma = NULL; 875 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 876 877 if (flags & 878 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 879 return -EINVAL; 880 881 if (flags & MPOL_F_MEMS_ALLOWED) { 882 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 883 return -EINVAL; 884 *policy = 0; /* just so it's initialized */ 885 task_lock(current); 886 *nmask = cpuset_current_mems_allowed; 887 task_unlock(current); 888 return 0; 889 } 890 891 if (flags & MPOL_F_ADDR) { 892 /* 893 * Do NOT fall back to task policy if the 894 * vma/shared policy at addr is NULL. We 895 * want to return MPOL_DEFAULT in this case. 896 */ 897 down_read(&mm->mmap_sem); 898 vma = find_vma_intersection(mm, addr, addr+1); 899 if (!vma) { 900 up_read(&mm->mmap_sem); 901 return -EFAULT; 902 } 903 if (vma->vm_ops && vma->vm_ops->get_policy) 904 pol = vma->vm_ops->get_policy(vma, addr); 905 else 906 pol = vma->vm_policy; 907 } else if (addr) 908 return -EINVAL; 909 910 if (!pol) 911 pol = &default_policy; /* indicates default behavior */ 912 913 if (flags & MPOL_F_NODE) { 914 if (flags & MPOL_F_ADDR) { 915 /* 916 * Take a refcount on the mpol, lookup_node() 917 * wil drop the mmap_sem, so after calling 918 * lookup_node() only "pol" remains valid, "vma" 919 * is stale. 920 */ 921 pol_refcount = pol; 922 vma = NULL; 923 mpol_get(pol); 924 err = lookup_node(mm, addr); 925 if (err < 0) 926 goto out; 927 *policy = err; 928 } else if (pol == current->mempolicy && 929 pol->mode == MPOL_INTERLEAVE) { 930 *policy = next_node_in(current->il_prev, pol->v.nodes); 931 } else { 932 err = -EINVAL; 933 goto out; 934 } 935 } else { 936 *policy = pol == &default_policy ? MPOL_DEFAULT : 937 pol->mode; 938 /* 939 * Internal mempolicy flags must be masked off before exposing 940 * the policy to userspace. 941 */ 942 *policy |= (pol->flags & MPOL_MODE_FLAGS); 943 } 944 945 err = 0; 946 if (nmask) { 947 if (mpol_store_user_nodemask(pol)) { 948 *nmask = pol->w.user_nodemask; 949 } else { 950 task_lock(current); 951 get_policy_nodemask(pol, nmask); 952 task_unlock(current); 953 } 954 } 955 956 out: 957 mpol_cond_put(pol); 958 if (vma) 959 up_read(&mm->mmap_sem); 960 if (pol_refcount) 961 mpol_put(pol_refcount); 962 return err; 963 } 964 965 #ifdef CONFIG_MIGRATION 966 /* 967 * page migration, thp tail pages can be passed. 968 */ 969 static int migrate_page_add(struct page *page, struct list_head *pagelist, 970 unsigned long flags) 971 { 972 struct page *head = compound_head(page); 973 /* 974 * Avoid migrating a page that is shared with others. 975 */ 976 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 977 if (!isolate_lru_page(head)) { 978 list_add_tail(&head->lru, pagelist); 979 mod_node_page_state(page_pgdat(head), 980 NR_ISOLATED_ANON + page_is_file_cache(head), 981 hpage_nr_pages(head)); 982 } else if (flags & MPOL_MF_STRICT) { 983 /* 984 * Non-movable page may reach here. And, there may be 985 * temporary off LRU pages or non-LRU movable pages. 986 * Treat them as unmovable pages since they can't be 987 * isolated, so they can't be moved at the moment. It 988 * should return -EIO for this case too. 989 */ 990 return -EIO; 991 } 992 } 993 994 return 0; 995 } 996 997 /* page allocation callback for NUMA node migration */ 998 struct page *alloc_new_node_page(struct page *page, unsigned long node) 999 { 1000 if (PageHuge(page)) 1001 return alloc_huge_page_node(page_hstate(compound_head(page)), 1002 node); 1003 else if (PageTransHuge(page)) { 1004 struct page *thp; 1005 1006 thp = alloc_pages_node(node, 1007 (GFP_TRANSHUGE | __GFP_THISNODE), 1008 HPAGE_PMD_ORDER); 1009 if (!thp) 1010 return NULL; 1011 prep_transhuge_page(thp); 1012 return thp; 1013 } else 1014 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1015 __GFP_THISNODE, 0); 1016 } 1017 1018 /* 1019 * Migrate pages from one node to a target node. 1020 * Returns error or the number of pages not migrated. 1021 */ 1022 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1023 int flags) 1024 { 1025 nodemask_t nmask; 1026 LIST_HEAD(pagelist); 1027 int err = 0; 1028 1029 nodes_clear(nmask); 1030 node_set(source, nmask); 1031 1032 /* 1033 * This does not "check" the range but isolates all pages that 1034 * need migration. Between passing in the full user address 1035 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1036 */ 1037 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1038 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1039 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1040 1041 if (!list_empty(&pagelist)) { 1042 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1043 MIGRATE_SYNC, MR_SYSCALL); 1044 if (err) 1045 putback_movable_pages(&pagelist); 1046 } 1047 1048 return err; 1049 } 1050 1051 /* 1052 * Move pages between the two nodesets so as to preserve the physical 1053 * layout as much as possible. 1054 * 1055 * Returns the number of page that could not be moved. 1056 */ 1057 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1058 const nodemask_t *to, int flags) 1059 { 1060 int busy = 0; 1061 int err; 1062 nodemask_t tmp; 1063 1064 err = migrate_prep(); 1065 if (err) 1066 return err; 1067 1068 down_read(&mm->mmap_sem); 1069 1070 /* 1071 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1072 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1073 * bit in 'tmp', and return that <source, dest> pair for migration. 1074 * The pair of nodemasks 'to' and 'from' define the map. 1075 * 1076 * If no pair of bits is found that way, fallback to picking some 1077 * pair of 'source' and 'dest' bits that are not the same. If the 1078 * 'source' and 'dest' bits are the same, this represents a node 1079 * that will be migrating to itself, so no pages need move. 1080 * 1081 * If no bits are left in 'tmp', or if all remaining bits left 1082 * in 'tmp' correspond to the same bit in 'to', return false 1083 * (nothing left to migrate). 1084 * 1085 * This lets us pick a pair of nodes to migrate between, such that 1086 * if possible the dest node is not already occupied by some other 1087 * source node, minimizing the risk of overloading the memory on a 1088 * node that would happen if we migrated incoming memory to a node 1089 * before migrating outgoing memory source that same node. 1090 * 1091 * A single scan of tmp is sufficient. As we go, we remember the 1092 * most recent <s, d> pair that moved (s != d). If we find a pair 1093 * that not only moved, but what's better, moved to an empty slot 1094 * (d is not set in tmp), then we break out then, with that pair. 1095 * Otherwise when we finish scanning from_tmp, we at least have the 1096 * most recent <s, d> pair that moved. If we get all the way through 1097 * the scan of tmp without finding any node that moved, much less 1098 * moved to an empty node, then there is nothing left worth migrating. 1099 */ 1100 1101 tmp = *from; 1102 while (!nodes_empty(tmp)) { 1103 int s,d; 1104 int source = NUMA_NO_NODE; 1105 int dest = 0; 1106 1107 for_each_node_mask(s, tmp) { 1108 1109 /* 1110 * do_migrate_pages() tries to maintain the relative 1111 * node relationship of the pages established between 1112 * threads and memory areas. 