xref: /openbmc/linux/mm/mempolicy.c (revision 47ebd031)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the folio's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_folio_required(struct folio *folio,
436 					struct queue_pages *qp)
437 {
438 	int nid = folio_nid(folio);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_folios_pmd() has three possible return values:
446  * 0 - folios are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing folio was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct folio *folio;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	folio = pfn_folio(pmd_pfn(*pmd));
468 	if (is_huge_zero_page(&folio->page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_folio_required(folio, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to folio migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_folio_add(folio, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_folios_pte_range() has three possible return values:
495  * 0 - folios are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct folio *folio;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		folio = vm_normal_folio(vma, addr, *pte);
525 		if (!folio || folio_is_zone_device(folio))
526 			continue;
527 		/*
528 		 * vm_normal_folio() filters out zero pages, but there might
529 		 * still be reserved folios to skip, perhaps in a VDSO.
530 		 */
531 		if (folio_test_reserved(folio))
532 			continue;
533 		if (!queue_folio_required(folio, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_folio_add(folio, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct folio *folio;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	folio = pfn_folio(pte_pfn(entry));
578 	if (!queue_folio_required(folio, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced folio and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced folio but allow migrating folios which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 	 * is shared it is likely not worth migrating.
604 	 *
605 	 * To check if the folio is shared, ideally we want to make sure
606 	 * every page is mapped to the same process. Doing that is very
607 	 * expensive, so check the estimated mapcount of the folio instead.
608 	 */
609 	if (flags & (MPOL_MF_MOVE_ALL) ||
610 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 	     !hugetlb_pmd_shared(pte))) {
612 		if (!isolate_hugetlb(folio, qp->pagelist) &&
613 			(flags & MPOL_MF_STRICT))
614 			/*
615 			 * Failed to isolate folio but allow migrating pages
616 			 * which have been queued.
617 			 */
618 			ret = 1;
619 	}
620 unlock:
621 	spin_unlock(ptl);
622 #else
623 	BUG();
624 #endif
625 	return ret;
626 }
627 
628 #ifdef CONFIG_NUMA_BALANCING
629 /*
630  * This is used to mark a range of virtual addresses to be inaccessible.
631  * These are later cleared by a NUMA hinting fault. Depending on these
632  * faults, pages may be migrated for better NUMA placement.
633  *
634  * This is assuming that NUMA faults are handled using PROT_NONE. If
635  * an architecture makes a different choice, it will need further
636  * changes to the core.
637  */
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 			unsigned long addr, unsigned long end)
640 {
641 	struct mmu_gather tlb;
642 	long nr_updated;
643 
644 	tlb_gather_mmu(&tlb, vma->vm_mm);
645 
646 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
647 	if (nr_updated > 0)
648 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
649 
650 	tlb_finish_mmu(&tlb);
651 
652 	return nr_updated;
653 }
654 #else
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 			unsigned long addr, unsigned long end)
657 {
658 	return 0;
659 }
660 #endif /* CONFIG_NUMA_BALANCING */
661 
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 				struct mm_walk *walk)
664 {
665 	struct vm_area_struct *next, *vma = walk->vma;
666 	struct queue_pages *qp = walk->private;
667 	unsigned long endvma = vma->vm_end;
668 	unsigned long flags = qp->flags;
669 
670 	/* range check first */
671 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
672 
673 	if (!qp->first) {
674 		qp->first = vma;
675 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 			(qp->start < vma->vm_start))
677 			/* hole at head side of range */
678 			return -EFAULT;
679 	}
680 	next = find_vma(vma->vm_mm, vma->vm_end);
681 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 		((vma->vm_end < qp->end) &&
683 		(!next || vma->vm_end < next->vm_start)))
684 		/* hole at middle or tail of range */
685 		return -EFAULT;
686 
687 	/*
688 	 * Need check MPOL_MF_STRICT to return -EIO if possible
689 	 * regardless of vma_migratable
690 	 */
691 	if (!vma_migratable(vma) &&
692 	    !(flags & MPOL_MF_STRICT))
693 		return 1;
694 
695 	if (endvma > end)
696 		endvma = end;
697 
698 	if (flags & MPOL_MF_LAZY) {
699 		/* Similar to task_numa_work, skip inaccessible VMAs */
700 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 			!(vma->vm_flags & VM_MIXEDMAP))
702 			change_prot_numa(vma, start, endvma);
703 		return 1;
704 	}
705 
706 	/* queue pages from current vma */
707 	if (flags & MPOL_MF_VALID)
708 		return 0;
709 	return 1;
710 }
711 
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 	.hugetlb_entry		= queue_folios_hugetlb,
714 	.pmd_entry		= queue_folios_pte_range,
715 	.test_walk		= queue_pages_test_walk,
716 };
717 
718 /*
719  * Walk through page tables and collect pages to be migrated.
720  *
721  * If pages found in a given range are on a set of nodes (determined by
722  * @nodes and @flags,) it's isolated and queued to the pagelist which is
723  * passed via @private.
724  *
725  * queue_pages_range() has three possible return values:
726  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
727  *     specified.
728  * 0 - queue pages successfully or no misplaced page.
729  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730  *         memory range specified by nodemask and maxnode points outside
731  *         your accessible address space (-EFAULT)
732  */
733 static int
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 		nodemask_t *nodes, unsigned long flags,
736 		struct list_head *pagelist)
737 {
738 	int err;
739 	struct queue_pages qp = {
740 		.pagelist = pagelist,
741 		.flags = flags,
742 		.nmask = nodes,
743 		.start = start,
744 		.end = end,
745 		.first = NULL,
746 	};
747 
748 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
749 
750 	if (!qp.first)
751 		/* whole range in hole */
752 		err = -EFAULT;
753 
754 	return err;
755 }
756 
757 /*
758  * Apply policy to a single VMA
759  * This must be called with the mmap_lock held for writing.
760  */
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 						struct mempolicy *pol)
763 {
764 	int err;
765 	struct mempolicy *old;
766 	struct mempolicy *new;
767 
768 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 		 vma->vm_ops, vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
772 
773 	new = mpol_dup(pol);
774 	if (IS_ERR(new))
775 		return PTR_ERR(new);
776 
777 	if (vma->vm_ops && vma->vm_ops->set_policy) {
778 		err = vma->vm_ops->set_policy(vma, new);
779 		if (err)
780 			goto err_out;
781 	}
782 
783 	old = vma->vm_policy;
784 	vma->vm_policy = new; /* protected by mmap_lock */
785 	mpol_put(old);
786 
787 	return 0;
788  err_out:
789 	mpol_put(new);
790 	return err;
791 }
792 
793 /* Split or merge the VMA (if required) and apply the new policy */
794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
795 		struct vm_area_struct **prev, unsigned long start,
796 		unsigned long end, struct mempolicy *new_pol)
797 {
798 	struct vm_area_struct *merged;
799 	unsigned long vmstart, vmend;
800 	pgoff_t pgoff;
801 	int err;
802 
803 	vmend = min(end, vma->vm_end);
804 	if (start > vma->vm_start) {
805 		*prev = vma;
806 		vmstart = start;
807 	} else {
808 		vmstart = vma->vm_start;
809 	}
810 
811 	if (mpol_equal(vma_policy(vma), new_pol))
812 		return 0;
813 
814 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
815 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
816 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
817 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
818 	if (merged) {
819 		*prev = merged;
820 		return vma_replace_policy(merged, new_pol);
821 	}
822 
823 	if (vma->vm_start != vmstart) {
824 		err = split_vma(vmi, vma, vmstart, 1);
825 		if (err)
826 			return err;
827 	}
828 
829 	if (vma->vm_end != vmend) {
830 		err = split_vma(vmi, vma, vmend, 0);
831 		if (err)
832 			return err;
833 	}
834 
835 	*prev = vma;
836 	return vma_replace_policy(vma, new_pol);
837 }
838 
839 /* Set the process memory policy */
840 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
841 			     nodemask_t *nodes)
842 {
843 	struct mempolicy *new, *old;
844 	NODEMASK_SCRATCH(scratch);
845 	int ret;
846 
847 	if (!scratch)
848 		return -ENOMEM;
849 
850 	new = mpol_new(mode, flags, nodes);
851 	if (IS_ERR(new)) {
852 		ret = PTR_ERR(new);
853 		goto out;
854 	}
855 
856 	task_lock(current);
857 	ret = mpol_set_nodemask(new, nodes, scratch);
858 	if (ret) {
859 		task_unlock(current);
860 		mpol_put(new);
861 		goto out;
862 	}
863 
864 	old = current->mempolicy;
865 	current->mempolicy = new;
866 	if (new && new->mode == MPOL_INTERLEAVE)
867 		current->il_prev = MAX_NUMNODES-1;
868 	task_unlock(current);
869 	mpol_put(old);
870 	ret = 0;
871 out:
872 	NODEMASK_SCRATCH_FREE(scratch);
873 	return ret;
874 }
875 
876 /*
877  * Return nodemask for policy for get_mempolicy() query
878  *
879  * Called with task's alloc_lock held
880  */
881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
882 {
883 	nodes_clear(*nodes);
884 	if (p == &default_policy)
885 		return;
886 
887 	switch (p->mode) {
888 	case MPOL_BIND:
889 	case MPOL_INTERLEAVE:
890 	case MPOL_PREFERRED:
891 	case MPOL_PREFERRED_MANY:
892 		*nodes = p->nodes;
893 		break;
894 	case MPOL_LOCAL:
895 		/* return empty node mask for local allocation */
896 		break;
897 	default:
898 		BUG();
899 	}
900 }
901 
902 static int lookup_node(struct mm_struct *mm, unsigned long addr)
903 {
904 	struct page *p = NULL;
905 	int ret;
906 
907 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
908 	if (ret > 0) {
909 		ret = page_to_nid(p);
910 		put_page(p);
911 	}
912 	return ret;
913 }
914 
915 /* Retrieve NUMA policy */
916 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
917 			     unsigned long addr, unsigned long flags)
918 {
919 	int err;
920 	struct mm_struct *mm = current->mm;
921 	struct vm_area_struct *vma = NULL;
922 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
923 
924 	if (flags &
925 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
926 		return -EINVAL;
927 
928 	if (flags & MPOL_F_MEMS_ALLOWED) {
929 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
930 			return -EINVAL;
931 		*policy = 0;	/* just so it's initialized */
932 		task_lock(current);
933 		*nmask  = cpuset_current_mems_allowed;
934 		task_unlock(current);
935 		return 0;
936 	}
937 
938 	if (flags & MPOL_F_ADDR) {
939 		/*
940 		 * Do NOT fall back to task policy if the
941 		 * vma/shared policy at addr is NULL.  We
942 		 * want to return MPOL_DEFAULT in this case.
