xref: /openbmc/linux/mm/mempolicy.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @nid: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(pte - 1, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	task_lock(current);
879 	ret = mpol_set_nodemask(new, nodes, scratch);
880 	if (ret) {
881 		task_unlock(current);
882 		mpol_put(new);
883 		goto out;
884 	}
885 	old = current->mempolicy;
886 	current->mempolicy = new;
887 	if (new && new->mode == MPOL_INTERLEAVE)
888 		current->il_prev = MAX_NUMNODES-1;
889 	task_unlock(current);
890 	mpol_put(old);
891 	ret = 0;
892 out:
893 	NODEMASK_SCRATCH_FREE(scratch);
894 	return ret;
895 }
896 
897 /*
898  * Return nodemask for policy for get_mempolicy() query
899  *
900  * Called with task's alloc_lock held
901  */
902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
903 {
904 	nodes_clear(*nodes);
905 	if (p == &default_policy)
906 		return;
907 
908 	switch (p->mode) {
909 	case MPOL_BIND:
910 	case MPOL_INTERLEAVE:
911 		*nodes = p->v.nodes;
912 		break;
913 	case MPOL_PREFERRED:
914 		if (!(p->flags & MPOL_F_LOCAL))
915 			node_set(p->v.preferred_node, *nodes);
916 		/* else return empty node mask for local allocation */
917 		break;
918 	default:
919 		BUG();
920 	}
921 }
922 
923 static int lookup_node(struct mm_struct *mm, unsigned long addr)
924 {
925 	struct page *p = NULL;
926 	int err;
927 
928 	int locked = 1;
929 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
930 	if (err > 0) {
931 		err = page_to_nid(p);
932 		put_page(p);
933 	}
934 	if (locked)
935 		mmap_read_unlock(mm);
936 	return err;
937 }
938 
939 /* Retrieve NUMA policy */
940 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
941 			     unsigned long addr, unsigned long flags)
942 {
943 	int err;
944 	struct mm_struct *mm = current->mm;
945 	struct vm_area_struct *vma = NULL;
946 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
947 
948 	if (flags &
949 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
950 		return -EINVAL;
951 
952 	if (flags & MPOL_F_MEMS_ALLOWED) {
953 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
954 			return -EINVAL;
955 		*policy = 0;	/* just so it's initialized */
956 		task_lock(current);
957 		*nmask  = cpuset_current_mems_allowed;
958 		task_unlock(current);
959 		return 0;
960 	}
961 
962 	if (flags & MPOL_F_ADDR) {
963 		/*
964 		 * Do NOT fall back to task policy if the
965 		 * vma/shared policy at addr is NULL.  We
966 		 * want to return MPOL_DEFAULT in this case.
967 		 */
968 		mmap_read_lock(mm);
969 		vma = find_vma_intersection(mm, addr, addr+1);
970 		if (!vma) {
971 			mmap_read_unlock(mm);
972 			return -EFAULT;
973 		}
974 		if (vma->vm_ops && vma->vm_ops->get_policy)
975 			pol = vma->vm_ops->get_policy(vma, addr);
976 		else
977 			pol = vma->vm_policy;
978 	} else if (addr)
979 		return -EINVAL;
980 
981 	if (!pol)
982 		pol = &default_policy;	/* indicates default behavior */
983 
984 	if (flags & MPOL_F_NODE) {
985 		if (flags & MPOL_F_ADDR) {
986 			/*
987 			 * Take a refcount on the mpol, lookup_node()
988 			 * wil drop the mmap_lock, so after calling
989 			 * lookup_node() only "pol" remains valid, "vma"
990 			 * is stale.
991 			 */
992 			pol_refcount = pol;
993 			vma = NULL;
994 			mpol_get(pol);
995 			err = lookup_node(mm, addr);
996 			if (err < 0)
997 				goto out;
998 			*policy = err;
999 		} else if (pol == current->mempolicy &&
1000 				pol->mode == MPOL_INTERLEAVE) {
1001 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1002 		} else {
1003 			err = -EINVAL;
1004 			goto out;
1005 		}
1006 	} else {
1007 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1008 						pol->mode;
1009 		/*
1010 		 * Internal mempolicy flags must be masked off before exposing
1011 		 * the policy to userspace.
1012 		 */
1013 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1014 	}
1015 
1016 	err = 0;
1017 	if (nmask) {
1018 		if (mpol_store_user_nodemask(pol)) {
1019 			*nmask = pol->w.user_nodemask;
1020 		} else {
1021 			task_lock(current);
1022 			get_policy_nodemask(pol, nmask);
1023 			task_unlock(current);
1024 		}
1025 	}
1026 
1027  out:
1028 	mpol_cond_put(pol);
1029 	if (vma)
1030 		mmap_read_unlock(mm);
1031 	if (pol_refcount)
1032 		mpol_put(pol_refcount);
1033 	return err;
1034 }
1035 
1036 #ifdef CONFIG_MIGRATION
1037 /*
1038  * page migration, thp tail pages can be passed.
1039  */
1040 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1041 				unsigned long flags)
1042 {
1043 	struct page *head = compound_head(page);
1044 	/*
1045 	 * Avoid migrating a page that is shared with others.
1046 	 */
1047 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1048 		if (!isolate_lru_page(head)) {
1049 			list_add_tail(&head->lru, pagelist);
1050 			mod_node_page_state(page_pgdat(head),
1051 				NR_ISOLATED_ANON + page_is_file_lru(head),
1052 				hpage_nr_pages(head));
1053 		} else if (flags & MPOL_MF_STRICT) {
1054 			/*
1055 			 * Non-movable page may reach here.  And, there may be
1056 			 * temporary off LRU pages or non-LRU movable pages.
1057 			 * Treat them as unmovable pages since they can't be
1058 			 * isolated, so they can't be moved at the moment.  It
1059 			 * should return -EIO for this case too.
1060 			 */
1061 			return -EIO;
1062 		}
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /* page allocation callback for NUMA node migration */
1069 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1070 {
1071 	if (PageHuge(page))
1072 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1073 					node);
1074 	else if (PageTransHuge(page)) {
1075 		struct page *thp;
1076 
1077 		thp = alloc_pages_node(node,
1078 			(GFP_TRANSHUGE | __GFP_THISNODE),
1079 			HPAGE_PMD_ORDER);
1080 		if (!thp)
1081 			return NULL;
1082 		prep_transhuge_page(thp);
1083 		return thp;
1084 	} else
1085 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1086 						    __GFP_THISNODE, 0);
1087 }
1088 
1089 /*
1090  * Migrate pages from one node to a target node.
1091  * Returns error or the number of pages not migrated.
1092  */
1093 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1094 			   int flags)
1095 {
1096 	nodemask_t nmask;
1097 	LIST_HEAD(pagelist);
1098 	int err = 0;
1099 
1100 	nodes_clear(nmask);
1101 	node_set(source, nmask);
1102 
1103 	/*
1104 	 * This does not "check" the range but isolates all pages that
1105 	 * need migration.  Between passing in the full user address
1106 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1107 	 */
1108 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1109 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1110 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1111 
1112 	if (!list_empty(&pagelist)) {
1113 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1114 					MIGRATE_SYNC, MR_SYSCALL);
1115 		if (err)
1116 			putback_movable_pages(&pagelist);
1117 	}
1118 
1119 	return err;
1120 }
1121 
1122 /*
1123  * Move pages between the two nodesets so as to preserve the physical
1124  * layout as much as possible.
1125  *
1126  * Returns the number of page that could not be moved.
1127  */
1128 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1129 		     const nodemask_t *to, int flags)
1130 {
1131 	int busy = 0;
1132 	int err;
1133 	nodemask_t tmp;
1134 
1135 	err = migrate_prep();
1136 	if (err)
1137 		return err;
1138 
1139 	mmap_read_lock(mm);
1140 
1141 	/*
1142 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1143 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1144 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1145 	 * The pair of nodemasks 'to' and 'from' define the map.
1146 	 *
1147 	 * If no pair of bits is found that way, fallback to picking some
1148 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1149 	 * 'source' and 'dest' bits are the same, this represents a node
1150 	 * that will be migrating to itself, so no pages need move.
1151 	 *
1152 	 * If no bits are left in 'tmp', or if all remaining bits left
1153 	 * in 'tmp' correspond to the same bit in 'to', return false
1154 	 * (nothing left to migrate).