1113 * 1114 * However if the number of source nodes is not equal to 1115 * the number of destination nodes we can not preserve 1116 * this node relative relationship. In that case, skip 1117 * copying memory from a node that is in the destination 1118 * mask. 1119 * 1120 * Example: [2,3,4] -> [3,4,5] moves everything. 1121 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1122 */ 1123 1124 if ((nodes_weight(*from) != nodes_weight(*to)) && 1125 (node_isset(s, *to))) 1126 continue; 1127 1128 d = node_remap(s, *from, *to); 1129 if (s == d) 1130 continue; 1131 1132 source = s; /* Node moved. Memorize */ 1133 dest = d; 1134 1135 /* dest not in remaining from nodes? */ 1136 if (!node_isset(dest, tmp)) 1137 break; 1138 } 1139 if (source == NUMA_NO_NODE) 1140 break; 1141 1142 node_clear(source, tmp); 1143 err = migrate_to_node(mm, source, dest, flags); 1144 if (err > 0) 1145 busy += err; 1146 if (err < 0) 1147 break; 1148 } 1149 up_read(&mm->mmap_sem); 1150 if (err < 0) 1151 return err; 1152 return busy; 1153 1154 } 1155 1156 /* 1157 * Allocate a new page for page migration based on vma policy. 1158 * Start by assuming the page is mapped by the same vma as contains @start. 1159 * Search forward from there, if not. N.B., this assumes that the 1160 * list of pages handed to migrate_pages()--which is how we get here-- 1161 * is in virtual address order. 1162 */ 1163 static struct page *new_page(struct page *page, unsigned long start) 1164 { 1165 struct vm_area_struct *vma; 1166 unsigned long uninitialized_var(address); 1167 1168 vma = find_vma(current->mm, start); 1169 while (vma) { 1170 address = page_address_in_vma(page, vma); 1171 if (address != -EFAULT) 1172 break; 1173 vma = vma->vm_next; 1174 } 1175 1176 if (PageHuge(page)) { 1177 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1178 vma, address); 1179 } else if (PageTransHuge(page)) { 1180 struct page *thp; 1181 1182 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1183 HPAGE_PMD_ORDER); 1184 if (!thp) 1185 return NULL; 1186 prep_transhuge_page(thp); 1187 return thp; 1188 } 1189 /* 1190 * if !vma, alloc_page_vma() will use task or system default policy 1191 */ 1192 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1193 vma, address); 1194 } 1195 #else 1196 1197 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1198 unsigned long flags) 1199 { 1200 return -EIO; 1201 } 1202 1203 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1204 const nodemask_t *to, int flags) 1205 { 1206 return -ENOSYS; 1207 } 1208 1209 static struct page *new_page(struct page *page, unsigned long start) 1210 { 1211 return NULL; 1212 } 1213 #endif 1214 1215 static long do_mbind(unsigned long start, unsigned long len, 1216 unsigned short mode, unsigned short mode_flags, 1217 nodemask_t *nmask, unsigned long flags) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct mempolicy *new; 1221 unsigned long end; 1222 int err; 1223 int ret; 1224 LIST_HEAD(pagelist); 1225 1226 if (flags & ~(unsigned long)MPOL_MF_VALID) 1227 return -EINVAL; 1228 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1229 return -EPERM; 1230 1231 if (start & ~PAGE_MASK) 1232 return -EINVAL; 1233 1234 if (mode == MPOL_DEFAULT) 1235 flags &= ~MPOL_MF_STRICT; 1236 1237 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1238 end = start + len; 1239 1240 if (end < start) 1241 return -EINVAL; 1242 if (end == start) 1243 return 0; 1244 1245 new = mpol_new(mode, mode_flags, nmask); 1246 if (IS_ERR(new)) 1247 return PTR_ERR(new); 1248 1249 if (flags & MPOL_MF_LAZY) 1250 new->flags |= MPOL_F_MOF; 1251 1252 /* 1253 * If we are using the default policy then operation 1254 * on discontinuous address spaces is okay after all 1255 */ 1256 if (!new) 1257 flags |= MPOL_MF_DISCONTIG_OK; 1258 1259 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1260 start, start + len, mode, mode_flags, 1261 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1262 1263 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1264 1265 err = migrate_prep(); 1266 if (err) 1267 goto mpol_out; 1268 } 1269 { 1270 NODEMASK_SCRATCH(scratch); 1271 if (scratch) { 1272 down_write(&mm->mmap_sem); 1273 task_lock(current); 1274 err = mpol_set_nodemask(new, nmask, scratch); 1275 task_unlock(current); 1276 if (err) 1277 up_write(&mm->mmap_sem); 1278 } else 1279 err = -ENOMEM; 1280 NODEMASK_SCRATCH_FREE(scratch); 1281 } 1282 if (err) 1283 goto mpol_out; 1284 1285 ret = queue_pages_range(mm, start, end, nmask, 1286 flags | MPOL_MF_INVERT, &pagelist); 1287 1288 if (ret < 0) { 1289 err = -EIO; 1290 goto up_out; 1291 } 1292 1293 err = mbind_range(mm, start, end, new); 1294 1295 if (!err) { 1296 int nr_failed = 0; 1297 1298 if (!list_empty(&pagelist)) { 1299 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1300 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1301 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1302 if (nr_failed) 1303 putback_movable_pages(&pagelist); 1304 } 1305 1306 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1307 err = -EIO; 1308 } else 1309 putback_movable_pages(&pagelist); 1310 1311 up_out: 1312 up_write(&mm->mmap_sem); 1313 mpol_out: 1314 mpol_put(new); 1315 return err; 1316 } 1317 1318 /* 1319 * User space interface with variable sized bitmaps for nodelists. 1320 */ 1321 1322 /* Copy a node mask from user space. */ 1323 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1324 unsigned long maxnode) 1325 { 1326 unsigned long k; 1327 unsigned long t; 1328 unsigned long nlongs; 1329 unsigned long endmask; 1330 1331 --maxnode; 1332 nodes_clear(*nodes); 1333 if (maxnode == 0 || !nmask) 1334 return 0; 1335 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1336 return -EINVAL; 1337 1338 nlongs = BITS_TO_LONGS(maxnode); 1339 if ((maxnode % BITS_PER_LONG) == 0) 1340 endmask = ~0UL; 1341 else 1342 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1343 1344 /* 1345 * When the user specified more nodes than supported just check 1346 * if the non supported part is all zero. 1347 * 1348 * If maxnode have more longs than MAX_NUMNODES, check 1349 * the bits in that area first. And then go through to 1350 * check the rest bits which equal or bigger than MAX_NUMNODES. 1351 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1352 */ 1353 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1354 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1355 if (get_user(t, nmask + k)) 1356 return -EFAULT; 1357 if (k == nlongs - 1) { 1358 if (t & endmask) 1359 return -EINVAL; 1360 } else if (t) 1361 return -EINVAL; 1362 } 1363 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1364 endmask = ~0UL; 1365 } 1366 1367 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1368 unsigned long valid_mask = endmask; 1369 1370 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1371 if (get_user(t, nmask + nlongs - 1)) 1372 return -EFAULT; 1373 if (t & valid_mask) 1374 return -EINVAL; 1375 } 1376 1377 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1378 return -EFAULT; 1379 nodes_addr(*nodes)[nlongs-1] &= endmask; 1380 return 0; 1381 } 1382 1383 /* Copy a kernel node mask to user space */ 1384 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1385 nodemask_t *nodes) 1386 { 1387 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1388 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1389 1390 if (copy > nbytes) { 1391 if (copy > PAGE_SIZE) 1392 return -EINVAL; 1393 