943 		 */
944 		mmap_read_lock(mm);
945 		vma = vma_lookup(mm, addr);
946 		if (!vma) {
947 			mmap_read_unlock(mm);
948 			return -EFAULT;
949 		}
950 		if (vma->vm_ops && vma->vm_ops->get_policy)
951 			pol = vma->vm_ops->get_policy(vma, addr);
952 		else
953 			pol = vma->vm_policy;
954 	} else if (addr)
955 		return -EINVAL;
956 
957 	if (!pol)
958 		pol = &default_policy;	/* indicates default behavior */
959 
960 	if (flags & MPOL_F_NODE) {
961 		if (flags & MPOL_F_ADDR) {
962 			/*
963 			 * Take a refcount on the mpol, because we are about to
964 			 * drop the mmap_lock, after which only "pol" remains
965 			 * valid, "vma" is stale.
966 			 */
967 			pol_refcount = pol;
968 			vma = NULL;
969 			mpol_get(pol);
970 			mmap_read_unlock(mm);
971 			err = lookup_node(mm, addr);
972 			if (err < 0)
973 				goto out;
974 			*policy = err;
975 		} else if (pol == current->mempolicy &&
976 				pol->mode == MPOL_INTERLEAVE) {
977 			*policy = next_node_in(current->il_prev, pol->nodes);
978 		} else {
979 			err = -EINVAL;
980 			goto out;
981 		}
982 	} else {
983 		*policy = pol == &default_policy ? MPOL_DEFAULT :
984 						pol->mode;
985 		/*
986 		 * Internal mempolicy flags must be masked off before exposing
987 		 * the policy to userspace.
988 		 */
989 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
990 	}
991 
992 	err = 0;
993 	if (nmask) {
994 		if (mpol_store_user_nodemask(pol)) {
995 			*nmask = pol->w.user_nodemask;
996 		} else {
997 			task_lock(current);
998 			get_policy_nodemask(pol, nmask);
999 			task_unlock(current);
1000 		}
1001 	}
1002 
1003  out:
1004 	mpol_cond_put(pol);
1005 	if (vma)
1006 		mmap_read_unlock(mm);
1007 	if (pol_refcount)
1008 		mpol_put(pol_refcount);
1009 	return err;
1010 }
1011 
1012 #ifdef CONFIG_MIGRATION
1013 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1014 				unsigned long flags)
1015 {
1016 	/*
1017 	 * We try to migrate only unshared folios. If it is shared it
1018 	 * is likely not worth migrating.
1019 	 *
1020 	 * To check if the folio is shared, ideally we want to make sure
1021 	 * every page is mapped to the same process. Doing that is very
1022 	 * expensive, so check the estimated mapcount of the folio instead.
1023 	 */
1024 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1025 		if (folio_isolate_lru(folio)) {
1026 			list_add_tail(&folio->lru, foliolist);
1027 			node_stat_mod_folio(folio,
1028 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1029 				folio_nr_pages(folio));
1030 		} else if (flags & MPOL_MF_STRICT) {
1031 			/*
1032 			 * Non-movable folio may reach here.  And, there may be
1033 			 * temporary off LRU folios or non-LRU movable folios.
1034 			 * Treat them as unmovable folios since they can't be
1035 			 * isolated, so they can't be moved at the moment.  It
1036 			 * should return -EIO for this case too.
1037 			 */
1038 			return -EIO;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Migrate pages from one node to a target node.
1047  * Returns error or the number of pages not migrated.
1048  */
1049 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1050 			   int flags)
1051 {
1052 	nodemask_t nmask;
1053 	struct vm_area_struct *vma;
1054 	LIST_HEAD(pagelist);
1055 	int err = 0;
1056 	struct migration_target_control mtc = {
1057 		.nid = dest,
1058 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1059 	};
1060 
1061 	nodes_clear(nmask);
1062 	node_set(source, nmask);
1063 
1064 	/*
1065 	 * This does not "check" the range but isolates all pages that
1066 	 * need migration.  Between passing in the full user address
1067 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1068 	 */
1069 	vma = find_vma(mm, 0);
1070 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1071 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1072 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1073 
1074 	if (!list_empty(&pagelist)) {
1075 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1076 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1077 		if (err)
1078 			putback_movable_pages(&pagelist);
1079 	}
1080 
1081 	return err;
1082 }
1083 
1084 /*
1085  * Move pages between the two nodesets so as to preserve the physical
1086  * layout as much as possible.
1087  *
1088  * Returns the number of page that could not be moved.
1089  */
1090 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1091 		     const nodemask_t *to, int flags)
1092 {
1093 	int busy = 0;
1094 	int err = 0;
1095 	nodemask_t tmp;
1096 
1097 	lru_cache_disable();
1098 
1099 	mmap_read_lock(mm);
1100 
1101 	/*
1102 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1103 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1104 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1105 	 * The pair of nodemasks 'to' and 'from' define the map.
1106 	 *
1107 	 * If no pair of bits is found that way, fallback to picking some
1108 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1109 	 * 'source' and 'dest' bits are the same, this represents a node
1110 	 * that will be migrating to itself, so no pages need move.
1111 	 *
1112 	 * If no bits are left in 'tmp', or if all remaining bits left
1113 	 * in 'tmp' correspond to the same bit in 'to', return false
1114 	 * (nothing left to migrate).
1115 	 *
1116 	 * This lets us pick a pair of nodes to migrate between, such that
1117 	 * if possible the dest node is not already occupied by some other
1118 	 * source node, minimizing the risk of overloading the memory on a
1119 	 * node that would happen if we migrated incoming memory to a node
1120 	 * before migrating outgoing memory source that same node.
1121 	 *
1122 	 * A single scan of tmp is sufficient.  As we go, we remember the
1123 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1124 	 * that not only moved, but what's better, moved to an empty slot
1125 	 * (d is not set in tmp), then we break out then, with that pair.
1126 	 * Otherwise when we finish scanning from_tmp, we at least have the
1127 	 * most recent <s, d> pair that moved.  If we get all the way through
1128 	 * the scan of tmp without finding any node that moved, much less
1129 	 * moved to an empty node, then there is nothing left worth migrating.
1130 	 */
1131 
1132 	tmp = *from;
1133 	while (!nodes_empty(tmp)) {
1134 		int s, d;
1135 		int source = NUMA_NO_NODE;
1136 		int dest = 0;
1137 
1138 		for_each_node_mask(s, tmp) {
1139 
1140 			/*
1141 			 * do_migrate_pages() tries to maintain the relative
1142 			 * node relationship of the pages established between
1143 			 * threads and memory areas.
1144                          *
1145 			 * However if the number of source nodes is not equal to
1146 			 * the number of destination nodes we can not preserve
1147 			 * this node relative relationship.  In that case, skip
1148 			 * copying memory from a node that is in the destination
1149 			 * mask.
1150 			 *
1151 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1152 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1153 			 */
1154 
1155 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1156 						(node_isset(s, *to)))
1157 				continue;
1158 
1159 			d = node_remap(s, *from, *to);
1160 			if (s == d)
1161 				continue;
1162 
1163 			source = s;	/* Node moved. Memorize */
1164 			dest = d;
1165 
1166 			/* dest not in remaining from nodes? */
1167 			if (!node_isset(dest, tmp))
1168 				break;
1169 		}
1170 		if (source == NUMA_NO_NODE)
1171 			break;
1172 
1173 		node_clear(source, tmp);
1174 		err = migrate_to_node(mm, source, dest, flags);
1175 		if (err > 0)
1176 			busy += err;
1177 		if (err < 0)
1178 			break;
1179 	}
1180 	mmap_read_unlock(mm);
1181 
1182 	lru_cache_enable();
1183 	if (err < 0)
1184 		return err;
1185 	return busy;
1186 
1187 }
1188 
1189 /*
1190  * Allocate a new page for page migration based on vma policy.
1191  * Start by assuming the page is mapped by the same vma as contains @start.
1192  * Search forward from there, if not.  N.B., this assumes that the
1193  * list of pages handed to migrate_pages()--which is how we get here--
1194  * is in virtual address order.
