xref: /openbmc/linux/mm/mempolicy.c (revision 39f555fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma) {
388 		vma_start_write(vma);
389 		mpol_rebind_policy(vma->vm_policy, new);
390 	}
391 	mmap_write_unlock(mm);
392 }
393 
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
395 	[MPOL_DEFAULT] = {
396 		.rebind = mpol_rebind_default,
397 	},
398 	[MPOL_INTERLEAVE] = {
399 		.create = mpol_new_nodemask,
400 		.rebind = mpol_rebind_nodemask,
401 	},
402 	[MPOL_PREFERRED] = {
403 		.create = mpol_new_preferred,
404 		.rebind = mpol_rebind_preferred,
405 	},
406 	[MPOL_BIND] = {
407 		.create = mpol_new_nodemask,
408 		.rebind = mpol_rebind_nodemask,
409 	},
410 	[MPOL_LOCAL] = {
411 		.rebind = mpol_rebind_default,
412 	},
413 	[MPOL_PREFERRED_MANY] = {
414 		.create = mpol_new_nodemask,
415 		.rebind = mpol_rebind_preferred,
416 	},
417 };
418 
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 				unsigned long flags);
421 
422 struct queue_pages {
423 	struct list_head *pagelist;
424 	unsigned long flags;
425 	nodemask_t *nmask;
426 	unsigned long start;
427 	unsigned long end;
428 	struct vm_area_struct *first;
429 	bool has_unmovable;
430 };
431 
432 /*
433  * Check if the folio's nid is in qp->nmask.
434  *
435  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
436  * in the invert of qp->nmask.
437  */
438 static inline bool queue_folio_required(struct folio *folio,
439 					struct queue_pages *qp)
440 {
441 	int nid = folio_nid(folio);
442 	unsigned long flags = qp->flags;
443 
444 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 }
446 
447 /*
448  * queue_folios_pmd() has three possible return values:
449  * 0 - folios are placed on the right node or queued successfully, or
450  *     special page is met, i.e. zero page, or unmovable page is found
451  *     but continue walking (indicated by queue_pages.has_unmovable).
452  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453  *        existing folio was already on a node that does not follow the
454  *        policy.
455  */
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 				unsigned long end, struct mm_walk *walk)
458 	__releases(ptl)
459 {
460 	int ret = 0;
461 	struct folio *folio;
462 	struct queue_pages *qp = walk->private;
463 	unsigned long flags;
464 
465 	if (unlikely(is_pmd_migration_entry(*pmd))) {
466 		ret = -EIO;
467 		goto unlock;
468 	}
469 	folio = pfn_folio(pmd_pfn(*pmd));
470 	if (is_huge_zero_page(&folio->page)) {
471 		walk->action = ACTION_CONTINUE;
472 		goto unlock;
473 	}
474 	if (!queue_folio_required(folio, qp))
475 		goto unlock;
476 
477 	flags = qp->flags;
478 	/* go to folio migration */
479 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 		if (!vma_migratable(walk->vma) ||
481 		    migrate_folio_add(folio, qp->pagelist, flags)) {
482 			qp->has_unmovable = true;
483 			goto unlock;
484 		}
485 	} else
486 		ret = -EIO;
487 unlock:
488 	spin_unlock(ptl);
489 	return ret;
490 }
491 
492 /*
493  * Scan through pages checking if pages follow certain conditions,
494  * and move them to the pagelist if they do.
495  *
496  * queue_folios_pte_range() has three possible return values:
497  * 0 - folios are placed on the right node or queued successfully, or
498  *     special page is met, i.e. zero page, or unmovable page is found
499  *     but continue walking (indicated by queue_pages.has_unmovable).
500  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
501  *        on a node that does not follow the policy.
502  */
503 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
504 			unsigned long end, struct mm_walk *walk)
505 {
506 	struct vm_area_struct *vma = walk->vma;
507 	struct folio *folio;
508 	struct queue_pages *qp = walk->private;
509 	unsigned long flags = qp->flags;
510 	pte_t *pte, *mapped_pte;
511 	pte_t ptent;
512 	spinlock_t *ptl;
513 
514 	ptl = pmd_trans_huge_lock(pmd, vma);
515 	if (ptl)
516 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 
518 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 	if (!pte) {
520 		walk->action = ACTION_AGAIN;
521 		return 0;
522 	}
523 	for (; addr != end; pte++, addr += PAGE_SIZE) {
524 		ptent = ptep_get(pte);
525 		if (!pte_present(ptent))
526 			continue;
527 		folio = vm_normal_folio(vma, addr, ptent);
528 		if (!folio || folio_is_zone_device(folio))
529 			continue;
530 		/*
531 		 * vm_normal_folio() filters out zero pages, but there might
532 		 * still be reserved folios to skip, perhaps in a VDSO.
533 		 */
534 		if (folio_test_reserved(folio))
535 			continue;
536 		if (!queue_folio_required(folio, qp))
537 			continue;
538 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 			/*
540 			 * MPOL_MF_STRICT must be specified if we get here.
541 			 * Continue walking vmas due to MPOL_MF_MOVE* flags.
542 			 */
543 			if (!vma_migratable(vma))
544 				qp->has_unmovable = true;
545 
546 			/*
547 			 * Do not abort immediately since there may be
548 			 * temporary off LRU pages in the range.  Still
549 			 * need migrate other LRU pages.
550 			 */
551 			if (migrate_folio_add(folio, qp->pagelist, flags))
552 				qp->has_unmovable = true;
553 		} else
554 			break;
555 	}
556 	pte_unmap_unlock(mapped_pte, ptl);
557 	cond_resched();
558 
559 	return addr != end ? -EIO : 0;
560 }
561 
562 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
563 			       unsigned long addr, unsigned long end,
564 			       struct mm_walk *walk)
565 {
566 	int ret = 0;
567 #ifdef CONFIG_HUGETLB_PAGE
568 	struct queue_pages *qp = walk->private;
569 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
570 	struct folio *folio;
571 	spinlock_t *ptl;
572 	pte_t entry;
573 
574 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 	entry = huge_ptep_get(pte);
576 	if (!pte_present(entry))
577 		goto unlock;
578 	folio = pfn_folio(pte_pfn(entry));
579 	if (!queue_folio_required(folio, qp))
580 		goto unlock;
581 
582 	if (flags == MPOL_MF_STRICT) {
583 		/*
584 		 * STRICT alone means only detecting misplaced folio and no
585 		 * need to further check other vma.
