1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the folio's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_folio_required(struct folio *folio, 436 struct queue_pages *qp) 437 { 438 int nid = folio_nid(folio); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_folios_pmd() has three possible return values: 446 * 0 - folios are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing folio was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct folio *folio; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 folio = pfn_folio(pmd_pfn(*pmd)); 468 if (is_huge_zero_page(&folio->page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_folio_required(folio, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to folio migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_folio_add(folio, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_folios_pte_range() has three possible return values: 495 * 0 - folios are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct folio *folio; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_folios_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 folio = vm_normal_folio(vma, addr, *pte); 525 if (!folio || folio_is_zone_device(folio)) 526 continue; 527 /* 528 * vm_normal_folio() filters out zero pages, but there might 529 * still be reserved folios to skip, perhaps in a VDSO. 530 */ 531 if (folio_test_reserved(folio)) 532 continue; 533 if (!queue_folio_required(folio, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_folio_add(folio, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct folio *folio; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 folio = pfn_folio(pte_pfn(entry)); 578 if (!queue_folio_required(folio, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced folio and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced folio but allow migrating folios which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* 602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 603 * is shared it is likely not worth migrating. 604 * 605 * To check if the folio is shared, ideally we want to make sure 606 * every page is mapped to the same process. Doing that is very 607 * expensive, so check the estimated mapcount of the folio instead. 608 */ 609 if (flags & (MPOL_MF_MOVE_ALL) || 610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 611 !hugetlb_pmd_shared(pte))) { 612 if (!isolate_hugetlb(folio, qp->pagelist) && 613 (flags & MPOL_MF_STRICT)) 614 /* 615 * Failed to isolate folio but allow migrating pages 616 * which have been queued. 617 */ 618 ret = 1; 619 } 620 unlock: 621 spin_unlock(ptl); 622 #else 623 BUG(); 624 #endif 625 return ret; 626 } 627 628 #ifdef CONFIG_NUMA_BALANCING 629 /* 630 * This is used to mark a range of virtual addresses to be inaccessible. 631 * These are later cleared by a NUMA hinting fault. Depending on these 632 * faults, pages may be migrated for better NUMA placement. 633 * 634 * This is assuming that NUMA faults are handled using PROT_NONE. If 635 * an architecture makes a different choice, it will need further 636 * changes to the core. 637 */ 638 unsigned long change_prot_numa(struct vm_area_struct *vma, 639 unsigned long addr, unsigned long end) 640 { 641 struct mmu_gather tlb; 642 long nr_updated; 643 644 tlb_gather_mmu(&tlb, vma->vm_mm); 645 646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 647 if (nr_updated > 0) 648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 649 650 tlb_finish_mmu(&tlb); 651 652 return nr_updated; 653 } 654 #else 655 static unsigned long change_prot_numa(struct vm_area_struct *vma, 656 unsigned long addr, unsigned long end) 657 { 658 return 0; 659 } 660 #endif /* CONFIG_NUMA_BALANCING */ 661 662 static int queue_pages_test_walk(unsigned long start, unsigned long end, 663 struct mm_walk *walk) 664 { 665 struct vm_area_struct *next, *vma = walk->vma; 666 struct queue_pages *qp = walk->private; 667 unsigned long endvma = vma->vm_end; 668 unsigned long flags = qp->flags; 669 670 /* range check first */ 671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 672 673 if (!qp->first) { 674 qp->first = vma; 675 if (!(flags & MPOL_MF_DISCONTIG_OK) && 676 (qp->start < vma->vm_start)) 677 /* hole at head side of range */ 678 return -EFAULT; 679 } 680 next = find_vma(vma->vm_mm, vma->vm_end); 681 if (!(flags & MPOL_MF_DISCONTIG_OK) && 682 ((vma->vm_end < qp->end) && 683 (!next || vma->vm_end < next->vm_start))) 684 /* hole at middle or tail of range */ 685 return -EFAULT; 686 687 /* 688 * Need check MPOL_MF_STRICT to return -EIO if possible 689 * regardless of vma_migratable 690 */ 691 if (!vma_migratable(vma) && 692 !(flags & MPOL_MF_STRICT)) 693 return 1; 694 695 if (endvma > end) 696 endvma = end; 697 698 if (flags & MPOL_MF_LAZY) { 699 /* Similar to task_numa_work, skip inaccessible VMAs */ 700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 701 !(vma->vm_flags & VM_MIXEDMAP)) 702 change_prot_numa(vma, start, endvma); 703 return 1; 704 } 705 706 /* queue pages from current vma */ 707 if (flags & MPOL_MF_VALID) 708 return 0; 709 return 1; 710 } 711 712 static const struct mm_walk_ops queue_pages_walk_ops = { 713 .hugetlb_entry = queue_folios_hugetlb, 714 .pmd_entry = queue_folios_pte_range, 715 .test_walk = queue_pages_test_walk, 716 }; 717 718 /* 719 * Walk through page tables and collect pages to be migrated. 720 * 721 * If pages found in a given range are on a set of nodes (determined by 722 * @nodes and @flags,) it's isolated and queued to the pagelist which is 723 * passed via @private. 724 * 725 * queue_pages_range() has three possible return values: 726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 727 * specified. 728 * 0 - queue pages successfully or no misplaced page. 729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 730 * memory range specified by nodemask and maxnode points outside 731 * your accessible address space (-EFAULT) 732 */ 733 static int 734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 735 nodemask_t *nodes, unsigned long flags, 736 struct list_head *pagelist) 737 { 738 int err; 739 struct queue_pages qp = { 740 .pagelist = pagelist, 741 .flags = flags, 742 .nmask = nodes, 743 .start = start, 744 .end = end, 745 .first = NULL, 746 }; 747 748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 749 750 if (!qp.first) 751 /* whole range in hole */ 752 err = -EFAULT; 753 754 return err; 755 } 756 757 /* 758 * Apply policy to a single VMA 759 * This must be called with the mmap_lock held for writing. 760 */ 761 static int vma_replace_policy(struct vm_area_struct *vma, 762 struct mempolicy *pol) 763 { 764 int err; 765 struct mempolicy *old; 766 struct mempolicy *new; 767 768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 769 vma->vm_start, vma->vm_end, vma->vm_pgoff, 770 vma->vm_ops, vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 772 773 new = mpol_dup(pol); 774 if (IS_ERR(new)) 775 return PTR_ERR(new); 776 777 if (vma->vm_ops && vma->vm_ops->set_policy) { 778 err = vma->vm_ops->set_policy(vma, new); 779 if (err) 780 goto err_out; 781 } 782 783 old = vma->vm_policy; 784 vma->vm_policy = new; /* protected by mmap_lock */ 785 mpol_put(old); 786 787 return 0; 788 err_out: 789 mpol_put(new); 790 return err; 791 } 792 793 /* Split or merge the VMA (if required) and apply the new policy */ 794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 795 struct vm_area_struct **prev, unsigned long start, 796 unsigned long end, struct mempolicy *new_pol) 797 { 798 struct vm_area_struct *merged; 799 unsigned long vmstart, vmend; 800 pgoff_t pgoff; 801 int err; 802 803 vmend = min(end, vma->vm_end); 804 if (start > vma->vm_start) { 805 *prev = vma; 806 vmstart = start; 807 } else { 808 vmstart = vma->vm_start; 809 } 810 811 if (mpol_equal(vma_policy(vma), new_pol)) 812 return 0; 813 814 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 815 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 816 vma->anon_vma, vma->vm_file, pgoff, new_pol, 817 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 818 if (merged) { 819 *prev = merged; 820 return vma_replace_policy(merged, new_pol); 821 } 822 823 if (vma->vm_start != vmstart) { 824 err = split_vma(vmi, vma, vmstart, 1); 825 if (err) 826 return err; 827 } 828 829 if (vma->vm_end != vmend) { 830 err = split_vma(vmi, vma, vmend, 0); 831 if (err) 832 return err; 833 } 834 835 *prev = vma; 836 return vma_replace_policy(vma, new_pol); 837 } 838 839 /* Set the process memory policy */ 840 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 841 nodemask_t *nodes) 842 { 843 struct mempolicy *new, *old; 844 NODEMASK_SCRATCH(scratch); 845 int ret; 846 847 if (!scratch) 848 return -ENOMEM; 849 850 new = mpol_new(mode, flags, nodes); 851 if (IS_ERR(new)) { 852 ret = PTR_ERR(new); 853 goto out; 854 } 855 856 task_lock(current); 857 ret = mpol_set_nodemask(new, nodes, scratch); 858 if (ret) { 859 task_unlock(current); 860 mpol_put(new); 861 goto out; 862 } 863 864 old = current->mempolicy; 865 current->mempolicy = new; 866 if (new && new->mode == MPOL_INTERLEAVE) 867 current->il_prev = MAX_NUMNODES-1; 868 task_unlock(current); 869 mpol_put(old); 870 ret = 0; 871 out: 872 NODEMASK_SCRATCH_FREE(scratch); 873 return ret; 874 } 875 876 /* 877 * Return nodemask for policy for get_mempolicy() query 878 * 879 * Called with task's alloc_lock held 880 */ 881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 882 { 883 nodes_clear(*nodes); 884 if (p == &default_policy) 885 return; 886 887 switch (p->mode) { 888 case MPOL_BIND: 889 case MPOL_INTERLEAVE: 890 case MPOL_PREFERRED: 891 case MPOL_PREFERRED_MANY: 892 *nodes = p->nodes; 893 break; 894 case MPOL_LOCAL: 895 /* return empty node mask for local allocation */ 896 break; 897 default: 898 BUG(); 899 } 900 } 901 902 static int lookup_node(struct mm_struct *mm, unsigned long addr) 903 { 904 struct page *p = NULL; 905 int ret; 906 907 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 908 if (ret > 0) { 909 ret = page_to_nid(p); 910 put_page(p); 911 } 912 return ret; 913 } 914 915 /* Retrieve NUMA policy */ 916 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 917 unsigned long addr, unsigned long flags) 918 { 919 int err; 920 struct mm_struct *mm = current->mm; 921 struct vm_area_struct *vma = NULL; 922 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 923 924 if (flags & 925 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 926 return -EINVAL; 927 928 if (flags & MPOL_F_MEMS_ALLOWED) { 929 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 930 return -EINVAL; 931 *policy = 0; /* just so it's initialized */ 932 task_lock(current); 933 *nmask = cpuset_current_mems_allowed; 934 task_unlock(current); 935 return 0; 936 } 937 938 if (flags & MPOL_F_ADDR) { 939 /* 940 * Do NOT fall back to task policy if the 941 * vma/shared policy at addr is NULL. We 942 * want to return MPOL_DEFAULT in this case. 943 */ 944 mmap_read_lock(mm); 945 vma = vma_lookup(mm, addr); 946 if (!vma) { 947 mmap_read_unlock(mm); 948 return -EFAULT; 949 } 950 if (vma->vm_ops && vma->vm_ops->get_policy) 951 pol = vma->vm_ops->get_policy(vma, addr); 952 else 953 pol = vma->vm_policy; 954 } else if (addr) 955 return -EINVAL; 956 957 if (!pol) 958 pol = &default_policy; /* indicates default behavior */ 959 960 if (flags & MPOL_F_NODE) { 961 if (flags & MPOL_F_ADDR) { 962 /* 963 * Take a refcount on the mpol, because we are about to 964 * drop the mmap_lock, after which only "pol" remains 965 * valid, "vma" is stale. 966 */ 967 pol_refcount = pol; 968 vma = NULL; 969 mpol_get(pol); 970 mmap_read_unlock(mm); 971 err = lookup_node(mm, addr); 972 if (err < 0) 973 goto out; 974 *policy = err; 975 } else if (pol == current->mempolicy && 976 pol->mode == MPOL_INTERLEAVE) { 977 *policy = next_node_in(current->il_prev, pol->nodes); 978 } else { 979 err = -EINVAL; 980 goto out; 981 } 982 } else { 983 *policy = pol == &default_policy ? MPOL_DEFAULT : 984 pol->mode; 985 /* 986 * Internal mempolicy flags must be masked off before exposing 987 * the policy to userspace. 988 */ 989 *policy |= (pol->flags & MPOL_MODE_FLAGS); 990 } 991 992 err = 0; 993 if (nmask) { 994 if (mpol_store_user_nodemask(pol)) { 995 *nmask = pol->w.user_nodemask; 996 } else { 997 task_lock(current); 998 get_policy_nodemask(pol, nmask); 999 task_unlock(current); 1000 } 1001 } 1002 1003 out: 1004 mpol_cond_put(pol); 1005 if (vma) 1006 mmap_read_unlock(mm); 1007 if (pol_refcount) 1008 mpol_put(pol_refcount); 1009 return err; 1010 } 1011 1012 #ifdef CONFIG_MIGRATION 1013 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1014 unsigned long flags) 1015 { 1016 /* 1017 * We try to migrate only unshared folios. If it is shared it 1018 * is likely not worth migrating. 1019 * 1020 * To check if the folio is shared, ideally we want to make sure 1021 * every page is mapped to the same process. Doing that is very 1022 * expensive, so check the estimated mapcount of the folio instead. 1023 */ 1024 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1025 if (folio_isolate_lru(folio)) { 1026 list_add_tail(&folio->lru, foliolist); 1027 node_stat_mod_folio(folio, 1028 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1029 folio_nr_pages(folio)); 1030 } else if (flags & MPOL_MF_STRICT) { 1031 /* 1032 * Non-movable folio may reach here. And, there may be 1033 * temporary off LRU folios or non-LRU movable folios. 1034 * Treat them as unmovable folios since they can't be 1035 * isolated, so they can't be moved at the moment. It 1036 * should return -EIO for this case too. 1037 */ 1038 return -EIO; 1039 } 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* 1046 * Migrate pages from one node to a target node. 1047 * Returns error or the number of pages not migrated. 1048 */ 1049 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1050 int flags) 1051 { 1052 nodemask_t nmask; 1053 struct vm_area_struct *vma; 1054 LIST_HEAD(pagelist); 1055 int err = 0; 1056 struct migration_target_control mtc = { 1057 .nid = dest, 1058 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1059 }; 1060 1061 nodes_clear(nmask); 1062 node_set(source, nmask); 1063 1064 /* 1065 * This does not "check" the range but isolates all pages that 1066 * need migration. Between passing in the full user address 1067 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1068 */ 1069 vma = find_vma(mm, 0); 1070 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1071 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1072 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1073 1074 if (!list_empty(&pagelist)) { 1075 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1076 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1077 if (err) 1078 putback_movable_pages(&pagelist); 1079 } 1080 1081 return err; 1082 } 1083 1084 /* 1085 * Move pages between the two nodesets so as to preserve the physical 1086 * layout as much as possible. 1087 * 1088 * Returns the number of page that could not be moved. 1089 */ 1090 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1091 const nodemask_t *to, int flags) 1092 { 1093 int busy = 0; 1094 int err = 0; 1095 nodemask_t tmp; 1096 1097 lru_cache_disable(); 1098 1099 mmap_read_lock(mm); 1100 1101 /* 1102 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1103 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1104 * bit in 'tmp', and return that <source, dest> pair for migration. 1105 * The pair of nodemasks 'to' and 'from' define the map. 1106 * 1107 * If no pair of bits is found that way, fallback to picking some 1108 * pair of 'source' and 'dest' bits that are not the same. If the 1109 * 'source' and 'dest' bits are the same, this represents a node 1110 * that will be migrating to itself, so no pages need move. 1111 * 1112 * If no bits are left in 'tmp', or if all remaining bits left 1113 * in 'tmp' correspond to the same bit in 'to', return false 1114 * (nothing left to migrate). 1115 * 1116 * This lets us pick a pair of nodes to migrate between, such that 1117 * if possible the dest node is not already occupied by some other 1118 * source node, minimizing the risk of overloading the memory on a 1119 * node that would happen if we migrated incoming memory to a node 1120 * before migrating outgoing memory source that same node. 1121 * 1122 * A single scan of tmp is sufficient. As we go, we remember the 1123 * most recent <s, d> pair that moved (s != d). If we find a pair 1124 * that not only moved, but what's better, moved to an empty slot 1125 * (d is not set in tmp), then we break out then, with that pair. 1126 * Otherwise when we finish scanning from_tmp, we at least have the 1127 * most recent <s, d> pair that moved. If we get all the way through 1128 * the scan of tmp without finding any node that moved, much less 1129 * moved to an empty node, then there is nothing left worth migrating. 1130 */ 1131 1132 tmp = *from; 1133 while (!nodes_empty(tmp)) { 1134 int s, d; 1135 int source = NUMA_NO_NODE; 1136 int dest = 0; 1137 1138 for_each_node_mask(s, tmp) { 1139 1140 /* 1141 * do_migrate_pages() tries to maintain the relative 1142 * node relationship of the pages established between 1143 * threads and memory areas. 1144 * 1145 * However if the number of source nodes is not equal to 1146 * the number of destination nodes we can not preserve 1147 * this node relative relationship. In that case, skip 1148 * copying memory from a node that is in the destination 1149 * mask. 1150 * 1151 * Example: [2,3,4] -> [3,4,5] moves everything. 1152 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1153 */ 1154 1155 if ((nodes_weight(*from) != nodes_weight(*to)) && 1156 (node_isset(s, *to))) 1157 continue; 1158 1159 d = node_remap(s, *from, *to); 1160 if (s == d) 1161 continue; 1162 1163 source = s; /* Node moved. Memorize */ 1164 dest = d; 1165 1166 /* dest not in remaining from nodes? */ 1167 if (!node_isset(dest, tmp)) 1168 break; 1169 } 1170 if (source == NUMA_NO_NODE) 1171 break; 1172 1173 node_clear(source, tmp); 1174 err = migrate_to_node(mm, source, dest, flags); 1175 if (err > 0) 1176 busy += err; 1177 if (err < 0) 1178 break; 1179 } 1180 mmap_read_unlock(mm); 1181 1182 lru_cache_enable(); 1183 if (err < 0) 1184 return err; 1185 return busy; 1186 1187 } 1188 1189 /* 1190 * Allocate a new page for page migration based on vma policy. 