1195  */
1196 static struct page *new_page(struct page *page, unsigned long start)
1197 {
1198 	struct folio *dst, *src = page_folio(page);
1199 	struct vm_area_struct *vma;
1200 	unsigned long address;
1201 	VMA_ITERATOR(vmi, current->mm, start);
1202 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1203 
1204 	for_each_vma(vmi, vma) {
1205 		address = page_address_in_vma(page, vma);
1206 		if (address != -EFAULT)
1207 			break;
1208 	}
1209 
1210 	if (folio_test_hugetlb(src)) {
1211 		dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1212 				vma, address);
1213 		return &dst->page;
1214 	}
1215 
1216 	if (folio_test_large(src))
1217 		gfp = GFP_TRANSHUGE;
1218 
1219 	/*
1220 	 * if !vma, vma_alloc_folio() will use task or system default policy
1221 	 */
1222 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1223 			folio_test_large(src));
1224 	return &dst->page;
1225 }
1226 #else
1227 
1228 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1229 				unsigned long flags)
1230 {
1231 	return -EIO;
1232 }
1233 
1234 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1235 		     const nodemask_t *to, int flags)
1236 {
1237 	return -ENOSYS;
1238 }
1239 
1240 static struct page *new_page(struct page *page, unsigned long start)
1241 {
1242 	return NULL;
1243 }
1244 #endif
1245 
1246 static long do_mbind(unsigned long start, unsigned long len,
1247 		     unsigned short mode, unsigned short mode_flags,
1248 		     nodemask_t *nmask, unsigned long flags)
1249 {
1250 	struct mm_struct *mm = current->mm;
1251 	struct vm_area_struct *vma, *prev;
1252 	struct vma_iterator vmi;
1253 	struct mempolicy *new;
1254 	unsigned long end;
1255 	int err;
1256 	int ret;
1257 	LIST_HEAD(pagelist);
1258 
1259 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1260 		return -EINVAL;
1261 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1262 		return -EPERM;
1263 
1264 	if (start & ~PAGE_MASK)
1265 		return -EINVAL;
1266 
1267 	if (mode == MPOL_DEFAULT)
1268 		flags &= ~MPOL_MF_STRICT;
1269 
1270 	len = PAGE_ALIGN(len);
1271 	end = start + len;
1272 
1273 	if (end < start)
1274 		return -EINVAL;
1275 	if (end == start)
1276 		return 0;
1277 
1278 	new = mpol_new(mode, mode_flags, nmask);
1279 	if (IS_ERR(new))
1280 		return PTR_ERR(new);
1281 
1282 	if (flags & MPOL_MF_LAZY)
1283 		new->flags |= MPOL_F_MOF;
1284 
1285 	/*
1286 	 * If we are using the default policy then operation
1287 	 * on discontinuous address spaces is okay after all
1288 	 */
1289 	if (!new)
1290 		flags |= MPOL_MF_DISCONTIG_OK;
1291 
1292 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1293 		 start, start + len, mode, mode_flags,
1294 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1295 
1296 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1297 
1298 		lru_cache_disable();
1299 	}
1300 	{
1301 		NODEMASK_SCRATCH(scratch);
1302 		if (scratch) {
1303 			mmap_write_lock(mm);
1304 			err = mpol_set_nodemask(new, nmask, scratch);
1305 			if (err)
1306 				mmap_write_unlock(mm);
1307 		} else
1308 			err = -ENOMEM;
1309 		NODEMASK_SCRATCH_FREE(scratch);
1310 	}
1311 	if (err)
1312 		goto mpol_out;
1313 
1314 	ret = queue_pages_range(mm, start, end, nmask,
1315 			  flags | MPOL_MF_INVERT, &pagelist);
1316 
1317 	if (ret < 0) {
1318 		err = ret;
1319 		goto up_out;
1320 	}
1321 
1322 	vma_iter_init(&vmi, mm, start);
1323 	prev = vma_prev(&vmi);
1324 	for_each_vma_range(vmi, vma, end) {
1325 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1326 		if (err)
1327 			break;
1328 	}
1329 
1330 	if (!err) {
1331 		int nr_failed = 0;
1332 
1333 		if (!list_empty(&pagelist)) {
1334 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1335 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1336 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1337 			if (nr_failed)
1338 				putback_movable_pages(&pagelist);
1339 		}
1340 
1341 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1342 			err = -EIO;
1343 	} else {
1344 up_out:
1345 		if (!list_empty(&pagelist))
1346 			putback_movable_pages(&pagelist);
1347 	}
1348 
1349 	mmap_write_unlock(mm);
1350 mpol_out:
1351 	mpol_put(new);
1352 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1353 		lru_cache_enable();
1354 	return err;
1355 }
1356 
1357 /*
1358  * User space interface with variable sized bitmaps for nodelists.
1359  */
1360 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1361 		      unsigned long maxnode)
1362 {
1363 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1364 	int ret;
1365 
1366 	if (in_compat_syscall())
1367 		ret = compat_get_bitmap(mask,
1368 					(const compat_ulong_t __user *)nmask,
1369 					maxnode);
1370 	else
1371 		ret = copy_from_user(mask, nmask,
1372 				     nlongs * sizeof(unsigned long));
1373 
1374 	if (ret)
1375 		return -EFAULT;
1376 
1377 	if (maxnode % BITS_PER_LONG)
1378 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1379 
1380 	return 0;
1381 }
1382 
1383 /* Copy a node mask from user space. */
1384 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1385 		     unsigned long maxnode)
1386 {
1387 	--maxnode;
1388 	nodes_clear(*nodes);
1389 	if (maxnode == 0 || !nmask)
1390 		return 0;
1391 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1392 		return -EINVAL;
1393 
1394 	/*
1395 	 * When the user specified more nodes than supported just check
1396 	 * if the non supported part is all zero, one word at a time,
1397 	 * starting at the end.
1398 	 */
1399 	while (maxnode > MAX_NUMNODES) {
1400 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1401 		unsigned long t;
1402 
1403 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1404 			return -EFAULT;
1405 
1406 		if (maxnode - bits >= MAX_NUMNODES) {
1407 			maxnode -= bits;
1408 		} else {
1409 			maxnode = MAX_NUMNODES;
1410 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1411 		}
1412 		if (t)
1413 			return -EINVAL;
1414 	}
1415 
1416 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1417 }
1418 
1419 /* Copy a kernel node mask to user space */
1420 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1421 			      nodemask_t *nodes)
1422 {
1423 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1424 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1425 	bool compat = in_compat_syscall();
1426 
1427 	if (compat)
1428 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1429 
1430 	if (copy > nbytes) {
1431 		if (copy > PAGE_SIZE)
1432 			return -EINVAL;
1433 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1434 			return -EFAULT;
1435 		copy = nbytes;
1436 		maxnode = nr_node_ids;
1437 	}
1438 
1439 	if (compat)
1440 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1441 					 nodes_addr(*nodes), maxnode);
1442 
1443 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1444 }
1445 
1446 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1447 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1448 {
1449 	*flags = *mode & MPOL_MODE_FLAGS;
1450 	*mode &= ~MPOL_MODE_FLAGS;
1451 
1452 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1453 		return -EINVAL;
1454 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1455 		return -EINVAL;
1456 	if (*flags & MPOL_F_NUMA_BALANCING) {
1457 		if (*mode != MPOL_BIND)
1458 			return -EINVAL;
1459 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1460 	}
1461 	return 0;
1462 }
1463 
1464 static long kernel_mbind(unsigned long start, unsigned long len,
1465 			 unsigned long mode, const unsigned long __user *nmask,
1466 			 unsigned long maxnode, unsigned int flags)
1467 {
1468 	unsigned short mode_flags;
1469 	nodemask_t nodes;
1470 	int lmode = mode;
1471 	int err;
1472 
1473 	start = untagged_addr(start);
1474 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1475 	if (err)
1476 		return err;
1477 
1478 	err = get_nodes(&nodes, nmask, maxnode);
1479 	if (err)
1480 		return err;
1481 
1482 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1483 }
1484 
1485 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1486 		unsigned long, home_node, unsigned long, flags)
1487 {
1488 	struct mm_struct *mm = current->mm;
1489 	struct vm_area_struct *vma, *prev;
1490 	struct mempolicy *new, *old;
1491 	unsigned long end;
1492 	int err = -ENOENT;
1493 	VMA_ITERATOR(vmi, mm, start);
1494 
1495 	start = untagged_addr(start);
1496 	if (start & ~PAGE_MASK)
1497 		return -EINVAL;
1498 	/*
1499 	 * flags is used for future extension if any.
1500 	 */
1501 	if (flags != 0)
1502 		return -EINVAL;
1503 
1504 	/*
1505 	 * Check home_node is online to avoid accessing uninitialized
1506 	 * NODE_DATA.
1507 	 */
1508 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1509 		return -EINVAL;
1510 
1511 	len = PAGE_ALIGN(len);
1512 	end = start + len;
1513 
1514 	if (end < start)
1515 		return -EINVAL;
1516 	if (end == start)
1517 		return 0;
1518 	mmap_write_lock(mm);
1519 	prev = vma_prev(&vmi);
1520 	for_each_vma_range(vmi, vma, end) {
1521 		/*
1522 		 * If any vma in the range got policy other than MPOL_BIND
1523 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1524 		 * the home node for vmas we already updated before.