1155 	 *
1156 	 * This lets us pick a pair of nodes to migrate between, such that
1157 	 * if possible the dest node is not already occupied by some other
1158 	 * source node, minimizing the risk of overloading the memory on a
1159 	 * node that would happen if we migrated incoming memory to a node
1160 	 * before migrating outgoing memory source that same node.
1161 	 *
1162 	 * A single scan of tmp is sufficient.  As we go, we remember the
1163 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1164 	 * that not only moved, but what's better, moved to an empty slot
1165 	 * (d is not set in tmp), then we break out then, with that pair.
1166 	 * Otherwise when we finish scanning from_tmp, we at least have the
1167 	 * most recent <s, d> pair that moved.  If we get all the way through
1168 	 * the scan of tmp without finding any node that moved, much less
1169 	 * moved to an empty node, then there is nothing left worth migrating.
1170 	 */
1171 
1172 	tmp = *from;
1173 	while (!nodes_empty(tmp)) {
1174 		int s,d;
1175 		int source = NUMA_NO_NODE;
1176 		int dest = 0;
1177 
1178 		for_each_node_mask(s, tmp) {
1179 
1180 			/*
1181 			 * do_migrate_pages() tries to maintain the relative
1182 			 * node relationship of the pages established between
1183 			 * threads and memory areas.
1184                          *
1185 			 * However if the number of source nodes is not equal to
1186 			 * the number of destination nodes we can not preserve
1187 			 * this node relative relationship.  In that case, skip
1188 			 * copying memory from a node that is in the destination
1189 			 * mask.
1190 			 *
1191 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1192 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1193 			 */
1194 
1195 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1196 						(node_isset(s, *to)))
1197 				continue;
1198 
1199 			d = node_remap(s, *from, *to);
1200 			if (s == d)
1201 				continue;
1202 
1203 			source = s;	/* Node moved. Memorize */
1204 			dest = d;
1205 
1206 			/* dest not in remaining from nodes? */
1207 			if (!node_isset(dest, tmp))
1208 				break;
1209 		}
1210 		if (source == NUMA_NO_NODE)
1211 			break;
1212 
1213 		node_clear(source, tmp);
1214 		err = migrate_to_node(mm, source, dest, flags);
1215 		if (err > 0)
1216 			busy += err;
1217 		if (err < 0)
1218 			break;
1219 	}
1220 	mmap_read_unlock(mm);
1221 	if (err < 0)
1222 		return err;
1223 	return busy;
1224 
1225 }
1226 
1227 /*
1228  * Allocate a new page for page migration based on vma policy.
1229  * Start by assuming the page is mapped by the same vma as contains @start.
1230  * Search forward from there, if not.  N.B., this assumes that the
1231  * list of pages handed to migrate_pages()--which is how we get here--
1232  * is in virtual address order.
1233  */
1234 static struct page *new_page(struct page *page, unsigned long start)
1235 {
1236 	struct vm_area_struct *vma;
1237 	unsigned long uninitialized_var(address);
1238 
1239 	vma = find_vma(current->mm, start);
1240 	while (vma) {
1241 		address = page_address_in_vma(page, vma);
1242 		if (address != -EFAULT)
1243 			break;
1244 		vma = vma->vm_next;
1245 	}
1246 
1247 	if (PageHuge(page)) {
1248 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1249 				vma, address);
1250 	} else if (PageTransHuge(page)) {
1251 		struct page *thp;
1252 
1253 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1254 					 HPAGE_PMD_ORDER);
1255 		if (!thp)
1256 			return NULL;
1257 		prep_transhuge_page(thp);
1258 		return thp;
1259 	}
1260 	/*
1261 	 * if !vma, alloc_page_vma() will use task or system default policy
1262 	 */
1263 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1264 			vma, address);
1265 }
1266 #else
1267 
1268 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1269 				unsigned long flags)
1270 {
1271 	return -EIO;
1272 }
1273 
1274 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1275 		     const nodemask_t *to, int flags)
1276 {
1277 	return -ENOSYS;
1278 }
1279 
1280 static struct page *new_page(struct page *page, unsigned long start)
1281 {
1282 	return NULL;
1283 }
1284 #endif
1285 
1286 static long do_mbind(unsigned long start, unsigned long len,
1287 		     unsigned short mode, unsigned short mode_flags,
1288 		     nodemask_t *nmask, unsigned long flags)
1289 {
1290 	struct mm_struct *mm = current->mm;
1291 	struct mempolicy *new;
1292 	unsigned long end;
1293 	int err;
1294 	int ret;
1295 	LIST_HEAD(pagelist);
1296 
1297 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1298 		return -EINVAL;
1299 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1300 		return -EPERM;
1301 
1302 	if (start & ~PAGE_MASK)
1303 		return -EINVAL;
1304 
1305 	if (mode == MPOL_DEFAULT)
1306 		flags &= ~MPOL_MF_STRICT;
1307 
1308 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1309 	end = start + len;
1310 
1311 	if (end < start)
1312 		return -EINVAL;
1313 	if (end == start)
1314 		return 0;
1315 
1316 	new = mpol_new(mode, mode_flags, nmask);
1317 	if (IS_ERR(new))
1318 		return PTR_ERR(new);
1319 
1320 	if (flags & MPOL_MF_LAZY)
1321 		new->flags |= MPOL_F_MOF;
1322 
1323 	/*
1324 	 * If we are using the default policy then operation
1325 	 * on discontinuous address spaces is okay after all
1326 	 */
1327 	if (!new)
1328 		flags |= MPOL_MF_DISCONTIG_OK;
1329 
1330 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1331 		 start, start + len, mode, mode_flags,
1332 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1333 
1334 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1335 
1336 		err = migrate_prep();
1337 		if (err)
1338 			goto mpol_out;
1339 	}
1340 	{
1341 		NODEMASK_SCRATCH(scratch);
1342 		if (scratch) {
1343 			mmap_write_lock(mm);
1344 			task_lock(current);
1345 			err = mpol_set_nodemask(new, nmask, scratch);
1346 			task_unlock(current);
1347 			if (err)
1348 				mmap_write_unlock(mm);
1349 		} else
1350 			err = -ENOMEM;
1351 		NODEMASK_SCRATCH_FREE(scratch);
1352 	}
1353 	if (err)
1354 		goto mpol_out;
1355 
1356 	ret = queue_pages_range(mm, start, end, nmask,
1357 			  flags | MPOL_MF_INVERT, &pagelist);
1358 
1359 	if (ret < 0) {
1360 		err = ret;
1361 		goto up_out;
1362 	}
1363 
1364 	err = mbind_range(mm, start, end, new);
1365 
1366 	if (!err) {
1367 		int nr_failed = 0;
1368 
1369 		if (!list_empty(&pagelist)) {
1370 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1371 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1372 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1373 			if (nr_failed)
1374 				putback_movable_pages(&pagelist);
1375 		}
1376 
1377 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1378 			err = -EIO;
1379 	} else {
1380 up_out:
1381 		if (!list_empty(&pagelist))
1382 			putback_movable_pages(&pagelist);
1383 	}
1384 
1385 	mmap_write_unlock(mm);
1386 mpol_out:
1387 	mpol_put(new);
1388 	return err;
1389 }
1390 
1391 /*
1392  * User space interface with variable sized bitmaps for nodelists.
1393  */
1394 
1395 /* Copy a node mask from user space. */
1396 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1397 		     unsigned long maxnode)
1398 {
1399 	unsigned long k;
1400 	unsigned long t;
1401 	unsigned long nlongs;
1402 	unsigned long endmask;
1403 
1404 	--maxnode;
1405 	nodes_clear(*nodes);
1406 	if (maxnode == 0 || !nmask)
1407 		return 0;
1408 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1409 		return -EINVAL;
1410 
1411 	nlongs = BITS_TO_LONGS(maxnode);
1412 	if ((maxnode % BITS_PER_LONG) == 0)
1413 		endmask = ~0UL;
1414 	else
1415 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1416 
1417 	/*
1418 	 * When the user specified more nodes than supported just check
1419 	 * if the non supported part is all zero.