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1394 return -EFAULT; 1395 copy = nbytes; 1396 } 1397 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1398 } 1399 1400 static long kernel_mbind(unsigned long start, unsigned long len, 1401 unsigned long mode, const unsigned long __user *nmask, 1402 unsigned long maxnode, unsigned int flags) 1403 { 1404 nodemask_t nodes; 1405 int err; 1406 unsigned short mode_flags; 1407 1408 start = untagged_addr(start); 1409 mode_flags = mode & MPOL_MODE_FLAGS; 1410 mode &= ~MPOL_MODE_FLAGS; 1411 if (mode >= MPOL_MAX) 1412 return -EINVAL; 1413 if ((mode_flags & MPOL_F_STATIC_NODES) && 1414 (mode_flags & MPOL_F_RELATIVE_NODES)) 1415 return -EINVAL; 1416 err = get_nodes(&nodes, nmask, maxnode); 1417 if (err) 1418 return err; 1419 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1420 } 1421 1422 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1423 unsigned long, mode, const unsigned long __user *, nmask, 1424 unsigned long, maxnode, unsigned int, flags) 1425 { 1426 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1427 } 1428 1429 /* Set the process memory policy */ 1430 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1431 unsigned long maxnode) 1432 { 1433 int err; 1434 nodemask_t nodes; 1435 unsigned short flags; 1436 1437 flags = mode & MPOL_MODE_FLAGS; 1438 mode &= ~MPOL_MODE_FLAGS; 1439 if ((unsigned int)mode >= MPOL_MAX) 1440 return -EINVAL; 1441 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1442 return -EINVAL; 1443 err = get_nodes(&nodes, nmask, maxnode); 1444 if (err) 1445 return err; 1446 return do_set_mempolicy(mode, flags, &nodes); 1447 } 1448 1449 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1450 unsigned long, maxnode) 1451 { 1452 return kernel_set_mempolicy(mode, nmask, maxnode); 1453 } 1454 1455 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1456 const unsigned long __user *old_nodes, 1457 const unsigned long __user *new_nodes) 1458 { 1459 struct mm_struct *mm = NULL; 1460 struct task_struct *task; 1461 nodemask_t task_nodes; 1462 int err; 1463 nodemask_t *old; 1464 nodemask_t *new; 1465 NODEMASK_SCRATCH(scratch); 1466 1467 if (!scratch) 1468 return -ENOMEM; 1469 1470 old = &scratch->mask1; 1471 new = &scratch->mask2; 1472 1473 err = get_nodes(old, old_nodes, maxnode); 1474 if (err) 1475 goto out; 1476 1477 err = get_nodes(new, new_nodes, maxnode); 1478 if (err) 1479 goto out; 1480 1481 /* Find the mm_struct */ 1482 rcu_read_lock(); 1483 task = pid ? find_task_by_vpid(pid) : current; 1484 if (!task) { 1485 rcu_read_unlock(); 1486 err = -ESRCH; 1487 goto out; 1488 } 1489 get_task_struct(task); 1490 1491 err = -EINVAL; 1492 1493 /* 1494 * Check if this process has the right to modify the specified process. 1495 * Use the regular "ptrace_may_access()" checks. 1496 */ 1497 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1498 rcu_read_unlock(); 1499 err = -EPERM; 1500 goto out_put; 1501 } 1502 rcu_read_unlock(); 1503 1504 task_nodes = cpuset_mems_allowed(task); 1505 /* Is the user allowed to access the target nodes? */ 1506 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1507 err = -EPERM; 1508 goto out_put; 1509 } 1510 1511 task_nodes = cpuset_mems_allowed(current); 1512 nodes_and(*new, *new, task_nodes); 1513 if (nodes_empty(*new)) 1514 goto out_put; 1515 1516 err = security_task_movememory(task); 1517 if (err) 1518 goto out_put; 1519 1520 mm = get_task_mm(task); 1521 put_task_struct(task); 1522 1523 if (!mm) { 1524 err = -EINVAL; 1525 goto out; 1526 } 1527 1528 err = do_migrate_pages(mm, old, new, 1529 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1530 1531 mmput(mm); 1532 out: 1533 NODEMASK_SCRATCH_FREE(scratch); 1534 1535 return err; 1536 1537 out_put: 1538 put_task_struct(task); 1539 goto out; 1540 1541 } 1542 1543 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1544 const unsigned long __user *, old_nodes, 1545 const unsigned long __user *, new_nodes) 1546 { 1547 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1548 } 1549 1550 1551 /* Retrieve NUMA policy */ 1552 static int kernel_get_mempolicy(int __user *policy, 1553 unsigned long __user *nmask, 1554 unsigned long maxnode, 1555 unsigned long addr, 1556 unsigned long flags) 1557 { 1558 int err; 1559 int uninitialized_var(pval); 1560 nodemask_t nodes; 1561 1562 addr = untagged_addr(addr); 1563 1564 if (nmask != NULL && maxnode < nr_node_ids) 1565 return -EINVAL; 1566 1567 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1568 1569 if (err) 1570 return err; 1571 1572 if (policy && put_user(pval, policy)) 1573 return -EFAULT; 1574 1575 if (nmask) 1576 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1577 1578 return err; 1579 } 1580 1581 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1582 unsigned long __user *, nmask, unsigned long, maxnode, 1583 unsigned long, addr, unsigned long, flags) 1584 { 1585 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1586 } 1587 1588 #ifdef CONFIG_COMPAT 1589 1590 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1591 compat_ulong_t __user *, nmask, 1592 compat_ulong_t, maxnode, 1593 compat_ulong_t, addr, compat_ulong_t, flags) 1594 { 1595 long err; 1596 unsigned long __user *nm = NULL; 1597 unsigned long nr_bits, alloc_size; 1598 DECLARE_BITMAP(bm, MAX_NUMNODES); 1599 1600 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1601 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1602 1603 if (nmask) 1604 nm = compat_alloc_user_space(alloc_size); 1605 1606 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1607 1608 if (!err && nmask) { 1609 unsigned long copy_size; 1610 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1611 err = copy_from_user(bm, nm, copy_size); 1612 /* ensure entire bitmap is zeroed */ 1613 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1614 err |= compat_put_bitmap(nmask, bm, nr_bits); 1615 } 1616 1617 return err; 1618 } 1619 1620 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1621 compat_ulong_t, maxnode) 1622 { 1623 unsigned long __user *nm = NULL; 1624 unsigned long nr_bits, alloc_size; 1625 DECLARE_BITMAP(bm, MAX_NUMNODES); 1626 1627 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1628 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1629 1630 if (nmask) { 1631 if (compat_get_bitmap(bm, nmask, nr_bits)) 1632 return -EFAULT; 1633 nm = compat_alloc_user_space(alloc_size); 1634 if (copy_to_user(nm, bm, alloc_size)) 1635 return -EFAULT; 1636 } 1637 1638 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1639 } 1640 1641 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1642 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1643 compat_ulong_t, maxnode, compat_ulong_t, flags) 1644 { 1645 unsigned long __user *nm = NULL; 1646 unsigned long nr_bits, alloc_size; 1647 nodemask_t bm; 1648 1649 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1650 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1651 1652 if (nmask) { 1653 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1654 return -EFAULT; 1655 nm = compat_alloc_user_space(alloc_size); 1656 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1657 return -EFAULT; 1658 } 1659 1660 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1661 } 1662 1663 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1664 compat_ulong_t, maxnode, 