xref: /openbmc/linux/mm/mempolicy.c (revision 4ee812f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = *nodes;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
431 /*
432  * queue_pages_pmd() has four possible return values:
433  * 0 - pages are placed on the right node or queued successfully.
434  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435  *     specified.
436  * 2 - THP was split.
437  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438  *        existing page was already on a node that does not follow the
439  *        policy.
440  */
441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 				unsigned long end, struct mm_walk *walk)
443 {
444 	int ret = 0;
445 	struct page *page;
446 	struct queue_pages *qp = walk->private;
447 	unsigned long flags;
448 
449 	if (unlikely(is_pmd_migration_entry(*pmd))) {
450 		ret = -EIO;
451 		goto unlock;
452 	}
453 	page = pmd_page(*pmd);
454 	if (is_huge_zero_page(page)) {
455 		spin_unlock(ptl);
456 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 		ret = 2;
458 		goto out;
459 	}
460 	if (!queue_pages_required(page, qp))
461 		goto unlock;
462 
463 	flags = qp->flags;
464 	/* go to thp migration */
465 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 		if (!vma_migratable(walk->vma) ||
467 		    migrate_page_add(page, qp->pagelist, flags)) {
468 			ret = 1;
469 			goto unlock;
470 		}
471 	} else
472 		ret = -EIO;
473 unlock:
474 	spin_unlock(ptl);
475 out:
476 	return ret;
477 }
478 
479 /*
480  * Scan through pages checking if pages follow certain conditions,
481  * and move them to the pagelist if they do.
482  *
483  * queue_pages_pte_range() has three possible return values:
484  * 0 - pages are placed on the right node or queued successfully.
485  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486  *     specified.
487  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488  *        on a node that does not follow the policy.
489  */
490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 			unsigned long end, struct mm_walk *walk)
492 {
493 	struct vm_area_struct *vma = walk->vma;
494 	struct page *page;
495 	struct queue_pages *qp = walk->private;
496 	unsigned long flags = qp->flags;
497 	int ret;
498 	bool has_unmovable = false;
499 	pte_t *pte;
500 	spinlock_t *ptl;
501 
502 	ptl = pmd_trans_huge_lock(pmd, vma);
503 	if (ptl) {
504 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 		if (ret != 2)
506 			return ret;
507 	}
508 	/* THP was split, fall through to pte walk */
509 
510 	if (pmd_trans_unstable(pmd))
511 		return 0;
512 
513 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 	for (; addr != end; pte++, addr += PAGE_SIZE) {
515 		if (!pte_present(*pte))
516 			continue;
517 		page = vm_normal_page(vma, addr, *pte);
518 		if (!page)
519 			continue;
520 		/*
521 		 * vm_normal_page() filters out zero pages, but there might
522 		 * still be PageReserved pages to skip, perhaps in a VDSO.
523 		 */
524 		if (PageReserved(page))
525 			continue;
526 		if (!queue_pages_required(page, qp))
527 			continue;
528 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 			/* MPOL_MF_STRICT must be specified if we get here */
530 			if (!vma_migratable(vma)) {
531 				has_unmovable = true;
532 				break;
533 			}
534 
535 			/*
536 			 * Do not abort immediately since there may be
537 			 * temporary off LRU pages in the range.  Still
538 			 * need migrate other LRU pages.
539 			 */
540 			if (migrate_page_add(page, qp->pagelist, flags))
541 				has_unmovable = true;
542 		} else
543 			break;
544 	}
545 	pte_unmap_unlock(pte - 1, ptl);
546 	cond_resched();
547 
548 	if (has_unmovable)
549 		return 1;
550 
551 	return addr != end ? -EIO : 0;
552 }
553 
554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 			       unsigned long addr, unsigned long end,
556 			       struct mm_walk *walk)
557 {
558 #ifdef CONFIG_HUGETLB_PAGE
559 	struct queue_pages *qp = walk->private;
560 	unsigned long flags = qp->flags;
561 	struct page *page;
562 	spinlock_t *ptl;
563 	pte_t entry;
564 
565 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 	entry = huge_ptep_get(pte);
567 	if (!pte_present(entry))
568 		goto unlock;
569 	page = pte_page(entry);
570 	if (!queue_pages_required(page, qp))
571 		goto unlock;
572 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 	if (flags & (MPOL_MF_MOVE_ALL) ||
574 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
575 		isolate_huge_page(page, qp->pagelist);
576 unlock:
577 	spin_unlock(ptl);
578 #else
579 	BUG();
580 #endif
581 	return 0;
582 }
583 
584 #ifdef CONFIG_NUMA_BALANCING
585 /*
586  * This is used to mark a range of virtual addresses to be inaccessible.
587  * These are later cleared by a NUMA hinting fault. Depending on these
588  * faults, pages may be migrated for better NUMA placement.
589  *
590  * This is assuming that NUMA faults are handled using PROT_NONE. If
591  * an architecture makes a different choice, it will need further
592  * changes to the core.
593  */
594 unsigned long change_prot_numa(struct vm_area_struct *vma,
595 			unsigned long addr, unsigned long end)
596 {
597 	int nr_updated;
598 
599 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
600 	if (nr_updated)
601 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
602 
603 	return nr_updated;
604 }
605 #else
606 static unsigned long change_prot_numa(struct vm_area_struct *vma,
607 			unsigned long addr, unsigned long end)
608 {
609 	return 0;
610 }
611 #endif /* CONFIG_NUMA_BALANCING */
612 
613 static int queue_pages_test_walk(unsigned long start, unsigned long end,
614 				struct mm_walk *walk)
615 {
616 	struct vm_area_struct *vma = walk->vma;
617 	struct queue_pages *qp = walk->private;
618 	unsigned long endvma = vma->vm_end;
619 	unsigned long flags = qp->flags;
620 
621 	/*
622 	 * Need check MPOL_MF_STRICT to return -EIO if possible
623 	 * regardless of vma_migratable
624 	 */
625 	if (!vma_migratable(vma) &&
626 	    !(flags & MPOL_MF_STRICT))
627 		return 1;
628 
629 	if (endvma > end)
630 		endvma = end;
631 	if (vma->vm_start > start)
632 		start = vma->vm_start;
633 
634 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 		if (!vma->vm_next && vma->vm_end < end)
636 			return -EFAULT;
637 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 			return -EFAULT;
639 	}
640 
641 	qp->prev = vma;
642 
643 	if (flags & MPOL_MF_LAZY) {
644 		/* Similar to task_numa_work, skip inaccessible VMAs */
645 		if (!is_vm_hugetlb_page(vma) &&
646 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 			!(vma->vm_flags & VM_MIXEDMAP))
648 			change_prot_numa(vma, start, endvma);
649 		return 1;
650 	}
651 
652 	/* queue pages from current vma */
653 	if (flags & MPOL_MF_VALID)
654 		return 0;
655 	return 1;
656 }
657 
658 static const struct mm_walk_ops queue_pages_walk_ops = {
659 	.hugetlb_entry		= queue_pages_hugetlb,
660 	.pmd_entry		= queue_pages_pte_range,
661 	.test_walk		= queue_pages_test_walk,
662 };
663 
664 /*
665  * Walk through page tables and collect pages to be migrated.
666  *
667  * If pages found in a given range are on a set of nodes (determined by
668  * @nodes and @flags,) it's isolated and queued to the pagelist which is
669  * passed via @private.
670  *
671  * queue_pages_range() has three possible return values:
672  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
673  *     specified.
674  * 0 - queue pages successfully or no misplaced page.
675  * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified.
676  */
677 static int
678 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
679 		nodemask_t *nodes, unsigned long flags,
680 		struct list_head *pagelist)
681 {
682 	struct queue_pages qp = {
683 		.pagelist = pagelist,
684 		.flags = flags,
685 		.nmask = nodes,
686 		.prev = NULL,
687 	};
688 
689 	return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
690 }
691 
692 /*
693  * Apply policy to a single VMA
694  * This must be called with the mmap_sem held for writing.