586 		 */
587 		ret = -EIO;
588 		goto unlock;
589 	}
590 
591 	if (!vma_migratable(walk->vma)) {
592 		/*
593 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
594 		 * stopped walking current vma.
595 		 * Detecting misplaced folio but allow migrating folios which
596 		 * have been queued.
597 		 */
598 		qp->has_unmovable = true;
599 		goto unlock;
600 	}
601 
602 	/*
603 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
604 	 * is shared it is likely not worth migrating.
605 	 *
606 	 * To check if the folio is shared, ideally we want to make sure
607 	 * every page is mapped to the same process. Doing that is very
608 	 * expensive, so check the estimated mapcount of the folio instead.
609 	 */
610 	if (flags & (MPOL_MF_MOVE_ALL) ||
611 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
612 	     !hugetlb_pmd_shared(pte))) {
613 		if (!isolate_hugetlb(folio, qp->pagelist) &&
614 			(flags & MPOL_MF_STRICT))
615 			/*
616 			 * Failed to isolate folio but allow migrating pages
617 			 * which have been queued.
618 			 */
619 			qp->has_unmovable = true;
620 	}
621 unlock:
622 	spin_unlock(ptl);
623 #else
624 	BUG();
625 #endif
626 	return ret;
627 }
628 
629 #ifdef CONFIG_NUMA_BALANCING
630 /*
631  * This is used to mark a range of virtual addresses to be inaccessible.
632  * These are later cleared by a NUMA hinting fault. Depending on these
633  * faults, pages may be migrated for better NUMA placement.
634  *
635  * This is assuming that NUMA faults are handled using PROT_NONE. If
636  * an architecture makes a different choice, it will need further
637  * changes to the core.
638  */
639 unsigned long change_prot_numa(struct vm_area_struct *vma,
640 			unsigned long addr, unsigned long end)
641 {
642 	struct mmu_gather tlb;
643 	long nr_updated;
644 
645 	tlb_gather_mmu(&tlb, vma->vm_mm);
646 
647 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
648 	if (nr_updated > 0)
649 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
650 
651 	tlb_finish_mmu(&tlb);
652 
653 	return nr_updated;
654 }
655 #else
656 static unsigned long change_prot_numa(struct vm_area_struct *vma,
657 			unsigned long addr, unsigned long end)
658 {
659 	return 0;
660 }
661 #endif /* CONFIG_NUMA_BALANCING */
662 
663 static int queue_pages_test_walk(unsigned long start, unsigned long end,
664 				struct mm_walk *walk)
665 {
666 	struct vm_area_struct *next, *vma = walk->vma;
667 	struct queue_pages *qp = walk->private;
668 	unsigned long endvma = vma->vm_end;
669 	unsigned long flags = qp->flags;
670 
671 	/* range check first */
672 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
673 
674 	if (!qp->first) {
675 		qp->first = vma;
676 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
677 			(qp->start < vma->vm_start))
678 			/* hole at head side of range */
679 			return -EFAULT;
680 	}
681 	next = find_vma(vma->vm_mm, vma->vm_end);
682 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
683 		((vma->vm_end < qp->end) &&
684 		(!next || vma->vm_end < next->vm_start)))
685 		/* hole at middle or tail of range */
686 		return -EFAULT;
687 
688 	/*
689 	 * Need check MPOL_MF_STRICT to return -EIO if possible
690 	 * regardless of vma_migratable
691 	 */
692 	if (!vma_migratable(vma) &&
693 	    !(flags & MPOL_MF_STRICT))
694 		return 1;
695 
696 	if (endvma > end)
697 		endvma = end;
698 
699 	if (flags & MPOL_MF_LAZY) {
700 		/* Similar to task_numa_work, skip inaccessible VMAs */
701 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
702 			!(vma->vm_flags & VM_MIXEDMAP))
703 			change_prot_numa(vma, start, endvma);
704 		return 1;
705 	}
706 
707 	/* queue pages from current vma */
708 	if (flags & MPOL_MF_VALID)
709 		return 0;
710 	return 1;
711 }
712 
713 static const struct mm_walk_ops queue_pages_walk_ops = {
714 	.hugetlb_entry		= queue_folios_hugetlb,
715 	.pmd_entry		= queue_folios_pte_range,
716 	.test_walk		= queue_pages_test_walk,
717 	.walk_lock		= PGWALK_RDLOCK,
718 };
719 
720 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
721 	.hugetlb_entry		= queue_folios_hugetlb,
722 	.pmd_entry		= queue_folios_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 	.walk_lock		= PGWALK_WRLOCK,
725 };
726 
727 /*
728  * Walk through page tables and collect pages to be migrated.
729  *
730  * If pages found in a given range are on a set of nodes (determined by
731  * @nodes and @flags,) it's isolated and queued to the pagelist which is
732  * passed via @private.
733  *
734  * queue_pages_range() has three possible return values:
735  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
736  *     specified.
737  * 0 - queue pages successfully or no misplaced page.
738  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
739  *         memory range specified by nodemask and maxnode points outside
740  *         your accessible address space (-EFAULT)
741  */
742 static int
743 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
744 		nodemask_t *nodes, unsigned long flags,
745 		struct list_head *pagelist, bool lock_vma)
746 {
747 	int err;
748 	struct queue_pages qp = {
749 		.pagelist = pagelist,
750 		.flags = flags,
751 		.nmask = nodes,
752 		.start = start,
753 		.end = end,
754 		.first = NULL,
755 		.has_unmovable = false,
756 	};
757 	const struct mm_walk_ops *ops = lock_vma ?