1420 	 *
1421 	 * If maxnode have more longs than MAX_NUMNODES, check
1422 	 * the bits in that area first. And then go through to
1423 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1424 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1425 	 */
1426 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1427 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1428 			if (get_user(t, nmask + k))
1429 				return -EFAULT;
1430 			if (k == nlongs - 1) {
1431 				if (t & endmask)
1432 					return -EINVAL;
1433 			} else if (t)
1434 				return -EINVAL;
1435 		}
1436 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1437 		endmask = ~0UL;
1438 	}
1439 
1440 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1441 		unsigned long valid_mask = endmask;
1442 
1443 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1444 		if (get_user(t, nmask + nlongs - 1))
1445 			return -EFAULT;
1446 		if (t & valid_mask)
1447 			return -EINVAL;
1448 	}
1449 
1450 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1451 		return -EFAULT;
1452 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1453 	return 0;
1454 }
1455 
1456 /* Copy a kernel node mask to user space */
1457 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1458 			      nodemask_t *nodes)
1459 {
1460 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1461 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1462 
1463 	if (copy > nbytes) {
1464 		if (copy > PAGE_SIZE)
1465 			return -EINVAL;
1466 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1467 			return -EFAULT;
1468 		copy = nbytes;
1469 	}
1470 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1471 }
1472 
1473 static long kernel_mbind(unsigned long start, unsigned long len,
1474 			 unsigned long mode, const unsigned long __user *nmask,
1475 			 unsigned long maxnode, unsigned int flags)
1476 {
1477 	nodemask_t nodes;
1478 	int err;
1479 	unsigned short mode_flags;
1480 
1481 	start = untagged_addr(start);
1482 	mode_flags = mode & MPOL_MODE_FLAGS;
1483 	mode &= ~MPOL_MODE_FLAGS;
1484 	if (mode >= MPOL_MAX)
1485 		return -EINVAL;
1486 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1487 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1488 		return -EINVAL;
1489 	err = get_nodes(&nodes, nmask, maxnode);
1490 	if (err)
1491 		return err;
1492 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1493 }
1494 
1495 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1496 		unsigned long, mode, const unsigned long __user *, nmask,
1497 		unsigned long, maxnode, unsigned int, flags)
1498 {
1499 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1500 }
1501 
1502 /* Set the process memory policy */
1503 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1504 				 unsigned long maxnode)
1505 {
1506 	int err;
1507 	nodemask_t nodes;
1508 	unsigned short flags;
1509 
1510 	flags = mode & MPOL_MODE_FLAGS;
1511 	mode &= ~MPOL_MODE_FLAGS;
1512 	if ((unsigned int)mode >= MPOL_MAX)
1513 		return -EINVAL;
1514 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1515 		return -EINVAL;
1516 	err = get_nodes(&nodes, nmask, maxnode);
1517 	if (err)
1518 		return err;
1519 	return do_set_mempolicy(mode, flags, &nodes);
1520 }
1521 
1522 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1523 		unsigned long, maxnode)
1524 {
1525 	return kernel_set_mempolicy(mode, nmask, maxnode);
1526 }
1527 
1528 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1529 				const unsigned long __user *old_nodes,
1530 				const unsigned long __user *new_nodes)
1531 {
1532 	struct mm_struct *mm = NULL;
1533 	struct task_struct *task;
1534 	nodemask_t task_nodes;
1535 	int err;
1536 	nodemask_t *old;
1537 	nodemask_t *new;
1538 	NODEMASK_SCRATCH(scratch);
1539 
1540 	if (!scratch)
1541 		return -ENOMEM;
1542 
1543 	old = &scratch->mask1;
1544 	new = &scratch->mask2;
1545 
1546 	err = get_nodes(old, old_nodes, maxnode);
1547 	if (err)
1548 		goto out;
1549 
1550 	err = get_nodes(new, new_nodes, maxnode);
1551 	if (err)
1552 		goto out;
1553 
1554 	/* Find the mm_struct */
1555 	rcu_read_lock();
1556 	task = pid ? find_task_by_vpid(pid) : current;
1557 	if (!task) {
1558 		rcu_read_unlock();
1559 		err = -ESRCH;
1560 		goto out;
1561 	}
1562 	get_task_struct(task);
1563 
1564 	err = -EINVAL;
1565 
1566 	/*
1567 	 * Check if this process has the right to modify the specified process.
1568 	 * Use the regular "ptrace_may_access()" checks.
1569 	 */
1570 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1571 		rcu_read_unlock();
1572 		err = -EPERM;
1573 		goto out_put;
1574 	}
1575 	rcu_read_unlock();
1576 
1577 	task_nodes = cpuset_mems_allowed(task);
1578 	/* Is the user allowed to access the target nodes? */
1579 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1580 		err = -EPERM;
1581 		goto out_put;
1582 	}
1583 
1584 	task_nodes = cpuset_mems_allowed(current);
1585 	nodes_and(*new, *new, task_nodes);
1586 	if (nodes_empty(*new))
1587 		goto out_put;
1588 
1589 	err = security_task_movememory(task);
1590 	if (err)
1591 		goto out_put;
1592 
1593 	mm = get_task_mm(task);
1594 	put_task_struct(task);
1595 
1596 	if (!mm) {
1597 		err = -EINVAL;
1598 		goto out;
1599 	}
1600 
1601 	err = do_migrate_pages(mm, old, new,
1602 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1603 
1604 	mmput(mm);
1605 out:
1606 	NODEMASK_SCRATCH_FREE(scratch);
1607 
1608 	return err;
1609 
1610 out_put:
1611 	put_task_struct(task);
1612 	goto out;
1613 
1614 }
1615 
1616 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1617 		const unsigned long __user *, old_nodes,
1618 		const unsigned long __user *, new_nodes)
1619 {
1620 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1621 }
1622 
1623 
1624 /* Retrieve NUMA policy */
1625 static int kernel_get_mempolicy(int __user *policy,
1626 				unsigned long __user *nmask,
1627 				unsigned long maxnode,
1628 				unsigned long addr,
1629 				unsigned long flags)
1630 {
1631 	int err;
1632 	int uninitialized_var(pval);
1633 	nodemask_t nodes;
1634 
1635 	addr = untagged_addr(addr);
1636 
1637 	if (nmask != NULL && maxnode < nr_node_ids)
1638 		return -EINVAL;
1639 
1640 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1641 
1642 	if (err)
1643 		return err;
1644 
1645 	if (policy && put_user(pval, policy))
1646 		return -EFAULT;
1647 
1648 	if (nmask)
1649 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1650 
1651 	return err;
1652 }
1653 
1654 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1655 		unsigned long __user *, nmask, unsigned long, maxnode,
1656 		unsigned long, addr, unsigned long, flags)
1657 {
1658 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1659 }
1660 
1661 #ifdef CONFIG_COMPAT
1662 
1663 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1664 		       compat_ulong_t __user *, nmask,
1665 		       compat_ulong_t, maxnode,
1666 		       compat_ulong_t, addr, compat_ulong_t, flags)
1667 {
1668 	long err;
1669 	unsigned long __user *nm = NULL;
1670 	unsigned long nr_bits, alloc_size;
1671 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1672 
1673 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1674 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1675 
1676 	if (nmask)
1677 		nm = compat_alloc_user_space(alloc_size);
1678 
1679 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1680 
1681 	if (!err && nmask) {
1682 		unsigned long copy_size;
1683 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1684 		err = copy_from_user(bm, nm, copy_size);
1685 		/* ensure entire bitmap is zeroed */
1686 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1687 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1688 	}
1689 
1690 	return err;
1691 }
1692 
1693 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1694 		       compat_ulong_t, maxnode)
1695 {
1696 	unsigned long __user *nm = NULL;
1697 	unsigned long nr_bits, alloc_size;
1698 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1699 
1700 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1701 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1702 
1703 	if (nmask) {
1704 		if (compat_get_bitmap(bm, nmask, nr_bits))
1705 			return -EFAULT;
1706 		nm = compat_alloc_user_space(alloc_size);
1707 		if (copy_to_user(nm, bm, alloc_size))
1708 			return -EFAULT;
1709 	}
1710 
1711 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1712 }
1713 
1714 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1715 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1716 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1717 {
1718 	unsigned long __user *nm = NULL;
1719 	unsigned long nr_bits, alloc_size;
1720 	nodemask_t bm;
1721 
1722 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1723 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1724 
1725 	if (nmask) {
1726 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1727 			return -EFAULT;
1728 		nm = compat_alloc_user_space(alloc_size);
1729 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1730 			return -EFAULT;
1731 	}
1732 
1733 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1734 }
1735 
1736 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1737 		       compat_ulong_t, maxnode,
1738 		       const compat_ulong_t __user *, old_nodes,
1739 		       const compat_ulong_t __user *, new_nodes)
1740 {
1741 	unsigned long __user *old = NULL;
1742 	unsigned long __user *new = NULL;
1743 	nodemask_t tmp_mask;
1744 	unsigned long nr_bits;
1745 	unsigned long size;
1746 
1747 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1748 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1749 	if (old_nodes) {
1750 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1751 			return -EFAULT;
1752 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1753 		if (new_nodes)
1754 			new = old + size / sizeof(unsigned long);
1755 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1756 			return -EFAULT;
1757 	}
1758 	if (new_nodes) {
1759 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1760 			return -EFAULT;
1761 		if (new == NULL)
1762 			new = compat_alloc_user_space(size);
1763 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1764 			return -EFAULT;
1765 	}
1766 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1767 }
1768 
1769 #endif /* CONFIG_COMPAT */
1770 
1771 bool vma_migratable(struct vm_area_struct *vma)
1772 {
1773 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 		return false;
1775 
1776 	/*
1777 	 * DAX device mappings require predictable access latency, so avoid
1778 	 * incurring periodic faults.