695  */
696 static int vma_replace_policy(struct vm_area_struct *vma,
697 						struct mempolicy *pol)
698 {
699 	int err;
700 	struct mempolicy *old;
701 	struct mempolicy *new;
702 
703 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
704 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
705 		 vma->vm_ops, vma->vm_file,
706 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
707 
708 	new = mpol_dup(pol);
709 	if (IS_ERR(new))
710 		return PTR_ERR(new);
711 
712 	if (vma->vm_ops && vma->vm_ops->set_policy) {
713 		err = vma->vm_ops->set_policy(vma, new);
714 		if (err)
715 			goto err_out;
716 	}
717 
718 	old = vma->vm_policy;
719 	vma->vm_policy = new; /* protected by mmap_sem */
720 	mpol_put(old);
721 
722 	return 0;
723  err_out:
724 	mpol_put(new);
725 	return err;
726 }
727 
728 /* Step 2: apply policy to a range and do splits. */
729 static int mbind_range(struct mm_struct *mm, unsigned long start,
730 		       unsigned long end, struct mempolicy *new_pol)
731 {
732 	struct vm_area_struct *next;
733 	struct vm_area_struct *prev;
734 	struct vm_area_struct *vma;
735 	int err = 0;
736 	pgoff_t pgoff;
737 	unsigned long vmstart;
738 	unsigned long vmend;
739 
740 	vma = find_vma(mm, start);
741 	if (!vma || vma->vm_start > start)
742 		return -EFAULT;
743 
744 	prev = vma->vm_prev;
745 	if (start > vma->vm_start)
746 		prev = vma;
747 
748 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
749 		next = vma->vm_next;
750 		vmstart = max(start, vma->vm_start);
751 		vmend   = min(end, vma->vm_end);
752 
753 		if (mpol_equal(vma_policy(vma), new_pol))
754 			continue;
755 
756 		pgoff = vma->vm_pgoff +
757 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
758 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
759 				 vma->anon_vma, vma->vm_file, pgoff,
760 				 new_pol, vma->vm_userfaultfd_ctx);
761 		if (prev) {
762 			vma = prev;
763 			next = vma->vm_next;
764 			if (mpol_equal(vma_policy(vma), new_pol))
765 				continue;
766 			/* vma_merge() joined vma && vma->next, case 8 */
767 			goto replace;
768 		}
769 		if (vma->vm_start != vmstart) {
770 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
771 			if (err)
772 				goto out;
773 		}
774 		if (vma->vm_end != vmend) {
775 			err = split_vma(vma->vm_mm, vma, vmend, 0);
776 			if (err)
777 				goto out;
778 		}
779  replace:
780 		err = vma_replace_policy(vma, new_pol);
781 		if (err)
782 			goto out;
783 	}
784 
785  out:
786 	return err;
787 }
788 
789 /* Set the process memory policy */
790 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
791 			     nodemask_t *nodes)
792 {
793 	struct mempolicy *new, *old;
794 	NODEMASK_SCRATCH(scratch);
795 	int ret;
796 
797 	if (!scratch)
798 		return -ENOMEM;
799 
800 	new = mpol_new(mode, flags, nodes);
801 	if (IS_ERR(new)) {
802 		ret = PTR_ERR(new);
803 		goto out;
804 	}
805 
806 	task_lock(current);
807 	ret = mpol_set_nodemask(new, nodes, scratch);
808 	if (ret) {
809 		task_unlock(current);
810 		mpol_put(new);
811 		goto out;
812 	}
813 	old = current->mempolicy;
814 	current->mempolicy = new;
815 	if (new && new->mode == MPOL_INTERLEAVE)
816 		current->il_prev = MAX_NUMNODES-1;
817 	task_unlock(current);
818 	mpol_put(old);
819 	ret = 0;
820 out:
821 	NODEMASK_SCRATCH_FREE(scratch);
822 	return ret;
823 }
824 
825 /*
826  * Return nodemask for policy for get_mempolicy() query
827  *
828  * Called with task's alloc_lock held
829  */
830 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
831 {
832 	nodes_clear(*nodes);
833 	if (p == &default_policy)
834 		return;
835 
836 	switch (p->mode) {
837 	case MPOL_BIND:
838 		/* Fall through */
839 	case MPOL_INTERLEAVE:
840 		*nodes = p->v.nodes;
841 		break;
842 	case MPOL_PREFERRED:
843 		if (!(p->flags & MPOL_F_LOCAL))
844 			node_set(p->v.preferred_node, *nodes);
845 		/* else return empty node mask for local allocation */
846 		break;
847 	default:
848 		BUG();
849 	}
850 }
851 
852 static int lookup_node(struct mm_struct *mm, unsigned long addr)
853 {
854 	struct page *p;
855 	int err;
856 
857 	int locked = 1;
858 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
859 	if (err >= 0) {
860 		err = page_to_nid(p);
861 		put_page(p);
862 	}
863 	if (locked)
864 		up_read(&mm->mmap_sem);
865 	return err;
866 }
867 
868 /* Retrieve NUMA policy */
869 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
870 			     unsigned long addr, unsigned long flags)
871 {
872 	int err;
873 	struct mm_struct *mm = current->mm;
874 	struct vm_area_struct *vma = NULL;
875 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
876 
877 	if (flags &
878 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
879 		return -EINVAL;
880 
881 	if (flags & MPOL_F_MEMS_ALLOWED) {
882 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
883 			return -EINVAL;
884 		*policy = 0;	/* just so it's initialized */
885 		task_lock(current);
886 		*nmask  = cpuset_current_mems_allowed;
887 		task_unlock(current);
888 		return 0;
889 	}
890 
891 	if (flags & MPOL_F_ADDR) {
892 		/*
893 		 * Do NOT fall back to task policy if the
894 		 * vma/shared policy at addr is NULL.  We
895 		 * want to return MPOL_DEFAULT in this case.
896 		 */
897 		down_read(&mm->mmap_sem);
898 		vma = find_vma_intersection(mm, addr, addr+1);
899 		if (!vma) {
900 			up_read(&mm->mmap_sem);
901 			return -EFAULT;
902 		}
903 		if (vma->vm_ops && vma->vm_ops->get_policy)
904 			pol = vma->vm_ops->get_policy(vma, addr);
905 		else
906 			pol = vma->vm_policy;
907 	} else if (addr)
908 		return -EINVAL;
909 
910 	if (!pol)
911 		pol = &default_policy;	/* indicates default behavior */
912 
913 	if (flags & MPOL_F_NODE) {
914 		if (flags & MPOL_F_ADDR) {
915 			/*
916 			 * Take a refcount on the mpol, lookup_node()
917 			 * wil drop the mmap_sem, so after calling
918 			 * lookup_node() only "pol" remains valid, "vma"
919 			 * is stale.
920 			 */
921 			pol_refcount = pol;
922 			vma = NULL;
923 			mpol_get(pol);
924 			err = lookup_node(mm, addr);
925 			if (err < 0)
926 				goto out;
927 			*policy = err;
928 		} else if (pol == current->mempolicy &&
929 				pol->mode == MPOL_INTERLEAVE) {
930 			*policy = next_node_in(current->il_prev, pol->v.nodes);
931 		} else {
932 			err = -EINVAL;
933 			goto out;
934 		}
935 	} else {
936 		*policy = pol == &default_policy ? MPOL_DEFAULT :
937 						pol->mode;
938 		/*
939 		 * Internal mempolicy flags must be masked off before exposing
940 		 * the policy to userspace.
941 		 */
942 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
943 	}
944 
945 	err = 0;
946 	if (nmask) {
947 		if (mpol_store_user_nodemask(pol)) {
948 			*nmask = pol->w.user_nodemask;
949 		} else {
950 			task_lock(current);
951 			get_policy_nodemask(pol, nmask);
952 			task_unlock(current);
953 		}
954 	}
955 
956  out:
957 	mpol_cond_put(pol);
958 	if (vma)
959 		up_read(&mm->mmap_sem);
960 	if (pol_refcount)
961 		mpol_put(pol_refcount);
962 	return err;
963 }
964 
965 #ifdef CONFIG_MIGRATION
966 /*
967  * page migration, thp tail pages can be passed.
968  */
969 static int migrate_page_add(struct page *page, struct list_head *pagelist,
970 				unsigned long flags)
971 {
972 	struct page *head = compound_head(page);
973 	/*
974 	 * Avoid migrating a page that is shared with others.
975 	 */
976 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
977 		if (!isolate_lru_page(head)) {
978 			list_add_tail(&head->lru, pagelist);
979 			mod_node_page_state(page_pgdat(head),
980 				NR_ISOLATED_ANON + page_is_file_cache(head),
981 				hpage_nr_pages(head));
982 		} else if (flags & MPOL_MF_STRICT) {
983 			/*
984 			 * Non-movable page may reach here.  And, there may be
985 			 * temporary off LRU pages or non-LRU movable pages.
986 			 * Treat them as unmovable pages since they can't be
987 			 * isolated, so they can't be moved at the moment.  It
988 			 * should return -EIO for this case too.
989 			 */
990 			return -EIO;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 /* page allocation callback for NUMA node migration */
998 struct page *alloc_new_node_page(struct page *page, unsigned long node)
999 {
1000 	if (PageHuge(page))
1001 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1002 					node);
1003 	else if (PageTransHuge(page)) {
1004 		struct page *thp;
1005 
1006 		thp = alloc_pages_node(node,
1007 			(GFP_TRANSHUGE | __GFP_THISNODE),
1008 			HPAGE_PMD_ORDER);
1009 		if (!thp)
1010 			return NULL;
1011 		prep_transhuge_page(thp);
1012 		return thp;
1013 	} else
1014 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1015 						    __GFP_THISNODE, 0);
1016 }
1017 
1018 /*
1019  * Migrate pages from one node to a target node.
1020  * Returns error or the number of pages not migrated.
1021  */
1022 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1023 			   int flags)
1024 {
1025 	nodemask_t nmask;
1026 	LIST_HEAD(pagelist);
1027 	int err = 0;
1028 
1029 	nodes_clear(nmask);
1030 	node_set(source, nmask);
1031 
1032 	/*
1033 	 * This does not "check" the range but isolates all pages that
1034 	 * need migration.  Between passing in the full user address
1035 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1036 	 */
1037 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1038 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1039 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1040 
1041 	if (!list_empty(&pagelist)) {
1042 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1043 					MIGRATE_SYNC, MR_SYSCALL);
1044 		if (err)
1045 			putback_movable_pages(&pagelist);
1046 	}
1047 
1048 	return err;
1049 }
1050 
1051 /*
1052  * Move pages between the two nodesets so as to preserve the physical
1053  * layout as much as possible.
1054  *
1055  * Returns the number of page that could not be moved.
1056  */
1057 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1058 		     const nodemask_t *to, int flags)
1059 {
1060 	int busy = 0;
1061 	int err;
1062 	nodemask_t tmp;
1063 
1064 	err = migrate_prep();
1065 	if (err)
1066 		return err;
1067 
1068 	down_read(&mm->mmap_sem);
1069 
1070 	/*
1071 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1072 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1073 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1074 	 * The pair of nodemasks 'to' and 'from' define the map.