1191 * Start by assuming the page is mapped by the same vma as contains @start. 1192 * Search forward from there, if not. N.B., this assumes that the 1193 * list of pages handed to migrate_pages()--which is how we get here-- 1194 * is in virtual address order. 1195 */ 1196 static struct page *new_page(struct page *page, unsigned long start) 1197 { 1198 struct folio *dst, *src = page_folio(page); 1199 struct vm_area_struct *vma; 1200 unsigned long address; 1201 VMA_ITERATOR(vmi, current->mm, start); 1202 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1203 1204 for_each_vma(vmi, vma) { 1205 address = page_address_in_vma(page, vma); 1206 if (address != -EFAULT) 1207 break; 1208 } 1209 1210 if (folio_test_hugetlb(src)) { 1211 dst = alloc_hugetlb_folio_vma(folio_hstate(src), 1212 vma, address); 1213 return &dst->page; 1214 } 1215 1216 if (folio_test_large(src)) 1217 gfp = GFP_TRANSHUGE; 1218 1219 /* 1220 * if !vma, vma_alloc_folio() will use task or system default policy 1221 */ 1222 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1223 folio_test_large(src)); 1224 return &dst->page; 1225 } 1226 #else 1227 1228 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1229 unsigned long flags) 1230 { 1231 return -EIO; 1232 } 1233 1234 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1235 const nodemask_t *to, int flags) 1236 { 1237 return -ENOSYS; 1238 } 1239 1240 static struct page *new_page(struct page *page, unsigned long start) 1241 { 1242 return NULL; 1243 } 1244 #endif 1245 1246 static long do_mbind(unsigned long start, unsigned long len, 1247 unsigned short mode, unsigned short mode_flags, 1248 nodemask_t *nmask, unsigned long flags) 1249 { 1250 struct mm_struct *mm = current->mm; 1251 struct vm_area_struct *vma, *prev; 1252 struct vma_iterator vmi; 1253 struct mempolicy *new; 1254 unsigned long end; 1255 int err; 1256 int ret; 1257 LIST_HEAD(pagelist); 1258 1259 if (flags & ~(unsigned long)MPOL_MF_VALID) 1260 return -EINVAL; 1261 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1262 return -EPERM; 1263 1264 if (start & ~PAGE_MASK) 1265 return -EINVAL; 1266 1267 if (mode == MPOL_DEFAULT) 1268 flags &= ~MPOL_MF_STRICT; 1269 1270 len = PAGE_ALIGN(len); 1271 end = start + len; 1272 1273 if (end < start) 1274 return -EINVAL; 1275 if (end == start) 1276 return 0; 1277 1278 new = mpol_new(mode, mode_flags, nmask); 1279 if (IS_ERR(new)) 1280 return PTR_ERR(new); 1281 1282 if (flags & MPOL_MF_LAZY) 1283 new->flags |= MPOL_F_MOF; 1284 1285 /* 1286 * If we are using the default policy then operation 1287 * on discontinuous address spaces is okay after all 1288 */ 1289 if (!new) 1290 flags |= MPOL_MF_DISCONTIG_OK; 1291 1292 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1293 start, start + len, mode, mode_flags, 1294 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1295 1296 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1297 1298 lru_cache_disable(); 1299 } 1300 { 1301 NODEMASK_SCRATCH(scratch); 1302 if (scratch) { 1303 mmap_write_lock(mm); 1304 err = mpol_set_nodemask(new, nmask, scratch); 1305 if (err) 1306 mmap_write_unlock(mm); 1307 } else 1308 err = -ENOMEM; 1309 NODEMASK_SCRATCH_FREE(scratch); 1310 } 1311 if (err) 1312 goto mpol_out; 1313 1314 ret = queue_pages_range(mm, start, end, nmask, 1315 flags | MPOL_MF_INVERT, &pagelist); 1316 1317 if (ret < 0) { 1318 err = ret; 1319 goto up_out; 1320 } 1321 1322 vma_iter_init(&vmi, mm, start); 1323 prev = vma_prev(&vmi); 1324 for_each_vma_range(vmi, vma, end) { 1325 err = mbind_range(&vmi, vma, &prev, start, end, new); 1326 if (err) 1327 break; 1328 } 1329 1330 if (!err) { 1331 int nr_failed = 0; 1332 1333 if (!list_empty(&pagelist)) { 1334 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1335 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1336 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1337 if (nr_failed) 1338 putback_movable_pages(&pagelist); 1339 } 1340 1341 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1342 err = -EIO; 1343 } else { 1344 up_out: 1345 if (!list_empty(&pagelist)) 1346 putback_movable_pages(&pagelist); 1347 } 1348 1349 mmap_write_unlock(mm); 1350 mpol_out: 1351 mpol_put(new); 1352 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1353 lru_cache_enable(); 1354 return err; 1355 } 1356 1357 /* 1358 * User space interface with variable sized bitmaps for nodelists. 1359 */ 1360 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1361 unsigned long maxnode) 1362 { 1363 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1364 int ret; 1365 1366 if (in_compat_syscall()) 1367 ret = compat_get_bitmap(mask, 1368 (const compat_ulong_t __user *)nmask, 1369 maxnode); 1370 else 1371 ret = copy_from_user(mask, nmask, 1372 nlongs * sizeof(unsigned long)); 1373 1374 if (ret) 1375 return -EFAULT; 1376 1377 if (maxnode % BITS_PER_LONG) 1378 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1379 1380 return 0; 1381 } 1382 1383 /* Copy a node mask from user space. */ 1384 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1385 unsigned long maxnode) 1386 { 1387 --maxnode; 1388 nodes_clear(*nodes); 1389 if (maxnode == 0 || !nmask) 1390 return 0; 1391 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1392 return -EINVAL; 1393 1394 /* 1395 * When the user specified more nodes than supported just check 1396 * if the non supported part is all zero, one word at a time, 1397 * starting at the end. 1398 */ 1399 while (maxnode > MAX_NUMNODES) { 1400 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1401 unsigned long t; 1402 1403 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1404 return -EFAULT; 1405 1406 if (maxnode - bits >= MAX_NUMNODES) { 1407 maxnode -= bits; 1408 } else { 1409 maxnode = MAX_NUMNODES; 1410 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1411 } 1412 if (t) 1413 return -EINVAL; 1414 } 1415 1416 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1417 } 1418 1419 /* Copy a kernel node mask to user space */ 1420 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1421 nodemask_t *nodes) 1422 { 1423 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1424 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1425 bool compat = in_compat_syscall(); 1426 1427 if (compat) 1428 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1429 1430 if (copy > nbytes) { 1431 if (copy > PAGE_SIZE) 1432 return -EINVAL; 1433 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1434 return -EFAULT; 1435 copy = nbytes; 1436 maxnode = nr_node_ids; 1437 } 1438 1439 if (compat) 1440 return compat_put_bitmap((compat_ulong_t __user *)mask, 1441 nodes_addr(*nodes), maxnode); 1442 1443 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1444 } 1445 1446 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1447 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1448 { 1449 *flags = *mode & MPOL_MODE_FLAGS; 1450 *mode &= ~MPOL_MODE_FLAGS; 1451 1452 if ((unsigned int)(*mode) >= MPOL_MAX) 1453 return -EINVAL; 1454 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1455 return -EINVAL; 1456 if (*flags & MPOL_F_NUMA_BALANCING) { 1457 if (*mode != MPOL_BIND) 1458 return -EINVAL; 1459 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1460 } 1461 return 0; 1462 } 1463 1464 static long kernel_mbind(unsigned long start, unsigned long len, 1465 unsigned long mode, const unsigned long __user *nmask, 1466 unsigned long maxnode, unsigned int flags) 1467 { 1468 unsigned short mode_flags; 1469 nodemask_t nodes; 1470 int lmode = mode; 1471 int err; 1472 1473 start = untagged_addr(start); 1474 err = sanitize_mpol_flags(&lmode, &mode_flags); 1475 if (err) 1476 return err; 1477 1478 err = get_nodes(&nodes, nmask, maxnode); 1479 if (err) 1480 return err; 1481 1482 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1483 } 1484 1485 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1486 unsigned long, home_node, unsigned long, flags) 1487 { 1488 struct mm_struct *mm = current->mm; 1489 struct vm_area_struct *vma, *prev; 1490 struct mempolicy *new, *old; 1491 unsigned long end; 1492 int err = -ENOENT; 1493 VMA_ITERATOR(vmi, mm, start); 1494 1495 start = untagged_addr(start); 1496 if (start & ~PAGE_MASK) 1497 return -EINVAL; 1498 /* 1499 * flags is used for future extension if any. 1500 */ 1501 if (flags != 0) 1502 return -EINVAL; 1503 1504 /* 1505 * Check home_node is online to avoid accessing uninitialized 1506 * NODE_DATA. 1507 */ 1508 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1509 return -EINVAL; 1510 1511 len = PAGE_ALIGN(len); 1512 end = start + len; 1513 1514 if (end < start) 1515 return -EINVAL; 1516 if (end == start) 1517 return 0; 1518 mmap_write_lock(mm); 1519 prev = vma_prev(&vmi); 1520 for_each_vma_range(vmi, vma, end) { 1521 /* 1522 * If any vma in the range got policy other than MPOL_BIND 1523 * or MPOL_PREFERRED_MANY we return error. We don't reset 1524 * the home node for vmas we already updated before. 