1779 	 */
1780 	if (vma_is_dax(vma))
1781 		return false;
1782 
1783 	if (is_vm_hugetlb_page(vma) &&
1784 		!hugepage_migration_supported(hstate_vma(vma)))
1785 		return false;
1786 
1787 	/*
1788 	 * Migration allocates pages in the highest zone. If we cannot
1789 	 * do so then migration (at least from node to node) is not
1790 	 * possible.
1791 	 */
1792 	if (vma->vm_file &&
1793 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 			< policy_zone)
1795 		return false;
1796 	return true;
1797 }
1798 
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 						unsigned long addr)
1801 {
1802 	struct mempolicy *pol = NULL;
1803 
1804 	if (vma) {
1805 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1806 			pol = vma->vm_ops->get_policy(vma, addr);
1807 		} else if (vma->vm_policy) {
1808 			pol = vma->vm_policy;
1809 
1810 			/*
1811 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1812 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1813 			 * count on these policies which will be dropped by
1814 			 * mpol_cond_put() later
1815 			 */
1816 			if (mpol_needs_cond_ref(pol))
1817 				mpol_get(pol);
1818 		}
1819 	}
1820 
1821 	return pol;
1822 }
1823 
1824 /*
1825  * get_vma_policy(@vma, @addr)
1826  * @vma: virtual memory area whose policy is sought
1827  * @addr: address in @vma for shared policy lookup
1828  *
1829  * Returns effective policy for a VMA at specified address.
1830  * Falls back to current->mempolicy or system default policy, as necessary.
1831  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1832  * count--added by the get_policy() vm_op, as appropriate--to protect against
1833  * freeing by another task.  It is the caller's responsibility to free the
1834  * extra reference for shared policies.
1835  */
1836 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1837 						unsigned long addr)
1838 {
1839 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1840 
1841 	if (!pol)
1842 		pol = get_task_policy(current);
1843 
1844 	return pol;
1845 }
1846 
1847 bool vma_policy_mof(struct vm_area_struct *vma)
1848 {
1849 	struct mempolicy *pol;
1850 
1851 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1852 		bool ret = false;
1853 
1854 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1855 		if (pol && (pol->flags & MPOL_F_MOF))
1856 			ret = true;
1857 		mpol_cond_put(pol);
1858 
1859 		return ret;
1860 	}
1861 
1862 	pol = vma->vm_policy;
1863 	if (!pol)
1864 		pol = get_task_policy(current);
1865 
1866 	return pol->flags & MPOL_F_MOF;
1867 }
1868 
1869 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1870 {
1871 	enum zone_type dynamic_policy_zone = policy_zone;
1872 
1873 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1874 
1875 	/*
1876 	 * if policy->v.nodes has movable memory only,
1877 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1878 	 *
1879 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1880 	 * so if the following test faile, it implies
1881 	 * policy->v.nodes has movable memory only.
1882 	 */
1883 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1884 		dynamic_policy_zone = ZONE_MOVABLE;
1885 
1886 	return zone >= dynamic_policy_zone;
1887 }
1888 
1889 /*
1890  * Return a nodemask representing a mempolicy for filtering nodes for
1891  * page allocation
1892  */
1893 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1894 {
1895 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1896 	if (unlikely(policy->mode == MPOL_BIND) &&
1897 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1898 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1899 		return &policy->v.nodes;
1900 
1901 	return NULL;
1902 }
1903 
1904 /* Return the node id preferred by the given mempolicy, or the given id */
1905 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1906 								int nd)
1907 {
1908 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1909 		nd = policy->v.preferred_node;
1910 	else {
1911 		/*
1912 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1913 		 * because we might easily break the expectation to stay on the
1914 		 * requested node and not break the policy.
1915 		 */
1916 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1917 	}
1918 
1919 	return nd;
1920 }
1921 
1922 /* Do dynamic interleaving for a process */
1923 static unsigned interleave_nodes(struct mempolicy *policy)
1924 {
1925 	unsigned next;
1926 	struct task_struct *me = current;
1927 
1928 	next = next_node_in(me->il_prev, policy->v.nodes);
1929 	if (next < MAX_NUMNODES)
1930 		me->il_prev = next;
1931 	return next;
1932 }
1933 
1934 /*
1935  * Depending on the memory policy provide a node from which to allocate the
1936  * next slab entry.
1937  */
1938 unsigned int mempolicy_slab_node(void)
1939 {
1940 	struct mempolicy *policy;
1941 	int node = numa_mem_id();
1942 
1943 	if (in_interrupt())
1944 		return node;
1945 
1946 	policy = current->mempolicy;
1947 	if (!policy || policy->flags & MPOL_F_LOCAL)
1948 		return node;
1949 
1950 	switch (policy->mode) {
1951 	case MPOL_PREFERRED:
1952 		/*
1953 		 * handled MPOL_F_LOCAL above
1954 		 */
1955 		return policy->v.preferred_node;
1956 
1957 	case MPOL_INTERLEAVE:
1958 		return interleave_nodes(policy);
1959 
1960 	case MPOL_BIND: {
1961 		struct zoneref *z;
1962 
1963 		/*
1964 		 * Follow bind policy behavior and start allocation at the
1965 		 * first node.
1966 		 */
1967 		struct zonelist *zonelist;
1968 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1969 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1970 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1971 							&policy->v.nodes);
1972 		return z->zone ? zone_to_nid(z->zone) : node;
1973 	}
1974 
1975 	default:
1976 		BUG();
1977 	}
1978 }
1979 
1980 /*
1981  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1982  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1983  * number of present nodes.
1984  */
1985 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1986 {
1987 	unsigned nnodes = nodes_weight(pol->v.nodes);
1988 	unsigned target;
1989 	int i;
1990 	int nid;
1991 
1992 	if (!nnodes)
1993 		return numa_node_id();
1994 	target = (unsigned int)n % nnodes;
1995 	nid = first_node(pol->v.nodes);
1996 	for (i = 0; i < target; i++)
1997 		nid = next_node(nid, pol->v.nodes);
1998 	return nid;
1999 }
2000 
2001 /* Determine a node number for interleave */
2002 static inline unsigned interleave_nid(struct mempolicy *pol,
2003 		 struct vm_area_struct *vma, unsigned long addr, int shift)
2004 {
2005 	if (vma) {
2006 		unsigned long off;
2007 
2008 		/*
2009 		 * for small pages, there is no difference between
2010 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2011 		 * for huge pages, since vm_pgoff is in units of small
2012 		 * pages, we need to shift off the always 0 bits to get
2013 		 * a useful offset.
2014 		 */
2015 		BUG_ON(shift < PAGE_SHIFT);
2016 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2017 		off += (addr - vma->vm_start) >> shift;
2018 		return offset_il_node(pol, off);
2019 	} else
2020 		return interleave_nodes(pol);
2021 }
2022 
2023 #ifdef CONFIG_HUGETLBFS
2024 /*
2025  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2026  * @vma: virtual memory area whose policy is sought
2027  * @addr: address in @vma for shared policy lookup and interleave policy
2028  * @gfp_flags: for requested zone
2029  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2030  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2031  *
2032  * Returns a nid suitable for a huge page allocation and a pointer
2033  * to the struct mempolicy for conditional unref after allocation.