1075 	 *
1076 	 * If no pair of bits is found that way, fallback to picking some
1077 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1078 	 * 'source' and 'dest' bits are the same, this represents a node
1079 	 * that will be migrating to itself, so no pages need move.
1080 	 *
1081 	 * If no bits are left in 'tmp', or if all remaining bits left
1082 	 * in 'tmp' correspond to the same bit in 'to', return false
1083 	 * (nothing left to migrate).
1084 	 *
1085 	 * This lets us pick a pair of nodes to migrate between, such that
1086 	 * if possible the dest node is not already occupied by some other
1087 	 * source node, minimizing the risk of overloading the memory on a
1088 	 * node that would happen if we migrated incoming memory to a node
1089 	 * before migrating outgoing memory source that same node.
1090 	 *
1091 	 * A single scan of tmp is sufficient.  As we go, we remember the
1092 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1093 	 * that not only moved, but what's better, moved to an empty slot
1094 	 * (d is not set in tmp), then we break out then, with that pair.
1095 	 * Otherwise when we finish scanning from_tmp, we at least have the
1096 	 * most recent <s, d> pair that moved.  If we get all the way through
1097 	 * the scan of tmp without finding any node that moved, much less
1098 	 * moved to an empty node, then there is nothing left worth migrating.
1099 	 */
1100 
1101 	tmp = *from;
1102 	while (!nodes_empty(tmp)) {
1103 		int s,d;
1104 		int source = NUMA_NO_NODE;
1105 		int dest = 0;
1106 
1107 		for_each_node_mask(s, tmp) {
1108 
1109 			/*
1110 			 * do_migrate_pages() tries to maintain the relative
1111 			 * node relationship of the pages established between
1112 			 * threads and memory areas.
1113                          *
1114 			 * However if the number of source nodes is not equal to
1115 			 * the number of destination nodes we can not preserve
1116 			 * this node relative relationship.  In that case, skip
1117 			 * copying memory from a node that is in the destination
1118 			 * mask.
1119 			 *
1120 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1121 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1122 			 */
1123 
1124 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1125 						(node_isset(s, *to)))
1126 				continue;
1127 
1128 			d = node_remap(s, *from, *to);
1129 			if (s == d)
1130 				continue;
1131 
1132 			source = s;	/* Node moved. Memorize */
1133 			dest = d;
1134 
1135 			/* dest not in remaining from nodes? */
1136 			if (!node_isset(dest, tmp))
1137 				break;
1138 		}
1139 		if (source == NUMA_NO_NODE)
1140 			break;
1141 
1142 		node_clear(source, tmp);
1143 		err = migrate_to_node(mm, source, dest, flags);
1144 		if (err > 0)
1145 			busy += err;
1146 		if (err < 0)
1147 			break;
1148 	}
1149 	up_read(&mm->mmap_sem);
1150 	if (err < 0)
1151 		return err;
1152 	return busy;
1153 
1154 }
1155 
1156 /*
1157  * Allocate a new page for page migration based on vma policy.
1158  * Start by assuming the page is mapped by the same vma as contains @start.
1159  * Search forward from there, if not.  N.B., this assumes that the
1160  * list of pages handed to migrate_pages()--which is how we get here--
1161  * is in virtual address order.
1162  */
1163 static struct page *new_page(struct page *page, unsigned long start)
1164 {
1165 	struct vm_area_struct *vma;
1166 	unsigned long uninitialized_var(address);
1167 
1168 	vma = find_vma(current->mm, start);
1169 	while (vma) {
1170 		address = page_address_in_vma(page, vma);
1171 		if (address != -EFAULT)
1172 			break;
1173 		vma = vma->vm_next;
1174 	}
1175 
1176 	if (PageHuge(page)) {
1177 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1178 				vma, address);
1179 	} else if (PageTransHuge(page)) {
1180 		struct page *thp;
1181 
1182 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1183 					 HPAGE_PMD_ORDER);
1184 		if (!thp)
1185 			return NULL;
1186 		prep_transhuge_page(thp);
1187 		return thp;
1188 	}
1189 	/*
1190 	 * if !vma, alloc_page_vma() will use task or system default policy
1191 	 */
1192 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1193 			vma, address);
1194 }
1195 #else
1196 
1197 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1198 				unsigned long flags)
1199 {
1200 	return -EIO;
1201 }
1202 
1203 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1204 		     const nodemask_t *to, int flags)
1205 {
1206 	return -ENOSYS;
1207 }
1208 
1209 static struct page *new_page(struct page *page, unsigned long start)
1210 {
1211 	return NULL;
1212 }
1213 #endif
1214 
1215 static long do_mbind(unsigned long start, unsigned long len,
1216 		     unsigned short mode, unsigned short mode_flags,
1217 		     nodemask_t *nmask, unsigned long flags)
1218 {
1219 	struct mm_struct *mm = current->mm;
1220 	struct mempolicy *new;
1221 	unsigned long end;
1222 	int err;
1223 	int ret;
1224 	LIST_HEAD(pagelist);
1225 
1226 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1227 		return -EINVAL;
1228 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1229 		return -EPERM;
1230 
1231 	if (start & ~PAGE_MASK)
1232 		return -EINVAL;
1233 
1234 	if (mode == MPOL_DEFAULT)
1235 		flags &= ~MPOL_MF_STRICT;
1236 
1237 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1238 	end = start + len;
1239 
1240 	if (end < start)
1241 		return -EINVAL;
1242 	if (end == start)
1243 		return 0;
1244 
1245 	new = mpol_new(mode, mode_flags, nmask);
1246 	if (IS_ERR(new))
1247 		return PTR_ERR(new);
1248 
1249 	if (flags & MPOL_MF_LAZY)
1250 		new->flags |= MPOL_F_MOF;
1251 
1252 	/*
1253 	 * If we are using the default policy then operation
1254 	 * on discontinuous address spaces is okay after all
1255 	 */
1256 	if (!new)
1257 		flags |= MPOL_MF_DISCONTIG_OK;
1258 
1259 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1260 		 start, start + len, mode, mode_flags,
1261 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1262 
1263 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1264 
1265 		err = migrate_prep();
1266 		if (err)
1267 			goto mpol_out;
1268 	}
1269 	{
1270 		NODEMASK_SCRATCH(scratch);
1271 		if (scratch) {
1272 			down_write(&mm->mmap_sem);
1273 			task_lock(current);
1274 			err = mpol_set_nodemask(new, nmask, scratch);
1275 			task_unlock(current);
1276 			if (err)
1277 				up_write(&mm->mmap_sem);
1278 		} else
1279 			err = -ENOMEM;
1280 		NODEMASK_SCRATCH_FREE(scratch);
1281 	}
1282 	if (err)
1283 		goto mpol_out;
1284 
1285 	ret = queue_pages_range(mm, start, end, nmask,
1286 			  flags | MPOL_MF_INVERT, &pagelist);
1287 
1288 	if (ret < 0) {
1289 		err = -EIO;
1290 		goto up_out;
1291 	}
1292 
1293 	err = mbind_range(mm, start, end, new);
1294 
1295 	if (!err) {
1296 		int nr_failed = 0;
1297 
1298 		if (!list_empty(&pagelist)) {
1299 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1300 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1301 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1302 			if (nr_failed)
1303 				putback_movable_pages(&pagelist);
1304 		}
1305 
1306 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1307 			err = -EIO;
1308 	} else
1309 		putback_movable_pages(&pagelist);
1310 
1311 up_out:
1312 	up_write(&mm->mmap_sem);
1313 mpol_out:
1314 	mpol_put(new);
1315 	return err;
1316 }
1317 
1318 /*
1319  * User space interface with variable sized bitmaps for nodelists.
1320  */
1321 
1322 /* Copy a node mask from user space. */
1323 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1324 		     unsigned long maxnode)
1325 {
1326 	unsigned long k;
1327 	unsigned long t;
1328 	unsigned long nlongs;
1329 	unsigned long endmask;
1330 
1331 	--maxnode;
1332 	nodes_clear(*nodes);
1333 	if (maxnode == 0 || !nmask)
1334 		return 0;
1335 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1336 		return -EINVAL;
1337 
1338 	nlongs = BITS_TO_LONGS(maxnode);
1339 	if ((maxnode % BITS_PER_LONG) == 0)
1340 		endmask = ~0UL;
1341 	else
1342 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1343 
1344 	/*
1345 	 * When the user specified more nodes than supported just check
1346 	 * if the non supported part is all zero.