1525 */ 1526 old = vma_policy(vma); 1527 if (!old) 1528 continue; 1529 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1530 err = -EOPNOTSUPP; 1531 break; 1532 } 1533 new = mpol_dup(old); 1534 if (IS_ERR(new)) { 1535 err = PTR_ERR(new); 1536 break; 1537 } 1538 1539 new->home_node = home_node; 1540 err = mbind_range(&vmi, vma, &prev, start, end, new); 1541 mpol_put(new); 1542 if (err) 1543 break; 1544 } 1545 mmap_write_unlock(mm); 1546 return err; 1547 } 1548 1549 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1550 unsigned long, mode, const unsigned long __user *, nmask, 1551 unsigned long, maxnode, unsigned int, flags) 1552 { 1553 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1554 } 1555 1556 /* Set the process memory policy */ 1557 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1558 unsigned long maxnode) 1559 { 1560 unsigned short mode_flags; 1561 nodemask_t nodes; 1562 int lmode = mode; 1563 int err; 1564 1565 err = sanitize_mpol_flags(&lmode, &mode_flags); 1566 if (err) 1567 return err; 1568 1569 err = get_nodes(&nodes, nmask, maxnode); 1570 if (err) 1571 return err; 1572 1573 return do_set_mempolicy(lmode, mode_flags, &nodes); 1574 } 1575 1576 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1577 unsigned long, maxnode) 1578 { 1579 return kernel_set_mempolicy(mode, nmask, maxnode); 1580 } 1581 1582 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1583 const unsigned long __user *old_nodes, 1584 const unsigned long __user *new_nodes) 1585 { 1586 struct mm_struct *mm = NULL; 1587 struct task_struct *task; 1588 nodemask_t task_nodes; 1589 int err; 1590 nodemask_t *old; 1591 nodemask_t *new; 1592 NODEMASK_SCRATCH(scratch); 1593 1594 if (!scratch) 1595 return -ENOMEM; 1596 1597 old = &scratch->mask1; 1598 new = &scratch->mask2; 1599 1600 err = get_nodes(old, old_nodes, maxnode); 1601 if (err) 1602 goto out; 1603 1604 err = get_nodes(new, new_nodes, maxnode); 1605 if (err) 1606 goto out; 1607 1608 /* Find the mm_struct */ 1609 rcu_read_lock(); 1610 task = pid ? find_task_by_vpid(pid) : current; 1611 if (!task) { 1612 rcu_read_unlock(); 1613 err = -ESRCH; 1614 goto out; 1615 } 1616 get_task_struct(task); 1617 1618 err = -EINVAL; 1619 1620 /* 1621 * Check if this process has the right to modify the specified process. 1622 * Use the regular "ptrace_may_access()" checks. 1623 */ 1624 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1625 rcu_read_unlock(); 1626 err = -EPERM; 1627 goto out_put; 1628 } 1629 rcu_read_unlock(); 1630 1631 task_nodes = cpuset_mems_allowed(task); 1632 /* Is the user allowed to access the target nodes? */ 1633 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1634 err = -EPERM; 1635 goto out_put; 1636 } 1637 1638 task_nodes = cpuset_mems_allowed(current); 1639 nodes_and(*new, *new, task_nodes); 1640 if (nodes_empty(*new)) 1641 goto out_put; 1642 1643 err = security_task_movememory(task); 1644 if (err) 1645 goto out_put; 1646 1647 mm = get_task_mm(task); 1648 put_task_struct(task); 1649 1650 if (!mm) { 1651 err = -EINVAL; 1652 goto out; 1653 } 1654 1655 err = do_migrate_pages(mm, old, new, 1656 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1657 1658 mmput(mm); 1659 out: 1660 NODEMASK_SCRATCH_FREE(scratch); 1661 1662 return err; 1663 1664 out_put: 1665 put_task_struct(task); 1666 goto out; 1667 1668 } 1669 1670 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1671 const unsigned long __user *, old_nodes, 1672 const unsigned long __user *, new_nodes) 1673 { 1674 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1675 } 1676 1677 1678 /* Retrieve NUMA policy */ 1679 static int kernel_get_mempolicy(int __user *policy, 1680 unsigned long __user *nmask, 1681 unsigned long maxnode, 1682 unsigned long addr, 1683 unsigned long flags) 1684 { 1685 int err; 1686 int pval; 1687 nodemask_t nodes; 1688 1689 if (nmask != NULL && maxnode < nr_node_ids) 1690 return -EINVAL; 1691 1692 addr = untagged_addr(addr); 1693 1694 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1695 1696 if (err) 1697 return err; 1698 1699 if (policy && put_user(pval, policy)) 1700 return -EFAULT; 1701 1702 if (nmask) 1703 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1704 1705 return err; 1706 } 1707 1708 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1709 unsigned long __user *, nmask, unsigned long, maxnode, 1710 unsigned long, addr, unsigned long, flags) 1711 { 1712 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1713 } 1714 1715 bool vma_migratable(struct vm_area_struct *vma) 1716 { 1717 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1718 return false; 1719 1720 /* 1721 * DAX device mappings require predictable access latency, so avoid 1722 * incurring periodic faults. 1723 */ 1724 if (vma_is_dax(vma)) 1725 return false; 1726 1727 if (is_vm_hugetlb_page(vma) && 1728 !hugepage_migration_supported(hstate_vma(vma))) 1729 return false; 1730 1731 /* 1732 * Migration allocates pages in the highest zone. If we cannot 1733 * do so then migration (at least from node to node) is not 1734 * possible. 1735 */ 1736 if (vma->vm_file && 1737 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1738 < policy_zone) 1739 return false; 1740 return true; 1741 } 1742 1743 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1744 unsigned long addr) 1745 { 1746 struct mempolicy *pol = NULL; 1747 1748 if (vma) { 1749 if (vma->vm_ops && vma->vm_ops->get_policy) { 1750 pol = vma->vm_ops->get_policy(vma, addr); 1751 } else if (vma->vm_policy) { 1752 pol = vma->vm_policy; 1753 1754 /* 1755 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1756 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1757 * count on these policies which will be dropped by 1758 * mpol_cond_put() later 1759 */ 1760 if (mpol_needs_cond_ref(pol)) 1761 mpol_get(pol); 1762 } 1763 } 1764 1765 return pol; 1766 } 1767 1768 /* 1769 * get_vma_policy(@vma, @addr) 1770 * @vma: virtual memory area whose policy is sought 1771 * @addr: address in @vma for shared policy lookup 1772 * 1773 * Returns effective policy for a VMA at specified address. 1774 * Falls back to current->mempolicy or system default policy, as necessary. 1775 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1776 * count--added by the get_policy() vm_op, as appropriate--to protect against 1777 * freeing by another task. It is the caller's responsibility to free the 1778 * extra reference for shared policies. 1779 */ 1780 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1781 unsigned long addr) 1782 { 1783 struct mempolicy *pol = __get_vma_policy(vma, addr); 1784 1785 if (!pol) 1786 pol = get_task_policy(current); 1787 1788 return pol; 1789 } 1790 1791 bool vma_policy_mof(struct vm_area_struct *vma) 1792 { 1793 struct mempolicy *pol; 1794 1795 if (vma->vm_ops && vma->vm_ops->get_policy) { 1796 bool ret = false; 1797 1798 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1799 if (pol && (pol->flags & MPOL_F_MOF)) 1800 ret = true; 1801 mpol_cond_put(pol); 1802 1803 return ret; 1804 } 1805 1806 pol = vma->vm_policy; 1807 if (!pol) 1808 pol = get_task_policy(current); 1809 1810 return pol->flags & MPOL_F_MOF; 1811 } 1812 1813 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1814 { 1815 enum zone_type dynamic_policy_zone = policy_zone; 1816 1817 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1818 1819 /* 1820 * if policy->nodes has movable memory only, 1821 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1822 * 1823 * policy->nodes is intersect with node_states[N_MEMORY]. 1824 * so if the following test fails, it implies 1825 * policy->nodes has movable memory only. 1826 */ 1827 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1828 dynamic_policy_zone = ZONE_MOVABLE; 1829 1830 return zone >= dynamic_policy_zone; 1831 } 1832 1833 /* 1834 * Return a nodemask representing a mempolicy for filtering nodes for 1835 * page allocation 1836 */ 1837 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1838 { 1839 int mode = policy->mode; 1840 1841 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1842 if (unlikely(mode == MPOL_BIND) && 1843 apply_policy_zone(policy, gfp_zone(gfp)) && 1844 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1845 return &policy->nodes; 1846 1847 if (mode == MPOL_PREFERRED_MANY) 1848 return &policy->nodes; 1849 1850 return NULL; 1851 } 1852 1853 /* 1854 * Return the preferred node id for 'prefer' mempolicy, and return 1855 * the given id for all other policies. 1856 * 1857 * policy_node() is always coupled with policy_nodemask(), which 1858 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1859 */ 1860 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1861 { 1862 if (policy->mode == MPOL_PREFERRED) { 1863 nd = first_node(policy->nodes); 1864 } else { 1865 /* 1866 * __GFP_THISNODE shouldn't even be used with the bind policy 1867 * because we might easily break the expectation to stay on the 1868 * requested node and not break the policy. 