758 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
759 
760 	err = walk_page_range(mm, start, end, ops, &qp);
761 
762 	if (qp.has_unmovable)
763 		err = 1;
764 	if (!qp.first)
765 		/* whole range in hole */
766 		err = -EFAULT;
767 
768 	return err;
769 }
770 
771 /*
772  * Apply policy to a single VMA
773  * This must be called with the mmap_lock held for writing.
774  */
775 static int vma_replace_policy(struct vm_area_struct *vma,
776 						struct mempolicy *pol)
777 {
778 	int err;
779 	struct mempolicy *old;
780 	struct mempolicy *new;
781 
782 	vma_assert_write_locked(vma);
783 
784 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
785 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
786 		 vma->vm_ops, vma->vm_file,
787 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
788 
789 	new = mpol_dup(pol);
790 	if (IS_ERR(new))
791 		return PTR_ERR(new);
792 
793 	if (vma->vm_ops && vma->vm_ops->set_policy) {
794 		err = vma->vm_ops->set_policy(vma, new);
795 		if (err)
796 			goto err_out;
797 	}
798 
799 	old = vma->vm_policy;
800 	vma->vm_policy = new; /* protected by mmap_lock */
801 	mpol_put(old);
802 
803 	return 0;
804  err_out:
805 	mpol_put(new);
806 	return err;
807 }
808 
809 /* Split or merge the VMA (if required) and apply the new policy */
810 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
811 		struct vm_area_struct **prev, unsigned long start,
812 		unsigned long end, struct mempolicy *new_pol)
813 {
814 	struct vm_area_struct *merged;
815 	unsigned long vmstart, vmend;
816 	pgoff_t pgoff;
817 	int err;
818 
819 	vmend = min(end, vma->vm_end);
820 	if (start > vma->vm_start) {
821 		*prev = vma;
822 		vmstart = start;
823 	} else {
824 		vmstart = vma->vm_start;
825 	}
826 
827 	if (mpol_equal(vma_policy(vma), new_pol)) {
828 		*prev = vma;
829 		return 0;
830 	}
831 
832 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
833 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
834 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
835 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
836 	if (merged) {
837 		*prev = merged;
838 		return vma_replace_policy(merged, new_pol);
839 	}
840 
841 	if (vma->vm_start != vmstart) {
842 		err = split_vma(vmi, vma, vmstart, 1);
843 		if (err)
844 			return err;
845 	}
846 
847 	if (vma->vm_end != vmend) {
848 		err = split_vma(vmi, vma, vmend, 0);
849 		if (err)
850 			return err;
851 	}
852 
853 	*prev = vma;
854 	return vma_replace_policy(vma, new_pol);
855 }
856 
857 /* Set the process memory policy */
858 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
859 			     nodemask_t *nodes)
860 {
861 	struct mempolicy *new, *old;
862 	NODEMASK_SCRATCH(scratch);
863 	int ret;
864 
865 	if (!scratch)
866 		return -ENOMEM;
867 
868 	new = mpol_new(mode, flags, nodes);
869 	if (IS_ERR(new)) {
870 		ret = PTR_ERR(new);
871 		goto out;
872 	}
873 
874 	task_lock(current);
875 	ret = mpol_set_nodemask(new, nodes, scratch);
876 	if (ret) {
877 		task_unlock(current);
878 		mpol_put(new);
879 		goto out;
880 	}
881 
882 	old = current->mempolicy;
883 	current->mempolicy = new;
884 	if (new && new->mode == MPOL_INTERLEAVE)
885 		current->il_prev = MAX_NUMNODES-1;
886 	task_unlock(current);
887 	mpol_put(old);
888 	ret = 0;
889 out:
890 	NODEMASK_SCRATCH_FREE(scratch);
891 	return ret;
892 }
893 
894 /*
895  * Return nodemask for policy for get_mempolicy() query
896  *
897  * Called with task's alloc_lock held
898  */
899 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
900 {
901 	nodes_clear(*nodes);
902 	if (p == &default_policy)
903 		return;
904 
905 	switch (p->mode) {
906 	case MPOL_BIND:
907 	case MPOL_INTERLEAVE:
908 	case MPOL_PREFERRED:
909 	case MPOL_PREFERRED_MANY:
910 		*nodes = p->nodes;
911 		break;
912 	case MPOL_LOCAL:
913 		/* return empty node mask for local allocation */
914 		break;
915 	default:
916 		BUG();
917 	}
918 }
919 
920 static int lookup_node(struct mm_struct *mm, unsigned long addr)
921 {
922 	struct page *p = NULL;
923 	int ret;
924 
925 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
926 	if (ret > 0) {
927 		ret = page_to_nid(p);
928 		put_page(p);
929 	}
930 	return ret;
931 }
932 
933 /* Retrieve NUMA policy */
934 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
935 			     unsigned long addr, unsigned long flags)
936 {
937 	int err;
938 	struct mm_struct *mm = current->mm;
939 	struct vm_area_struct *vma = NULL;
940 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
941 
942 	if (flags &
943 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
944 		return -EINVAL;
945 
946 	if (flags & MPOL_F_MEMS_ALLOWED) {
947 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
948 			return -EINVAL;
949 		*policy = 0;	/* just so it's initialized */
950 		task_lock(current);
951 		*nmask  = cpuset_current_mems_allowed;
952 		task_unlock(current);
953 		return 0;
954 	}
955 
956 	if (flags & MPOL_F_ADDR) {
957 		/*
958 		 * Do NOT fall back to task policy if the
959 		 * vma/shared policy at addr is NULL.  We
960 		 * want to return MPOL_DEFAULT in this case.