1347 	 *
1348 	 * If maxnode have more longs than MAX_NUMNODES, check
1349 	 * the bits in that area first. And then go through to
1350 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1351 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1352 	 */
1353 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1354 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1355 			if (get_user(t, nmask + k))
1356 				return -EFAULT;
1357 			if (k == nlongs - 1) {
1358 				if (t & endmask)
1359 					return -EINVAL;
1360 			} else if (t)
1361 				return -EINVAL;
1362 		}
1363 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1364 		endmask = ~0UL;
1365 	}
1366 
1367 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1368 		unsigned long valid_mask = endmask;
1369 
1370 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1371 		if (get_user(t, nmask + nlongs - 1))
1372 			return -EFAULT;
1373 		if (t & valid_mask)
1374 			return -EINVAL;
1375 	}
1376 
1377 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1378 		return -EFAULT;
1379 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1380 	return 0;
1381 }
1382 
1383 /* Copy a kernel node mask to user space */
1384 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1385 			      nodemask_t *nodes)
1386 {
1387 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1388 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1389 
1390 	if (copy > nbytes) {
1391 		if (copy > PAGE_SIZE)
1392 			return -EINVAL;
1393 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1394 			return -EFAULT;
1395 		copy = nbytes;
1396 	}
1397 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1398 }
1399 
1400 static long kernel_mbind(unsigned long start, unsigned long len,
1401 			 unsigned long mode, const unsigned long __user *nmask,
1402 			 unsigned long maxnode, unsigned int flags)
1403 {
1404 	nodemask_t nodes;
1405 	int err;
1406 	unsigned short mode_flags;
1407 
1408 	start = untagged_addr(start);
1409 	mode_flags = mode & MPOL_MODE_FLAGS;
1410 	mode &= ~MPOL_MODE_FLAGS;
1411 	if (mode >= MPOL_MAX)
1412 		return -EINVAL;
1413 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1414 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1415 		return -EINVAL;
1416 	err = get_nodes(&nodes, nmask, maxnode);
1417 	if (err)
1418 		return err;
1419 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1420 }
1421 
1422 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1423 		unsigned long, mode, const unsigned long __user *, nmask,
1424 		unsigned long, maxnode, unsigned int, flags)
1425 {
1426 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1427 }
1428 
1429 /* Set the process memory policy */
1430 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1431 				 unsigned long maxnode)
1432 {
1433 	int err;
1434 	nodemask_t nodes;
1435 	unsigned short flags;
1436 
1437 	flags = mode & MPOL_MODE_FLAGS;
1438 	mode &= ~MPOL_MODE_FLAGS;
1439 	if ((unsigned int)mode >= MPOL_MAX)
1440 		return -EINVAL;
1441 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1442 		return -EINVAL;
1443 	err = get_nodes(&nodes, nmask, maxnode);
1444 	if (err)
1445 		return err;
1446 	return do_set_mempolicy(mode, flags, &nodes);
1447 }
1448 
1449 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1450 		unsigned long, maxnode)
1451 {
1452 	return kernel_set_mempolicy(mode, nmask, maxnode);
1453 }
1454 
1455 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1456 				const unsigned long __user *old_nodes,
1457 				const unsigned long __user *new_nodes)
1458 {
1459 	struct mm_struct *mm = NULL;
1460 	struct task_struct *task;
1461 	nodemask_t task_nodes;
1462 	int err;
1463 	nodemask_t *old;
1464 	nodemask_t *new;
1465 	NODEMASK_SCRATCH(scratch);
1466 
1467 	if (!scratch)
1468 		return -ENOMEM;
1469 
1470 	old = &scratch->mask1;
1471 	new = &scratch->mask2;
1472 
1473 	err = get_nodes(old, old_nodes, maxnode);
1474 	if (err)
1475 		goto out;
1476 
1477 	err = get_nodes(new, new_nodes, maxnode);
1478 	if (err)
1479 		goto out;
1480 
1481 	/* Find the mm_struct */
1482 	rcu_read_lock();
1483 	task = pid ? find_task_by_vpid(pid) : current;
1484 	if (!task) {
1485 		rcu_read_unlock();
1486 		err = -ESRCH;
1487 		goto out;
1488 	}
1489 	get_task_struct(task);
1490 
1491 	err = -EINVAL;
1492 
1493 	/*
1494 	 * Check if this process has the right to modify the specified process.
1495 	 * Use the regular "ptrace_may_access()" checks.
1496 	 */
1497 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1498 		rcu_read_unlock();
1499 		err = -EPERM;
1500 		goto out_put;
1501 	}
1502 	rcu_read_unlock();
1503 
1504 	task_nodes = cpuset_mems_allowed(task);
1505 	/* Is the user allowed to access the target nodes? */
1506 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1507 		err = -EPERM;
1508 		goto out_put;
1509 	}
1510 
1511 	task_nodes = cpuset_mems_allowed(current);
1512 	nodes_and(*new, *new, task_nodes);
1513 	if (nodes_empty(*new))
1514 		goto out_put;
1515 
1516 	err = security_task_movememory(task);
1517 	if (err)
1518 		goto out_put;
1519 
1520 	mm = get_task_mm(task);
1521 	put_task_struct(task);
1522 
1523 	if (!mm) {
1524 		err = -EINVAL;
1525 		goto out;
1526 	}
1527 
1528 	err = do_migrate_pages(mm, old, new,
1529 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1530 
1531 	mmput(mm);
1532 out:
1533 	NODEMASK_SCRATCH_FREE(scratch);
1534 
1535 	return err;
1536 
1537 out_put:
1538 	put_task_struct(task);
1539 	goto out;
1540 
1541 }
1542 
1543 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1544 		const unsigned long __user *, old_nodes,
1545 		const unsigned long __user *, new_nodes)
1546 {
1547 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1548 }
1549 
1550 
1551 /* Retrieve NUMA policy */
1552 static int kernel_get_mempolicy(int __user *policy,
1553 				unsigned long __user *nmask,
1554 				unsigned long maxnode,
1555 				unsigned long addr,
1556 				unsigned long flags)
1557 {
1558 	int err;
1559 	int uninitialized_var(pval);
1560 	nodemask_t nodes;
1561 
1562 	addr = untagged_addr(addr);
1563 
1564 	if (nmask != NULL && maxnode < nr_node_ids)
1565 		return -EINVAL;
1566 
1567 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1568 
1569 	if (err)
1570 		return err;
1571 
1572 	if (policy && put_user(pval, policy))
1573 		return -EFAULT;
1574 
1575 	if (nmask)
1576 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1577 
1578 	return err;
1579 }
1580 
1581 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1582 		unsigned long __user *, nmask, unsigned long, maxnode,
1583 		unsigned long, addr, unsigned long, flags)
1584 {
1585 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1586 }
1587 
1588 #ifdef CONFIG_COMPAT
1589 
1590 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1591 		       compat_ulong_t __user *, nmask,
1592 		       compat_ulong_t, maxnode,
1593 		       compat_ulong_t, addr, compat_ulong_t, flags)
1594 {
1595 	long err;
1596 	unsigned long __user *nm = NULL;
1597 	unsigned long nr_bits, alloc_size;
1598 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1599 
1600 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1601 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1602 
1603 	if (nmask)
1604 		nm = compat_alloc_user_space(alloc_size);
1605 
1606 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1607 
1608 	if (!err && nmask) {
1609 		unsigned long copy_size;
1610 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1611 		err = copy_from_user(bm, nm, copy_size);
1612 		/* ensure entire bitmap is zeroed */
1613 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1614 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1615 	}
1616 
1617 	return err;
1618 }
1619 
1620 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1621 		       compat_ulong_t, maxnode)
1622 {
1623 	unsigned long __user *nm = NULL;
1624 	unsigned long nr_bits, alloc_size;
1625 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1626 
1627 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1628 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1629 
1630 	if (nmask) {
1631 		if (compat_get_bitmap(bm, nmask, nr_bits))
1632 			return -EFAULT;
1633 		nm = compat_alloc_user_space(alloc_size);
1634 		if (copy_to_user(nm, bm, alloc_size))
1635 			return -EFAULT;
1636 	}
1637 
1638 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1639 }
1640 
1641 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1642 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1643 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1644 {
1645 	unsigned long __user *nm = NULL;
1646 	unsigned long nr_bits, alloc_size;
1647 	nodemask_t bm;
1648 
1649 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1650 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651 
1652 	if (nmask) {
1653 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1654 			return -EFAULT;
1655 		nm = compat_alloc_user_space(alloc_size);
1656 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1657 			return -EFAULT;
1658 	}
1659 
1660 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1661 }
1662 
1663 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1664 		       compat_ulong_t, maxnode,
1665 		       const compat_ulong_t __user *, old_nodes,
1666 		       const compat_ulong_t __user *, new_nodes)
1667 {
1668 	unsigned long __user *old = NULL;
1669 	unsigned long __user *new = NULL;
1670 	nodemask_t tmp_mask;
1671 	unsigned long nr_bits;
1672 	unsigned long size;
1673 
1674 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1675 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1676 	if (old_nodes) {
1677 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1678 			return -EFAULT;
1679 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1680 		if (new_nodes)
1681 			new = old + size / sizeof(unsigned long);
1682 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1683 			return -EFAULT;
1684 	}
1685 	if (new_nodes) {
1686 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1687 			return -EFAULT;
1688 		if (new == NULL)
1689 			new = compat_alloc_user_space(size);
1690 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1691 			return -EFAULT;
1692 	}
1693 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1694 }
1695 
1696 #endif /* CONFIG_COMPAT */
1697 
1698 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1699 						unsigned long addr)
1700 {
1701 	struct mempolicy *pol = NULL;
1702 
1703 	if (vma) {
1704 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1705 			pol = vma->vm_ops->get_policy(vma, addr);
1706 		} else if (vma->vm_policy) {
1707 			pol = vma->vm_policy;
1708 
1709 			/*
1710 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1711 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1712 			 * count on these policies which will be dropped by
1713 			 * mpol_cond_put() later
1714 			 */
1715 			if (mpol_needs_cond_ref(pol))
1716 				mpol_get(pol);
1717 		}
1718 	}
1719 
1720 	return pol;
1721 }
1722 
1723 /*
1724  * get_vma_policy(@vma, @addr)
1725  * @vma: virtual memory area whose policy is sought
1726  * @addr: address in @vma for shared policy lookup
1727  *
1728  * Returns effective policy for a VMA at specified address.
1729  * Falls back to current->mempolicy or system default policy, as necessary.
1730  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1731  * count--added by the get_policy() vm_op, as appropriate--to protect against
1732  * freeing by another task.  It is the caller's responsibility to free the
1733  * extra reference for shared policies.