1869 */ 1870 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1871 } 1872 1873 if ((policy->mode == MPOL_BIND || 1874 policy->mode == MPOL_PREFERRED_MANY) && 1875 policy->home_node != NUMA_NO_NODE) 1876 return policy->home_node; 1877 1878 return nd; 1879 } 1880 1881 /* Do dynamic interleaving for a process */ 1882 static unsigned interleave_nodes(struct mempolicy *policy) 1883 { 1884 unsigned next; 1885 struct task_struct *me = current; 1886 1887 next = next_node_in(me->il_prev, policy->nodes); 1888 if (next < MAX_NUMNODES) 1889 me->il_prev = next; 1890 return next; 1891 } 1892 1893 /* 1894 * Depending on the memory policy provide a node from which to allocate the 1895 * next slab entry. 1896 */ 1897 unsigned int mempolicy_slab_node(void) 1898 { 1899 struct mempolicy *policy; 1900 int node = numa_mem_id(); 1901 1902 if (!in_task()) 1903 return node; 1904 1905 policy = current->mempolicy; 1906 if (!policy) 1907 return node; 1908 1909 switch (policy->mode) { 1910 case MPOL_PREFERRED: 1911 return first_node(policy->nodes); 1912 1913 case MPOL_INTERLEAVE: 1914 return interleave_nodes(policy); 1915 1916 case MPOL_BIND: 1917 case MPOL_PREFERRED_MANY: 1918 { 1919 struct zoneref *z; 1920 1921 /* 1922 * Follow bind policy behavior and start allocation at the 1923 * first node. 1924 */ 1925 struct zonelist *zonelist; 1926 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1927 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1928 z = first_zones_zonelist(zonelist, highest_zoneidx, 1929 &policy->nodes); 1930 return z->zone ? zone_to_nid(z->zone) : node; 1931 } 1932 case MPOL_LOCAL: 1933 return node; 1934 1935 default: 1936 BUG(); 1937 } 1938 } 1939 1940 /* 1941 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1942 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1943 * number of present nodes. 1944 */ 1945 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1946 { 1947 nodemask_t nodemask = pol->nodes; 1948 unsigned int target, nnodes; 1949 int i; 1950 int nid; 1951 /* 1952 * The barrier will stabilize the nodemask in a register or on 1953 * the stack so that it will stop changing under the code. 1954 * 1955 * Between first_node() and next_node(), pol->nodes could be changed 1956 * by other threads. So we put pol->nodes in a local stack. 1957 */ 1958 barrier(); 1959 1960 nnodes = nodes_weight(nodemask); 1961 if (!nnodes) 1962 return numa_node_id(); 1963 target = (unsigned int)n % nnodes; 1964 nid = first_node(nodemask); 1965 for (i = 0; i < target; i++) 1966 nid = next_node(nid, nodemask); 1967 return nid; 1968 } 1969 1970 /* Determine a node number for interleave */ 1971 static inline unsigned interleave_nid(struct mempolicy *pol, 1972 struct vm_area_struct *vma, unsigned long addr, int shift) 1973 { 1974 if (vma) { 1975 unsigned long off; 1976 1977 /* 1978 * for small pages, there is no difference between 1979 * shift and PAGE_SHIFT, so the bit-shift is safe. 1980 * for huge pages, since vm_pgoff is in units of small 1981 * pages, we need to shift off the always 0 bits to get 1982 * a useful offset. 1983 */ 1984 BUG_ON(shift < PAGE_SHIFT); 1985 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1986 off += (addr - vma->vm_start) >> shift; 1987 return offset_il_node(pol, off); 1988 } else 1989 return interleave_nodes(pol); 1990 } 1991 1992 #ifdef CONFIG_HUGETLBFS 1993 /* 1994 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1995 * @vma: virtual memory area whose policy is sought 1996 * @addr: address in @vma for shared policy lookup and interleave policy 1997 * @gfp_flags: for requested zone 1998 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1999 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2000 * 2001 * Returns a nid suitable for a huge page allocation and a pointer 2002 * to the struct mempolicy for conditional unref after allocation. 2003 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2004 * to the mempolicy's @nodemask for filtering the zonelist. 2005 * 2006 * Must be protected by read_mems_allowed_begin() 2007 */ 2008 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2009 struct mempolicy **mpol, nodemask_t **nodemask) 2010 { 2011 int nid; 2012 int mode; 2013 2014 *mpol = get_vma_policy(vma, addr); 2015 *nodemask = NULL; 2016 mode = (*mpol)->mode; 2017 2018 if (unlikely(mode == MPOL_INTERLEAVE)) { 2019 nid = interleave_nid(*mpol, vma, addr, 2020 huge_page_shift(hstate_vma(vma))); 2021 } else { 2022 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2023 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2024 *nodemask = &(*mpol)->nodes; 2025 } 2026 return nid; 2027 } 2028 2029 /* 2030 * init_nodemask_of_mempolicy 2031 * 2032 * If the current task's mempolicy is "default" [NULL], return 'false' 2033 * to indicate default policy. Otherwise, extract the policy nodemask 2034 * for 'bind' or 'interleave' policy into the argument nodemask, or 2035 * initialize the argument nodemask to contain the single node for 2036 * 'preferred' or 'local' policy and return 'true' to indicate presence 2037 * of non-default mempolicy. 2038 * 2039 * We don't bother with reference counting the mempolicy [mpol_get/put] 2040 * because the current task is examining it's own mempolicy and a task's 2041 * mempolicy is only ever changed by the task itself. 2042 * 2043 * N.B., it is the caller's responsibility to free a returned nodemask. 2044 */ 2045 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2046 { 2047 struct mempolicy *mempolicy; 2048 2049 if (!(mask && current->mempolicy)) 2050 return false; 2051 2052 task_lock(current); 2053 mempolicy = current->mempolicy; 2054 switch (mempolicy->mode) { 2055 case MPOL_PREFERRED: 2056 case MPOL_PREFERRED_MANY: 2057 case MPOL_BIND: 2058 case MPOL_INTERLEAVE: 2059 *mask = mempolicy->nodes; 2060 break; 2061 2062 case MPOL_LOCAL: 2063 init_nodemask_of_node(mask, numa_node_id()); 2064 break; 2065 2066 default: 2067 BUG(); 2068 } 2069 task_unlock(current); 2070 2071 return true; 2072 } 2073 #endif 2074 2075 /* 2076 * mempolicy_in_oom_domain 2077 * 2078 * If tsk's mempolicy is "bind", check for intersection between mask and 2079 * the policy nodemask. Otherwise, return true for all other policies 2080 * including "interleave", as a tsk with "interleave" policy may have 2081 * memory allocated from all nodes in system. 2082 * 2083 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2084 */ 2085 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2086 const nodemask_t *mask) 2087 { 2088 struct mempolicy *mempolicy; 2089 bool ret = true; 2090 2091 if (!mask) 2092 return ret; 2093 2094 task_lock(tsk); 2095 mempolicy = tsk->mempolicy; 2096 if (mempolicy && mempolicy->mode == MPOL_BIND) 2097 ret = nodes_intersects(mempolicy->nodes, *mask); 2098 task_unlock(tsk); 2099 2100 return ret; 2101 } 2102 2103 /* Allocate a page in interleaved policy. 2104 Own path because it needs to do special accounting. */ 2105 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2106 unsigned nid) 2107 { 2108 struct page *page; 2109 2110 page = __alloc_pages(gfp, order, nid, NULL); 2111 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2112 if (!static_branch_likely(&vm_numa_stat_key)) 2113 return page; 2114 if (page && page_to_nid(page) == nid) { 2115 preempt_disable(); 2116 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2117 preempt_enable(); 2118 } 2119 return page; 2120 } 2121 2122 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2123 int nid, struct mempolicy *pol) 2124 { 2125 struct page *page; 2126 gfp_t preferred_gfp; 2127 2128 /* 2129 * This is a two pass approach. The first pass will only try the 2130 * preferred nodes but skip the direct reclaim and allow the 2131 * allocation to fail, while the second pass will try all the 2132 * nodes in system. 2133 */ 2134 preferred_gfp = gfp | __GFP_NOWARN; 2135 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2136 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2137 if (!page) 2138 page = __alloc_pages(gfp, order, nid, NULL); 2139 2140 return page; 2141 } 2142 2143 /** 2144 * vma_alloc_folio - Allocate a folio for a VMA. 2145 * @gfp: GFP flags. 2146 * @order: Order of the folio. 2147 * @vma: Pointer to VMA or NULL if not available. 2148 * @addr: Virtual address of the allocation. Must be inside @vma. 2149 * @hugepage: For hugepages try only the preferred node if possible. 2150 * 2151 * Allocate a folio for a specific address in @vma, using the appropriate 2152 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2153 * of the mm_struct of the VMA to prevent it from going away. Should be 2154 * used for all allocations for folios that will be mapped into user space. 2155 * 2156 * Return: The folio on success or NULL if allocation fails. 