1525 		 */
1526 		old = vma_policy(vma);
1527 		if (!old)
1528 			continue;
1529 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1530 			err = -EOPNOTSUPP;
1531 			break;
1532 		}
1533 		new = mpol_dup(old);
1534 		if (IS_ERR(new)) {
1535 			err = PTR_ERR(new);
1536 			break;
1537 		}
1538 
1539 		new->home_node = home_node;
1540 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1541 		mpol_put(new);
1542 		if (err)
1543 			break;
1544 	}
1545 	mmap_write_unlock(mm);
1546 	return err;
1547 }
1548 
1549 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1550 		unsigned long, mode, const unsigned long __user *, nmask,
1551 		unsigned long, maxnode, unsigned int, flags)
1552 {
1553 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1554 }
1555 
1556 /* Set the process memory policy */
1557 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1558 				 unsigned long maxnode)
1559 {
1560 	unsigned short mode_flags;
1561 	nodemask_t nodes;
1562 	int lmode = mode;
1563 	int err;
1564 
1565 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1566 	if (err)
1567 		return err;
1568 
1569 	err = get_nodes(&nodes, nmask, maxnode);
1570 	if (err)
1571 		return err;
1572 
1573 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1574 }
1575 
1576 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1577 		unsigned long, maxnode)
1578 {
1579 	return kernel_set_mempolicy(mode, nmask, maxnode);
1580 }
1581 
1582 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1583 				const unsigned long __user *old_nodes,
1584 				const unsigned long __user *new_nodes)
1585 {
1586 	struct mm_struct *mm = NULL;
1587 	struct task_struct *task;
1588 	nodemask_t task_nodes;
1589 	int err;
1590 	nodemask_t *old;
1591 	nodemask_t *new;
1592 	NODEMASK_SCRATCH(scratch);
1593 
1594 	if (!scratch)
1595 		return -ENOMEM;
1596 
1597 	old = &scratch->mask1;
1598 	new = &scratch->mask2;
1599 
1600 	err = get_nodes(old, old_nodes, maxnode);
1601 	if (err)
1602 		goto out;
1603 
1604 	err = get_nodes(new, new_nodes, maxnode);
1605 	if (err)
1606 		goto out;
1607 
1608 	/* Find the mm_struct */
1609 	rcu_read_lock();
1610 	task = pid ? find_task_by_vpid(pid) : current;
1611 	if (!task) {
1612 		rcu_read_unlock();
1613 		err = -ESRCH;
1614 		goto out;
1615 	}
1616 	get_task_struct(task);
1617 
1618 	err = -EINVAL;
1619 
1620 	/*
1621 	 * Check if this process has the right to modify the specified process.
1622 	 * Use the regular "ptrace_may_access()" checks.
1623 	 */
1624 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1625 		rcu_read_unlock();
1626 		err = -EPERM;
1627 		goto out_put;
1628 	}
1629 	rcu_read_unlock();
1630 
1631 	task_nodes = cpuset_mems_allowed(task);
1632 	/* Is the user allowed to access the target nodes? */
1633 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1634 		err = -EPERM;
1635 		goto out_put;
1636 	}
1637 
1638 	task_nodes = cpuset_mems_allowed(current);
1639 	nodes_and(*new, *new, task_nodes);
1640 	if (nodes_empty(*new))
1641 		goto out_put;
1642 
1643 	err = security_task_movememory(task);
1644 	if (err)
1645 		goto out_put;
1646 
1647 	mm = get_task_mm(task);
1648 	put_task_struct(task);
1649 
1650 	if (!mm) {
1651 		err = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	err = do_migrate_pages(mm, old, new,
1656 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1657 
1658 	mmput(mm);
1659 out:
1660 	NODEMASK_SCRATCH_FREE(scratch);
1661 
1662 	return err;
1663 
1664 out_put:
1665 	put_task_struct(task);
1666 	goto out;
1667 
1668 }
1669 
1670 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1671 		const unsigned long __user *, old_nodes,
1672 		const unsigned long __user *, new_nodes)
1673 {
1674 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1675 }
1676 
1677 
1678 /* Retrieve NUMA policy */
1679 static int kernel_get_mempolicy(int __user *policy,
1680 				unsigned long __user *nmask,
1681 				unsigned long maxnode,
1682 				unsigned long addr,
1683 				unsigned long flags)
1684 {
1685 	int err;
1686 	int pval;
1687 	nodemask_t nodes;
1688 
1689 	if (nmask != NULL && maxnode < nr_node_ids)
1690 		return -EINVAL;
1691 
1692 	addr = untagged_addr(addr);
1693 
1694 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1695 
1696 	if (err)
1697 		return err;
1698 
1699 	if (policy && put_user(pval, policy))
1700 		return -EFAULT;
1701 
1702 	if (nmask)
1703 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1704 
1705 	return err;
1706 }
1707 
1708 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1709 		unsigned long __user *, nmask, unsigned long, maxnode,
1710 		unsigned long, addr, unsigned long, flags)
1711 {
1712 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1713 }
1714 
1715 bool vma_migratable(struct vm_area_struct *vma)
1716 {
1717 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1718 		return false;
1719 
1720 	/*
1721 	 * DAX device mappings require predictable access latency, so avoid
1722 	 * incurring periodic faults.
1723 	 */
1724 	if (vma_is_dax(vma))
1725 		return false;
1726 
1727 	if (is_vm_hugetlb_page(vma) &&
1728 		!hugepage_migration_supported(hstate_vma(vma)))
1729 		return false;
1730 
1731 	/*
1732 	 * Migration allocates pages in the highest zone. If we cannot
1733 	 * do so then migration (at least from node to node) is not
1734 	 * possible.
1735 	 */
1736 	if (vma->vm_file &&
1737 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1738 			< policy_zone)
1739 		return false;
1740 	return true;
1741 }
1742 
1743 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1744 						unsigned long addr)
1745 {
1746 	struct mempolicy *pol = NULL;
1747 
1748 	if (vma) {
1749 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1750 			pol = vma->vm_ops->get_policy(vma, addr);
1751 		} else if (vma->vm_policy) {
1752 			pol = vma->vm_policy;
1753 
1754 			/*
1755 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1756 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1757 			 * count on these policies which will be dropped by
1758 			 * mpol_cond_put() later
1759 			 */
1760 			if (mpol_needs_cond_ref(pol))
1761 				mpol_get(pol);
1762 		}
1763 	}
1764 
1765 	return pol;
1766 }
1767 
1768 /*
1769  * get_vma_policy(@vma, @addr)
1770  * @vma: virtual memory area whose policy is sought
1771  * @addr: address in @vma for shared policy lookup
1772  *
1773  * Returns effective policy for a VMA at specified address.
1774  * Falls back to current->mempolicy or system default policy, as necessary.
1775  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1776  * count--added by the get_policy() vm_op, as appropriate--to protect against
1777  * freeing by another task.  It is the caller's responsibility to free the
1778  * extra reference for shared policies.
1779  */
1780 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1781 						unsigned long addr)
1782 {
1783 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1784 
1785 	if (!pol)
1786 		pol = get_task_policy(current);
1787 
1788 	return pol;
1789 }
1790 
1791 bool vma_policy_mof(struct vm_area_struct *vma)
1792 {
1793 	struct mempolicy *pol;
1794 
1795 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1796 		bool ret = false;
1797 
1798 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1799 		if (pol && (pol->flags & MPOL_F_MOF))
1800 			ret = true;
1801 		mpol_cond_put(pol);
1802 
1803 		return ret;
1804 	}
1805 
1806 	pol = vma->vm_policy;
1807 	if (!pol)
1808 		pol = get_task_policy(current);
1809 
1810 	return pol->flags & MPOL_F_MOF;
1811 }
1812 
1813 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1814 {
1815 	enum zone_type dynamic_policy_zone = policy_zone;
1816 
1817 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1818 
1819 	/*
1820 	 * if policy->nodes has movable memory only,
1821 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1822 	 *
1823 	 * policy->nodes is intersect with node_states[N_MEMORY].
1824 	 * so if the following test fails, it implies
1825 	 * policy->nodes has movable memory only.
1826 	 */
1827 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1828 		dynamic_policy_zone = ZONE_MOVABLE;
1829 
1830 	return zone >= dynamic_policy_zone;
1831 }
1832 
1833 /*
1834  * Return a nodemask representing a mempolicy for filtering nodes for
1835  * page allocation
1836  */
1837 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1838 {
1839 	int mode = policy->mode;
1840 
1841 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1842 	if (unlikely(mode == MPOL_BIND) &&
1843 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1844 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1845 		return &policy->nodes;
1846 
1847 	if (mode == MPOL_PREFERRED_MANY)
1848 		return &policy->nodes;
1849 
1850 	return NULL;
1851 }
1852 
1853 /*
1854  * Return the  preferred node id for 'prefer' mempolicy, and return
1855  * the given id for all other policies.
1856  *
1857  * policy_node() is always coupled with policy_nodemask(), which
1858  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1859  */
1860 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1861 {
1862 	if (policy->mode == MPOL_PREFERRED) {
1863 		nd = first_node(policy->nodes);
1864 	} else {
1865 		/*
1866 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1867 		 * because we might easily break the expectation to stay on the
1868 		 * requested node and not break the policy.
1869 		 */
1870 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1871 	}
1872 
1873 	if ((policy->mode == MPOL_BIND ||
1874 	     policy->mode == MPOL_PREFERRED_MANY) &&
1875 	    policy->home_node != NUMA_NO_NODE)
1876 		return policy->home_node;
1877 
1878 	return nd;
1879 }
1880 
1881 /* Do dynamic interleaving for a process */
1882 static unsigned interleave_nodes(struct mempolicy *policy)
1883 {
1884 	unsigned next;
1885 	struct task_struct *me = current;
1886 
1887 	next = next_node_in(me->il_prev, policy->nodes);
1888 	if (next < MAX_NUMNODES)
1889 		me->il_prev = next;
1890 	return next;
1891 }
1892 
1893 /*
1894  * Depending on the memory policy provide a node from which to allocate the
1895  * next slab entry.
1896  */
1897 unsigned int mempolicy_slab_node(void)
1898 {
1899 	struct mempolicy *policy;
1900 	int node = numa_mem_id();
1901 
1902 	if (!in_task())
1903 		return node;
1904 
1905 	policy = current->mempolicy;
1906 	if (!policy)
1907 		return node;
1908 
1909 	switch (policy->mode) {
1910 	case MPOL_PREFERRED:
1911 		return first_node(policy->nodes);
1912 
1913 	case MPOL_INTERLEAVE:
1914 		return interleave_nodes(policy);
1915 
1916 	case MPOL_BIND:
1917 	case MPOL_PREFERRED_MANY:
1918 	{
1919 		struct zoneref *z;
1920 
1921 		/*
1922 		 * Follow bind policy behavior and start allocation at the
1923 		 * first node.