961 		 */
962 		mmap_read_lock(mm);
963 		vma = vma_lookup(mm, addr);
964 		if (!vma) {
965 			mmap_read_unlock(mm);
966 			return -EFAULT;
967 		}
968 		if (vma->vm_ops && vma->vm_ops->get_policy)
969 			pol = vma->vm_ops->get_policy(vma, addr);
970 		else
971 			pol = vma->vm_policy;
972 	} else if (addr)
973 		return -EINVAL;
974 
975 	if (!pol)
976 		pol = &default_policy;	/* indicates default behavior */
977 
978 	if (flags & MPOL_F_NODE) {
979 		if (flags & MPOL_F_ADDR) {
980 			/*
981 			 * Take a refcount on the mpol, because we are about to
982 			 * drop the mmap_lock, after which only "pol" remains
983 			 * valid, "vma" is stale.
984 			 */
985 			pol_refcount = pol;
986 			vma = NULL;
987 			mpol_get(pol);
988 			mmap_read_unlock(mm);
989 			err = lookup_node(mm, addr);
990 			if (err < 0)
991 				goto out;
992 			*policy = err;
993 		} else if (pol == current->mempolicy &&
994 				pol->mode == MPOL_INTERLEAVE) {
995 			*policy = next_node_in(current->il_prev, pol->nodes);
996 		} else {
997 			err = -EINVAL;
998 			goto out;
999 		}
1000 	} else {
1001 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1002 						pol->mode;
1003 		/*
1004 		 * Internal mempolicy flags must be masked off before exposing
1005 		 * the policy to userspace.
1006 		 */
1007 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1008 	}
1009 
1010 	err = 0;
1011 	if (nmask) {
1012 		if (mpol_store_user_nodemask(pol)) {
1013 			*nmask = pol->w.user_nodemask;
1014 		} else {
1015 			task_lock(current);
1016 			get_policy_nodemask(pol, nmask);
1017 			task_unlock(current);
1018 		}
1019 	}
1020 
1021  out:
1022 	mpol_cond_put(pol);
1023 	if (vma)
1024 		mmap_read_unlock(mm);
1025 	if (pol_refcount)
1026 		mpol_put(pol_refcount);
1027 	return err;
1028 }
1029 
1030 #ifdef CONFIG_MIGRATION
1031 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1032 				unsigned long flags)
1033 {
1034 	/*
1035 	 * We try to migrate only unshared folios. If it is shared it
1036 	 * is likely not worth migrating.
1037 	 *
1038 	 * To check if the folio is shared, ideally we want to make sure
1039 	 * every page is mapped to the same process. Doing that is very
1040 	 * expensive, so check the estimated mapcount of the folio instead.
1041 	 */
1042 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1043 		if (folio_isolate_lru(folio)) {
1044 			list_add_tail(&folio->lru, foliolist);
1045 			node_stat_mod_folio(folio,
1046 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1047 				folio_nr_pages(folio));
1048 		} else if (flags & MPOL_MF_STRICT) {
1049 			/*
1050 			 * Non-movable folio may reach here.  And, there may be
1051 			 * temporary off LRU folios or non-LRU movable folios.
1052 			 * Treat them as unmovable folios since they can't be
1053 			 * isolated, so they can't be moved at the moment.  It
1054 			 * should return -EIO for this case too.
1055 			 */
1056 			return -EIO;
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Migrate pages from one node to a target node.
1065  * Returns error or the number of pages not migrated.
1066  */
1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1068 			   int flags)
1069 {
1070 	nodemask_t nmask;
1071 	struct vm_area_struct *vma;
1072 	LIST_HEAD(pagelist);
1073 	int err = 0;
1074 	struct migration_target_control mtc = {
1075 		.nid = dest,
1076 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1077 	};
1078 
1079 	nodes_clear(nmask);
1080 	node_set(source, nmask);
1081 
1082 	/*
1083 	 * This does not "check" the range but isolates all pages that
1084 	 * need migration.  Between passing in the full user address
1085 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1086 	 */
1087 	vma = find_vma(mm, 0);
1088 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1089 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1090 			flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1091 
1092 	if (!list_empty(&pagelist)) {
1093 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1095 		if (err)
1096 			putback_movable_pages(&pagelist);
1097 	}
1098 
1099 	return err;
1100 }
1101 
1102 /*
1103  * Move pages between the two nodesets so as to preserve the physical
1104  * layout as much as possible.
1105  *
1106  * Returns the number of page that could not be moved.
1107  */
1108 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1109 		     const nodemask_t *to, int flags)
1110 {
1111 	int busy = 0;
1112 	int err = 0;
1113 	nodemask_t tmp;
1114 
1115 	lru_cache_disable();
1116 
1117 	mmap_read_lock(mm);
1118 
1119 	/*
1120 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1122 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 	 * The pair of nodemasks 'to' and 'from' define the map.
1124 	 *
1125 	 * If no pair of bits is found that way, fallback to picking some
1126 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1127 	 * 'source' and 'dest' bits are the same, this represents a node
1128 	 * that will be migrating to itself, so no pages need move.
1129 	 *
1130 	 * If no bits are left in 'tmp', or if all remaining bits left
1131 	 * in 'tmp' correspond to the same bit in 'to', return false
1132 	 * (nothing left to migrate).
1133 	 *
1134 	 * This lets us pick a pair of nodes to migrate between, such that
1135 	 * if possible the dest node is not already occupied by some other
1136 	 * source node, minimizing the risk of overloading the memory on a
1137 	 * node that would happen if we migrated incoming memory to a node
1138 	 * before migrating outgoing memory source that same node.
1139 	 *
1140 	 * A single scan of tmp is sufficient.  As we go, we remember the
1141 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1142 	 * that not only moved, but what's better, moved to an empty slot
1143 	 * (d is not set in tmp), then we break out then, with that pair.
1144 	 * Otherwise when we finish scanning from_tmp, we at least have the
1145 	 * most recent <s, d> pair that moved.  If we get all the way through
1146 	 * the scan of tmp without finding any node that moved, much less
1147 	 * moved to an empty node, then there is nothing left worth migrating.