1734  */
1735 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1736 						unsigned long addr)
1737 {
1738 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1739 
1740 	if (!pol)
1741 		pol = get_task_policy(current);
1742 
1743 	return pol;
1744 }
1745 
1746 bool vma_policy_mof(struct vm_area_struct *vma)
1747 {
1748 	struct mempolicy *pol;
1749 
1750 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1751 		bool ret = false;
1752 
1753 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1754 		if (pol && (pol->flags & MPOL_F_MOF))
1755 			ret = true;
1756 		mpol_cond_put(pol);
1757 
1758 		return ret;
1759 	}
1760 
1761 	pol = vma->vm_policy;
1762 	if (!pol)
1763 		pol = get_task_policy(current);
1764 
1765 	return pol->flags & MPOL_F_MOF;
1766 }
1767 
1768 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1769 {
1770 	enum zone_type dynamic_policy_zone = policy_zone;
1771 
1772 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1773 
1774 	/*
1775 	 * if policy->v.nodes has movable memory only,
1776 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1777 	 *
1778 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1779 	 * so if the following test faile, it implies
1780 	 * policy->v.nodes has movable memory only.
1781 	 */
1782 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1783 		dynamic_policy_zone = ZONE_MOVABLE;
1784 
1785 	return zone >= dynamic_policy_zone;
1786 }
1787 
1788 /*
1789  * Return a nodemask representing a mempolicy for filtering nodes for
1790  * page allocation
1791  */
1792 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1793 {
1794 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1795 	if (unlikely(policy->mode == MPOL_BIND) &&
1796 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1797 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1798 		return &policy->v.nodes;
1799 
1800 	return NULL;
1801 }
1802 
1803 /* Return the node id preferred by the given mempolicy, or the given id */
1804 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1805 								int nd)
1806 {
1807 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1808 		nd = policy->v.preferred_node;
1809 	else {
1810 		/*
1811 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1812 		 * because we might easily break the expectation to stay on the
1813 		 * requested node and not break the policy.
1814 		 */
1815 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1816 	}
1817 
1818 	return nd;
1819 }
1820 
1821 /* Do dynamic interleaving for a process */
1822 static unsigned interleave_nodes(struct mempolicy *policy)
1823 {
1824 	unsigned next;
1825 	struct task_struct *me = current;
1826 
1827 	next = next_node_in(me->il_prev, policy->v.nodes);
1828 	if (next < MAX_NUMNODES)
1829 		me->il_prev = next;
1830 	return next;
1831 }
1832 
1833 /*
1834  * Depending on the memory policy provide a node from which to allocate the
1835  * next slab entry.
1836  */
1837 unsigned int mempolicy_slab_node(void)
1838 {
1839 	struct mempolicy *policy;
1840 	int node = numa_mem_id();
1841 
1842 	if (in_interrupt())
1843 		return node;
1844 
1845 	policy = current->mempolicy;
1846 	if (!policy || policy->flags & MPOL_F_LOCAL)
1847 		return node;
1848 
1849 	switch (policy->mode) {
1850 	case MPOL_PREFERRED:
1851 		/*
1852 		 * handled MPOL_F_LOCAL above
1853 		 */
1854 		return policy->v.preferred_node;
1855 
1856 	case MPOL_INTERLEAVE:
1857 		return interleave_nodes(policy);
1858 
1859 	case MPOL_BIND: {
1860 		struct zoneref *z;
1861 
1862 		/*
1863 		 * Follow bind policy behavior and start allocation at the
1864 		 * first node.
1865 		 */
1866 		struct zonelist *zonelist;
1867 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1868 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1869 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1870 							&policy->v.nodes);
1871 		return z->zone ? zone_to_nid(z->zone) : node;
1872 	}
1873 
1874 	default:
1875 		BUG();
1876 	}
1877 }
1878 
1879 /*
1880  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1881  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1882  * number of present nodes.
1883  */
1884 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1885 {
1886 	unsigned nnodes = nodes_weight(pol->v.nodes);
1887 	unsigned target;
1888 	int i;
1889 	int nid;
1890 
1891 	if (!nnodes)
1892 		return numa_node_id();
1893 	target = (unsigned int)n % nnodes;
1894 	nid = first_node(pol->v.nodes);
1895 	for (i = 0; i < target; i++)
1896 		nid = next_node(nid, pol->v.nodes);
1897 	return nid;
1898 }
1899 
1900 /* Determine a node number for interleave */
1901 static inline unsigned interleave_nid(struct mempolicy *pol,
1902 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1903 {
1904 	if (vma) {
1905 		unsigned long off;
1906 
1907 		/*
1908 		 * for small pages, there is no difference between
1909 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1910 		 * for huge pages, since vm_pgoff is in units of small
1911 		 * pages, we need to shift off the always 0 bits to get
1912 		 * a useful offset.
1913 		 */
1914 		BUG_ON(shift < PAGE_SHIFT);
1915 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1916 		off += (addr - vma->vm_start) >> shift;
1917 		return offset_il_node(pol, off);
1918 	} else
1919 		return interleave_nodes(pol);
1920 }
1921 
1922 #ifdef CONFIG_HUGETLBFS
1923 /*
1924  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1925  * @vma: virtual memory area whose policy is sought
1926  * @addr: address in @vma for shared policy lookup and interleave policy
1927  * @gfp_flags: for requested zone
1928  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1929  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1930  *
1931  * Returns a nid suitable for a huge page allocation and a pointer
1932  * to the struct mempolicy for conditional unref after allocation.
1933  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1934  * @nodemask for filtering the zonelist.
1935  *
1936  * Must be protected by read_mems_allowed_begin()
1937  */
1938 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1939 				struct mempolicy **mpol, nodemask_t **nodemask)
1940 {
1941 	int nid;
1942 
1943 	*mpol = get_vma_policy(vma, addr);
1944 	*nodemask = NULL;	/* assume !MPOL_BIND */
1945 
1946 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1947 		nid = interleave_nid(*mpol, vma, addr,
1948 					huge_page_shift(hstate_vma(vma)));
1949 	} else {
1950 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1951 		if ((*mpol)->mode == MPOL_BIND)
1952 			*nodemask = &(*mpol)->v.nodes;
1953 	}
1954 	return nid;
1955 }
1956 
1957 /*
1958  * init_nodemask_of_mempolicy
1959  *
1960  * If the current task's mempolicy is "default" [NULL], return 'false'
1961  * to indicate default policy.  Otherwise, extract the policy nodemask
1962  * for 'bind' or 'interleave' policy into the argument nodemask, or
1963  * initialize the argument nodemask to contain the single node for
1964  * 'preferred' or 'local' policy and return 'true' to indicate presence
1965  * of non-default mempolicy.
1966  *
1967  * We don't bother with reference counting the mempolicy [mpol_get/put]
1968  * because the current task is examining it's own mempolicy and a task's
1969  * mempolicy is only ever changed by the task itself.
1970  *
1971  * N.B., it is the caller's responsibility to free a returned nodemask.
1972  */
1973 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1974 {
1975 	struct mempolicy *mempolicy;
1976 	int nid;
1977 
1978 	if (!(mask && current->mempolicy))
1979 		return false;
1980 
1981 	task_lock(current);
1982 	mempolicy = current->mempolicy;
1983 	switch (mempolicy->mode) {
1984 	case MPOL_PREFERRED:
1985 		if (mempolicy->flags & MPOL_F_LOCAL)
1986 			nid = numa_node_id();
1987 		else
1988 			nid = mempolicy->v.preferred_node;
1989 		init_nodemask_of_node(mask, nid);
1990 		break;
1991 
1992 	case MPOL_BIND:
1993 		/* Fall through */
1994 	case MPOL_INTERLEAVE:
1995 		*mask =  mempolicy->v.nodes;
1996 		break;
1997 
1998 	default:
1999 		BUG();
2000 	}
2001 	task_unlock(current);
2002 
2003 	return true;
2004 }
2005 #endif
2006 
2007 /*
2008  * mempolicy_nodemask_intersects
2009  *
2010  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2011  * policy.  Otherwise, check for intersection between mask and the policy
2012  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2013  * policy, always return true since it may allocate elsewhere on fallback.
2014  *
2015  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2016  */
2017 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2018 					const nodemask_t *mask)
2019 {
2020 	struct mempolicy *mempolicy;
2021 	bool ret = true;
2022 
2023 	if (!mask)
2024 		return ret;
2025 	task_lock(tsk);
2026 	mempolicy = tsk->mempolicy;
2027 	if (!mempolicy)
2028 		goto out;
2029 
2030 	switch (mempolicy->mode) {
2031 	case MPOL_PREFERRED:
2032 		/*
2033 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2034 		 * allocate from, they may fallback to other nodes when oom.
2035 		 * Thus, it's possible for tsk to have allocated memory from
2036 		 * nodes in mask.
2037 		 */
2038 		break;
2039 	case MPOL_BIND:
2040 	case MPOL_INTERLEAVE:
2041 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2042 		break;
2043 	default:
2044 		BUG();
2045 	}
2046 out:
2047 	task_unlock(tsk);
2048 	return ret;
2049 }
2050 
2051 /* Allocate a page in interleaved policy.
2052    Own path because it needs to do special accounting. */
2053 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2054 					unsigned nid)
2055 {
2056 	struct page *page;
2057 
2058 	page = __alloc_pages(gfp, order, nid);
2059 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2060 	if (!static_branch_likely(&vm_numa_stat_key))
2061 		return page;
2062 	if (page && page_to_nid(page) == nid) {
2063 		preempt_disable();
2064 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2065 		preempt_enable();
2066 	}
2067 	return page;
2068 }
2069 
2070 /**
2071  * 	alloc_pages_vma	- Allocate a page for a VMA.