1924 		 */
1925 		struct zonelist *zonelist;
1926 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1927 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1928 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1929 							&policy->nodes);
1930 		return z->zone ? zone_to_nid(z->zone) : node;
1931 	}
1932 	case MPOL_LOCAL:
1933 		return node;
1934 
1935 	default:
1936 		BUG();
1937 	}
1938 }
1939 
1940 /*
1941  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1942  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1943  * number of present nodes.
1944  */
1945 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1946 {
1947 	nodemask_t nodemask = pol->nodes;
1948 	unsigned int target, nnodes;
1949 	int i;
1950 	int nid;
1951 	/*
1952 	 * The barrier will stabilize the nodemask in a register or on
1953 	 * the stack so that it will stop changing under the code.
1954 	 *
1955 	 * Between first_node() and next_node(), pol->nodes could be changed
1956 	 * by other threads. So we put pol->nodes in a local stack.
1957 	 */
1958 	barrier();
1959 
1960 	nnodes = nodes_weight(nodemask);
1961 	if (!nnodes)
1962 		return numa_node_id();
1963 	target = (unsigned int)n % nnodes;
1964 	nid = first_node(nodemask);
1965 	for (i = 0; i < target; i++)
1966 		nid = next_node(nid, nodemask);
1967 	return nid;
1968 }
1969 
1970 /* Determine a node number for interleave */
1971 static inline unsigned interleave_nid(struct mempolicy *pol,
1972 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1973 {
1974 	if (vma) {
1975 		unsigned long off;
1976 
1977 		/*
1978 		 * for small pages, there is no difference between
1979 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1980 		 * for huge pages, since vm_pgoff is in units of small
1981 		 * pages, we need to shift off the always 0 bits to get
1982 		 * a useful offset.
1983 		 */
1984 		BUG_ON(shift < PAGE_SHIFT);
1985 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1986 		off += (addr - vma->vm_start) >> shift;
1987 		return offset_il_node(pol, off);
1988 	} else
1989 		return interleave_nodes(pol);
1990 }
1991 
1992 #ifdef CONFIG_HUGETLBFS
1993 /*
1994  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1995  * @vma: virtual memory area whose policy is sought
1996  * @addr: address in @vma for shared policy lookup and interleave policy
1997  * @gfp_flags: for requested zone
1998  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1999  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2000  *
2001  * Returns a nid suitable for a huge page allocation and a pointer
2002  * to the struct mempolicy for conditional unref after allocation.
2003  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2004  * to the mempolicy's @nodemask for filtering the zonelist.
2005  *
2006  * Must be protected by read_mems_allowed_begin()
2007  */
2008 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2009 				struct mempolicy **mpol, nodemask_t **nodemask)
2010 {
2011 	int nid;
2012 	int mode;
2013 
2014 	*mpol = get_vma_policy(vma, addr);
2015 	*nodemask = NULL;
2016 	mode = (*mpol)->mode;
2017 
2018 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2019 		nid = interleave_nid(*mpol, vma, addr,
2020 					huge_page_shift(hstate_vma(vma)));
2021 	} else {
2022 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2023 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2024 			*nodemask = &(*mpol)->nodes;
2025 	}
2026 	return nid;
2027 }
2028 
2029 /*
2030  * init_nodemask_of_mempolicy
2031  *
2032  * If the current task's mempolicy is "default" [NULL], return 'false'
2033  * to indicate default policy.  Otherwise, extract the policy nodemask
2034  * for 'bind' or 'interleave' policy into the argument nodemask, or
2035  * initialize the argument nodemask to contain the single node for
2036  * 'preferred' or 'local' policy and return 'true' to indicate presence
2037  * of non-default mempolicy.
2038  *
2039  * We don't bother with reference counting the mempolicy [mpol_get/put]
2040  * because the current task is examining it's own mempolicy and a task's
2041  * mempolicy is only ever changed by the task itself.
2042  *
2043  * N.B., it is the caller's responsibility to free a returned nodemask.
2044  */
2045 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2046 {
2047 	struct mempolicy *mempolicy;
2048 
2049 	if (!(mask && current->mempolicy))
2050 		return false;
2051 
2052 	task_lock(current);
2053 	mempolicy = current->mempolicy;
2054 	switch (mempolicy->mode) {
2055 	case MPOL_PREFERRED:
2056 	case MPOL_PREFERRED_MANY:
2057 	case MPOL_BIND:
2058 	case MPOL_INTERLEAVE:
2059 		*mask = mempolicy->nodes;
2060 		break;
2061 
2062 	case MPOL_LOCAL:
2063 		init_nodemask_of_node(mask, numa_node_id());
2064 		break;
2065 
2066 	default:
2067 		BUG();
2068 	}
2069 	task_unlock(current);
2070 
2071 	return true;
2072 }
2073 #endif
2074 
2075 /*
2076  * mempolicy_in_oom_domain
2077  *
2078  * If tsk's mempolicy is "bind", check for intersection between mask and
2079  * the policy nodemask. Otherwise, return true for all other policies
2080  * including "interleave", as a tsk with "interleave" policy may have
2081  * memory allocated from all nodes in system.
2082  *
2083  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2084  */
2085 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2086 					const nodemask_t *mask)
2087 {
2088 	struct mempolicy *mempolicy;
2089 	bool ret = true;
2090 
2091 	if (!mask)
2092 		return ret;
2093 
2094 	task_lock(tsk);
2095 	mempolicy = tsk->mempolicy;
2096 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2097 		ret = nodes_intersects(mempolicy->nodes, *mask);
2098 	task_unlock(tsk);
2099 
2100 	return ret;
2101 }
2102 
2103 /* Allocate a page in interleaved policy.
2104    Own path because it needs to do special accounting. */
2105 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2106 					unsigned nid)
2107 {
2108 	struct page *page;
2109 
2110 	page = __alloc_pages(gfp, order, nid, NULL);
2111 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2112 	if (!static_branch_likely(&vm_numa_stat_key))
2113 		return page;
2114 	if (page && page_to_nid(page) == nid) {
2115 		preempt_disable();
2116 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2117 		preempt_enable();
2118 	}
2119 	return page;
2120 }
2121 
2122 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2123 						int nid, struct mempolicy *pol)
2124 {
2125 	struct page *page;
2126 	gfp_t preferred_gfp;
2127 
2128 	/*
2129 	 * This is a two pass approach. The first pass will only try the
2130 	 * preferred nodes but skip the direct reclaim and allow the
2131 	 * allocation to fail, while the second pass will try all the
2132 	 * nodes in system.
2133 	 */
2134 	preferred_gfp = gfp | __GFP_NOWARN;
2135 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2136 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2137 	if (!page)
2138 		page = __alloc_pages(gfp, order, nid, NULL);
2139 
2140 	return page;
2141 }
2142 
2143 /**
2144  * vma_alloc_folio - Allocate a folio for a VMA.
2145  * @gfp: GFP flags.
2146  * @order: Order of the folio.
2147  * @vma: Pointer to VMA or NULL if not available.
2148  * @addr: Virtual address of the allocation.  Must be inside @vma.
2149  * @hugepage: For hugepages try only the preferred node if possible.
2150  *
2151  * Allocate a folio for a specific address in @vma, using the appropriate
2152  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2153  * of the mm_struct of the VMA to prevent it from going away.  Should be
2154  * used for all allocations for folios that will be mapped into user space.
2155  *
2156  * Return: The folio on success or NULL if allocation fails.
2157  */
2158 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2159 		unsigned long addr, bool hugepage)
2160 {
2161 	struct mempolicy *pol;
2162 	int node = numa_node_id();
2163 	struct folio *folio;
2164 	int preferred_nid;
2165 	nodemask_t *nmask;
2166 
2167 	pol = get_vma_policy(vma, addr);
2168 
2169 	if (pol->mode == MPOL_INTERLEAVE) {
2170 		struct page *page;
2171 		unsigned nid;
2172 
2173 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2174 		mpol_cond_put(pol);
2175 		gfp |= __GFP_COMP;
2176 		page = alloc_page_interleave(gfp, order, nid);
2177 		if (page && order > 1)
2178 			prep_transhuge_page(page);
2179 		folio = (struct folio *)page;
2180 		goto out;
2181 	}
2182 
2183 	if (pol->mode == MPOL_PREFERRED_MANY) {
2184 		struct page *page;
2185 
2186 		node = policy_node(gfp, pol, node);
2187 		gfp |= __GFP_COMP;
2188 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2189 		mpol_cond_put(pol);
2190 		if (page && order > 1)
2191 			prep_transhuge_page(page);
2192 		folio = (struct folio *)page;
2193 		goto out;
2194 	}
2195 
2196 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2197 		int hpage_node = node;
2198 
2199 		/*
2200 		 * For hugepage allocation and non-interleave policy which
2201 		 * allows the current node (or other explicitly preferred
2202 		 * node) we only try to allocate from the current/preferred
2203 		 * node and don't fall back to other nodes, as the cost of
2204 		 * remote accesses would likely offset THP benefits.
2205 		 *
2206 		 * If the policy is interleave or does not allow the current
2207 		 * node in its nodemask, we allocate the standard way.
2208 		 */
2209 		if (pol->mode == MPOL_PREFERRED)
2210 			hpage_node = first_node(pol->nodes);
2211 
2212 		nmask = policy_nodemask(gfp, pol);
2213 		if (!nmask || node_isset(hpage_node, *nmask)) {
2214 			mpol_cond_put(pol);
2215 			/*
2216 			 * First, try to allocate THP only on local node, but
2217 			 * don't reclaim unnecessarily, just compact.
2218 			 */
2219 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2220 					__GFP_NORETRY, order, hpage_node);
2221 
2222 			/*
2223 			 * If hugepage allocations are configured to always
2224 			 * synchronous compact or the vma has been madvised
2225 			 * to prefer hugepage backing, retry allowing remote
2226 			 * memory with both reclaim and compact as well.