1665 const compat_ulong_t __user *, old_nodes, 1666 const compat_ulong_t __user *, new_nodes) 1667 { 1668 unsigned long __user *old = NULL; 1669 unsigned long __user *new = NULL; 1670 nodemask_t tmp_mask; 1671 unsigned long nr_bits; 1672 unsigned long size; 1673 1674 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1675 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1676 if (old_nodes) { 1677 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1678 return -EFAULT; 1679 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1680 if (new_nodes) 1681 new = old + size / sizeof(unsigned long); 1682 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1683 return -EFAULT; 1684 } 1685 if (new_nodes) { 1686 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1687 return -EFAULT; 1688 if (new == NULL) 1689 new = compat_alloc_user_space(size); 1690 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1691 return -EFAULT; 1692 } 1693 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1694 } 1695 1696 #endif /* CONFIG_COMPAT */ 1697 1698 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1699 unsigned long addr) 1700 { 1701 struct mempolicy *pol = NULL; 1702 1703 if (vma) { 1704 if (vma->vm_ops && vma->vm_ops->get_policy) { 1705 pol = vma->vm_ops->get_policy(vma, addr); 1706 } else if (vma->vm_policy) { 1707 pol = vma->vm_policy; 1708 1709 /* 1710 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1711 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1712 * count on these policies which will be dropped by 1713 * mpol_cond_put() later 1714 */ 1715 if (mpol_needs_cond_ref(pol)) 1716 mpol_get(pol); 1717 } 1718 } 1719 1720 return pol; 1721 } 1722 1723 /* 1724 * get_vma_policy(@vma, @addr) 1725 * @vma: virtual memory area whose policy is sought 1726 * @addr: address in @vma for shared policy lookup 1727 * 1728 * Returns effective policy for a VMA at specified address. 1729 * Falls back to current->mempolicy or system default policy, as necessary. 1730 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1731 * count--added by the get_policy() vm_op, as appropriate--to protect against 1732 * freeing by another task. It is the caller's responsibility to free the 1733 * extra reference for shared policies. 1734 */ 1735 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1736 unsigned long addr) 1737 { 1738 struct mempolicy *pol = __get_vma_policy(vma, addr); 1739 1740 if (!pol) 1741 pol = get_task_policy(current); 1742 1743 return pol; 1744 } 1745 1746 bool vma_policy_mof(struct vm_area_struct *vma) 1747 { 1748 struct mempolicy *pol; 1749 1750 if (vma->vm_ops && vma->vm_ops->get_policy) { 1751 bool ret = false; 1752 1753 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1754 if (pol && (pol->flags & MPOL_F_MOF)) 1755 ret = true; 1756 mpol_cond_put(pol); 1757 1758 return ret; 1759 } 1760 1761 pol = vma->vm_policy; 1762 if (!pol) 1763 pol = get_task_policy(current); 1764 1765 return pol->flags & MPOL_F_MOF; 1766 } 1767 1768 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1769 { 1770 enum zone_type dynamic_policy_zone = policy_zone; 1771 1772 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1773 1774 /* 1775 * if policy->v.nodes has movable memory only, 1776 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1777 * 1778 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1779 * so if the following test faile, it implies 1780 * policy->v.nodes has movable memory only. 1781 */ 1782 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1783 dynamic_policy_zone = ZONE_MOVABLE; 1784 1785 return zone >= dynamic_policy_zone; 1786 } 1787 1788 /* 1789 * Return a nodemask representing a mempolicy for filtering nodes for 1790 * page allocation 1791 */ 1792 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1793 { 1794 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1795 if (unlikely(policy->mode == MPOL_BIND) && 1796 apply_policy_zone(policy, gfp_zone(gfp)) && 1797 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1798 return &policy->v.nodes; 1799 1800 return NULL; 1801 } 1802 1803 /* Return the node id preferred by the given mempolicy, or the given id */ 1804 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1805 int nd) 1806 { 1807 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1808 nd = policy->v.preferred_node; 1809 else { 1810 /* 1811 * __GFP_THISNODE shouldn't even be used with the bind policy 1812 * because we might easily break the expectation to stay on the 1813 * requested node and not break the policy. 1814 */ 1815 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1816 } 1817 1818 return nd; 1819 } 1820 1821 /* Do dynamic interleaving for a process */ 1822 static unsigned interleave_nodes(struct mempolicy *policy) 1823 { 1824 unsigned next; 1825 struct task_struct *me = current; 1826 1827 next = next_node_in(me->il_prev, policy->v.nodes); 1828 if (next < MAX_NUMNODES) 1829 me->il_prev = next; 1830 return next; 1831 } 1832 1833 /* 1834 * Depending on the memory policy provide a node from which to allocate the 1835 * next slab entry. 1836 */ 1837 unsigned int mempolicy_slab_node(void) 1838 { 1839 struct mempolicy *policy; 1840 int node = numa_mem_id(); 1841 1842 if (in_interrupt()) 1843 return node; 1844 1845 policy = current->mempolicy; 1846 if (!policy || policy->flags & MPOL_F_LOCAL) 1847 return node; 1848 1849 switch (policy->mode) { 1850 case MPOL_PREFERRED: 1851 /* 1852 * handled MPOL_F_LOCAL above 1853 */ 1854 return policy->v.preferred_node; 1855 1856 case MPOL_INTERLEAVE: 1857 return interleave_nodes(policy); 1858 1859 case MPOL_BIND: { 1860 struct zoneref *z; 1861 1862 /* 1863 * Follow bind policy behavior and start allocation at the 1864 * first node. 1865 */ 1866 struct zonelist *zonelist; 1867 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1868 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1869 z = first_zones_zonelist(zonelist, highest_zoneidx, 1870 &policy->v.nodes); 1871 return z->zone ? zone_to_nid(z->zone) : node; 1872 } 1873 1874 default: 1875 BUG(); 1876 } 1877 } 1878 1879 /* 1880 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1881 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1882 * number of present nodes. 1883 */ 1884 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1885 { 1886 unsigned nnodes = nodes_weight(pol->v.nodes); 1887 unsigned target; 1888 int i; 1889 int nid; 1890 1891 if (!nnodes) 1892 return numa_node_id(); 1893 target = (unsigned int)n % nnodes; 1894 nid = first_node(pol->v.nodes); 1895 for (i = 0; i < target; i++) 1896 nid = next_node(nid, pol->v.nodes); 1897 return nid; 1898 } 1899 1900 /* Determine a node number for interleave */ 1901 static inline unsigned interleave_nid(struct mempolicy *pol, 1902 struct vm_area_struct *vma, unsigned long addr, int shift) 1903 { 1904 if (vma) { 1905 unsigned long off; 1906 1907 /* 1908 * for small pages, there is no difference between 1909 * shift and PAGE_SHIFT, so the bit-shift is safe. 1910 * for huge pages, since vm_pgoff is in units of small 1911 * pages, we need to shift off the always 0 bits to get 1912 * a useful offset. 