1148 	 */
1149 
1150 	tmp = *from;
1151 	while (!nodes_empty(tmp)) {
1152 		int s, d;
1153 		int source = NUMA_NO_NODE;
1154 		int dest = 0;
1155 
1156 		for_each_node_mask(s, tmp) {
1157 
1158 			/*
1159 			 * do_migrate_pages() tries to maintain the relative
1160 			 * node relationship of the pages established between
1161 			 * threads and memory areas.
1162                          *
1163 			 * However if the number of source nodes is not equal to
1164 			 * the number of destination nodes we can not preserve
1165 			 * this node relative relationship.  In that case, skip
1166 			 * copying memory from a node that is in the destination
1167 			 * mask.
1168 			 *
1169 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 			 */
1172 
1173 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 						(node_isset(s, *to)))
1175 				continue;
1176 
1177 			d = node_remap(s, *from, *to);
1178 			if (s == d)
1179 				continue;
1180 
1181 			source = s;	/* Node moved. Memorize */
1182 			dest = d;
1183 
1184 			/* dest not in remaining from nodes? */
1185 			if (!node_isset(dest, tmp))
1186 				break;
1187 		}
1188 		if (source == NUMA_NO_NODE)
1189 			break;
1190 
1191 		node_clear(source, tmp);
1192 		err = migrate_to_node(mm, source, dest, flags);
1193 		if (err > 0)
1194 			busy += err;
1195 		if (err < 0)
1196 			break;
1197 	}
1198 	mmap_read_unlock(mm);
1199 
1200 	lru_cache_enable();
1201 	if (err < 0)
1202 		return err;
1203 	return busy;
1204 
1205 }
1206 
1207 /*
1208  * Allocate a new page for page migration based on vma policy.
1209  * Start by assuming the page is mapped by the same vma as contains @start.
1210  * Search forward from there, if not.  N.B., this assumes that the
1211  * list of pages handed to migrate_pages()--which is how we get here--
1212  * is in virtual address order.
1213  */
1214 static struct folio *new_folio(struct folio *src, unsigned long start)
1215 {
1216 	struct vm_area_struct *vma;
1217 	unsigned long address;
1218 	VMA_ITERATOR(vmi, current->mm, start);
1219 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1220 
1221 	for_each_vma(vmi, vma) {
1222 		address = page_address_in_vma(&src->page, vma);
1223 		if (address != -EFAULT)
1224 			break;
1225 	}
1226 
1227 	if (folio_test_hugetlb(src)) {
1228 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1229 				vma, address);
1230 	}
1231 
1232 	if (folio_test_large(src))
1233 		gfp = GFP_TRANSHUGE;
1234 
1235 	/*
1236 	 * if !vma, vma_alloc_folio() will use task or system default policy
1237 	 */
1238 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1239 			folio_test_large(src));
1240 }
1241 #else
1242 
1243 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 				unsigned long flags)
1245 {
1246 	return -EIO;
1247 }
1248 
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 		     const nodemask_t *to, int flags)
1251 {
1252 	return -ENOSYS;
1253 }
1254 
1255 static struct folio *new_folio(struct folio *src, unsigned long start)
1256 {
1257 	return NULL;
1258 }
1259 #endif
1260 
1261 static long do_mbind(unsigned long start, unsigned long len,
1262 		     unsigned short mode, unsigned short mode_flags,
1263 		     nodemask_t *nmask, unsigned long flags)
1264 {
1265 	struct mm_struct *mm = current->mm;
1266 	struct vm_area_struct *vma, *prev;
1267 	struct vma_iterator vmi;
1268 	struct mempolicy *new;
1269 	unsigned long end;
1270 	int err;
1271 	int ret;
1272 	LIST_HEAD(pagelist);
1273 
1274 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1275 		return -EINVAL;
1276 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1277 		return -EPERM;
1278 
1279 	if (start & ~PAGE_MASK)
1280 		return -EINVAL;
1281 
1282 	if (mode == MPOL_DEFAULT)
1283 		flags &= ~MPOL_MF_STRICT;
1284 
1285 	len = PAGE_ALIGN(len);
1286 	end = start + len;
1287 
1288 	if (end < start)
1289 		return -EINVAL;
1290 	if (end == start)
1291 		return 0;
1292 
1293 	new = mpol_new(mode, mode_flags, nmask);
1294 	if (IS_ERR(new))
1295 		return PTR_ERR(new);
1296 
1297 	if (flags & MPOL_MF_LAZY)
1298 		new->flags |= MPOL_F_MOF;
1299 
1300 	/*
1301 	 * If we are using the default policy then operation
1302 	 * on discontinuous address spaces is okay after all
1303 	 */
1304 	if (!new)
1305 		flags |= MPOL_MF_DISCONTIG_OK;
1306 
1307 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1308 		 start, start + len, mode, mode_flags,
1309 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1310 
1311 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1312 
1313 		lru_cache_disable();
1314 	}
1315 	{
1316 		NODEMASK_SCRATCH(scratch);
1317 		if (scratch) {
1318 			mmap_write_lock(mm);
1319 			err = mpol_set_nodemask(new, nmask, scratch);
1320 			if (err)
1321 				mmap_write_unlock(mm);
1322 		} else
1323 			err = -ENOMEM;
1324 		NODEMASK_SCRATCH_FREE(scratch);
1325 	}
1326 	if (err)
1327 		goto mpol_out;
1328 
1329 	/*
1330 	 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1331 	 * miss a concurrently inserted page.
1332 	 */
1333 	ret = queue_pages_range(mm, start, end, nmask,
1334 			  flags | MPOL_MF_INVERT, &pagelist, true);
1335 
1336 	if (ret < 0) {
1337 		err = ret;
1338 		goto up_out;
1339 	}
1340 
1341 	vma_iter_init(&vmi, mm, start);
1342 	prev = vma_prev(&vmi);
1343 	for_each_vma_range(vmi, vma, end) {
1344 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1345 		if (err)
1346 			break;
1347 	}
1348 
1349 	if (!err) {
1350 		int nr_failed = 0;
1351 
1352 		if (!list_empty(&pagelist)) {
1353 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1355 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1356 			if (nr_failed)
1357 				putback_movable_pages(&pagelist);
1358 		}
1359 
1360 		if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT))
1361 			err = -EIO;
1362 	} else {
1363 up_out:
1364 		if (!list_empty(&pagelist))
1365 			putback_movable_pages(&pagelist);
1366 	}
1367 
1368 	mmap_write_unlock(mm);
1369 mpol_out:
1370 	mpol_put(new);
1371 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1372 		lru_cache_enable();
1373 	return err;
1374 }
1375 
1376 /*
1377  * User space interface with variable sized bitmaps for nodelists.