2227 			 */
2228 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2229 				folio = __folio_alloc(gfp, order, hpage_node,
2230 						      nmask);
2231 
2232 			goto out;
2233 		}
2234 	}
2235 
2236 	nmask = policy_nodemask(gfp, pol);
2237 	preferred_nid = policy_node(gfp, pol, node);
2238 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2239 	mpol_cond_put(pol);
2240 out:
2241 	return folio;
2242 }
2243 EXPORT_SYMBOL(vma_alloc_folio);
2244 
2245 /**
2246  * alloc_pages - Allocate pages.
2247  * @gfp: GFP flags.
2248  * @order: Power of two of number of pages to allocate.
2249  *
2250  * Allocate 1 << @order contiguous pages.  The physical address of the
2251  * first page is naturally aligned (eg an order-3 allocation will be aligned
2252  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2253  * process is honoured when in process context.
2254  *
2255  * Context: Can be called from any context, providing the appropriate GFP
2256  * flags are used.
2257  * Return: The page on success or NULL if allocation fails.
2258  */
2259 struct page *alloc_pages(gfp_t gfp, unsigned order)
2260 {
2261 	struct mempolicy *pol = &default_policy;
2262 	struct page *page;
2263 
2264 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2265 		pol = get_task_policy(current);
2266 
2267 	/*
2268 	 * No reference counting needed for current->mempolicy
2269 	 * nor system default_policy
2270 	 */
2271 	if (pol->mode == MPOL_INTERLEAVE)
2272 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2273 	else if (pol->mode == MPOL_PREFERRED_MANY)
2274 		page = alloc_pages_preferred_many(gfp, order,
2275 				  policy_node(gfp, pol, numa_node_id()), pol);
2276 	else
2277 		page = __alloc_pages(gfp, order,
2278 				policy_node(gfp, pol, numa_node_id()),
2279 				policy_nodemask(gfp, pol));
2280 
2281 	return page;
2282 }
2283 EXPORT_SYMBOL(alloc_pages);
2284 
2285 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2286 {
2287 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2288 
2289 	if (page && order > 1)
2290 		prep_transhuge_page(page);
2291 	return (struct folio *)page;
2292 }
2293 EXPORT_SYMBOL(folio_alloc);
2294 
2295 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2296 		struct mempolicy *pol, unsigned long nr_pages,
2297 		struct page **page_array)
2298 {
2299 	int nodes;
2300 	unsigned long nr_pages_per_node;
2301 	int delta;
2302 	int i;
2303 	unsigned long nr_allocated;
2304 	unsigned long total_allocated = 0;
2305 
2306 	nodes = nodes_weight(pol->nodes);
2307 	nr_pages_per_node = nr_pages / nodes;
2308 	delta = nr_pages - nodes * nr_pages_per_node;
2309 
2310 	for (i = 0; i < nodes; i++) {
2311 		if (delta) {
2312 			nr_allocated = __alloc_pages_bulk(gfp,
2313 					interleave_nodes(pol), NULL,
2314 					nr_pages_per_node + 1, NULL,
2315 					page_array);
2316 			delta--;
2317 		} else {
2318 			nr_allocated = __alloc_pages_bulk(gfp,
2319 					interleave_nodes(pol), NULL,
2320 					nr_pages_per_node, NULL, page_array);
2321 		}
2322 
2323 		page_array += nr_allocated;
2324 		total_allocated += nr_allocated;
2325 	}
2326 
2327 	return total_allocated;
2328 }
2329 
2330 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2331 		struct mempolicy *pol, unsigned long nr_pages,
2332 		struct page **page_array)
2333 {
2334 	gfp_t preferred_gfp;
2335 	unsigned long nr_allocated = 0;
2336 
2337 	preferred_gfp = gfp | __GFP_NOWARN;
2338 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2339 
2340 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2341 					   nr_pages, NULL, page_array);
2342 
2343 	if (nr_allocated < nr_pages)
2344 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2345 				nr_pages - nr_allocated, NULL,
2346 				page_array + nr_allocated);
2347 	return nr_allocated;
2348 }
2349 
2350 /* alloc pages bulk and mempolicy should be considered at the
2351  * same time in some situation such as vmalloc.
2352  *
2353  * It can accelerate memory allocation especially interleaving
2354  * allocate memory.
2355  */
2356 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2357 		unsigned long nr_pages, struct page **page_array)
2358 {
2359 	struct mempolicy *pol = &default_policy;
2360 
2361 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2362 		pol = get_task_policy(current);
2363 
2364 	if (pol->mode == MPOL_INTERLEAVE)
2365 		return alloc_pages_bulk_array_interleave(gfp, pol,
2366 							 nr_pages, page_array);
2367 
2368 	if (pol->mode == MPOL_PREFERRED_MANY)
2369 		return alloc_pages_bulk_array_preferred_many(gfp,
2370 				numa_node_id(), pol, nr_pages, page_array);
2371 
2372 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2373 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2374 				  page_array);
2375 }
2376 
2377 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2378 {
2379 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2380 
2381 	if (IS_ERR(pol))
2382 		return PTR_ERR(pol);
2383 	dst->vm_policy = pol;
2384 	return 0;
2385 }
2386 
2387 /*
2388  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2389  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2390  * with the mems_allowed returned by cpuset_mems_allowed().  This
2391  * keeps mempolicies cpuset relative after its cpuset moves.  See
2392  * further kernel/cpuset.c update_nodemask().
2393  *
2394  * current's mempolicy may be rebinded by the other task(the task that changes
2395  * cpuset's mems), so we needn't do rebind work for current task.
2396  */
2397 
2398 /* Slow path of a mempolicy duplicate */
2399 struct mempolicy *__mpol_dup(struct mempolicy *old)
2400 {
2401 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2402 
2403 	if (!new)
2404 		return ERR_PTR(-ENOMEM);
2405 
2406 	/* task's mempolicy is protected by alloc_lock */
2407 	if (old == current->mempolicy) {
2408 		task_lock(current);
2409 		*new = *old;
2410 		task_unlock(current);
2411 	} else
2412 		*new = *old;
2413 
2414 	if (current_cpuset_is_being_rebound()) {
2415 		nodemask_t mems = cpuset_mems_allowed(current);
2416 		mpol_rebind_policy(new, &mems);
2417 	}
2418 	atomic_set(&new->refcnt, 1);
2419 	return new;
2420 }
2421 
2422 /* Slow path of a mempolicy comparison */
2423 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2424 {
2425 	if (!a || !b)
2426 		return false;
2427 	if (a->mode != b->mode)
2428 		return false;
2429 	if (a->flags != b->flags)
2430 		return false;
2431 	if (a->home_node != b->home_node)
2432 		return false;
2433 	if (mpol_store_user_nodemask(a))
2434 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2435 			return false;
2436 
2437 	switch (a->mode) {
2438 	case MPOL_BIND:
2439 	case MPOL_INTERLEAVE:
2440 	case MPOL_PREFERRED:
2441 	case MPOL_PREFERRED_MANY:
2442 		return !!nodes_equal(a->nodes, b->nodes);
2443 	case MPOL_LOCAL:
2444 		return true;
2445 	default:
2446 		BUG();
2447 		return false;
2448 	}
2449 }
2450 
2451 /*
2452  * Shared memory backing store policy support.
2453  *
2454  * Remember policies even when nobody has shared memory mapped.
2455  * The policies are kept in Red-Black tree linked from the inode.
2456  * They are protected by the sp->lock rwlock, which should be held
2457  * for any accesses to the tree.
2458  */
2459 
2460 /*
2461  * lookup first element intersecting start-end.  Caller holds sp->lock for
2462  * reading or for writing
2463  */
2464 static struct sp_node *
2465 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2466 {
2467 	struct rb_node *n = sp->root.rb_node;
2468 
2469 	while (n) {
2470 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2471 
2472 		if (start >= p->end)
2473 			n = n->rb_right;
2474 		else if (end <= p->start)
2475 			n = n->rb_left;
2476 		else
2477 			break;
2478 	}
2479 	if (!n)
2480 		return NULL;
2481 	for (;;) {
2482 		struct sp_node *w = NULL;
2483 		struct rb_node *prev = rb_prev(n);
2484 		if (!prev)
2485 			break;
2486 		w = rb_entry(prev, struct sp_node, nd);
2487 		if (w->end <= start)
2488 			break;
2489 		n = prev;
2490 	}
2491 	return rb_entry(n, struct sp_node, nd);
2492 }
2493 
2494 /*
2495  * Insert a new shared policy into the list.  Caller holds sp->lock for
2496  * writing.
2497  */
2498 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2499 {
2500 	struct rb_node **p = &sp->root.rb_node;
2501 	struct rb_node *parent = NULL;
2502 	struct sp_node *nd;
2503 
2504 	while (*p) {
2505 		parent = *p;
2506 		nd = rb_entry(parent, struct sp_node, nd);
2507 		if (new->start < nd->start)
2508 			p = &(*p)->rb_left;
2509 		else if (new->end > nd->end)
2510 			p = &(*p)->rb_right;
2511 		else
2512 			BUG();
2513 	}
2514 	rb_link_node(&new->nd, parent, p);
2515 	rb_insert_color(&new->nd, &sp->root);
2516 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2517 		 new->policy ? new->policy->mode : 0);
2518 }
2519 
2520 /* Find shared policy intersecting idx */
2521 struct mempolicy *
2522 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2523 {
2524 	struct mempolicy *pol = NULL;
2525 	struct sp_node *sn;
2526 
2527 	if (!sp->root.rb_node)
2528 		return NULL;
2529 	read_lock(&sp->lock);
2530 	sn = sp_lookup(sp, idx, idx+1);
2531 	if (sn) {
2532 		mpol_get(sn->policy);
2533 		pol = sn->policy;
2534 	}
2535 	read_unlock(&sp->lock);
2536 	return pol;
2537 }
2538 
2539 static void sp_free(struct sp_node *n)
2540 {
2541 	mpol_put(n->policy);
2542 	kmem_cache_free(sn_cache, n);
2543 }
2544 
2545 /**
2546  * mpol_misplaced - check whether current page node is valid in policy
2547  *
2548  * @page: page to be checked
2549  * @vma: vm area where page mapped
2550  * @addr: virtual address where page mapped
2551  *
2552  * Lookup current policy node id for vma,addr and "compare to" page's
2553  * node id.  Policy determination "mimics" alloc_page_vma().