2072  *
2073  * 	@gfp:
2074  *      %GFP_USER    user allocation.
2075  *      %GFP_KERNEL  kernel allocations,
2076  *      %GFP_HIGHMEM highmem/user allocations,
2077  *      %GFP_FS      allocation should not call back into a file system.
2078  *      %GFP_ATOMIC  don't sleep.
2079  *
2080  *	@order:Order of the GFP allocation.
2081  * 	@vma:  Pointer to VMA or NULL if not available.
2082  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2083  *	@node: Which node to prefer for allocation (modulo policy).
2084  *	@hugepage: for hugepages try only the preferred node if possible
2085  *
2086  * 	This function allocates a page from the kernel page pool and applies
2087  *	a NUMA policy associated with the VMA or the current process.
2088  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2089  *	mm_struct of the VMA to prevent it from going away. Should be used for
2090  *	all allocations for pages that will be mapped into user space. Returns
2091  *	NULL when no page can be allocated.
2092  */
2093 struct page *
2094 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2095 		unsigned long addr, int node, bool hugepage)
2096 {
2097 	struct mempolicy *pol;
2098 	struct page *page;
2099 	int preferred_nid;
2100 	nodemask_t *nmask;
2101 
2102 	pol = get_vma_policy(vma, addr);
2103 
2104 	if (pol->mode == MPOL_INTERLEAVE) {
2105 		unsigned nid;
2106 
2107 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2108 		mpol_cond_put(pol);
2109 		page = alloc_page_interleave(gfp, order, nid);
2110 		goto out;
2111 	}
2112 
2113 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2114 		int hpage_node = node;
2115 
2116 		/*
2117 		 * For hugepage allocation and non-interleave policy which
2118 		 * allows the current node (or other explicitly preferred
2119 		 * node) we only try to allocate from the current/preferred
2120 		 * node and don't fall back to other nodes, as the cost of
2121 		 * remote accesses would likely offset THP benefits.
2122 		 *
2123 		 * If the policy is interleave, or does not allow the current
2124 		 * node in its nodemask, we allocate the standard way.
2125 		 */
2126 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2127 			hpage_node = pol->v.preferred_node;
2128 
2129 		nmask = policy_nodemask(gfp, pol);
2130 		if (!nmask || node_isset(hpage_node, *nmask)) {
2131 			mpol_cond_put(pol);
2132 			page = __alloc_pages_node(hpage_node,
2133 						gfp | __GFP_THISNODE, order);
2134 
2135 			/*
2136 			 * If hugepage allocations are configured to always
2137 			 * synchronous compact or the vma has been madvised
2138 			 * to prefer hugepage backing, retry allowing remote
2139 			 * memory as well.
2140 			 */
2141 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2142 				page = __alloc_pages_node(hpage_node,
2143 						gfp | __GFP_NORETRY, order);
2144 
2145 			goto out;
2146 		}
2147 	}
2148 
2149 	nmask = policy_nodemask(gfp, pol);
2150 	preferred_nid = policy_node(gfp, pol, node);
2151 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2152 	mpol_cond_put(pol);
2153 out:
2154 	return page;
2155 }
2156 EXPORT_SYMBOL(alloc_pages_vma);
2157 
2158 /**
2159  * 	alloc_pages_current - Allocate pages.
2160  *
2161  *	@gfp:
2162  *		%GFP_USER   user allocation,
2163  *      	%GFP_KERNEL kernel allocation,
2164  *      	%GFP_HIGHMEM highmem allocation,
2165  *      	%GFP_FS     don't call back into a file system.
2166  *      	%GFP_ATOMIC don't sleep.
2167  *	@order: Power of two of allocation size in pages. 0 is a single page.
2168  *
2169  *	Allocate a page from the kernel page pool.  When not in
2170  *	interrupt context and apply the current process NUMA policy.
2171  *	Returns NULL when no page can be allocated.
2172  */
2173 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2174 {
2175 	struct mempolicy *pol = &default_policy;
2176 	struct page *page;
2177 
2178 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2179 		pol = get_task_policy(current);
2180 
2181 	/*
2182 	 * No reference counting needed for current->mempolicy
2183 	 * nor system default_policy
2184 	 */
2185 	if (pol->mode == MPOL_INTERLEAVE)
2186 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2187 	else
2188 		page = __alloc_pages_nodemask(gfp, order,
2189 				policy_node(gfp, pol, numa_node_id()),
2190 				policy_nodemask(gfp, pol));
2191 
2192 	return page;
2193 }
2194 EXPORT_SYMBOL(alloc_pages_current);
2195 
2196 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2197 {
2198 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2199 
2200 	if (IS_ERR(pol))
2201 		return PTR_ERR(pol);
2202 	dst->vm_policy = pol;
2203 	return 0;
2204 }
2205 
2206 /*
2207  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2208  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2209  * with the mems_allowed returned by cpuset_mems_allowed().  This
2210  * keeps mempolicies cpuset relative after its cpuset moves.  See
2211  * further kernel/cpuset.c update_nodemask().
2212  *
2213  * current's mempolicy may be rebinded by the other task(the task that changes
2214  * cpuset's mems), so we needn't do rebind work for current task.
2215  */
2216 
2217 /* Slow path of a mempolicy duplicate */
2218 struct mempolicy *__mpol_dup(struct mempolicy *old)
2219 {
2220 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2221 
2222 	if (!new)
2223 		return ERR_PTR(-ENOMEM);
2224 
2225 	/* task's mempolicy is protected by alloc_lock */
2226 	if (old == current->mempolicy) {
2227 		task_lock(current);
2228 		*new = *old;
2229 		task_unlock(current);
2230 	} else
2231 		*new = *old;
2232 
2233 	if (current_cpuset_is_being_rebound()) {
2234 		nodemask_t mems = cpuset_mems_allowed(current);
2235 		mpol_rebind_policy(new, &mems);
2236 	}
2237 	atomic_set(&new->refcnt, 1);
2238 	return new;
2239 }
2240 
2241 /* Slow path of a mempolicy comparison */
2242 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2243 {
2244 	if (!a || !b)
2245 		return false;
2246 	if (a->mode != b->mode)
2247 		return false;
2248 	if (a->flags != b->flags)
2249 		return false;
2250 	if (mpol_store_user_nodemask(a))
2251 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2252 			return false;
2253 
2254 	switch (a->mode) {
2255 	case MPOL_BIND:
2256 		/* Fall through */
2257 	case MPOL_INTERLEAVE:
2258 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2259 	case MPOL_PREFERRED:
2260 		/* a's ->flags is the same as b's */
2261 		if (a->flags & MPOL_F_LOCAL)
2262 			return true;
2263 		return a->v.preferred_node == b->v.preferred_node;
2264 	default:
2265 		BUG();
2266 		return false;
2267 	}
2268 }
2269 
2270 /*
2271  * Shared memory backing store policy support.
2272  *
2273  * Remember policies even when nobody has shared memory mapped.
2274  * The policies are kept in Red-Black tree linked from the inode.
2275  * They are protected by the sp->lock rwlock, which should be held
2276  * for any accesses to the tree.
2277  */
2278 
2279 /*
2280  * lookup first element intersecting start-end.  Caller holds sp->lock for
2281  * reading or for writing
2282  */
2283 static struct sp_node *
2284 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2285 {
2286 	struct rb_node *n = sp->root.rb_node;
2287 
2288 	while (n) {
2289 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2290 
2291 		if (start >= p->end)
2292 			n = n->rb_right;
2293 		else if (end <= p->start)
2294 			n = n->rb_left;
2295 		else
2296 			break;
2297 	}
2298 	if (!n)
2299 		return NULL;
2300 	for (;;) {
2301 		struct sp_node *w = NULL;
2302 		struct rb_node *prev = rb_prev(n);
2303 		if (!prev)
2304 			break;
2305 		w = rb_entry(prev, struct sp_node, nd);
2306 		if (w->end <= start)
2307 			break;
2308 		n = prev;
2309 	}
2310 	return rb_entry(n, struct sp_node, nd);
2311 }
2312 
2313 /*
2314  * Insert a new shared policy into the list.  Caller holds sp->lock for
2315  * writing.
2316  */
2317 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2318 {
2319 	struct rb_node **p = &sp->root.rb_node;
2320 	struct rb_node *parent = NULL;
2321 	struct sp_node *nd;
2322 
2323 	while (*p) {
2324 		parent = *p;
2325 		nd = rb_entry(parent, struct sp_node, nd);
2326 		if (new->start < nd->start)
2327 			p = &(*p)->rb_left;
2328 		else if (new->end > nd->end)
2329 			p = &(*p)->rb_right;
2330 		else
2331 			BUG();
2332 	}
2333 	rb_link_node(&new->nd, parent, p);
2334 	rb_insert_color(&new->nd, &sp->root);
2335 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2336 		 new->policy ? new->policy->mode : 0);
2337 }
2338 
2339 /* Find shared policy intersecting idx */
2340 struct mempolicy *
2341 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2342 {
2343 	struct mempolicy *pol = NULL;
2344 	struct sp_node *sn;
2345 
2346 	if (!sp->root.rb_node)
2347 		return NULL;
2348 	read_lock(&sp->lock);
2349 	sn = sp_lookup(sp, idx, idx+1);
2350 	if (sn) {
2351 		mpol_get(sn->policy);
2352 		pol = sn->policy;
2353 	}
2354 	read_unlock(&sp->lock);
2355 	return pol;
2356 }
2357 
2358 static void sp_free(struct sp_node *n)
2359 {
2360 	mpol_put(n->policy);
2361 	kmem_cache_free(sn_cache, n);
2362 }
2363 
2364 /**
2365  * mpol_misplaced - check whether current page node is valid in policy
2366  *
2367  * @page: page to be checked
2368  * @vma: vm area where page mapped
2369  * @addr: virtual address where page mapped
2370  *
2371  * Lookup current policy node id for vma,addr and "compare to" page's
2372  * node id.