2157 */ 2158 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2159 unsigned long addr, bool hugepage) 2160 { 2161 struct mempolicy *pol; 2162 int node = numa_node_id(); 2163 struct folio *folio; 2164 int preferred_nid; 2165 nodemask_t *nmask; 2166 2167 pol = get_vma_policy(vma, addr); 2168 2169 if (pol->mode == MPOL_INTERLEAVE) { 2170 struct page *page; 2171 unsigned nid; 2172 2173 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2174 mpol_cond_put(pol); 2175 gfp |= __GFP_COMP; 2176 page = alloc_page_interleave(gfp, order, nid); 2177 if (page && order > 1) 2178 prep_transhuge_page(page); 2179 folio = (struct folio *)page; 2180 goto out; 2181 } 2182 2183 if (pol->mode == MPOL_PREFERRED_MANY) { 2184 struct page *page; 2185 2186 node = policy_node(gfp, pol, node); 2187 gfp |= __GFP_COMP; 2188 page = alloc_pages_preferred_many(gfp, order, node, pol); 2189 mpol_cond_put(pol); 2190 if (page && order > 1) 2191 prep_transhuge_page(page); 2192 folio = (struct folio *)page; 2193 goto out; 2194 } 2195 2196 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2197 int hpage_node = node; 2198 2199 /* 2200 * For hugepage allocation and non-interleave policy which 2201 * allows the current node (or other explicitly preferred 2202 * node) we only try to allocate from the current/preferred 2203 * node and don't fall back to other nodes, as the cost of 2204 * remote accesses would likely offset THP benefits. 2205 * 2206 * If the policy is interleave or does not allow the current 2207 * node in its nodemask, we allocate the standard way. 2208 */ 2209 if (pol->mode == MPOL_PREFERRED) 2210 hpage_node = first_node(pol->nodes); 2211 2212 nmask = policy_nodemask(gfp, pol); 2213 if (!nmask || node_isset(hpage_node, *nmask)) { 2214 mpol_cond_put(pol); 2215 /* 2216 * First, try to allocate THP only on local node, but 2217 * don't reclaim unnecessarily, just compact. 2218 */ 2219 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2220 __GFP_NORETRY, order, hpage_node); 2221 2222 /* 2223 * If hugepage allocations are configured to always 2224 * synchronous compact or the vma has been madvised 2225 * to prefer hugepage backing, retry allowing remote 2226 * memory with both reclaim and compact as well. 2227 */ 2228 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2229 folio = __folio_alloc(gfp, order, hpage_node, 2230 nmask); 2231 2232 goto out; 2233 } 2234 } 2235 2236 nmask = policy_nodemask(gfp, pol); 2237 preferred_nid = policy_node(gfp, pol, node); 2238 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2239 mpol_cond_put(pol); 2240 out: 2241 return folio; 2242 } 2243 EXPORT_SYMBOL(vma_alloc_folio); 2244 2245 /** 2246 * alloc_pages - Allocate pages. 2247 * @gfp: GFP flags. 2248 * @order: Power of two of number of pages to allocate. 2249 * 2250 * Allocate 1 << @order contiguous pages. The physical address of the 2251 * first page is naturally aligned (eg an order-3 allocation will be aligned 2252 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2253 * process is honoured when in process context. 2254 * 2255 * Context: Can be called from any context, providing the appropriate GFP 2256 * flags are used. 2257 * Return: The page on success or NULL if allocation fails. 2258 */ 2259 struct page *alloc_pages(gfp_t gfp, unsigned order) 2260 { 2261 struct mempolicy *pol = &default_policy; 2262 struct page *page; 2263 2264 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2265 pol = get_task_policy(current); 2266 2267 /* 2268 * No reference counting needed for current->mempolicy 2269 * nor system default_policy 2270 */ 2271 if (pol->mode == MPOL_INTERLEAVE) 2272 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2273 else if (pol->mode == MPOL_PREFERRED_MANY) 2274 page = alloc_pages_preferred_many(gfp, order, 2275 policy_node(gfp, pol, numa_node_id()), pol); 2276 else 2277 page = __alloc_pages(gfp, order, 2278 policy_node(gfp, pol, numa_node_id()), 2279 policy_nodemask(gfp, pol)); 2280 2281 return page; 2282 } 2283 EXPORT_SYMBOL(alloc_pages); 2284 2285 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2286 { 2287 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2288 2289 if (page && order > 1) 2290 prep_transhuge_page(page); 2291 return (struct folio *)page; 2292 } 2293 EXPORT_SYMBOL(folio_alloc); 2294 2295 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2296 struct mempolicy *pol, unsigned long nr_pages, 2297 struct page **page_array) 2298 { 2299 int nodes; 2300 unsigned long nr_pages_per_node; 2301 int delta; 2302 int i; 2303 unsigned long nr_allocated; 2304 unsigned long total_allocated = 0; 2305 2306 nodes = nodes_weight(pol->nodes); 2307 nr_pages_per_node = nr_pages / nodes; 2308 delta = nr_pages - nodes * nr_pages_per_node; 2309 2310 for (i = 0; i < nodes; i++) { 2311 if (delta) { 2312 nr_allocated = __alloc_pages_bulk(gfp, 2313 interleave_nodes(pol), NULL, 2314 nr_pages_per_node + 1, NULL, 2315 page_array); 2316 delta--; 2317 } else { 2318 nr_allocated = __alloc_pages_bulk(gfp, 2319 interleave_nodes(pol), NULL, 2320 nr_pages_per_node, NULL, page_array); 2321 } 2322 2323 page_array += nr_allocated; 2324 total_allocated += nr_allocated; 2325 } 2326 2327 return total_allocated; 2328 } 2329 2330 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2331 struct mempolicy *pol, unsigned long nr_pages, 2332 struct page **page_array) 2333 { 2334 gfp_t preferred_gfp; 2335 unsigned long nr_allocated = 0; 2336 2337 preferred_gfp = gfp | __GFP_NOWARN; 2338 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2339 2340 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2341 nr_pages, NULL, page_array); 2342 2343 if (nr_allocated < nr_pages) 2344 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2345 nr_pages - nr_allocated, NULL, 2346 page_array + nr_allocated); 2347 return nr_allocated; 2348 } 2349 2350 /* alloc pages bulk and mempolicy should be considered at the 2351 * same time in some situation such as vmalloc. 2352 * 2353 * It can accelerate memory allocation especially interleaving 2354 * allocate memory. 2355 */ 2356 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2357 unsigned long nr_pages, struct page **page_array) 2358 { 2359 struct mempolicy *pol = &default_policy; 2360 2361 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2362 pol = get_task_policy(current); 2363 2364 if (pol->mode == MPOL_INTERLEAVE) 2365 return alloc_pages_bulk_array_interleave(gfp, pol, 2366 nr_pages, page_array); 2367 2368 if (pol->mode == MPOL_PREFERRED_MANY) 2369 return alloc_pages_bulk_array_preferred_many(gfp, 2370 numa_node_id(), pol, nr_pages, page_array); 2371 2372 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2373 policy_nodemask(gfp, pol), nr_pages, NULL, 2374 page_array); 2375 } 2376 2377 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2378 { 2379 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2380 2381 if (IS_ERR(pol)) 2382 return PTR_ERR(pol); 2383 dst->vm_policy = pol; 2384 return 0; 2385 } 2386 2387 /* 2388 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2389 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2390 * with the mems_allowed returned by cpuset_mems_allowed(). This 2391 * keeps mempolicies cpuset relative after its cpuset moves. See 2392 * further kernel/cpuset.c update_nodemask(). 2393 * 2394 * current's mempolicy may be rebinded by the other task(the task that changes 2395 * cpuset's mems), so we needn't do rebind work for current task. 2396 */ 2397 2398 /* Slow path of a mempolicy duplicate */ 2399 struct mempolicy *__mpol_dup(struct mempolicy *old) 2400 { 2401 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2402 2403 if (!new) 2404 return ERR_PTR(-ENOMEM); 2405 2406 /* task's mempolicy is protected by alloc_lock */ 2407 if (old == current->mempolicy) { 2408 task_lock(current); 2409 *new = *old; 2410 task_unlock(current); 2411 } else 2412 *new = *old; 2413 2414 if (current_cpuset_is_being_rebound()) { 2415 nodemask_t mems = cpuset_mems_allowed(current); 2416 mpol_rebind_policy(new, &mems); 2417 } 2418 atomic_set(&new->refcnt, 1); 2419 return new; 2420 } 2421 2422 /* Slow path of a mempolicy comparison */ 2423 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2424 { 2425 if (!a || !b) 2426 return false; 2427 if (a->mode != b->mode) 2428 return false; 2429 if (a->flags != b->flags) 2430 return false; 2431 if (a->home_node != b->home_node) 2432 return false; 2433 if (mpol_store_user_nodemask(a)) 2434 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2435 return false; 2436 2437 switch (a->mode) { 2438 case MPOL_BIND: 2439 case MPOL_INTERLEAVE: 2440 case MPOL_PREFERRED: 2441 case MPOL_PREFERRED_MANY: 2442 return !!nodes_equal(a->nodes, b->nodes); 2443 case MPOL_LOCAL: 2444 return true; 2445 default: 2446 BUG(); 2447 return false; 2448 } 2449 } 2450 2451 /* 2452 * Shared memory backing store policy support. 2453 * 2454 * Remember policies even when nobody has shared memory mapped. 2455 * The policies are kept in Red-Black tree linked from the inode. 