2034  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2035  * @nodemask for filtering the zonelist.
2036  *
2037  * Must be protected by read_mems_allowed_begin()
2038  */
2039 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2040 				struct mempolicy **mpol, nodemask_t **nodemask)
2041 {
2042 	int nid;
2043 
2044 	*mpol = get_vma_policy(vma, addr);
2045 	*nodemask = NULL;	/* assume !MPOL_BIND */
2046 
2047 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2048 		nid = interleave_nid(*mpol, vma, addr,
2049 					huge_page_shift(hstate_vma(vma)));
2050 	} else {
2051 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2052 		if ((*mpol)->mode == MPOL_BIND)
2053 			*nodemask = &(*mpol)->v.nodes;
2054 	}
2055 	return nid;
2056 }
2057 
2058 /*
2059  * init_nodemask_of_mempolicy
2060  *
2061  * If the current task's mempolicy is "default" [NULL], return 'false'
2062  * to indicate default policy.  Otherwise, extract the policy nodemask
2063  * for 'bind' or 'interleave' policy into the argument nodemask, or
2064  * initialize the argument nodemask to contain the single node for
2065  * 'preferred' or 'local' policy and return 'true' to indicate presence
2066  * of non-default mempolicy.
2067  *
2068  * We don't bother with reference counting the mempolicy [mpol_get/put]
2069  * because the current task is examining it's own mempolicy and a task's
2070  * mempolicy is only ever changed by the task itself.
2071  *
2072  * N.B., it is the caller's responsibility to free a returned nodemask.
2073  */
2074 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2075 {
2076 	struct mempolicy *mempolicy;
2077 	int nid;
2078 
2079 	if (!(mask && current->mempolicy))
2080 		return false;
2081 
2082 	task_lock(current);
2083 	mempolicy = current->mempolicy;
2084 	switch (mempolicy->mode) {
2085 	case MPOL_PREFERRED:
2086 		if (mempolicy->flags & MPOL_F_LOCAL)
2087 			nid = numa_node_id();
2088 		else
2089 			nid = mempolicy->v.preferred_node;
2090 		init_nodemask_of_node(mask, nid);
2091 		break;
2092 
2093 	case MPOL_BIND:
2094 	case MPOL_INTERLEAVE:
2095 		*mask =  mempolicy->v.nodes;
2096 		break;
2097 
2098 	default:
2099 		BUG();
2100 	}
2101 	task_unlock(current);
2102 
2103 	return true;
2104 }
2105 #endif
2106 
2107 /*
2108  * mempolicy_nodemask_intersects
2109  *
2110  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2111  * policy.  Otherwise, check for intersection between mask and the policy
2112  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2113  * policy, always return true since it may allocate elsewhere on fallback.
2114  *
2115  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2116  */
2117 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2118 					const nodemask_t *mask)
2119 {
2120 	struct mempolicy *mempolicy;
2121 	bool ret = true;
2122 
2123 	if (!mask)
2124 		return ret;
2125 	task_lock(tsk);
2126 	mempolicy = tsk->mempolicy;
2127 	if (!mempolicy)
2128 		goto out;
2129 
2130 	switch (mempolicy->mode) {
2131 	case MPOL_PREFERRED:
2132 		/*
2133 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2134 		 * allocate from, they may fallback to other nodes when oom.
2135 		 * Thus, it's possible for tsk to have allocated memory from
2136 		 * nodes in mask.
2137 		 */
2138 		break;
2139 	case MPOL_BIND:
2140 	case MPOL_INTERLEAVE:
2141 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2142 		break;
2143 	default:
2144 		BUG();
2145 	}
2146 out:
2147 	task_unlock(tsk);
2148 	return ret;
2149 }
2150 
2151 /* Allocate a page in interleaved policy.
2152    Own path because it needs to do special accounting. */
2153 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2154 					unsigned nid)
2155 {
2156 	struct page *page;
2157 
2158 	page = __alloc_pages(gfp, order, nid);
2159 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2160 	if (!static_branch_likely(&vm_numa_stat_key))
2161 		return page;
2162 	if (page && page_to_nid(page) == nid) {
2163 		preempt_disable();
2164 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2165 		preempt_enable();
2166 	}
2167 	return page;
2168 }
2169 
2170 /**
2171  * 	alloc_pages_vma	- Allocate a page for a VMA.
2172  *
2173  * 	@gfp:
2174  *      %GFP_USER    user allocation.
2175  *      %GFP_KERNEL  kernel allocations,
2176  *      %GFP_HIGHMEM highmem/user allocations,
2177  *      %GFP_FS      allocation should not call back into a file system.
2178  *      %GFP_ATOMIC  don't sleep.
2179  *
2180  *	@order:Order of the GFP allocation.
2181  * 	@vma:  Pointer to VMA or NULL if not available.
2182  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2183  *	@node: Which node to prefer for allocation (modulo policy).
2184  *	@hugepage: for hugepages try only the preferred node if possible
2185  *
2186  * 	This function allocates a page from the kernel page pool and applies
2187  *	a NUMA policy associated with the VMA or the current process.
2188  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2189  *	mm_struct of the VMA to prevent it from going away. Should be used for
2190  *	all allocations for pages that will be mapped into user space. Returns
2191  *	NULL when no page can be allocated.
2192  */
2193 struct page *
2194 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2195 		unsigned long addr, int node, bool hugepage)
2196 {
2197 	struct mempolicy *pol;
2198 	struct page *page;
2199 	int preferred_nid;
2200 	nodemask_t *nmask;
2201 
2202 	pol = get_vma_policy(vma, addr);
2203 
2204 	if (pol->mode == MPOL_INTERLEAVE) {
2205 		unsigned nid;
2206 
2207 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2208 		mpol_cond_put(pol);
2209 		page = alloc_page_interleave(gfp, order, nid);
2210 		goto out;
2211 	}
2212 
2213 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2214 		int hpage_node = node;
2215 
2216 		/*
2217 		 * For hugepage allocation and non-interleave policy which
2218 		 * allows the current node (or other explicitly preferred
2219 		 * node) we only try to allocate from the current/preferred
2220 		 * node and don't fall back to other nodes, as the cost of
2221 		 * remote accesses would likely offset THP benefits.
2222 		 *
2223 		 * If the policy is interleave, or does not allow the current
2224 		 * node in its nodemask, we allocate the standard way.
2225 		 */
2226 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2227 			hpage_node = pol->v.preferred_node;
2228 
2229 		nmask = policy_nodemask(gfp, pol);
2230 		if (!nmask || node_isset(hpage_node, *nmask)) {
2231 			mpol_cond_put(pol);
2232 			/*
2233 			 * First, try to allocate THP only on local node, but
2234 			 * don't reclaim unnecessarily, just compact.
2235 			 */
2236 			page = __alloc_pages_node(hpage_node,
2237 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2238 
2239 			/*
2240 			 * If hugepage allocations are configured to always
2241 			 * synchronous compact or the vma has been madvised
2242 			 * to prefer hugepage backing, retry allowing remote
2243 			 * memory with both reclaim and compact as well.
2244 			 */
2245 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2246 				page = __alloc_pages_node(hpage_node,
2247 								gfp, order);
2248 
2249 			goto out;
2250 		}
2251 	}
2252 
2253 	nmask = policy_nodemask(gfp, pol);
2254 	preferred_nid = policy_node(gfp, pol, node);
2255 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2256 	mpol_cond_put(pol);
2257 out:
2258 	return page;
2259 }
2260 EXPORT_SYMBOL(alloc_pages_vma);
2261 
2262 /**
2263  * 	alloc_pages_current - Allocate pages.
2264  *
2265  *	@gfp:
2266  *		%GFP_USER   user allocation,
2267  *      	%GFP_KERNEL kernel allocation,
2268  *      	%GFP_HIGHMEM highmem allocation,
2269  *      	%GFP_FS     don't call back into a file system.
2270  *      	%GFP_ATOMIC don't sleep.
2271  *	@order: Power of two of allocation size in pages. 0 is a single page.
2272  *
2273  *	Allocate a page from the kernel page pool.  When not in
2274  *	interrupt context and apply the current process NUMA policy.
2275  *	Returns NULL when no page can be allocated.