1378  */
1379 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1380 		      unsigned long maxnode)
1381 {
1382 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1383 	int ret;
1384 
1385 	if (in_compat_syscall())
1386 		ret = compat_get_bitmap(mask,
1387 					(const compat_ulong_t __user *)nmask,
1388 					maxnode);
1389 	else
1390 		ret = copy_from_user(mask, nmask,
1391 				     nlongs * sizeof(unsigned long));
1392 
1393 	if (ret)
1394 		return -EFAULT;
1395 
1396 	if (maxnode % BITS_PER_LONG)
1397 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1398 
1399 	return 0;
1400 }
1401 
1402 /* Copy a node mask from user space. */
1403 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1404 		     unsigned long maxnode)
1405 {
1406 	--maxnode;
1407 	nodes_clear(*nodes);
1408 	if (maxnode == 0 || !nmask)
1409 		return 0;
1410 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1411 		return -EINVAL;
1412 
1413 	/*
1414 	 * When the user specified more nodes than supported just check
1415 	 * if the non supported part is all zero, one word at a time,
1416 	 * starting at the end.
1417 	 */
1418 	while (maxnode > MAX_NUMNODES) {
1419 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1420 		unsigned long t;
1421 
1422 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1423 			return -EFAULT;
1424 
1425 		if (maxnode - bits >= MAX_NUMNODES) {
1426 			maxnode -= bits;
1427 		} else {
1428 			maxnode = MAX_NUMNODES;
1429 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 		}
1431 		if (t)
1432 			return -EINVAL;
1433 	}
1434 
1435 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1436 }
1437 
1438 /* Copy a kernel node mask to user space */
1439 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1440 			      nodemask_t *nodes)
1441 {
1442 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1443 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1444 	bool compat = in_compat_syscall();
1445 
1446 	if (compat)
1447 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1448 
1449 	if (copy > nbytes) {
1450 		if (copy > PAGE_SIZE)
1451 			return -EINVAL;
1452 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1453 			return -EFAULT;
1454 		copy = nbytes;
1455 		maxnode = nr_node_ids;
1456 	}
1457 
1458 	if (compat)
1459 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1460 					 nodes_addr(*nodes), maxnode);
1461 
1462 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1463 }
1464 
1465 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1466 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1467 {
1468 	*flags = *mode & MPOL_MODE_FLAGS;
1469 	*mode &= ~MPOL_MODE_FLAGS;
1470 
1471 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1472 		return -EINVAL;
1473 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1474 		return -EINVAL;
1475 	if (*flags & MPOL_F_NUMA_BALANCING) {
1476 		if (*mode != MPOL_BIND)
1477 			return -EINVAL;
1478 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1479 	}
1480 	return 0;
1481 }
1482 
1483 static long kernel_mbind(unsigned long start, unsigned long len,
1484 			 unsigned long mode, const unsigned long __user *nmask,
1485 			 unsigned long maxnode, unsigned int flags)
1486 {
1487 	unsigned short mode_flags;
1488 	nodemask_t nodes;
1489 	int lmode = mode;
1490 	int err;
1491 
1492 	start = untagged_addr(start);
1493 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1494 	if (err)
1495 		return err;
1496 
1497 	err = get_nodes(&nodes, nmask, maxnode);
1498 	if (err)
1499 		return err;
1500 
1501 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1502 }
1503 
1504 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1505 		unsigned long, home_node, unsigned long, flags)
1506 {
1507 	struct mm_struct *mm = current->mm;
1508 	struct vm_area_struct *vma, *prev;
1509 	struct mempolicy *new, *old;
1510 	unsigned long end;
1511 	int err = -ENOENT;
1512 	VMA_ITERATOR(vmi, mm, start);
1513 
1514 	start = untagged_addr(start);
1515 	if (start & ~PAGE_MASK)
1516 		return -EINVAL;
1517 	/*
1518 	 * flags is used for future extension if any.
1519 	 */
1520 	if (flags != 0)
1521 		return -EINVAL;
1522 
1523 	/*
1524 	 * Check home_node is online to avoid accessing uninitialized
1525 	 * NODE_DATA.
1526 	 */
1527 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1528 		return -EINVAL;
1529 
1530 	len = PAGE_ALIGN(len);
1531 	end = start + len;
1532 
1533 	if (end < start)
1534 		return -EINVAL;
1535 	if (end == start)
1536 		return 0;
1537 	mmap_write_lock(mm);
1538 	prev = vma_prev(&vmi);
1539 	for_each_vma_range(vmi, vma, end) {
1540 		/*
1541 		 * If any vma in the range got policy other than MPOL_BIND
1542 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1543 		 * the home node for vmas we already updated before.