2456 * They are protected by the sp->lock rwlock, which should be held 2457 * for any accesses to the tree. 2458 */ 2459 2460 /* 2461 * lookup first element intersecting start-end. Caller holds sp->lock for 2462 * reading or for writing 2463 */ 2464 static struct sp_node * 2465 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2466 { 2467 struct rb_node *n = sp->root.rb_node; 2468 2469 while (n) { 2470 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2471 2472 if (start >= p->end) 2473 n = n->rb_right; 2474 else if (end <= p->start) 2475 n = n->rb_left; 2476 else 2477 break; 2478 } 2479 if (!n) 2480 return NULL; 2481 for (;;) { 2482 struct sp_node *w = NULL; 2483 struct rb_node *prev = rb_prev(n); 2484 if (!prev) 2485 break; 2486 w = rb_entry(prev, struct sp_node, nd); 2487 if (w->end <= start) 2488 break; 2489 n = prev; 2490 } 2491 return rb_entry(n, struct sp_node, nd); 2492 } 2493 2494 /* 2495 * Insert a new shared policy into the list. Caller holds sp->lock for 2496 * writing. 2497 */ 2498 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2499 { 2500 struct rb_node **p = &sp->root.rb_node; 2501 struct rb_node *parent = NULL; 2502 struct sp_node *nd; 2503 2504 while (*p) { 2505 parent = *p; 2506 nd = rb_entry(parent, struct sp_node, nd); 2507 if (new->start < nd->start) 2508 p = &(*p)->rb_left; 2509 else if (new->end > nd->end) 2510 p = &(*p)->rb_right; 2511 else 2512 BUG(); 2513 } 2514 rb_link_node(&new->nd, parent, p); 2515 rb_insert_color(&new->nd, &sp->root); 2516 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2517 new->policy ? new->policy->mode : 0); 2518 } 2519 2520 /* Find shared policy intersecting idx */ 2521 struct mempolicy * 2522 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2523 { 2524 struct mempolicy *pol = NULL; 2525 struct sp_node *sn; 2526 2527 if (!sp->root.rb_node) 2528 return NULL; 2529 read_lock(&sp->lock); 2530 sn = sp_lookup(sp, idx, idx+1); 2531 if (sn) { 2532 mpol_get(sn->policy); 2533 pol = sn->policy; 2534 } 2535 read_unlock(&sp->lock); 2536 return pol; 2537 } 2538 2539 static void sp_free(struct sp_node *n) 2540 { 2541 mpol_put(n->policy); 2542 kmem_cache_free(sn_cache, n); 2543 } 2544 2545 /** 2546 * mpol_misplaced - check whether current page node is valid in policy 2547 * 2548 * @page: page to be checked 2549 * @vma: vm area where page mapped 2550 * @addr: virtual address where page mapped 2551 * 2552 * Lookup current policy node id for vma,addr and "compare to" page's 2553 * node id. Policy determination "mimics" alloc_page_vma(). 2554 * Called from fault path where we know the vma and faulting address. 2555 * 2556 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2557 * policy, or a suitable node ID to allocate a replacement page from. 2558 */ 2559 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2560 { 2561 struct mempolicy *pol; 2562 struct zoneref *z; 2563 int curnid = page_to_nid(page); 2564 unsigned long pgoff; 2565 int thiscpu = raw_smp_processor_id(); 2566 int thisnid = cpu_to_node(thiscpu); 2567 int polnid = NUMA_NO_NODE; 2568 int ret = NUMA_NO_NODE; 2569 2570 pol = get_vma_policy(vma, addr); 2571 if (!(pol->flags & MPOL_F_MOF)) 2572 goto out; 2573 2574 switch (pol->mode) { 2575 case MPOL_INTERLEAVE: 2576 pgoff = vma->vm_pgoff; 2577 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2578 polnid = offset_il_node(pol, pgoff); 2579 break; 2580 2581 case MPOL_PREFERRED: 2582 if (node_isset(curnid, pol->nodes)) 2583 goto out; 2584 polnid = first_node(pol->nodes); 2585 break; 2586 2587 case MPOL_LOCAL: 2588 polnid = numa_node_id(); 2589 break; 2590 2591 case MPOL_BIND: 2592 /* Optimize placement among multiple nodes via NUMA balancing */ 2593 if (pol->flags & MPOL_F_MORON) { 2594 if (node_isset(thisnid, pol->nodes)) 2595 break; 2596 goto out; 2597 } 2598 fallthrough; 2599 2600 case MPOL_PREFERRED_MANY: 2601 /* 2602 * use current page if in policy nodemask, 2603 * else select nearest allowed node, if any. 2604 * If no allowed nodes, use current [!misplaced]. 2605 */ 2606 if (node_isset(curnid, pol->nodes)) 2607 goto out; 2608 z = first_zones_zonelist( 2609 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2610 gfp_zone(GFP_HIGHUSER), 2611 &pol->nodes); 2612 polnid = zone_to_nid(z->zone); 2613 break; 2614 2615 default: 2616 BUG(); 2617 } 2618 2619 /* Migrate the page towards the node whose CPU is referencing it */ 2620 if (pol->flags & MPOL_F_MORON) { 2621 polnid = thisnid; 2622 2623 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2624 goto out; 2625 } 2626 2627 if (curnid != polnid) 2628 ret = polnid; 2629 out: 2630 mpol_cond_put(pol); 2631 2632 return ret; 2633 } 2634 2635 /* 2636 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2637 * dropped after task->mempolicy is set to NULL so that any allocation done as 2638 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2639 * policy. 2640 */ 2641 void mpol_put_task_policy(struct task_struct *task) 2642 { 2643 struct mempolicy *pol; 2644 2645 task_lock(task); 2646 pol = task->mempolicy; 2647 task->mempolicy = NULL; 2648 task_unlock(task); 2649 mpol_put(pol); 2650 } 2651 2652 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2653 { 2654 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2655 rb_erase(&n->nd, &sp->root); 2656 sp_free(n); 2657 } 2658 2659 static void sp_node_init(struct sp_node *node, unsigned long start, 2660 unsigned long end, struct mempolicy *pol) 2661 { 2662 node->start = start; 2663 node->end = end; 2664 node->policy = pol; 2665 } 2666 2667 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2668 struct mempolicy *pol) 2669 { 2670 struct sp_node *n; 2671 struct mempolicy *newpol; 2672 2673 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2674 if (!n) 2675 return NULL; 2676 2677 newpol = mpol_dup(pol); 2678 if (IS_ERR(newpol)) { 2679 kmem_cache_free(sn_cache, n); 2680 return NULL; 2681 } 2682 newpol->flags |= MPOL_F_SHARED; 2683 sp_node_init(n, start, end, newpol); 2684 2685 return n; 2686 } 2687 2688 /* Replace a policy range. */ 2689 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2690 unsigned long end, struct sp_node *new) 2691 { 2692 struct sp_node *n; 2693 struct sp_node *n_new = NULL; 2694 struct mempolicy *mpol_new = NULL; 2695 int ret = 0; 2696 2697 restart: 2698 write_lock(&sp->lock); 2699 n = sp_lookup(sp, start, end); 2700 /* Take care of old policies in the same range. */ 2701 while (n && n->start < end) { 2702 struct rb_node *next = rb_next(&n->nd); 2703 if (n->start >= start) { 2704 if (n->end <= end) 2705 sp_delete(sp, n); 2706 else 2707 n->start = end; 2708 } else { 2709 /* Old policy spanning whole new range. */ 2710 if (n->end > end) { 2711 if (!n_new) 2712 goto alloc_new; 2713 2714 *mpol_new = *n->policy; 2715 atomic_set(&mpol_new->refcnt, 1); 2716 sp_node_init(n_new, end, n->end, mpol_new); 2717 n->end = start; 2718 sp_insert(sp, n_new); 2719 n_new = NULL; 2720 mpol_new = NULL; 2721 break; 2722 } else 2723 n->end = start; 2724 } 2725 if (!next) 2726 break; 2727 n = rb_entry(next, struct sp_node, nd); 2728 } 2729 if (new) 2730 sp_insert(sp, new); 2731 write_unlock(&sp->lock); 2732 ret = 0; 2733 2734 err_out: 2735 if (mpol_new) 2736 mpol_put(mpol_new); 2737 if (n_new) 2738 kmem_cache_free(sn_cache, n_new); 2739 2740 return ret; 2741 2742 alloc_new: 2743 write_unlock(&sp->lock); 2744 ret = -ENOMEM; 2745 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2746 if (!n_new) 2747 goto err_out; 2748 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2749 if (!mpol_new) 2750 goto err_out; 2751 atomic_set(&mpol_new->refcnt, 1); 2752 goto restart; 2753 } 2754 2755 /** 2756 * mpol_shared_policy_init - initialize shared policy for inode 2757 * @sp: pointer to inode shared policy 2758 * @mpol: struct mempolicy to install 2759 * 2760 * Install non-NULL @mpol in inode's shared policy rb-tree. 2761 * On entry, the current task has a reference on a non-NULL @mpol. 2762 * This must be released on exit. 2763 * This is called at get_inode() calls and we can use GFP_KERNEL. 2764 */ 2765 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2766 { 2767 int ret; 2768 2769 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2770 rwlock_init(&sp->lock); 2771 2772 if (mpol) { 2773 struct vm_area_struct pvma; 2774 struct mempolicy *new; 2775 NODEMASK_SCRATCH(scratch); 2776 2777 if (!scratch) 2778 goto put_mpol; 2779 /* contextualize the tmpfs mount point mempolicy */ 2780 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2781 if (IS_ERR(new)) 2782 goto free_scratch; /* no valid nodemask intersection */ 2783 2784 task_lock(current); 2785 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2786 task_unlock(current); 2787 if (ret) 2788 goto put_new; 2789 2790 /* Create pseudo-vma that contains just the policy */ 2791 vma_init(&pvma, NULL); 2792 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2793 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2794 2795 put_new: 2796 mpol_put(new); /* drop initial ref */ 2797 free_scratch: 2798 NODEMASK_SCRATCH_FREE(scratch); 2799 put_mpol: 2800 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2801 } 2802 } 2803 2804 int mpol_set_shared_policy(struct shared_policy *info, 2805 struct vm_area_struct *vma, struct mempolicy *npol) 2806 { 2807 int err; 2808 struct sp_node *new = NULL; 2809 unsigned long sz = vma_pages(vma); 2810 2811 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2812 vma->vm_pgoff, 2813 sz, npol ? npol->mode : -1, 2814 npol ? npol->flags : -1, 2815 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2816 2817 if (npol) { 2818 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2819 if (!new) 2820 return -ENOMEM; 2821 } 2822 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2823 if (err && new) 2824 sp_free(new); 2825 return err; 2826 } 2827 2828 /* Free a backing policy store on inode delete. */ 2829 void mpol_free_shared_policy(struct shared_policy *p) 2830 { 2831 struct sp_node *n; 2832 struct rb_node *next; 2833 2834 if (!p->root.rb_node) 2835 return; 2836 write_lock(&p->lock); 2837 next = rb_first(&p->root); 2838 while (next) { 2839 n = rb_entry(next, struct sp_node, nd); 2840 next = rb_next(&n->nd); 2841 sp_delete(p, n); 2842 } 2843 write_unlock(&p->lock); 2844 } 2845 2846 #ifdef CONFIG_NUMA_BALANCING 2847 static int __initdata numabalancing_override; 2848 2849 static void __init check_numabalancing_enable(void) 2850 { 2851 bool numabalancing_default = false; 2852 2853 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2854 numabalancing_default = true; 2855 2856 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2857 if (numabalancing_override) 2858 set_numabalancing_state(numabalancing_override == 1); 2859 2860 if (num_online_nodes() > 1 && !numabalancing_override) { 2861 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2862 numabalancing_default ? "Enabling" : "Disabling"); 2863 set_numabalancing_state(numabalancing_default); 2864 } 2865 } 2866 2867 static int __init setup_numabalancing(char *str) 2868 { 2869 int ret = 0; 2870 if (!str) 2871 goto out; 2872 2873 if (!strcmp(str, "enable")) { 2874 numabalancing_override = 1; 2875 ret = 1; 2876 } else if (!strcmp(str, "disable")) { 2877 numabalancing_override = -1; 2878 ret = 1; 2879 } 2880 out: 2881 if (!ret) 2882 pr_warn("Unable to parse numa_balancing=\n"); 2883 2884 return ret; 2885 } 2886 __setup("numa_balancing=", setup_numabalancing); 2887 #else 2888 static inline void __init check_numabalancing_enable(void) 2889 { 2890 } 2891 #endif /* CONFIG_NUMA_BALANCING */ 2892 2893 /* assumes fs == KERNEL_DS */ 2894 void __init numa_policy_init(void) 2895 { 2896 nodemask_t interleave_nodes; 2897 unsigned long largest = 0; 2898 int nid, prefer = 0; 2899 2900 policy_cache = kmem_cache_create("numa_policy", 2901 sizeof(struct mempolicy), 2902 0, SLAB_PANIC, NULL); 2903 2904 sn_cache = kmem_cache_create("shared_policy_node", 2905 sizeof(struct sp_node), 2906 0, SLAB_PANIC, NULL); 2907 2908 for_each_node(nid) { 2909 preferred_node_policy[nid] = (struct mempolicy) { 2910 .refcnt = ATOMIC_INIT(1), 2911 .mode = MPOL_PREFERRED, 2912 .flags = MPOL_F_MOF | MPOL_F_MORON, 2913 .nodes = nodemask_of_node(nid), 2914 }; 2915 } 2916 2917 /* 2918 * Set interleaving policy for system init. Interleaving is only 2919 * enabled across suitably sized nodes (default is >= 16MB), or 2920 * fall back to the largest node if they're all smaller. 2921 */ 2922 nodes_clear(interleave_nodes); 2923 for_each_node_state(nid, N_MEMORY) { 2924 unsigned long total_pages = node_present_pages(nid); 2925 2926 /* Preserve the largest node */ 2927 if (largest < total_pages) { 2928 largest = total_pages; 2929 prefer = nid; 2930 } 2931 2932 /* Interleave this node? */ 2933 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2934 node_set(nid, interleave_nodes); 2935 } 2936 2937 /* All too small, use the largest */ 2938 if (unlikely(nodes_empty(interleave_nodes))) 2939 node_set(prefer, interleave_nodes); 2940 2941 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2942 pr_err("%s: interleaving failed\n", __func__); 2943 2944 check_numabalancing_enable(); 2945 } 2946 2947 /* Reset policy of current process to default */ 2948 void numa_default_policy(void) 2949 { 2950 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2951 } 2952 2953 /* 2954 * Parse and format mempolicy from/to strings 2955 */ 2956 2957 static const char * const policy_modes[] = 2958 { 2959 [MPOL_DEFAULT] = "default", 2960 [MPOL_PREFERRED] = "prefer", 2961 [MPOL_BIND] = "bind", 2962 [MPOL_INTERLEAVE] = "interleave", 2963 [MPOL_LOCAL] = "local", 2964 [MPOL_PREFERRED_MANY] = "prefer (many)", 2965 }; 2966 2967 2968 #ifdef CONFIG_TMPFS 2969 /** 2970 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2971 * @str: string containing mempolicy to parse 2972 * @mpol: pointer to struct mempolicy pointer, returned on success. 2973 * 2974 * Format of input: 2975 * <mode>[=<flags>][:<nodelist>] 2976 * 2977 * Return: %0 on success, else %1 2978 */ 2979 int mpol_parse_str(char *str, struct mempolicy **mpol) 2980 { 2981 struct mempolicy *new = NULL; 2982 unsigned short mode_flags; 2983 nodemask_t nodes; 2984 char *nodelist = strchr(str, ':'); 2985 char *flags = strchr(str, '='); 2986 int err = 1, mode; 2987 2988 if (flags) 2989 *flags++ = '\0'; /* terminate mode string */ 2990 2991 if (nodelist) { 2992 /* NUL-terminate mode or flags string */ 2993 *nodelist++ = '\0'; 2994 if (nodelist_parse(nodelist, nodes)) 2995 goto out; 2996 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2997 goto out; 2998 } else 2999 nodes_clear(nodes); 3000 3001 mode = match_string(policy_modes, MPOL_MAX, str); 3002 if (mode < 0) 3003 goto out; 3004 3005 switch (mode) { 3006 case MPOL_PREFERRED: 3007 /* 3008 * Insist on a nodelist of one node only, although later 3009 * we use first_node(nodes) to grab a single node, so here 3010 * nodelist (or nodes) cannot be empty. 3011 */ 3012 if (nodelist) { 3013 char *rest = nodelist; 3014 while (isdigit(*rest)) 3015 rest++; 3016 if (*rest) 3017 goto out; 3018 if (nodes_empty(nodes)) 3019 goto out; 3020 } 3021 break; 3022 case MPOL_INTERLEAVE: 3023 /* 3024 * Default to online nodes with memory if no nodelist 3025 */ 3026 if (!nodelist) 3027 nodes = node_states[N_MEMORY]; 3028 break; 3029 case MPOL_LOCAL: 3030 /* 3031 * Don't allow a nodelist; mpol_new() checks flags 3032 */ 3033 if (nodelist) 3034 goto out; 3035 break; 3036 case MPOL_DEFAULT: 3037 /* 3038 * Insist on a empty nodelist 3039 */ 3040 if (!nodelist) 3041 err = 0; 3042 goto out; 3043 case MPOL_PREFERRED_MANY: 3044 case MPOL_BIND: 3045 /* 3046 * Insist on a nodelist 3047 */ 3048 if (!nodelist) 3049 goto out; 3050 } 3051 3052 mode_flags = 0; 3053 if (flags) { 3054 /* 3055 * Currently, we only support two mutually exclusive 3056 * mode flags. 3057 */ 3058 if (!strcmp(flags, "static")) 3059 mode_flags |= MPOL_F_STATIC_NODES; 3060 else if (!strcmp(flags, "relative")) 3061 mode_flags |= MPOL_F_RELATIVE_NODES; 3062 else 3063 goto out; 3064 } 3065 3066 new = mpol_new(mode, mode_flags, &nodes); 3067 if (IS_ERR(new)) 3068 goto out; 3069 3070 /* 3071 * Save nodes for mpol_to_str() to show the tmpfs mount options 3072 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3073 */ 3074 if (mode != MPOL_PREFERRED) { 3075 new->nodes = nodes; 3076 } else if (nodelist) { 3077 nodes_clear(new->nodes); 3078 node_set(first_node(nodes), new->nodes); 3079 } else { 3080 new->mode = MPOL_LOCAL; 3081 } 3082 3083 /* 3084 * Save nodes for contextualization: this will be used to "clone" 3085 * the mempolicy in a specific context [cpuset] at a later time. 3086 */ 3087 new->w.user_nodemask = nodes; 3088 3089 err = 0; 3090 3091 out: 3092 /* Restore string for error message */ 3093 if (nodelist) 3094 *--nodelist = ':'; 3095 if (flags) 3096 *--flags = '='; 3097 if (!err) 3098 *mpol = new; 3099 return err; 3100 } 3101 #endif /* CONFIG_TMPFS */ 3102 3103 /** 3104 * mpol_to_str - format a mempolicy structure for printing 3105 * @buffer: to contain formatted mempolicy string 3106 * @maxlen: length of @buffer 3107 * @pol: pointer to mempolicy to be formatted 3108 * 3109 * Convert @pol into a string. If @buffer is too short, truncate the string. 3110 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3111 * longest flag, "relative", and to display at least a few node ids. 3112 */ 3113 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3114 { 3115 char *p = buffer; 3116 nodemask_t nodes = NODE_MASK_NONE; 3117 unsigned short mode = MPOL_DEFAULT; 3118 unsigned short flags = 0; 3119 3120 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3121 mode = pol->mode; 3122 flags = pol->flags; 3123 } 3124 3125 switch (mode) { 3126 case MPOL_DEFAULT: 3127 case MPOL_LOCAL: 3128 break; 3129 case MPOL_PREFERRED: 3130 case MPOL_PREFERRED_MANY: 3131 case MPOL_BIND: 3132 case MPOL_INTERLEAVE: 3133 nodes = pol->nodes; 3134 break; 3135 default: 3136 WARN_ON_ONCE(1); 3137 snprintf(p, maxlen, "unknown"); 3138 return; 3139 } 3140 3141 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3142 3143 if (flags & MPOL_MODE_FLAGS) { 3144 p += snprintf(p, buffer + maxlen - p, "="); 3145 3146 /* 3147 * Currently, the only defined flags are mutually exclusive 3148 */ 3149 if (flags & MPOL_F_STATIC_NODES) 3150 p += snprintf(p, buffer + maxlen - p, "static"); 3151 else if (flags & MPOL_F_RELATIVE_NODES) 3152 p += snprintf(p, buffer + maxlen - p, "relative"); 3153 } 3154 3155 if (!nodes_empty(nodes)) 3156 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3157 nodemask_pr_args(&nodes)); 3158 } 3159