2276  */
2277 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2278 {
2279 	struct mempolicy *pol = &default_policy;
2280 	struct page *page;
2281 
2282 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2283 		pol = get_task_policy(current);
2284 
2285 	/*
2286 	 * No reference counting needed for current->mempolicy
2287 	 * nor system default_policy
2288 	 */
2289 	if (pol->mode == MPOL_INTERLEAVE)
2290 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2291 	else
2292 		page = __alloc_pages_nodemask(gfp, order,
2293 				policy_node(gfp, pol, numa_node_id()),
2294 				policy_nodemask(gfp, pol));
2295 
2296 	return page;
2297 }
2298 EXPORT_SYMBOL(alloc_pages_current);
2299 
2300 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2301 {
2302 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2303 
2304 	if (IS_ERR(pol))
2305 		return PTR_ERR(pol);
2306 	dst->vm_policy = pol;
2307 	return 0;
2308 }
2309 
2310 /*
2311  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313  * with the mems_allowed returned by cpuset_mems_allowed().  This
2314  * keeps mempolicies cpuset relative after its cpuset moves.  See
2315  * further kernel/cpuset.c update_nodemask().
2316  *
2317  * current's mempolicy may be rebinded by the other task(the task that changes
2318  * cpuset's mems), so we needn't do rebind work for current task.
2319  */
2320 
2321 /* Slow path of a mempolicy duplicate */
2322 struct mempolicy *__mpol_dup(struct mempolicy *old)
2323 {
2324 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2325 
2326 	if (!new)
2327 		return ERR_PTR(-ENOMEM);
2328 
2329 	/* task's mempolicy is protected by alloc_lock */
2330 	if (old == current->mempolicy) {
2331 		task_lock(current);
2332 		*new = *old;
2333 		task_unlock(current);
2334 	} else
2335 		*new = *old;
2336 
2337 	if (current_cpuset_is_being_rebound()) {
2338 		nodemask_t mems = cpuset_mems_allowed(current);
2339 		mpol_rebind_policy(new, &mems);
2340 	}
2341 	atomic_set(&new->refcnt, 1);
2342 	return new;
2343 }
2344 
2345 /* Slow path of a mempolicy comparison */
2346 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2347 {
2348 	if (!a || !b)
2349 		return false;
2350 	if (a->mode != b->mode)
2351 		return false;
2352 	if (a->flags != b->flags)
2353 		return false;
2354 	if (mpol_store_user_nodemask(a))
2355 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2356 			return false;
2357 
2358 	switch (a->mode) {
2359 	case MPOL_BIND:
2360 	case MPOL_INTERLEAVE:
2361 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2362 	case MPOL_PREFERRED:
2363 		/* a's ->flags is the same as b's */
2364 		if (a->flags & MPOL_F_LOCAL)
2365 			return true;
2366 		return a->v.preferred_node == b->v.preferred_node;
2367 	default:
2368 		BUG();
2369 		return false;
2370 	}
2371 }
2372 
2373 /*
2374  * Shared memory backing store policy support.
2375  *
2376  * Remember policies even when nobody has shared memory mapped.
2377  * The policies are kept in Red-Black tree linked from the inode.
2378  * They are protected by the sp->lock rwlock, which should be held
2379  * for any accesses to the tree.
2380  */
2381 
2382 /*
2383  * lookup first element intersecting start-end.  Caller holds sp->lock for
2384  * reading or for writing
2385  */
2386 static struct sp_node *
2387 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2388 {
2389 	struct rb_node *n = sp->root.rb_node;
2390 
2391 	while (n) {
2392 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2393 
2394 		if (start >= p->end)
2395 			n = n->rb_right;
2396 		else if (end <= p->start)
2397 			n = n->rb_left;
2398 		else
2399 			break;
2400 	}
2401 	if (!n)
2402 		return NULL;
2403 	for (;;) {
2404 		struct sp_node *w = NULL;
2405 		struct rb_node *prev = rb_prev(n);
2406 		if (!prev)
2407 			break;
2408 		w = rb_entry(prev, struct sp_node, nd);
2409 		if (w->end <= start)
2410 			break;
2411 		n = prev;
2412 	}
2413 	return rb_entry(n, struct sp_node, nd);
2414 }
2415 
2416 /*
2417  * Insert a new shared policy into the list.  Caller holds sp->lock for
2418  * writing.
2419  */
2420 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2421 {
2422 	struct rb_node **p = &sp->root.rb_node;
2423 	struct rb_node *parent = NULL;
2424 	struct sp_node *nd;
2425 
2426 	while (*p) {
2427 		parent = *p;
2428 		nd = rb_entry(parent, struct sp_node, nd);
2429 		if (new->start < nd->start)
2430 			p = &(*p)->rb_left;
2431 		else if (new->end > nd->end)
2432 			p = &(*p)->rb_right;
2433 		else
2434 			BUG();
2435 	}
2436 	rb_link_node(&new->nd, parent, p);
2437 	rb_insert_color(&new->nd, &sp->root);
2438 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2439 		 new->policy ? new->policy->mode : 0);
2440 }
2441 
2442 /* Find shared policy intersecting idx */
2443 struct mempolicy *
2444 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2445 {
2446 	struct mempolicy *pol = NULL;
2447 	struct sp_node *sn;
2448 
2449 	if (!sp->root.rb_node)
2450 		return NULL;
2451 	read_lock(&sp->lock);
2452 	sn = sp_lookup(sp, idx, idx+1);
2453 	if (sn) {
2454 		mpol_get(sn->policy);
2455 		pol = sn->policy;
2456 	}
2457 	read_unlock(&sp->lock);
2458 	return pol;
2459 }
2460 
2461 static void sp_free(struct sp_node *n)
2462 {
2463 	mpol_put(n->policy);
2464 	kmem_cache_free(sn_cache, n);
2465 }
2466 
2467 /**
2468  * mpol_misplaced - check whether current page node is valid in policy
2469  *
2470  * @page: page to be checked
2471  * @vma: vm area where page mapped
2472  * @addr: virtual address where page mapped
2473  *
2474  * Lookup current policy node id for vma,addr and "compare to" page's
2475  * node id.
2476  *
2477  * Returns:
2478  *	-1	- not misplaced, page is in the right node
2479  *	node	- node id where the page should be
2480  *
2481  * Policy determination "mimics" alloc_page_vma().
2482  * Called from fault path where we know the vma and faulting address.
2483  */
2484 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2485 {
2486 	struct mempolicy *pol;
2487 	struct zoneref *z;
2488 	int curnid = page_to_nid(page);
2489 	unsigned long pgoff;
2490 	int thiscpu = raw_smp_processor_id();
2491 	int thisnid = cpu_to_node(thiscpu);
2492 	int polnid = NUMA_NO_NODE;
2493 	int ret = -1;
2494 
2495 	pol = get_vma_policy(vma, addr);
2496 	if (!(pol->flags & MPOL_F_MOF))
2497 		goto out;
2498 
2499 	switch (pol->mode) {
2500 	case MPOL_INTERLEAVE:
2501 		pgoff = vma->vm_pgoff;
2502 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2503 		polnid = offset_il_node(pol, pgoff);
2504 		break;
2505 
2506 	case MPOL_PREFERRED:
2507 		if (pol->flags & MPOL_F_LOCAL)
2508 			polnid = numa_node_id();
2509 		else
2510 			polnid = pol->v.preferred_node;
2511 		break;
2512 
2513 	case MPOL_BIND:
2514 
2515 		/*
2516 		 * allows binding to multiple nodes.
2517 		 * use current page if in policy nodemask,
2518 		 * else select nearest allowed node, if any.
2519 		 * If no allowed nodes, use current [!misplaced].
2520 		 */
2521 		if (node_isset(curnid, pol->v.nodes))
2522 			goto out;
2523 		z = first_zones_zonelist(
2524 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2525 				gfp_zone(GFP_HIGHUSER),
2526 				&pol->v.nodes);
2527 		polnid = zone_to_nid(z->zone);
2528 		break;
2529 
2530 	default:
2531 		BUG();
2532 	}
2533 
2534 	/* Migrate the page towards the node whose CPU is referencing it */
2535 	if (pol->flags & MPOL_F_MORON) {
2536 		polnid = thisnid;
2537 
2538 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2539 			goto out;
2540 	}
2541 
2542 	if (curnid != polnid)
2543 		ret = polnid;
2544 out:
2545 	mpol_cond_put(pol);
2546 
2547 	return ret;
2548 }
2549 
2550 /*
2551  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2552  * dropped after task->mempolicy is set to NULL so that any allocation done as
2553  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2554  * policy.