1913 */ 1914 BUG_ON(shift < PAGE_SHIFT); 1915 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1916 off += (addr - vma->vm_start) >> shift; 1917 return offset_il_node(pol, off); 1918 } else 1919 return interleave_nodes(pol); 1920 } 1921 1922 #ifdef CONFIG_HUGETLBFS 1923 /* 1924 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1925 * @vma: virtual memory area whose policy is sought 1926 * @addr: address in @vma for shared policy lookup and interleave policy 1927 * @gfp_flags: for requested zone 1928 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1929 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1930 * 1931 * Returns a nid suitable for a huge page allocation and a pointer 1932 * to the struct mempolicy for conditional unref after allocation. 1933 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1934 * @nodemask for filtering the zonelist. 1935 * 1936 * Must be protected by read_mems_allowed_begin() 1937 */ 1938 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1939 struct mempolicy **mpol, nodemask_t **nodemask) 1940 { 1941 int nid; 1942 1943 *mpol = get_vma_policy(vma, addr); 1944 *nodemask = NULL; /* assume !MPOL_BIND */ 1945 1946 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1947 nid = interleave_nid(*mpol, vma, addr, 1948 huge_page_shift(hstate_vma(vma))); 1949 } else { 1950 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1951 if ((*mpol)->mode == MPOL_BIND) 1952 *nodemask = &(*mpol)->v.nodes; 1953 } 1954 return nid; 1955 } 1956 1957 /* 1958 * init_nodemask_of_mempolicy 1959 * 1960 * If the current task's mempolicy is "default" [NULL], return 'false' 1961 * to indicate default policy. Otherwise, extract the policy nodemask 1962 * for 'bind' or 'interleave' policy into the argument nodemask, or 1963 * initialize the argument nodemask to contain the single node for 1964 * 'preferred' or 'local' policy and return 'true' to indicate presence 1965 * of non-default mempolicy. 1966 * 1967 * We don't bother with reference counting the mempolicy [mpol_get/put] 1968 * because the current task is examining it's own mempolicy and a task's 1969 * mempolicy is only ever changed by the task itself. 1970 * 1971 * N.B., it is the caller's responsibility to free a returned nodemask. 1972 */ 1973 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1974 { 1975 struct mempolicy *mempolicy; 1976 int nid; 1977 1978 if (!(mask && current->mempolicy)) 1979 return false; 1980 1981 task_lock(current); 1982 mempolicy = current->mempolicy; 1983 switch (mempolicy->mode) { 1984 case MPOL_PREFERRED: 1985 if (mempolicy->flags & MPOL_F_LOCAL) 1986 nid = numa_node_id(); 1987 else 1988 nid = mempolicy->v.preferred_node; 1989 init_nodemask_of_node(mask, nid); 1990 break; 1991 1992 case MPOL_BIND: 1993 /* Fall through */ 1994 case MPOL_INTERLEAVE: 1995 *mask = mempolicy->v.nodes; 1996 break; 1997 1998 default: 1999 BUG(); 2000 } 2001 task_unlock(current); 2002 2003 return true; 2004 } 2005 #endif 2006 2007 /* 2008 * mempolicy_nodemask_intersects 2009 * 2010 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2011 * policy. Otherwise, check for intersection between mask and the policy 2012 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2013 * policy, always return true since it may allocate elsewhere on fallback. 2014 * 2015 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2016 */ 2017 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2018 const nodemask_t *mask) 2019 { 2020 struct mempolicy *mempolicy; 2021 bool ret = true; 2022 2023 if (!mask) 2024 return ret; 2025 task_lock(tsk); 2026 mempolicy = tsk->mempolicy; 2027 if (!mempolicy) 2028 goto out; 2029 2030 switch (mempolicy->mode) { 2031 case MPOL_PREFERRED: 2032 /* 2033 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2034 * allocate from, they may fallback to other nodes when oom. 2035 * Thus, it's possible for tsk to have allocated memory from 2036 * nodes in mask. 2037 */ 2038 break; 2039 case MPOL_BIND: 2040 case MPOL_INTERLEAVE: 2041 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2042 break; 2043 default: 2044 BUG(); 2045 } 2046 out: 2047 task_unlock(tsk); 2048 return ret; 2049 } 2050 2051 /* Allocate a page in interleaved policy. 2052 Own path because it needs to do special accounting. */ 2053 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2054 unsigned nid) 2055 { 2056 struct page *page; 2057 2058 page = __alloc_pages(gfp, order, nid); 2059 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2060 if (!static_branch_likely(&vm_numa_stat_key)) 2061 return page; 2062 if (page && page_to_nid(page) == nid) { 2063 preempt_disable(); 2064 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2065 preempt_enable(); 2066 } 2067 return page; 2068 } 2069 2070 /** 2071 * alloc_pages_vma - Allocate a page for a VMA. 2072 * 2073 * @gfp: 2074 * %GFP_USER user allocation. 2075 * %GFP_KERNEL kernel allocations, 2076 * %GFP_HIGHMEM highmem/user allocations, 2077 * %GFP_FS allocation should not call back into a file system. 2078 * %GFP_ATOMIC don't sleep. 2079 * 2080 * @order:Order of the GFP allocation. 2081 * @vma: Pointer to VMA or NULL if not available. 2082 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2083 * @node: Which node to prefer for allocation (modulo policy). 2084 * @hugepage: for hugepages try only the preferred node if possible 2085 * 2086 * This function allocates a page from the kernel page pool and applies 2087 * a NUMA policy associated with the VMA or the current process. 2088 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2089 * mm_struct of the VMA to prevent it from going away. Should be used for 2090 * all allocations for pages that will be mapped into user space. Returns 2091 * NULL when no page can be allocated. 2092 */ 2093 struct page * 2094 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2095 unsigned long addr, int node, bool hugepage) 2096 { 2097 struct mempolicy *pol; 2098 struct page *page; 2099 int preferred_nid; 2100 nodemask_t *nmask; 2101 2102 pol = get_vma_policy(vma, addr); 2103 2104 if (pol->mode == MPOL_INTERLEAVE) { 2105 unsigned nid; 2106 2107 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2108 mpol_cond_put(pol); 2109 page = alloc_page_interleave(gfp, order, nid); 2110 goto out; 2111 } 2112 2113 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2114 int hpage_node = node; 2115 2116 /* 2117 * For hugepage allocation and non-interleave policy which 2118 * allows the current node (or other explicitly preferred 2119 * node) we only try to allocate from the current/preferred 2120 * node and don't fall back to other nodes, as the cost of 2121 * remote accesses would likely offset THP benefits. 2122 * 2123 * If the policy is interleave, or does not allow the current 2124 * node in its nodemask, we allocate the standard way. 2125 */ 2126 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2127 hpage_node = pol->v.preferred_node; 2128 2129 nmask = policy_nodemask(gfp, pol); 2130 if (!nmask || node_isset(hpage_node, *nmask)) { 2131 mpol_cond_put(pol); 2132 page = __alloc_pages_node(hpage_node, 2133 gfp | __GFP_THISNODE, order); 2134 2135 /* 2136 * If hugepage allocations are configured to always 2137 * synchronous compact or the vma has been madvised 2138 * to prefer hugepage backing, retry allowing remote 2139 * memory as well. 2140 */ 2141 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2142 page = __alloc_pages_node(hpage_node, 2143 gfp | __GFP_NORETRY, order); 2144 2145 goto out; 2146 } 2147 } 2148 2149 nmask = policy_nodemask(gfp, pol); 2150 preferred_nid = policy_node(gfp, pol, node); 2151 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2152 mpol_cond_put(pol); 2153 out: 2154 return page; 2155 } 2156 EXPORT_SYMBOL(alloc_pages_vma); 2157 2158 /** 2159 * alloc_pages_current - Allocate pages. 