2373  *
2374  * Returns:
2375  *	-1	- not misplaced, page is in the right node
2376  *	node	- node id where the page should be
2377  *
2378  * Policy determination "mimics" alloc_page_vma().
2379  * Called from fault path where we know the vma and faulting address.
2380  */
2381 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2382 {
2383 	struct mempolicy *pol;
2384 	struct zoneref *z;
2385 	int curnid = page_to_nid(page);
2386 	unsigned long pgoff;
2387 	int thiscpu = raw_smp_processor_id();
2388 	int thisnid = cpu_to_node(thiscpu);
2389 	int polnid = NUMA_NO_NODE;
2390 	int ret = -1;
2391 
2392 	pol = get_vma_policy(vma, addr);
2393 	if (!(pol->flags & MPOL_F_MOF))
2394 		goto out;
2395 
2396 	switch (pol->mode) {
2397 	case MPOL_INTERLEAVE:
2398 		pgoff = vma->vm_pgoff;
2399 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2400 		polnid = offset_il_node(pol, pgoff);
2401 		break;
2402 
2403 	case MPOL_PREFERRED:
2404 		if (pol->flags & MPOL_F_LOCAL)
2405 			polnid = numa_node_id();
2406 		else
2407 			polnid = pol->v.preferred_node;
2408 		break;
2409 
2410 	case MPOL_BIND:
2411 
2412 		/*
2413 		 * allows binding to multiple nodes.
2414 		 * use current page if in policy nodemask,
2415 		 * else select nearest allowed node, if any.
2416 		 * If no allowed nodes, use current [!misplaced].
2417 		 */
2418 		if (node_isset(curnid, pol->v.nodes))
2419 			goto out;
2420 		z = first_zones_zonelist(
2421 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2422 				gfp_zone(GFP_HIGHUSER),
2423 				&pol->v.nodes);
2424 		polnid = zone_to_nid(z->zone);
2425 		break;
2426 
2427 	default:
2428 		BUG();
2429 	}
2430 
2431 	/* Migrate the page towards the node whose CPU is referencing it */
2432 	if (pol->flags & MPOL_F_MORON) {
2433 		polnid = thisnid;
2434 
2435 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2436 			goto out;
2437 	}
2438 
2439 	if (curnid != polnid)
2440 		ret = polnid;
2441 out:
2442 	mpol_cond_put(pol);
2443 
2444 	return ret;
2445 }
2446 
2447 /*
2448  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2449  * dropped after task->mempolicy is set to NULL so that any allocation done as
2450  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2451  * policy.
2452  */
2453 void mpol_put_task_policy(struct task_struct *task)
2454 {
2455 	struct mempolicy *pol;
2456 
2457 	task_lock(task);
2458 	pol = task->mempolicy;
2459 	task->mempolicy = NULL;
2460 	task_unlock(task);
2461 	mpol_put(pol);
2462 }
2463 
2464 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2465 {
2466 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2467 	rb_erase(&n->nd, &sp->root);
2468 	sp_free(n);
2469 }
2470 
2471 static void sp_node_init(struct sp_node *node, unsigned long start,
2472 			unsigned long end, struct mempolicy *pol)
2473 {
2474 	node->start = start;
2475 	node->end = end;
2476 	node->policy = pol;
2477 }
2478 
2479 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2480 				struct mempolicy *pol)
2481 {
2482 	struct sp_node *n;
2483 	struct mempolicy *newpol;
2484 
2485 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2486 	if (!n)
2487 		return NULL;
2488 
2489 	newpol = mpol_dup(pol);
2490 	if (IS_ERR(newpol)) {
2491 		kmem_cache_free(sn_cache, n);
2492 		return NULL;
2493 	}
2494 	newpol->flags |= MPOL_F_SHARED;
2495 	sp_node_init(n, start, end, newpol);
2496 
2497 	return n;
2498 }
2499 
2500 /* Replace a policy range. */
2501 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2502 				 unsigned long end, struct sp_node *new)
2503 {
2504 	struct sp_node *n;
2505 	struct sp_node *n_new = NULL;
2506 	struct mempolicy *mpol_new = NULL;
2507 	int ret = 0;
2508 
2509 restart:
2510 	write_lock(&sp->lock);
2511 	n = sp_lookup(sp, start, end);
2512 	/* Take care of old policies in the same range. */
2513 	while (n && n->start < end) {
2514 		struct rb_node *next = rb_next(&n->nd);
2515 		if (n->start >= start) {
2516 			if (n->end <= end)
2517 				sp_delete(sp, n);
2518 			else
2519 				n->start = end;
2520 		} else {
2521 			/* Old policy spanning whole new range. */
2522 			if (n->end > end) {
2523 				if (!n_new)
2524 					goto alloc_new;
2525 
2526 				*mpol_new = *n->policy;
2527 				atomic_set(&mpol_new->refcnt, 1);
2528 				sp_node_init(n_new, end, n->end, mpol_new);
2529 				n->end = start;
2530 				sp_insert(sp, n_new);
2531 				n_new = NULL;
2532 				mpol_new = NULL;
2533 				break;
2534 			} else
2535 				n->end = start;
2536 		}
2537 		if (!next)
2538 			break;
2539 		n = rb_entry(next, struct sp_node, nd);
2540 	}
2541 	if (new)
2542 		sp_insert(sp, new);
2543 	write_unlock(&sp->lock);
2544 	ret = 0;
2545 
2546 err_out:
2547 	if (mpol_new)
2548 		mpol_put(mpol_new);
2549 	if (n_new)
2550 		kmem_cache_free(sn_cache, n_new);
2551 
2552 	return ret;
2553 
2554 alloc_new:
2555 	write_unlock(&sp->lock);
2556 	ret = -ENOMEM;
2557 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2558 	if (!n_new)
2559 		goto err_out;
2560 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2561 	if (!mpol_new)
2562 		goto err_out;
2563 	goto restart;
2564 }
2565 
2566 /**
2567  * mpol_shared_policy_init - initialize shared policy for inode
2568  * @sp: pointer to inode shared policy
2569  * @mpol:  struct mempolicy to install
2570  *
2571  * Install non-NULL @mpol in inode's shared policy rb-tree.
2572  * On entry, the current task has a reference on a non-NULL @mpol.
2573  * This must be released on exit.
2574  * This is called at get_inode() calls and we can use GFP_KERNEL.
2575  */
2576 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2577 {
2578 	int ret;
2579 
2580 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2581 	rwlock_init(&sp->lock);
2582 
2583 	if (mpol) {
2584 		struct vm_area_struct pvma;
2585 		struct mempolicy *new;
2586 		NODEMASK_SCRATCH(scratch);
2587 
2588 		if (!scratch)
2589 			goto put_mpol;
2590 		/* contextualize the tmpfs mount point mempolicy */
2591 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2592 		if (IS_ERR(new))
2593 			goto free_scratch; /* no valid nodemask intersection */
2594 
2595 		task_lock(current);
2596 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2597 		task_unlock(current);
2598 		if (ret)
2599 			goto put_new;
2600 
2601 		/* Create pseudo-vma that contains just the policy */
2602 		vma_init(&pvma, NULL);
2603 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2604 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2605 
2606 put_new:
2607 		mpol_put(new);			/* drop initial ref */
2608 free_scratch:
2609 		NODEMASK_SCRATCH_FREE(scratch);
2610 put_mpol:
2611 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2612 	}
2613 }
2614 
2615 int mpol_set_shared_policy(struct shared_policy *info,
2616 			struct vm_area_struct *vma, struct mempolicy *npol)
2617 {
2618 	int err;
2619 	struct sp_node *new = NULL;
2620 	unsigned long sz = vma_pages(vma);
2621 
2622 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2623 		 vma->vm_pgoff,
2624 		 sz, npol ? npol->mode : -1,
2625 		 npol ? npol->flags : -1,
2626 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2627 
2628 	if (npol) {
2629 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2630 		if (!new)
2631 			return -ENOMEM;
2632 	}
2633 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2634 	if (err && new)
2635 		sp_free(new);
2636 	return err;
2637 }
2638 
2639 /* Free a backing policy store on inode delete. */
2640 void mpol_free_shared_policy(struct shared_policy *p)
2641 {
2642 	struct sp_node *n;
2643 	struct rb_node *next;
2644 
2645 	if (!p->root.rb_node)
2646 		return;
2647 	write_lock(&p->lock);
2648 	next = rb_first(&p->root);
2649 	while (next) {
2650 		n = rb_entry(next, struct sp_node, nd);
2651 		next = rb_next(&n->nd);
2652 		sp_delete(p, n);
2653 	}
2654 	write_unlock(&p->lock);
2655 }
2656 
2657 #ifdef CONFIG_NUMA_BALANCING
2658 static int __initdata numabalancing_override;
2659 
2660 static void __init check_numabalancing_enable(void)
2661 {
2662 	bool numabalancing_default = false;
2663 
2664 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2665 		numabalancing_default = true;
2666 
2667 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2668 	if (numabalancing_override)
2669 		set_numabalancing_state(numabalancing_override == 1);
2670 
2671 	if (num_online_nodes() > 1 && !numabalancing_override) {
2672 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2673 			numabalancing_default ? "Enabling" : "Disabling");
2674 		set_numabalancing_state(numabalancing_default);
2675 	}
2676 }
2677 
2678 static int __init setup_numabalancing(char *str)
2679 {
2680 	int ret = 0;
2681 	if (!str)
2682 		goto out;
2683 
2684 	if (!strcmp(str, "enable")) {
2685 		numabalancing_override = 1;
2686 		ret = 1;
2687 	} else if (!strcmp(str, "disable")) {
2688 		numabalancing_override = -1;
2689 		ret = 1;
2690 	}
2691 out:
2692 	if (!ret)
2693 		pr_warn("Unable to parse numa_balancing=\n");
2694 
2695 	return ret;
2696 }
2697 __setup("numa_balancing=", setup_numabalancing);
2698 #else
2699 static inline void __init check_numabalancing_enable(void)
2700 {
2701 }
2702 #endif /* CONFIG_NUMA_BALANCING */
2703 
2704 /* assumes fs == KERNEL_DS */
2705 void __init numa_policy_init(void)
2706 {
2707 	nodemask_t interleave_nodes;
2708 	unsigned long largest = 0;
2709 	int nid, prefer = 0;
2710 
2711 	policy_cache = kmem_cache_create("numa_policy",
2712 					 sizeof(struct mempolicy),
2713 					 0, SLAB_PANIC, NULL);
2714 
2715 	sn_cache = kmem_cache_create("shared_policy_node",
2716 				     sizeof(struct sp_node),
2717 				     0, SLAB_PANIC, NULL);
2718 
2719 	for_each_node(nid) {
2720 		preferred_node_policy[nid] = (struct mempolicy) {
2721 			.refcnt = ATOMIC_INIT(1),
2722 			.mode = MPOL_PREFERRED,
2723 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2724 			.v = { .preferred_node = nid, },
2725 		};
2726 	}
2727 
2728 	/*
2729 	 * Set interleaving policy for system init. Interleaving is only
2730 	 * enabled across suitably sized nodes (default is >= 16MB), or
2731 	 * fall back to the largest node if they're all smaller.