2555  */
2556 void mpol_put_task_policy(struct task_struct *task)
2557 {
2558 	struct mempolicy *pol;
2559 
2560 	task_lock(task);
2561 	pol = task->mempolicy;
2562 	task->mempolicy = NULL;
2563 	task_unlock(task);
2564 	mpol_put(pol);
2565 }
2566 
2567 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2568 {
2569 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2570 	rb_erase(&n->nd, &sp->root);
2571 	sp_free(n);
2572 }
2573 
2574 static void sp_node_init(struct sp_node *node, unsigned long start,
2575 			unsigned long end, struct mempolicy *pol)
2576 {
2577 	node->start = start;
2578 	node->end = end;
2579 	node->policy = pol;
2580 }
2581 
2582 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2583 				struct mempolicy *pol)
2584 {
2585 	struct sp_node *n;
2586 	struct mempolicy *newpol;
2587 
2588 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2589 	if (!n)
2590 		return NULL;
2591 
2592 	newpol = mpol_dup(pol);
2593 	if (IS_ERR(newpol)) {
2594 		kmem_cache_free(sn_cache, n);
2595 		return NULL;
2596 	}
2597 	newpol->flags |= MPOL_F_SHARED;
2598 	sp_node_init(n, start, end, newpol);
2599 
2600 	return n;
2601 }
2602 
2603 /* Replace a policy range. */
2604 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2605 				 unsigned long end, struct sp_node *new)
2606 {
2607 	struct sp_node *n;
2608 	struct sp_node *n_new = NULL;
2609 	struct mempolicy *mpol_new = NULL;
2610 	int ret = 0;
2611 
2612 restart:
2613 	write_lock(&sp->lock);
2614 	n = sp_lookup(sp, start, end);
2615 	/* Take care of old policies in the same range. */
2616 	while (n && n->start < end) {
2617 		struct rb_node *next = rb_next(&n->nd);
2618 		if (n->start >= start) {
2619 			if (n->end <= end)
2620 				sp_delete(sp, n);
2621 			else
2622 				n->start = end;
2623 		} else {
2624 			/* Old policy spanning whole new range. */
2625 			if (n->end > end) {
2626 				if (!n_new)
2627 					goto alloc_new;
2628 
2629 				*mpol_new = *n->policy;
2630 				atomic_set(&mpol_new->refcnt, 1);
2631 				sp_node_init(n_new, end, n->end, mpol_new);
2632 				n->end = start;
2633 				sp_insert(sp, n_new);
2634 				n_new = NULL;
2635 				mpol_new = NULL;
2636 				break;
2637 			} else
2638 				n->end = start;
2639 		}
2640 		if (!next)
2641 			break;
2642 		n = rb_entry(next, struct sp_node, nd);
2643 	}
2644 	if (new)
2645 		sp_insert(sp, new);
2646 	write_unlock(&sp->lock);
2647 	ret = 0;
2648 
2649 err_out:
2650 	if (mpol_new)
2651 		mpol_put(mpol_new);
2652 	if (n_new)
2653 		kmem_cache_free(sn_cache, n_new);
2654 
2655 	return ret;
2656 
2657 alloc_new:
2658 	write_unlock(&sp->lock);
2659 	ret = -ENOMEM;
2660 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2661 	if (!n_new)
2662 		goto err_out;
2663 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2664 	if (!mpol_new)
2665 		goto err_out;
2666 	goto restart;
2667 }
2668 
2669 /**
2670  * mpol_shared_policy_init - initialize shared policy for inode
2671  * @sp: pointer to inode shared policy
2672  * @mpol:  struct mempolicy to install
2673  *
2674  * Install non-NULL @mpol in inode's shared policy rb-tree.
2675  * On entry, the current task has a reference on a non-NULL @mpol.
2676  * This must be released on exit.
2677  * This is called at get_inode() calls and we can use GFP_KERNEL.
2678  */
2679 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2680 {
2681 	int ret;
2682 
2683 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2684 	rwlock_init(&sp->lock);
2685 
2686 	if (mpol) {
2687 		struct vm_area_struct pvma;
2688 		struct mempolicy *new;
2689 		NODEMASK_SCRATCH(scratch);
2690 
2691 		if (!scratch)
2692 			goto put_mpol;
2693 		/* contextualize the tmpfs mount point mempolicy */
2694 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2695 		if (IS_ERR(new))
2696 			goto free_scratch; /* no valid nodemask intersection */
2697 
2698 		task_lock(current);
2699 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2700 		task_unlock(current);
2701 		if (ret)
2702 			goto put_new;
2703 
2704 		/* Create pseudo-vma that contains just the policy */
2705 		vma_init(&pvma, NULL);
2706 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2707 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2708 
2709 put_new:
2710 		mpol_put(new);			/* drop initial ref */
2711 free_scratch:
2712 		NODEMASK_SCRATCH_FREE(scratch);
2713 put_mpol:
2714 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2715 	}
2716 }
2717 
2718 int mpol_set_shared_policy(struct shared_policy *info,
2719 			struct vm_area_struct *vma, struct mempolicy *npol)
2720 {
2721 	int err;
2722 	struct sp_node *new = NULL;
2723 	unsigned long sz = vma_pages(vma);
2724 
2725 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2726 		 vma->vm_pgoff,
2727 		 sz, npol ? npol->mode : -1,
2728 		 npol ? npol->flags : -1,
2729 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2730 
2731 	if (npol) {
2732 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2733 		if (!new)
2734 			return -ENOMEM;
2735 	}
2736 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2737 	if (err && new)
2738 		sp_free(new);
2739 	return err;
2740 }
2741 
2742 /* Free a backing policy store on inode delete. */
2743 void mpol_free_shared_policy(struct shared_policy *p)
2744 {
2745 	struct sp_node *n;
2746 	struct rb_node *next;
2747 
2748 	if (!p->root.rb_node)
2749 		return;
2750 	write_lock(&p->lock);
2751 	next = rb_first(&p->root);
2752 	while (next) {
2753 		n = rb_entry(next, struct sp_node, nd);
2754 		next = rb_next(&n->nd);
2755 		sp_delete(p, n);
2756 	}
2757 	write_unlock(&p->lock);
2758 }
2759 
2760 #ifdef CONFIG_NUMA_BALANCING
2761 static int __initdata numabalancing_override;
2762 
2763 static void __init check_numabalancing_enable(void)
2764 {
2765 	bool numabalancing_default = false;
2766 
2767 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768 		numabalancing_default = true;
2769 
2770 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771 	if (numabalancing_override)
2772 		set_numabalancing_state(numabalancing_override == 1);
2773 
2774 	if (num_online_nodes() > 1 && !numabalancing_override) {
2775 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776 			numabalancing_default ? "Enabling" : "Disabling");
2777 		set_numabalancing_state(numabalancing_default);
2778 	}
2779 }
2780 
2781 static int __init setup_numabalancing(char *str)
2782 {
2783 	int ret = 0;
2784 	if (!str)
2785 		goto out;
2786 
2787 	if (!strcmp(str, "enable")) {
2788 		numabalancing_override = 1;
2789 		ret = 1;
2790 	} else if (!strcmp(str, "disable")) {
2791 		numabalancing_override = -1;
2792 		ret = 1;
2793 	}
2794 out:
2795 	if (!ret)
2796 		pr_warn("Unable to parse numa_balancing=\n");
2797 
2798 	return ret;
2799 }
2800 __setup("numa_balancing=", setup_numabalancing);
2801 #else
2802 static inline void __init check_numabalancing_enable(void)
2803 {
2804 }
2805 #endif /* CONFIG_NUMA_BALANCING */
2806 
2807 /* assumes fs == KERNEL_DS */
2808 void __init numa_policy_init(void)
2809 {
2810 	nodemask_t interleave_nodes;
2811 	unsigned long largest = 0;
2812 	int nid, prefer = 0;
2813 
2814 	policy_cache = kmem_cache_create("numa_policy",
2815 					 sizeof(struct mempolicy),
2816 					 0, SLAB_PANIC, NULL);
2817 
2818 	sn_cache = kmem_cache_create("shared_policy_node",
2819 				     sizeof(struct sp_node),
2820 				     0, SLAB_PANIC, NULL);
2821 
2822 	for_each_node(nid) {
2823 		preferred_node_policy[nid] = (struct mempolicy) {
2824 			.refcnt = ATOMIC_INIT(1),
2825 			.mode = MPOL_PREFERRED,
2826 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2827 			.v = { .preferred_node = nid, },
2828 		};
2829 	}
2830 
2831 	/*
2832 	 * Set interleaving policy for system init. Interleaving is only
2833 	 * enabled across suitably sized nodes (default is >= 16MB), or
2834 	 * fall back to the largest node if they're all smaller.