2160 * 2161 * @gfp: 2162 * %GFP_USER user allocation, 2163 * %GFP_KERNEL kernel allocation, 2164 * %GFP_HIGHMEM highmem allocation, 2165 * %GFP_FS don't call back into a file system. 2166 * %GFP_ATOMIC don't sleep. 2167 * @order: Power of two of allocation size in pages. 0 is a single page. 2168 * 2169 * Allocate a page from the kernel page pool. When not in 2170 * interrupt context and apply the current process NUMA policy. 2171 * Returns NULL when no page can be allocated. 2172 */ 2173 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2174 { 2175 struct mempolicy *pol = &default_policy; 2176 struct page *page; 2177 2178 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2179 pol = get_task_policy(current); 2180 2181 /* 2182 * No reference counting needed for current->mempolicy 2183 * nor system default_policy 2184 */ 2185 if (pol->mode == MPOL_INTERLEAVE) 2186 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2187 else 2188 page = __alloc_pages_nodemask(gfp, order, 2189 policy_node(gfp, pol, numa_node_id()), 2190 policy_nodemask(gfp, pol)); 2191 2192 return page; 2193 } 2194 EXPORT_SYMBOL(alloc_pages_current); 2195 2196 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2197 { 2198 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2199 2200 if (IS_ERR(pol)) 2201 return PTR_ERR(pol); 2202 dst->vm_policy = pol; 2203 return 0; 2204 } 2205 2206 /* 2207 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2208 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2209 * with the mems_allowed returned by cpuset_mems_allowed(). This 2210 * keeps mempolicies cpuset relative after its cpuset moves. See 2211 * further kernel/cpuset.c update_nodemask(). 2212 * 2213 * current's mempolicy may be rebinded by the other task(the task that changes 2214 * cpuset's mems), so we needn't do rebind work for current task. 2215 */ 2216 2217 /* Slow path of a mempolicy duplicate */ 2218 struct mempolicy *__mpol_dup(struct mempolicy *old) 2219 { 2220 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2221 2222 if (!new) 2223 return ERR_PTR(-ENOMEM); 2224 2225 /* task's mempolicy is protected by alloc_lock */ 2226 if (old == current->mempolicy) { 2227 task_lock(current); 2228 *new = *old; 2229 task_unlock(current); 2230 } else 2231 *new = *old; 2232 2233 if (current_cpuset_is_being_rebound()) { 2234 nodemask_t mems = cpuset_mems_allowed(current); 2235 mpol_rebind_policy(new, &mems); 2236 } 2237 atomic_set(&new->refcnt, 1); 2238 return new; 2239 } 2240 2241 /* Slow path of a mempolicy comparison */ 2242 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2243 { 2244 if (!a || !b) 2245 return false; 2246 if (a->mode != b->mode) 2247 return false; 2248 if (a->flags != b->flags) 2249 return false; 2250 if (mpol_store_user_nodemask(a)) 2251 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2252 return false; 2253 2254 switch (a->mode) { 2255 case MPOL_BIND: 2256 /* Fall through */ 2257 case MPOL_INTERLEAVE: 2258 return !!nodes_equal(a->v.nodes, b->v.nodes); 2259 case MPOL_PREFERRED: 2260 /* a's ->flags is the same as b's */ 2261 if (a->flags & MPOL_F_LOCAL) 2262 return true; 2263 return a->v.preferred_node == b->v.preferred_node; 2264 default: 2265 BUG(); 2266 return false; 2267 } 2268 } 2269 2270 /* 2271 * Shared memory backing store policy support. 2272 * 2273 * Remember policies even when nobody has shared memory mapped. 2274 * The policies are kept in Red-Black tree linked from the inode. 2275 * They are protected by the sp->lock rwlock, which should be held 2276 * for any accesses to the tree. 2277 */ 2278 2279 /* 2280 * lookup first element intersecting start-end. Caller holds sp->lock for 2281 * reading or for writing 2282 */ 2283 static struct sp_node * 2284 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2285 { 2286 struct rb_node *n = sp->root.rb_node; 2287 2288 while (n) { 2289 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2290 2291 if (start >= p->end) 2292 n = n->rb_right; 2293 else if (end <= p->start) 2294 n = n->rb_left; 2295 else 2296 break; 2297 } 2298 if (!n) 2299 return NULL; 2300 for (;;) { 2301 struct sp_node *w = NULL; 2302 struct rb_node *prev = rb_prev(n); 2303 if (!prev) 2304 break; 2305 w = rb_entry(prev, struct sp_node, nd); 2306 if (w->end <= start) 2307 break; 2308 n = prev; 2309 } 2310 return rb_entry(n, struct sp_node, nd); 2311 } 2312 2313 /* 2314 * Insert a new shared policy into the list. Caller holds sp->lock for 2315 * writing. 2316 */ 2317 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2318 { 2319 struct rb_node **p = &sp->root.rb_node; 2320 struct rb_node *parent = NULL; 2321 struct sp_node *nd; 2322 2323 while (*p) { 2324 parent = *p; 2325 nd = rb_entry(parent, struct sp_node, nd); 2326 if (new->start < nd->start) 2327 p = &(*p)->rb_left; 2328 else if (new->end > nd->end) 2329 p = &(*p)->rb_right; 2330 else 2331 BUG(); 2332 } 2333 rb_link_node(&new->nd, parent, p); 2334 rb_insert_color(&new->nd, &sp->root); 2335 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2336 new->policy ? new->policy->mode : 0); 2337 } 2338 2339 /* Find shared policy intersecting idx */ 2340 struct mempolicy * 2341 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2342 { 2343 struct mempolicy *pol = NULL; 2344 struct sp_node *sn; 2345 2346 if (!sp->root.rb_node) 2347 return NULL; 2348 read_lock(&sp->lock); 2349 sn = sp_lookup(sp, idx, idx+1); 2350 if (sn) { 2351 mpol_get(sn->policy); 2352 pol = sn->policy; 2353 } 2354 read_unlock(&sp->lock); 2355 return pol; 2356 } 2357 2358 static void sp_free(struct sp_node *n) 2359 { 2360 mpol_put(n->policy); 2361 kmem_cache_free(sn_cache, n); 2362 } 2363 2364 /** 2365 * mpol_misplaced - check whether current page node is valid in policy 2366 * 2367 * @page: page to be checked 2368 * @vma: vm area where page mapped 2369 * @addr: virtual address where page mapped 2370 * 2371 * Lookup current policy node id for vma,addr and "compare to" page's 2372 * node id. 2373 * 2374 * Returns: 2375 * -1 - not misplaced, page is in the right node 2376 * node - node id where the page should be 2377 * 2378 * Policy determination "mimics" alloc_page_vma(). 2379 * Called from fault path where we know the vma and faulting address. 2380 */ 2381 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2382 { 2383 struct mempolicy *pol; 2384 struct zoneref *z; 2385 int curnid = page_to_nid(page); 2386 unsigned long pgoff; 2387 int thiscpu = raw_smp_processor_id(); 2388 int thisnid = cpu_to_node(thiscpu); 2389 int polnid = NUMA_NO_NODE; 2390 int ret = -1; 2391 2392 pol = get_vma_policy(vma, addr); 2393 if (!(pol->flags & MPOL_F_MOF)) 2394 goto out; 2395 2396 switch (pol->mode) { 2397 case MPOL_INTERLEAVE: 2398 pgoff = vma->vm_pgoff; 2399 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2400 polnid = offset_il_node(pol, pgoff); 2401 break; 2402 2403 case MPOL_PREFERRED: 2404 if (pol->flags & MPOL_F_LOCAL) 2405 polnid = numa_node_id(); 2406 else 2407 polnid = pol->v.preferred_node; 2408 break; 2409 2410 case MPOL_BIND: 2411 2412 /* 2413 * allows binding to multiple nodes. 