1544 		 */
1545 		old = vma_policy(vma);
1546 		if (!old) {
1547 			prev = vma;
1548 			continue;
1549 		}
1550 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1551 			err = -EOPNOTSUPP;
1552 			break;
1553 		}
1554 		new = mpol_dup(old);
1555 		if (IS_ERR(new)) {
1556 			err = PTR_ERR(new);
1557 			break;
1558 		}
1559 
1560 		vma_start_write(vma);
1561 		new->home_node = home_node;
1562 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1563 		mpol_put(new);
1564 		if (err)
1565 			break;
1566 	}
1567 	mmap_write_unlock(mm);
1568 	return err;
1569 }
1570 
1571 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1572 		unsigned long, mode, const unsigned long __user *, nmask,
1573 		unsigned long, maxnode, unsigned int, flags)
1574 {
1575 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1576 }
1577 
1578 /* Set the process memory policy */
1579 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1580 				 unsigned long maxnode)
1581 {
1582 	unsigned short mode_flags;
1583 	nodemask_t nodes;
1584 	int lmode = mode;
1585 	int err;
1586 
1587 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1588 	if (err)
1589 		return err;
1590 
1591 	err = get_nodes(&nodes, nmask, maxnode);
1592 	if (err)
1593 		return err;
1594 
1595 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1596 }
1597 
1598 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1599 		unsigned long, maxnode)
1600 {
1601 	return kernel_set_mempolicy(mode, nmask, maxnode);
1602 }
1603 
1604 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1605 				const unsigned long __user *old_nodes,
1606 				const unsigned long __user *new_nodes)
1607 {
1608 	struct mm_struct *mm = NULL;
1609 	struct task_struct *task;
1610 	nodemask_t task_nodes;
1611 	int err;
1612 	nodemask_t *old;
1613 	nodemask_t *new;
1614 	NODEMASK_SCRATCH(scratch);
1615 
1616 	if (!scratch)
1617 		return -ENOMEM;
1618 
1619 	old = &scratch->mask1;
1620 	new = &scratch->mask2;
1621 
1622 	err = get_nodes(old, old_nodes, maxnode);
1623 	if (err)
1624 		goto out;
1625 
1626 	err = get_nodes(new, new_nodes, maxnode);
1627 	if (err)
1628 		goto out;
1629 
1630 	/* Find the mm_struct */
1631 	rcu_read_lock();
1632 	task = pid ? find_task_by_vpid(pid) : current;
1633 	if (!task) {
1634 		rcu_read_unlock();
1635 		err = -ESRCH;
1636 		goto out;
1637 	}
1638 	get_task_struct(task);
1639 
1640 	err = -EINVAL;
1641 
1642 	/*
1643 	 * Check if this process has the right to modify the specified process.
1644 	 * Use the regular "ptrace_may_access()" checks.
1645 	 */
1646 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1647 		rcu_read_unlock();
1648 		err = -EPERM;
1649 		goto out_put;
1650 	}
1651 	rcu_read_unlock();
1652 
1653 	task_nodes = cpuset_mems_allowed(task);
1654 	/* Is the user allowed to access the target nodes? */
1655 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1656 		err = -EPERM;
1657 		goto out_put;
1658 	}
1659 
1660 	task_nodes = cpuset_mems_allowed(current);
1661 	nodes_and(*new, *new, task_nodes);
1662 	if (nodes_empty(*new))
1663 		goto out_put;
1664 
1665 	err = security_task_movememory(task);
1666 	if (err)
1667 		goto out_put;
1668 
1669 	mm = get_task_mm(task);
1670 	put_task_struct(task);
1671 
1672 	if (!mm) {
1673 		err = -EINVAL;
1674 		goto out;
1675 	}
1676 
1677 	err = do_migrate_pages(mm, old, new,
1678 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1679 
1680 	mmput(mm);
1681 out:
1682 	NODEMASK_SCRATCH_FREE(scratch);
1683 
1684 	return err;
1685 
1686 out_put:
1687 	put_task_struct(task);
1688 	goto out;
1689 
1690 }
1691 
1692 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1693 		const unsigned long __user *, old_nodes,
1694 		const unsigned long __user *, new_nodes)
1695 {
1696 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1697 }
1698 
1699 
1700 /* Retrieve NUMA policy */
1701 static int kernel_get_mempolicy(int __user *policy,
1702 				unsigned long __user *nmask,
1703 				unsigned long maxnode,
1704 				unsigned long addr,
1705 				unsigned long flags)
1706 {
1707 	int err;
1708 	int pval;
1709 	nodemask_t nodes;
1710 
1711 	if (nmask != NULL && maxnode < nr_node_ids)
1712 		return -EINVAL;
1713 
1714 	addr = untagged_addr(addr);
1715 
1716 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1717 
1718 	if (err)
1719 		return err;
1720 
1721 	if (policy && put_user(pval, policy))
1722 		return -EFAULT;
1723 
1724 	if (nmask)
1725 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1726 
1727 	return err;
1728 }
1729 
1730 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1731 		unsigned long __user *, nmask, unsigned long, maxnode,
1732 		unsigned long, addr, unsigned long, flags)
1733 {
1734 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1735 }
1736 
1737 bool vma_migratable(struct vm_area_struct *vma)
1738 {
1739 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1740 		return false;
1741 
1742 	/*
1743 	 * DAX device mappings require predictable access latency, so avoid
1744 	 * incurring periodic faults.
1745 	 */
1746 	if (vma_is_dax(vma))
1747 		return false;
1748 
1749 	if (is_vm_hugetlb_page(vma) &&
1750 		!hugepage_migration_supported(hstate_vma(vma)))
1751 		return false;
1752 
1753 	/*
1754 	 * Migration allocates pages in the highest zone. If we cannot
1755 	 * do so then migration (at least from node to node) is not
1756 	 * possible.
1757 	 */
1758 	if (vma->vm_file &&
1759 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1760 			< policy_zone)
1761 		return false;
1762 	return true;
1763 }
1764 
1765 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1766 						unsigned long addr)
1767 {
1768 	struct mempolicy *pol = NULL;
1769 
1770 	if (vma) {
1771 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1772 			pol = vma->vm_ops->get_policy(vma, addr);
1773 		} else if (vma->vm_policy) {
1774 			pol = vma->vm_policy;
1775 
1776 			/*
1777 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1778 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1779 			 * count on these policies which will be dropped by
1780 			 * mpol_cond_put() later
1781 			 */
1782 			if (mpol_needs_cond_ref(pol))
1783 				mpol_get(pol);
1784 		}
1785 	}
1786 
1787 	return pol;
1788 }
1789 
1790 /*
1791  * get_vma_policy(@vma, @addr)
1792  * @vma: virtual memory area whose policy is sought
1793  * @addr: address in @vma for shared policy lookup
1794  *
1795  * Returns effective policy for a VMA at specified address.