2554  * Called from fault path where we know the vma and faulting address.
2555  *
2556  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2557  * policy, or a suitable node ID to allocate a replacement page from.
2558  */
2559 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2560 {
2561 	struct mempolicy *pol;
2562 	struct zoneref *z;
2563 	int curnid = page_to_nid(page);
2564 	unsigned long pgoff;
2565 	int thiscpu = raw_smp_processor_id();
2566 	int thisnid = cpu_to_node(thiscpu);
2567 	int polnid = NUMA_NO_NODE;
2568 	int ret = NUMA_NO_NODE;
2569 
2570 	pol = get_vma_policy(vma, addr);
2571 	if (!(pol->flags & MPOL_F_MOF))
2572 		goto out;
2573 
2574 	switch (pol->mode) {
2575 	case MPOL_INTERLEAVE:
2576 		pgoff = vma->vm_pgoff;
2577 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2578 		polnid = offset_il_node(pol, pgoff);
2579 		break;
2580 
2581 	case MPOL_PREFERRED:
2582 		if (node_isset(curnid, pol->nodes))
2583 			goto out;
2584 		polnid = first_node(pol->nodes);
2585 		break;
2586 
2587 	case MPOL_LOCAL:
2588 		polnid = numa_node_id();
2589 		break;
2590 
2591 	case MPOL_BIND:
2592 		/* Optimize placement among multiple nodes via NUMA balancing */
2593 		if (pol->flags & MPOL_F_MORON) {
2594 			if (node_isset(thisnid, pol->nodes))
2595 				break;
2596 			goto out;
2597 		}
2598 		fallthrough;
2599 
2600 	case MPOL_PREFERRED_MANY:
2601 		/*
2602 		 * use current page if in policy nodemask,
2603 		 * else select nearest allowed node, if any.
2604 		 * If no allowed nodes, use current [!misplaced].
2605 		 */
2606 		if (node_isset(curnid, pol->nodes))
2607 			goto out;
2608 		z = first_zones_zonelist(
2609 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2610 				gfp_zone(GFP_HIGHUSER),
2611 				&pol->nodes);
2612 		polnid = zone_to_nid(z->zone);
2613 		break;
2614 
2615 	default:
2616 		BUG();
2617 	}
2618 
2619 	/* Migrate the page towards the node whose CPU is referencing it */
2620 	if (pol->flags & MPOL_F_MORON) {
2621 		polnid = thisnid;
2622 
2623 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2624 			goto out;
2625 	}
2626 
2627 	if (curnid != polnid)
2628 		ret = polnid;
2629 out:
2630 	mpol_cond_put(pol);
2631 
2632 	return ret;
2633 }
2634 
2635 /*
2636  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2637  * dropped after task->mempolicy is set to NULL so that any allocation done as
2638  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2639  * policy.
2640  */
2641 void mpol_put_task_policy(struct task_struct *task)
2642 {
2643 	struct mempolicy *pol;
2644 
2645 	task_lock(task);
2646 	pol = task->mempolicy;
2647 	task->mempolicy = NULL;
2648 	task_unlock(task);
2649 	mpol_put(pol);
2650 }
2651 
2652 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2653 {
2654 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2655 	rb_erase(&n->nd, &sp->root);
2656 	sp_free(n);
2657 }
2658 
2659 static void sp_node_init(struct sp_node *node, unsigned long start,
2660 			unsigned long end, struct mempolicy *pol)
2661 {
2662 	node->start = start;
2663 	node->end = end;
2664 	node->policy = pol;
2665 }
2666 
2667 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2668 				struct mempolicy *pol)
2669 {
2670 	struct sp_node *n;
2671 	struct mempolicy *newpol;
2672 
2673 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2674 	if (!n)
2675 		return NULL;
2676 
2677 	newpol = mpol_dup(pol);
2678 	if (IS_ERR(newpol)) {
2679 		kmem_cache_free(sn_cache, n);
2680 		return NULL;
2681 	}
2682 	newpol->flags |= MPOL_F_SHARED;
2683 	sp_node_init(n, start, end, newpol);
2684 
2685 	return n;
2686 }
2687 
2688 /* Replace a policy range. */
2689 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2690 				 unsigned long end, struct sp_node *new)
2691 {
2692 	struct sp_node *n;
2693 	struct sp_node *n_new = NULL;
2694 	struct mempolicy *mpol_new = NULL;
2695 	int ret = 0;
2696 
2697 restart:
2698 	write_lock(&sp->lock);
2699 	n = sp_lookup(sp, start, end);
2700 	/* Take care of old policies in the same range. */
2701 	while (n && n->start < end) {
2702 		struct rb_node *next = rb_next(&n->nd);
2703 		if (n->start >= start) {
2704 			if (n->end <= end)
2705 				sp_delete(sp, n);
2706 			else
2707 				n->start = end;
2708 		} else {
2709 			/* Old policy spanning whole new range. */
2710 			if (n->end > end) {
2711 				if (!n_new)
2712 					goto alloc_new;
2713 
2714 				*mpol_new = *n->policy;
2715 				atomic_set(&mpol_new->refcnt, 1);
2716 				sp_node_init(n_new, end, n->end, mpol_new);
2717 				n->end = start;
2718 				sp_insert(sp, n_new);
2719 				n_new = NULL;
2720 				mpol_new = NULL;
2721 				break;
2722 			} else
2723 				n->end = start;
2724 		}
2725 		if (!next)
2726 			break;
2727 		n = rb_entry(next, struct sp_node, nd);
2728 	}
2729 	if (new)
2730 		sp_insert(sp, new);
2731 	write_unlock(&sp->lock);
2732 	ret = 0;
2733 
2734 err_out:
2735 	if (mpol_new)
2736 		mpol_put(mpol_new);
2737 	if (n_new)
2738 		kmem_cache_free(sn_cache, n_new);
2739 
2740 	return ret;
2741 
2742 alloc_new:
2743 	write_unlock(&sp->lock);
2744 	ret = -ENOMEM;
2745 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2746 	if (!n_new)
2747 		goto err_out;
2748 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2749 	if (!mpol_new)
2750 		goto err_out;
2751 	atomic_set(&mpol_new->refcnt, 1);
2752 	goto restart;
2753 }
2754 
2755 /**
2756  * mpol_shared_policy_init - initialize shared policy for inode
2757  * @sp: pointer to inode shared policy
2758  * @mpol:  struct mempolicy to install
2759  *
2760  * Install non-NULL @mpol in inode's shared policy rb-tree.
2761  * On entry, the current task has a reference on a non-NULL @mpol.
2762  * This must be released on exit.
2763  * This is called at get_inode() calls and we can use GFP_KERNEL.
2764  */
2765 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2766 {
2767 	int ret;
2768 
2769 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2770 	rwlock_init(&sp->lock);
2771 
2772 	if (mpol) {
2773 		struct vm_area_struct pvma;
2774 		struct mempolicy *new;
2775 		NODEMASK_SCRATCH(scratch);
2776 
2777 		if (!scratch)
2778 			goto put_mpol;
2779 		/* contextualize the tmpfs mount point mempolicy */
2780 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2781 		if (IS_ERR(new))
2782 			goto free_scratch; /* no valid nodemask intersection */
2783 
2784 		task_lock(current);
2785 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2786 		task_unlock(current);
2787 		if (ret)
2788 			goto put_new;
2789 
2790 		/* Create pseudo-vma that contains just the policy */
2791 		vma_init(&pvma, NULL);
2792 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2793 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2794 
2795 put_new:
2796 		mpol_put(new);			/* drop initial ref */
2797 free_scratch:
2798 		NODEMASK_SCRATCH_FREE(scratch);
2799 put_mpol:
2800 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2801 	}
2802 }
2803 
2804 int mpol_set_shared_policy(struct shared_policy *info,
2805 			struct vm_area_struct *vma, struct mempolicy *npol)
2806 {
2807 	int err;
2808 	struct sp_node *new = NULL;
2809 	unsigned long sz = vma_pages(vma);
2810 
2811 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2812 		 vma->vm_pgoff,
2813 		 sz, npol ? npol->mode : -1,
2814 		 npol ? npol->flags : -1,
2815 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2816 
2817 	if (npol) {
2818 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2819 		if (!new)
2820 			return -ENOMEM;
2821 	}
2822 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2823 	if (err && new)
2824 		sp_free(new);
2825 	return err;
2826 }
2827 
2828 /* Free a backing policy store on inode delete. */
2829 void mpol_free_shared_policy(struct shared_policy *p)
2830 {
2831 	struct sp_node *n;
2832 	struct rb_node *next;
2833 
2834 	if (!p->root.rb_node)
2835 		return;
2836 	write_lock(&p->lock);
2837 	next = rb_first(&p->root);
2838 	while (next) {
2839 		n = rb_entry(next, struct sp_node, nd);
2840 		next = rb_next(&n->nd);
2841 		sp_delete(p, n);
2842 	}
2843 	write_unlock(&p->lock);
2844 }
2845 
2846 #ifdef CONFIG_NUMA_BALANCING
2847 static int __initdata numabalancing_override;
2848 
2849 static void __init check_numabalancing_enable(void)
2850 {
2851 	bool numabalancing_default = false;
2852 
2853 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2854 		numabalancing_default = true;
2855 
2856 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2857 	if (numabalancing_override)
2858 		set_numabalancing_state(numabalancing_override == 1);
2859 
2860 	if (num_online_nodes() > 1 && !numabalancing_override) {
2861 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2862 			numabalancing_default ? "Enabling" : "Disabling");
2863 		set_numabalancing_state(numabalancing_default);
2864 	}
2865 }
2866 
2867 static int __init setup_numabalancing(char *str)
2868 {
2869 	int ret = 0;
2870 	if (!str)
2871 		goto out;
2872 
2873 	if (!strcmp(str, "enable")) {
2874 		numabalancing_override = 1;
2875 		ret = 1;
2876 	} else if (!strcmp(str, "disable")) {
2877 		numabalancing_override = -1;
2878 		ret = 1;
2879 	}
2880 out:
2881 	if (!ret)
2882 		pr_warn("Unable to parse numa_balancing=\n");
2883 
2884 	return ret;
2885 }
2886 __setup("numa_balancing=", setup_numabalancing);
2887 #else
2888 static inline void __init check_numabalancing_enable(void)
2889 {
2890 }
2891 #endif /* CONFIG_NUMA_BALANCING */
2892 
2893 /* assumes fs == KERNEL_DS */
2894 void __init numa_policy_init(void)
2895 {
2896 	nodemask_t interleave_nodes;
2897 	unsigned long largest = 0;
2898 	int nid, prefer = 0;
2899 
2900 	policy_cache = kmem_cache_create("numa_policy",
2901 					 sizeof(struct mempolicy),
2902 					 0, SLAB_PANIC, NULL);
2903 
2904 	sn_cache = kmem_cache_create("shared_policy_node",
2905 				     sizeof(struct sp_node),
2906 				     0, SLAB_PANIC, NULL);
2907 
2908 	for_each_node(nid) {
2909 		preferred_node_policy[nid] = (struct mempolicy) {
2910 			.refcnt = ATOMIC_INIT(1),
2911 			.mode = MPOL_PREFERRED,
2912 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2913 			.nodes = nodemask_of_node(nid),
2914 		};
2915 	}
2916 
2917 	/*
2918 	 * Set interleaving policy for system init. Interleaving is only
2919 	 * enabled across suitably sized nodes (default is >= 16MB), or
2920 	 * fall back to the largest node if they're all smaller.