2732 	 */
2733 	nodes_clear(interleave_nodes);
2734 	for_each_node_state(nid, N_MEMORY) {
2735 		unsigned long total_pages = node_present_pages(nid);
2736 
2737 		/* Preserve the largest node */
2738 		if (largest < total_pages) {
2739 			largest = total_pages;
2740 			prefer = nid;
2741 		}
2742 
2743 		/* Interleave this node? */
2744 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2745 			node_set(nid, interleave_nodes);
2746 	}
2747 
2748 	/* All too small, use the largest */
2749 	if (unlikely(nodes_empty(interleave_nodes)))
2750 		node_set(prefer, interleave_nodes);
2751 
2752 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2753 		pr_err("%s: interleaving failed\n", __func__);
2754 
2755 	check_numabalancing_enable();
2756 }
2757 
2758 /* Reset policy of current process to default */
2759 void numa_default_policy(void)
2760 {
2761 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2762 }
2763 
2764 /*
2765  * Parse and format mempolicy from/to strings
2766  */
2767 
2768 /*
2769  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2770  */
2771 static const char * const policy_modes[] =
2772 {
2773 	[MPOL_DEFAULT]    = "default",
2774 	[MPOL_PREFERRED]  = "prefer",
2775 	[MPOL_BIND]       = "bind",
2776 	[MPOL_INTERLEAVE] = "interleave",
2777 	[MPOL_LOCAL]      = "local",
2778 };
2779 
2780 
2781 #ifdef CONFIG_TMPFS
2782 /**
2783  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2784  * @str:  string containing mempolicy to parse
2785  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2786  *
2787  * Format of input:
2788  *	<mode>[=<flags>][:<nodelist>]
2789  *
2790  * On success, returns 0, else 1
2791  */
2792 int mpol_parse_str(char *str, struct mempolicy **mpol)
2793 {
2794 	struct mempolicy *new = NULL;
2795 	unsigned short mode_flags;
2796 	nodemask_t nodes;
2797 	char *nodelist = strchr(str, ':');
2798 	char *flags = strchr(str, '=');
2799 	int err = 1, mode;
2800 
2801 	if (nodelist) {
2802 		/* NUL-terminate mode or flags string */
2803 		*nodelist++ = '\0';
2804 		if (nodelist_parse(nodelist, nodes))
2805 			goto out;
2806 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2807 			goto out;
2808 	} else
2809 		nodes_clear(nodes);
2810 
2811 	if (flags)
2812 		*flags++ = '\0';	/* terminate mode string */
2813 
2814 	mode = match_string(policy_modes, MPOL_MAX, str);
2815 	if (mode < 0)
2816 		goto out;
2817 
2818 	switch (mode) {
2819 	case MPOL_PREFERRED:
2820 		/*
2821 		 * Insist on a nodelist of one node only
2822 		 */
2823 		if (nodelist) {
2824 			char *rest = nodelist;
2825 			while (isdigit(*rest))
2826 				rest++;
2827 			if (*rest)
2828 				goto out;
2829 		}
2830 		break;
2831 	case MPOL_INTERLEAVE:
2832 		/*
2833 		 * Default to online nodes with memory if no nodelist
2834 		 */
2835 		if (!nodelist)
2836 			nodes = node_states[N_MEMORY];
2837 		break;
2838 	case MPOL_LOCAL:
2839 		/*
2840 		 * Don't allow a nodelist;  mpol_new() checks flags
2841 		 */
2842 		if (nodelist)
2843 			goto out;
2844 		mode = MPOL_PREFERRED;
2845 		break;
2846 	case MPOL_DEFAULT:
2847 		/*
2848 		 * Insist on a empty nodelist
2849 		 */
2850 		if (!nodelist)
2851 			err = 0;
2852 		goto out;
2853 	case MPOL_BIND:
2854 		/*
2855 		 * Insist on a nodelist
2856 		 */
2857 		if (!nodelist)
2858 			goto out;
2859 	}
2860 
2861 	mode_flags = 0;
2862 	if (flags) {
2863 		/*
2864 		 * Currently, we only support two mutually exclusive
2865 		 * mode flags.
2866 		 */
2867 		if (!strcmp(flags, "static"))
2868 			mode_flags |= MPOL_F_STATIC_NODES;
2869 		else if (!strcmp(flags, "relative"))
2870 			mode_flags |= MPOL_F_RELATIVE_NODES;
2871 		else
2872 			goto out;
2873 	}
2874 
2875 	new = mpol_new(mode, mode_flags, &nodes);
2876 	if (IS_ERR(new))
2877 		goto out;
2878 
2879 	/*
2880 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2881 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2882 	 */
2883 	if (mode != MPOL_PREFERRED)
2884 		new->v.nodes = nodes;
2885 	else if (nodelist)
2886 		new->v.preferred_node = first_node(nodes);
2887 	else
2888 		new->flags |= MPOL_F_LOCAL;
2889 
2890 	/*
2891 	 * Save nodes for contextualization: this will be used to "clone"
2892 	 * the mempolicy in a specific context [cpuset] at a later time.
2893 	 */
2894 	new->w.user_nodemask = nodes;
2895 
2896 	err = 0;
2897 
2898 out:
2899 	/* Restore string for error message */
2900 	if (nodelist)
2901 		*--nodelist = ':';
2902 	if (flags)
2903 		*--flags = '=';
2904 	if (!err)
2905 		*mpol = new;
2906 	return err;
2907 }
2908 #endif /* CONFIG_TMPFS */
2909 
2910 /**
2911  * mpol_to_str - format a mempolicy structure for printing
2912  * @buffer:  to contain formatted mempolicy string
2913  * @maxlen:  length of @buffer
2914  * @pol:  pointer to mempolicy to be formatted
2915  *
2916  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2917  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2918  * longest flag, "relative", and to display at least a few node ids.
2919  */
2920 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2921 {
2922 	char *p = buffer;
2923 	nodemask_t nodes = NODE_MASK_NONE;
2924 	unsigned short mode = MPOL_DEFAULT;
2925 	unsigned short flags = 0;
2926 
2927 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2928 		mode = pol->mode;
2929 		flags = pol->flags;
2930 	}
2931 
2932 	switch (mode) {
2933 	case MPOL_DEFAULT:
2934 		break;
2935 	case MPOL_PREFERRED:
2936 		if (flags & MPOL_F_LOCAL)
2937 			mode = MPOL_LOCAL;
2938 		else
2939 			node_set(pol->v.preferred_node, nodes);
2940 		break;
2941 	case MPOL_BIND:
2942 	case MPOL_INTERLEAVE:
2943 		nodes = pol->v.nodes;
2944 		break;
2945 	default:
2946 		WARN_ON_ONCE(1);
2947 		snprintf(p, maxlen, "unknown");
2948 		return;
2949 	}
2950 
2951 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2952 
2953 	if (flags & MPOL_MODE_FLAGS) {
2954 		p += snprintf(p, buffer + maxlen - p, "=");
2955 
2956 		/*
2957 		 * Currently, the only defined flags are mutually exclusive
2958 		 */
2959 		if (flags & MPOL_F_STATIC_NODES)
2960 			p += snprintf(p, buffer + maxlen - p, "static");
2961 		else if (flags & MPOL_F_RELATIVE_NODES)
2962 			p += snprintf(p, buffer + maxlen - p, "relative");
2963 	}
2964 
2965 	if (!nodes_empty(nodes))
2966 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2967 			       nodemask_pr_args(&nodes));
2968 }
2969