2835 	 */
2836 	nodes_clear(interleave_nodes);
2837 	for_each_node_state(nid, N_MEMORY) {
2838 		unsigned long total_pages = node_present_pages(nid);
2839 
2840 		/* Preserve the largest node */
2841 		if (largest < total_pages) {
2842 			largest = total_pages;
2843 			prefer = nid;
2844 		}
2845 
2846 		/* Interleave this node? */
2847 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2848 			node_set(nid, interleave_nodes);
2849 	}
2850 
2851 	/* All too small, use the largest */
2852 	if (unlikely(nodes_empty(interleave_nodes)))
2853 		node_set(prefer, interleave_nodes);
2854 
2855 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2856 		pr_err("%s: interleaving failed\n", __func__);
2857 
2858 	check_numabalancing_enable();
2859 }
2860 
2861 /* Reset policy of current process to default */
2862 void numa_default_policy(void)
2863 {
2864 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2865 }
2866 
2867 /*
2868  * Parse and format mempolicy from/to strings
2869  */
2870 
2871 /*
2872  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2873  */
2874 static const char * const policy_modes[] =
2875 {
2876 	[MPOL_DEFAULT]    = "default",
2877 	[MPOL_PREFERRED]  = "prefer",
2878 	[MPOL_BIND]       = "bind",
2879 	[MPOL_INTERLEAVE] = "interleave",
2880 	[MPOL_LOCAL]      = "local",
2881 };
2882 
2883 
2884 #ifdef CONFIG_TMPFS
2885 /**
2886  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2887  * @str:  string containing mempolicy to parse
2888  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2889  *
2890  * Format of input:
2891  *	<mode>[=<flags>][:<nodelist>]
2892  *
2893  * On success, returns 0, else 1
2894  */
2895 int mpol_parse_str(char *str, struct mempolicy **mpol)
2896 {
2897 	struct mempolicy *new = NULL;
2898 	unsigned short mode_flags;
2899 	nodemask_t nodes;
2900 	char *nodelist = strchr(str, ':');
2901 	char *flags = strchr(str, '=');
2902 	int err = 1, mode;
2903 
2904 	if (flags)
2905 		*flags++ = '\0';	/* terminate mode string */
2906 
2907 	if (nodelist) {
2908 		/* NUL-terminate mode or flags string */
2909 		*nodelist++ = '\0';
2910 		if (nodelist_parse(nodelist, nodes))
2911 			goto out;
2912 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2913 			goto out;
2914 	} else
2915 		nodes_clear(nodes);
2916 
2917 	mode = match_string(policy_modes, MPOL_MAX, str);
2918 	if (mode < 0)
2919 		goto out;
2920 
2921 	switch (mode) {
2922 	case MPOL_PREFERRED:
2923 		/*
2924 		 * Insist on a nodelist of one node only, although later
2925 		 * we use first_node(nodes) to grab a single node, so here
2926 		 * nodelist (or nodes) cannot be empty.
2927 		 */
2928 		if (nodelist) {
2929 			char *rest = nodelist;
2930 			while (isdigit(*rest))
2931 				rest++;
2932 			if (*rest)
2933 				goto out;
2934 			if (nodes_empty(nodes))
2935 				goto out;
2936 		}
2937 		break;
2938 	case MPOL_INTERLEAVE:
2939 		/*
2940 		 * Default to online nodes with memory if no nodelist
2941 		 */
2942 		if (!nodelist)
2943 			nodes = node_states[N_MEMORY];
2944 		break;
2945 	case MPOL_LOCAL:
2946 		/*
2947 		 * Don't allow a nodelist;  mpol_new() checks flags
2948 		 */
2949 		if (nodelist)
2950 			goto out;
2951 		mode = MPOL_PREFERRED;
2952 		break;
2953 	case MPOL_DEFAULT:
2954 		/*
2955 		 * Insist on a empty nodelist
2956 		 */
2957 		if (!nodelist)
2958 			err = 0;
2959 		goto out;
2960 	case MPOL_BIND:
2961 		/*
2962 		 * Insist on a nodelist
2963 		 */
2964 		if (!nodelist)
2965 			goto out;
2966 	}
2967 
2968 	mode_flags = 0;
2969 	if (flags) {
2970 		/*
2971 		 * Currently, we only support two mutually exclusive
2972 		 * mode flags.
2973 		 */
2974 		if (!strcmp(flags, "static"))
2975 			mode_flags |= MPOL_F_STATIC_NODES;
2976 		else if (!strcmp(flags, "relative"))
2977 			mode_flags |= MPOL_F_RELATIVE_NODES;
2978 		else
2979 			goto out;
2980 	}
2981 
2982 	new = mpol_new(mode, mode_flags, &nodes);
2983 	if (IS_ERR(new))
2984 		goto out;
2985 
2986 	/*
2987 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2988 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2989 	 */
2990 	if (mode != MPOL_PREFERRED)
2991 		new->v.nodes = nodes;
2992 	else if (nodelist)
2993 		new->v.preferred_node = first_node(nodes);
2994 	else
2995 		new->flags |= MPOL_F_LOCAL;
2996 
2997 	/*
2998 	 * Save nodes for contextualization: this will be used to "clone"
2999 	 * the mempolicy in a specific context [cpuset] at a later time.
3000 	 */
3001 	new->w.user_nodemask = nodes;
3002 
3003 	err = 0;
3004 
3005 out:
3006 	/* Restore string for error message */
3007 	if (nodelist)
3008 		*--nodelist = ':';
3009 	if (flags)
3010 		*--flags = '=';
3011 	if (!err)
3012 		*mpol = new;
3013 	return err;
3014 }
3015 #endif /* CONFIG_TMPFS */
3016 
3017 /**
3018  * mpol_to_str - format a mempolicy structure for printing
3019  * @buffer:  to contain formatted mempolicy string
3020  * @maxlen:  length of @buffer
3021  * @pol:  pointer to mempolicy to be formatted
3022  *
3023  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3024  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3025  * longest flag, "relative", and to display at least a few node ids.
3026  */
3027 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3028 {
3029 	char *p = buffer;
3030 	nodemask_t nodes = NODE_MASK_NONE;
3031 	unsigned short mode = MPOL_DEFAULT;
3032 	unsigned short flags = 0;
3033 
3034 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3035 		mode = pol->mode;
3036 		flags = pol->flags;
3037 	}
3038 
3039 	switch (mode) {
3040 	case MPOL_DEFAULT:
3041 		break;
3042 	case MPOL_PREFERRED:
3043 		if (flags & MPOL_F_LOCAL)
3044 			mode = MPOL_LOCAL;
3045 		else
3046 			node_set(pol->v.preferred_node, nodes);
3047 		break;
3048 	case MPOL_BIND:
3049 	case MPOL_INTERLEAVE:
3050 		nodes = pol->v.nodes;
3051 		break;
3052 	default:
3053 		WARN_ON_ONCE(1);
3054 		snprintf(p, maxlen, "unknown");
3055 		return;
3056 	}
3057 
3058 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3059 
3060 	if (flags & MPOL_MODE_FLAGS) {
3061 		p += snprintf(p, buffer + maxlen - p, "=");
3062 
3063 		/*
3064 		 * Currently, the only defined flags are mutually exclusive
3065 		 */
3066 		if (flags & MPOL_F_STATIC_NODES)
3067 			p += snprintf(p, buffer + maxlen - p, "static");
3068 		else if (flags & MPOL_F_RELATIVE_NODES)
3069 			p += snprintf(p, buffer + maxlen - p, "relative");
3070 	}
3071 
3072 	if (!nodes_empty(nodes))
3073 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3074 			       nodemask_pr_args(&nodes));
3075 }
3076