2921 	 */
2922 	nodes_clear(interleave_nodes);
2923 	for_each_node_state(nid, N_MEMORY) {
2924 		unsigned long total_pages = node_present_pages(nid);
2925 
2926 		/* Preserve the largest node */
2927 		if (largest < total_pages) {
2928 			largest = total_pages;
2929 			prefer = nid;
2930 		}
2931 
2932 		/* Interleave this node? */
2933 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2934 			node_set(nid, interleave_nodes);
2935 	}
2936 
2937 	/* All too small, use the largest */
2938 	if (unlikely(nodes_empty(interleave_nodes)))
2939 		node_set(prefer, interleave_nodes);
2940 
2941 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2942 		pr_err("%s: interleaving failed\n", __func__);
2943 
2944 	check_numabalancing_enable();
2945 }
2946 
2947 /* Reset policy of current process to default */
2948 void numa_default_policy(void)
2949 {
2950 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2951 }
2952 
2953 /*
2954  * Parse and format mempolicy from/to strings
2955  */
2956 
2957 static const char * const policy_modes[] =
2958 {
2959 	[MPOL_DEFAULT]    = "default",
2960 	[MPOL_PREFERRED]  = "prefer",
2961 	[MPOL_BIND]       = "bind",
2962 	[MPOL_INTERLEAVE] = "interleave",
2963 	[MPOL_LOCAL]      = "local",
2964 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2965 };
2966 
2967 
2968 #ifdef CONFIG_TMPFS
2969 /**
2970  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2971  * @str:  string containing mempolicy to parse
2972  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2973  *
2974  * Format of input:
2975  *	<mode>[=<flags>][:<nodelist>]
2976  *
2977  * Return: %0 on success, else %1
2978  */
2979 int mpol_parse_str(char *str, struct mempolicy **mpol)
2980 {
2981 	struct mempolicy *new = NULL;
2982 	unsigned short mode_flags;
2983 	nodemask_t nodes;
2984 	char *nodelist = strchr(str, ':');
2985 	char *flags = strchr(str, '=');
2986 	int err = 1, mode;
2987 
2988 	if (flags)
2989 		*flags++ = '\0';	/* terminate mode string */
2990 
2991 	if (nodelist) {
2992 		/* NUL-terminate mode or flags string */
2993 		*nodelist++ = '\0';
2994 		if (nodelist_parse(nodelist, nodes))
2995 			goto out;
2996 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2997 			goto out;
2998 	} else
2999 		nodes_clear(nodes);
3000 
3001 	mode = match_string(policy_modes, MPOL_MAX, str);
3002 	if (mode < 0)
3003 		goto out;
3004 
3005 	switch (mode) {
3006 	case MPOL_PREFERRED:
3007 		/*
3008 		 * Insist on a nodelist of one node only, although later
3009 		 * we use first_node(nodes) to grab a single node, so here
3010 		 * nodelist (or nodes) cannot be empty.
3011 		 */
3012 		if (nodelist) {
3013 			char *rest = nodelist;
3014 			while (isdigit(*rest))
3015 				rest++;
3016 			if (*rest)
3017 				goto out;
3018 			if (nodes_empty(nodes))
3019 				goto out;
3020 		}
3021 		break;
3022 	case MPOL_INTERLEAVE:
3023 		/*
3024 		 * Default to online nodes with memory if no nodelist
3025 		 */
3026 		if (!nodelist)
3027 			nodes = node_states[N_MEMORY];
3028 		break;
3029 	case MPOL_LOCAL:
3030 		/*
3031 		 * Don't allow a nodelist;  mpol_new() checks flags
3032 		 */
3033 		if (nodelist)
3034 			goto out;
3035 		break;
3036 	case MPOL_DEFAULT:
3037 		/*
3038 		 * Insist on a empty nodelist
3039 		 */
3040 		if (!nodelist)
3041 			err = 0;
3042 		goto out;
3043 	case MPOL_PREFERRED_MANY:
3044 	case MPOL_BIND:
3045 		/*
3046 		 * Insist on a nodelist
3047 		 */
3048 		if (!nodelist)
3049 			goto out;
3050 	}
3051 
3052 	mode_flags = 0;
3053 	if (flags) {
3054 		/*
3055 		 * Currently, we only support two mutually exclusive
3056 		 * mode flags.
3057 		 */
3058 		if (!strcmp(flags, "static"))
3059 			mode_flags |= MPOL_F_STATIC_NODES;
3060 		else if (!strcmp(flags, "relative"))
3061 			mode_flags |= MPOL_F_RELATIVE_NODES;
3062 		else
3063 			goto out;
3064 	}
3065 
3066 	new = mpol_new(mode, mode_flags, &nodes);
3067 	if (IS_ERR(new))
3068 		goto out;
3069 
3070 	/*
3071 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3072 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3073 	 */
3074 	if (mode != MPOL_PREFERRED) {
3075 		new->nodes = nodes;
3076 	} else if (nodelist) {
3077 		nodes_clear(new->nodes);
3078 		node_set(first_node(nodes), new->nodes);
3079 	} else {
3080 		new->mode = MPOL_LOCAL;
3081 	}
3082 
3083 	/*
3084 	 * Save nodes for contextualization: this will be used to "clone"
3085 	 * the mempolicy in a specific context [cpuset] at a later time.
3086 	 */
3087 	new->w.user_nodemask = nodes;
3088 
3089 	err = 0;
3090 
3091 out:
3092 	/* Restore string for error message */
3093 	if (nodelist)
3094 		*--nodelist = ':';
3095 	if (flags)
3096 		*--flags = '=';
3097 	if (!err)
3098 		*mpol = new;
3099 	return err;
3100 }
3101 #endif /* CONFIG_TMPFS */
3102 
3103 /**
3104  * mpol_to_str - format a mempolicy structure for printing
3105  * @buffer:  to contain formatted mempolicy string
3106  * @maxlen:  length of @buffer
3107  * @pol:  pointer to mempolicy to be formatted
3108  *
3109  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3110  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3111  * longest flag, "relative", and to display at least a few node ids.
3112  */
3113 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3114 {
3115 	char *p = buffer;
3116 	nodemask_t nodes = NODE_MASK_NONE;
3117 	unsigned short mode = MPOL_DEFAULT;
3118 	unsigned short flags = 0;
3119 
3120 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3121 		mode = pol->mode;
3122 		flags = pol->flags;
3123 	}
3124 
3125 	switch (mode) {
3126 	case MPOL_DEFAULT:
3127 	case MPOL_LOCAL:
3128 		break;
3129 	case MPOL_PREFERRED:
3130 	case MPOL_PREFERRED_MANY:
3131 	case MPOL_BIND:
3132 	case MPOL_INTERLEAVE:
3133 		nodes = pol->nodes;
3134 		break;
3135 	default:
3136 		WARN_ON_ONCE(1);
3137 		snprintf(p, maxlen, "unknown");
3138 		return;
3139 	}
3140 
3141 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3142 
3143 	if (flags & MPOL_MODE_FLAGS) {
3144 		p += snprintf(p, buffer + maxlen - p, "=");
3145 
3146 		/*
3147 		 * Currently, the only defined flags are mutually exclusive
3148 		 */
3149 		if (flags & MPOL_F_STATIC_NODES)
3150 			p += snprintf(p, buffer + maxlen - p, "static");
3151 		else if (flags & MPOL_F_RELATIVE_NODES)
3152 			p += snprintf(p, buffer + maxlen - p, "relative");
3153 	}
3154 
3155 	if (!nodes_empty(nodes))
3156 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3157 			       nodemask_pr_args(&nodes));
3158 }
3159