2414 * use current page if in policy nodemask, 2415 * else select nearest allowed node, if any. 2416 * If no allowed nodes, use current [!misplaced]. 2417 */ 2418 if (node_isset(curnid, pol->v.nodes)) 2419 goto out; 2420 z = first_zones_zonelist( 2421 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2422 gfp_zone(GFP_HIGHUSER), 2423 &pol->v.nodes); 2424 polnid = zone_to_nid(z->zone); 2425 break; 2426 2427 default: 2428 BUG(); 2429 } 2430 2431 /* Migrate the page towards the node whose CPU is referencing it */ 2432 if (pol->flags & MPOL_F_MORON) { 2433 polnid = thisnid; 2434 2435 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2436 goto out; 2437 } 2438 2439 if (curnid != polnid) 2440 ret = polnid; 2441 out: 2442 mpol_cond_put(pol); 2443 2444 return ret; 2445 } 2446 2447 /* 2448 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2449 * dropped after task->mempolicy is set to NULL so that any allocation done as 2450 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2451 * policy. 2452 */ 2453 void mpol_put_task_policy(struct task_struct *task) 2454 { 2455 struct mempolicy *pol; 2456 2457 task_lock(task); 2458 pol = task->mempolicy; 2459 task->mempolicy = NULL; 2460 task_unlock(task); 2461 mpol_put(pol); 2462 } 2463 2464 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2465 { 2466 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2467 rb_erase(&n->nd, &sp->root); 2468 sp_free(n); 2469 } 2470 2471 static void sp_node_init(struct sp_node *node, unsigned long start, 2472 unsigned long end, struct mempolicy *pol) 2473 { 2474 node->start = start; 2475 node->end = end; 2476 node->policy = pol; 2477 } 2478 2479 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2480 struct mempolicy *pol) 2481 { 2482 struct sp_node *n; 2483 struct mempolicy *newpol; 2484 2485 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2486 if (!n) 2487 return NULL; 2488 2489 newpol = mpol_dup(pol); 2490 if (IS_ERR(newpol)) { 2491 kmem_cache_free(sn_cache, n); 2492 return NULL; 2493 } 2494 newpol->flags |= MPOL_F_SHARED; 2495 sp_node_init(n, start, end, newpol); 2496 2497 return n; 2498 } 2499 2500 /* Replace a policy range. */ 2501 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2502 unsigned long end, struct sp_node *new) 2503 { 2504 struct sp_node *n; 2505 struct sp_node *n_new = NULL; 2506 struct mempolicy *mpol_new = NULL; 2507 int ret = 0; 2508 2509 restart: 2510 write_lock(&sp->lock); 2511 n = sp_lookup(sp, start, end); 2512 /* Take care of old policies in the same range. */ 2513 while (n && n->start < end) { 2514 struct rb_node *next = rb_next(&n->nd); 2515 if (n->start >= start) { 2516 if (n->end <= end) 2517 sp_delete(sp, n); 2518 else 2519 n->start = end; 2520 } else { 2521 /* Old policy spanning whole new range. */ 2522 if (n->end > end) { 2523 if (!n_new) 2524 goto alloc_new; 2525 2526 *mpol_new = *n->policy; 2527 atomic_set(&mpol_new->refcnt, 1); 2528 sp_node_init(n_new, end, n->end, mpol_new); 2529 n->end = start; 2530 sp_insert(sp, n_new); 2531 n_new = NULL; 2532 mpol_new = NULL; 2533 break; 2534 } else 2535 n->end = start; 2536 } 2537 if (!next) 2538 break; 2539 n = rb_entry(next, struct sp_node, nd); 2540 } 2541 if (new) 2542 sp_insert(sp, new); 2543 write_unlock(&sp->lock); 2544 ret = 0; 2545 2546 err_out: 2547 if (mpol_new) 2548 mpol_put(mpol_new); 2549 if (n_new) 2550 kmem_cache_free(sn_cache, n_new); 2551 2552 return ret; 2553 2554 alloc_new: 2555 write_unlock(&sp->lock); 2556 ret = -ENOMEM; 2557 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2558 if (!n_new) 2559 goto err_out; 2560 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2561 if (!mpol_new) 2562 goto err_out; 2563 goto restart; 2564 } 2565 2566 /** 2567 * mpol_shared_policy_init - initialize shared policy for inode 2568 * @sp: pointer to inode shared policy 2569 * @mpol: struct mempolicy to install 2570 * 2571 * Install non-NULL @mpol in inode's shared policy rb-tree. 2572 * On entry, the current task has a reference on a non-NULL @mpol. 2573 * This must be released on exit. 2574 * This is called at get_inode() calls and we can use GFP_KERNEL. 2575 */ 2576 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2577 { 2578 int ret; 2579 2580 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2581 rwlock_init(&sp->lock); 2582 2583 if (mpol) { 2584 struct vm_area_struct pvma; 2585 struct mempolicy *new; 2586 NODEMASK_SCRATCH(scratch); 2587 2588 if (!scratch) 2589 goto put_mpol; 2590 /* contextualize the tmpfs mount point mempolicy */ 2591 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2592 if (IS_ERR(new)) 2593 goto free_scratch; /* no valid nodemask intersection */ 2594 2595 task_lock(current); 2596 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2597 task_unlock(current); 2598 if (ret) 2599 goto put_new; 2600 2601 /* Create pseudo-vma that contains just the policy */ 2602 vma_init(&pvma, NULL); 2603 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2604 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2605 2606 put_new: 2607 mpol_put(new); /* drop initial ref */ 2608 free_scratch: 2609 NODEMASK_SCRATCH_FREE(scratch); 2610 put_mpol: 2611 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2612 } 2613 } 2614 2615 int mpol_set_shared_policy(struct shared_policy *info, 2616 struct vm_area_struct *vma, struct mempolicy *npol) 2617 { 2618 int err; 2619 struct sp_node *new = NULL; 2620 unsigned long sz = vma_pages(vma); 2621 2622 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2623 vma->vm_pgoff, 2624 sz, npol ? npol->mode : -1, 2625 npol ? npol->flags : -1, 2626 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2627 2628 if (npol) { 2629 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2630 if (!new) 2631 return -ENOMEM; 2632 } 2633 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2634 if (err && new) 2635 sp_free(new); 2636 return err; 2637 } 2638 2639 /* Free a backing policy store on inode delete. */ 2640 void mpol_free_shared_policy(struct shared_policy *p) 2641 { 2642 struct sp_node *n; 2643 struct rb_node *next; 2644 2645 if (!p->root.rb_node) 2646 return; 2647 write_lock(&p->lock); 2648 next = rb_first(&p->root); 2649 while (next) { 2650 n = rb_entry(next, struct sp_node, nd); 2651 next = rb_next(&n->nd); 2652 sp_delete(p, n); 2653 } 2654 write_unlock(&p->lock); 2655 } 2656 2657 #ifdef CONFIG_NUMA_BALANCING 2658 static int __initdata numabalancing_override; 2659 2660 static void __init check_numabalancing_enable(void) 2661 { 2662 bool numabalancing_default = false; 2663 2664 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2665 numabalancing_default = true; 2666 2667 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2668 if (numabalancing_override) 2669 set_numabalancing_state(numabalancing_override == 1); 2670 2671 if (num_online_nodes() > 1 && !numabalancing_override) { 2672 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2673 numabalancing_default ? "Enabling" : "Disabling"); 2674 set_numabalancing_state(numabalancing_default); 2675 } 2676 } 2677 2678 static int __init setup_numabalancing(char *str) 2679 { 2680 int ret = 0; 2681 if (!str) 2682 goto out; 2683 2684 if (!strcmp(str, "enable")) { 2685 numabalancing_override = 1; 2686 ret = 1; 2687 } else if (!strcmp(str, "disable")) { 2688 numabalancing_override = -1; 2689 ret = 1; 2690 } 2691 out: 2692 if (!ret) 2693 pr_warn("Unable to parse numa_balancing=\n"); 2694 2695 return ret; 2696 } 2697 __setup("numa_balancing=", setup_numabalancing); 2698 #else 2699 static inline void __init check_numabalancing_enable(void) 2700 { 2701 } 2702 #endif /* CONFIG_NUMA_BALANCING */ 2703 2704 /* assumes fs == KERNEL_DS */ 2705 void __init numa_policy_init(void) 2706 { 2707 nodemask_t interleave_nodes; 2708 unsigned long largest = 0; 2709 int nid, prefer = 0; 2710 2711 policy_cache = kmem_cache_create("numa_policy", 2712 sizeof(struct mempolicy), 2713 0, SLAB_PANIC, NULL); 2714 2715 sn_cache = kmem_cache_create("shared_policy_node", 2716 sizeof(struct sp_node), 2717 0, SLAB_PANIC, NULL); 2718 2719 for_each_node(nid) { 2720 preferred_node_policy[nid] = (struct mempolicy) { 2721 .refcnt = ATOMIC_INIT(1), 2722 .mode = MPOL_PREFERRED, 2723 .flags = MPOL_F_MOF | MPOL_F_MORON, 2724 .v = { .preferred_node = nid, }, 2725 }; 2726 } 2727 2728 /* 2729 * Set interleaving policy for system init. Interleaving is only 2730 * enabled across suitably sized nodes (default is >= 16MB), or 2731 * fall back to the largest node if they're all smaller. 2732 */ 2733 nodes_clear(interleave_nodes); 2734 for_each_node_state(nid, N_MEMORY) { 2735 unsigned long total_pages = node_present_pages(nid); 2736 2737 /* Preserve the largest node */ 2738 if (largest < total_pages) { 2739 largest = total_pages; 2740 prefer = nid; 2741 } 2742 2743 /* Interleave this node? */ 2744 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2745 node_set(nid, interleave_nodes); 2746 } 2747 2748 /* All too small, use the largest */ 2749 if (unlikely(nodes_empty(interleave_nodes))) 2750 node_set(prefer, interleave_nodes); 2751 2752 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2753 pr_err("%s: interleaving failed\n", __func__); 2754 2755 check_numabalancing_enable(); 2756 } 2757 2758 /* Reset policy of current process to default */ 2759 void numa_default_policy(void) 2760 { 2761 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2762 } 2763 2764 /* 2765 * Parse and format mempolicy from/to strings 2766 */ 2767 2768 /* 2769 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2770 */ 2771 static const char * const policy_modes[] = 2772 { 2773 [MPOL_DEFAULT] = "default", 2774 [MPOL_PREFERRED] = "prefer", 2775 [MPOL_BIND] = "bind", 2776 [MPOL_INTERLEAVE] = "interleave", 2777 [MPOL_LOCAL] = "local", 2778 }; 2779 2780 2781 #ifdef CONFIG_TMPFS 2782 /** 2783 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2784 * @str: string containing mempolicy to parse 2785 * @mpol: pointer to struct mempolicy pointer, returned on success. 2786 * 2787 * Format of input: 2788 * <mode>[=<flags>][:<nodelist>] 2789 * 2790 * On success, returns 0, else 1 2791 */ 2792 int mpol_parse_str(char *str, struct mempolicy **mpol) 2793 { 2794 struct mempolicy *new = NULL; 2795 unsigned short mode_flags; 2796 nodemask_t nodes; 2797 char *nodelist = strchr(str, ':'); 2798 char *flags = strchr(str, '='); 2799 int err = 1, mode; 2800 2801 if (nodelist) { 2802 /* NUL-terminate mode or flags string */ 2803 *nodelist++ = '\0'; 2804 if (nodelist_parse(nodelist, nodes)) 2805 goto out; 2806 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2807 goto out; 2808 } else 2809 nodes_clear(nodes); 2810 2811 if (flags) 2812 *flags++ = '\0'; /* terminate mode string */ 2813 2814 mode = match_string(policy_modes, MPOL_MAX, str); 2815 if (mode < 0) 2816 goto out; 2817 2818 switch (mode) { 2819 case MPOL_PREFERRED: 2820 /* 2821 * Insist on a nodelist of one node only 2822 */ 2823 if (nodelist) { 2824 char *rest = nodelist; 2825 while (isdigit(*rest)) 2826 rest++; 2827 if (*rest) 2828 goto out; 2829 } 2830 break; 2831 case MPOL_INTERLEAVE: 2832 /* 2833 * Default to online nodes with memory if no nodelist 2834 */ 2835 if (!nodelist) 2836 nodes = node_states[N_MEMORY]; 2837 break; 2838 case MPOL_LOCAL: 2839 /* 2840 * Don't allow a nodelist; mpol_new() checks flags 2841 */ 2842 if (nodelist) 2843 goto out; 2844 mode = MPOL_PREFERRED; 2845 break; 2846 case MPOL_DEFAULT: 2847 /* 2848 * Insist on a empty nodelist 2849 */ 2850 if (!nodelist) 2851 err = 0; 2852 goto out; 2853 case MPOL_BIND: 2854 /* 2855 * Insist on a nodelist 2856 */ 2857 if (!nodelist) 2858 goto out; 2859 } 2860 2861 mode_flags = 0; 2862 if (flags) { 2863 /* 2864 * Currently, we only support two mutually exclusive 2865 * mode flags. 2866 */ 2867 if (!strcmp(flags, "static")) 2868 mode_flags |= MPOL_F_STATIC_NODES; 2869 else if (!strcmp(flags, "relative")) 2870 mode_flags |= MPOL_F_RELATIVE_NODES; 2871 else 2872 goto out; 2873 } 2874 2875 new = mpol_new(mode, mode_flags, &nodes); 2876 if (IS_ERR(new)) 2877 goto out; 2878 2879 /* 2880 * Save nodes for mpol_to_str() to show the tmpfs mount options 2881 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2882 */ 2883 if (mode != MPOL_PREFERRED) 2884 new->v.nodes = nodes; 2885 else if (nodelist) 2886 new->v.preferred_node = first_node(nodes); 2887 else 2888 new->flags |= MPOL_F_LOCAL; 2889 2890 /* 2891 * Save nodes for contextualization: this will be used to "clone" 2892 * the mempolicy in a specific context [cpuset] at a later time. 2893 */ 2894 new->w.user_nodemask = nodes; 2895 2896 err = 0; 2897 2898 out: 2899 /* Restore string for error message */ 2900 if (nodelist) 2901 *--nodelist = ':'; 2902 if (flags) 2903 *--flags = '='; 2904 if (!err) 2905 *mpol = new; 2906 return err; 2907 } 2908 #endif /* CONFIG_TMPFS */ 2909 2910 /** 2911 * mpol_to_str - format a mempolicy structure for printing 2912 * @buffer: to contain formatted mempolicy string 2913 * @maxlen: length of @buffer 2914 * @pol: pointer to mempolicy to be formatted 2915 * 2916 * Convert @pol into a string. If @buffer is too short, truncate the string. 2917 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2918 * longest flag, "relative", and to display at least a few node ids. 2919 */ 2920 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2921 { 2922 char *p = buffer; 2923 nodemask_t nodes = NODE_MASK_NONE; 2924 unsigned short mode = MPOL_DEFAULT; 2925 unsigned short flags = 0; 2926 2927 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2928 mode = pol->mode; 2929 flags = pol->flags; 2930 } 2931 2932 switch (mode) { 2933 case MPOL_DEFAULT: 2934 break; 2935 case MPOL_PREFERRED: 2936 if (flags & MPOL_F_LOCAL) 2937 mode = MPOL_LOCAL; 2938 else 2939 node_set(pol->v.preferred_node, nodes); 2940 break; 2941 case MPOL_BIND: 2942 case MPOL_INTERLEAVE: 2943 nodes = pol->v.nodes; 2944 break; 2945 default: 2946 WARN_ON_ONCE(1); 2947 snprintf(p, maxlen, "unknown"); 2948 return; 2949 } 2950 2951 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2952 2953 if (flags & MPOL_MODE_FLAGS) { 2954 p += snprintf(p, buffer + maxlen - p, "="); 2955 2956 /* 2957 * Currently, the only defined flags are mutually exclusive 2958 */ 2959 if (flags & MPOL_F_STATIC_NODES) 2960 p += snprintf(p, buffer + maxlen - p, "static"); 2961 else if (flags & MPOL_F_RELATIVE_NODES) 2962 p += snprintf(p, buffer + maxlen - p, "relative"); 2963 } 2964 2965 if (!nodes_empty(nodes)) 2966 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2967 nodemask_pr_args(&nodes)); 2968 } 2969