1796  * Falls back to current->mempolicy or system default policy, as necessary.
1797  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1798  * count--added by the get_policy() vm_op, as appropriate--to protect against
1799  * freeing by another task.  It is the caller's responsibility to free the
1800  * extra reference for shared policies.
1801  */
1802 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1803 						unsigned long addr)
1804 {
1805 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1806 
1807 	if (!pol)
1808 		pol = get_task_policy(current);
1809 
1810 	return pol;
1811 }
1812 
1813 bool vma_policy_mof(struct vm_area_struct *vma)
1814 {
1815 	struct mempolicy *pol;
1816 
1817 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1818 		bool ret = false;
1819 
1820 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1821 		if (pol && (pol->flags & MPOL_F_MOF))
1822 			ret = true;
1823 		mpol_cond_put(pol);
1824 
1825 		return ret;
1826 	}
1827 
1828 	pol = vma->vm_policy;
1829 	if (!pol)
1830 		pol = get_task_policy(current);
1831 
1832 	return pol->flags & MPOL_F_MOF;
1833 }
1834 
1835 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1836 {
1837 	enum zone_type dynamic_policy_zone = policy_zone;
1838 
1839 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1840 
1841 	/*
1842 	 * if policy->nodes has movable memory only,
1843 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1844 	 *
1845 	 * policy->nodes is intersect with node_states[N_MEMORY].
1846 	 * so if the following test fails, it implies
1847 	 * policy->nodes has movable memory only.
1848 	 */
1849 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1850 		dynamic_policy_zone = ZONE_MOVABLE;
1851 
1852 	return zone >= dynamic_policy_zone;
1853 }
1854 
1855 /*
1856  * Return a nodemask representing a mempolicy for filtering nodes for
1857  * page allocation
1858  */
1859 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1860 {
1861 	int mode = policy->mode;
1862 
1863 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1864 	if (unlikely(mode == MPOL_BIND) &&
1865 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1866 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1867 		return &policy->nodes;
1868 
1869 	if (mode == MPOL_PREFERRED_MANY)
1870 		return &policy->nodes;
1871 
1872 	return NULL;
1873 }
1874 
1875 /*
1876  * Return the  preferred node id for 'prefer' mempolicy, and return
1877  * the given id for all other policies.
1878  *
1879  * policy_node() is always coupled with policy_nodemask(), which
1880  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1881  */
1882 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1883 {
1884 	if (policy->mode == MPOL_PREFERRED) {
1885 		nd = first_node(policy->nodes);
1886 	} else {
1887 		/*
1888 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1889 		 * because we might easily break the expectation to stay on the
1890 		 * requested node and not break the policy.
1891 		 */
1892 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1893 	}
1894 
1895 	if ((policy->mode == MPOL_BIND ||
1896 	     policy->mode == MPOL_PREFERRED_MANY) &&
1897 	    policy->home_node != NUMA_NO_NODE)
1898 		return policy->home_node;
1899 
1900 	return nd;
1901 }
1902 
1903 /* Do dynamic interleaving for a process */
1904 static unsigned interleave_nodes(struct mempolicy *policy)
1905 {
1906 	unsigned next;
1907 	struct task_struct *me = current;
1908 
1909 	next = next_node_in(me->il_prev, policy->nodes);
1910 	if (next < MAX_NUMNODES)
1911 		me->il_prev = next;
1912 	return next;
1913 }
1914 
1915 /*
1916  * Depending on the memory policy provide a node from which to allocate the
1917  * next slab entry.
1918  */
1919 unsigned int mempolicy_slab_node(void)
1920 {
1921 	struct mempolicy *policy;
1922 	int node = numa_mem_id();
1923 
1924 	if (!in_task())
1925 		return node;
1926 
1927 	policy = current->mempolicy;
1928 	if (!policy)
1929 		return node;
1930 
1931 	switch (policy->mode) {
1932 	case MPOL_PREFERRED:
1933 		return first_node(policy->nodes);
1934 
1935 	case MPOL_INTERLEAVE:
1936 		return interleave_nodes(policy);
1937 
1938 	case MPOL_BIND:
1939 	case MPOL_PREFERRED_MANY:
1940 	{
1941 		struct zoneref *z;
1942 
1943 		/*
1944 		 * Follow bind policy behavior and start allocation at the
1945 		 * first node.
1946 		 */
1947 		struct zonelist *zonelist;
1948 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1949 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1950 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1951 							&policy->nodes);
1952 		return z->zone ? zone_to_nid(z->zone) : node;
1953 	}
1954 	case MPOL_LOCAL:
1955 		return node;
1956 
1957 	default:
1958 		BUG();
1959 	}
1960 }
1961 
1962 /*
1963  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1964  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1965  * number of present nodes.
1966  */
1967 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1968 {
1969 	nodemask_t nodemask = pol->nodes;
1970 	unsigned int target, nnodes;
1971 	int i;
1972 	int nid;
1973 	/*
1974 	 * The barrier will stabilize the nodemask in a register or on
1975 	 * the stack so that it will stop changing under the code.
1976 	 *
1977 	 * Between first_node() and next_node(), pol->nodes could be changed
1978 	 * by other threads. So we put pol->nodes in a local stack.
1979 	 */
1980 	barrier();
1981 
1982 	nnodes = nodes_weight(nodemask);
1983 	if (!nnodes)
1984 		return numa_node_id();
1985 	target = (unsigned int)n % nnodes;
1986 	nid = first_node(nodemask);
1987 	for (i = 0; i < target; i++)
1988 		nid = next_node(nid, nodemask);
1989 	return nid;
1990 }
1991 
1992 /* Determine a node number for interleave */
1993 static inline unsigned interleave_nid(struct mempolicy *pol,
1994 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1995 {
1996 	if (vma) {
1997 		unsigned long off;
1998 
1999 		/*
2000 		 * for small pages, there is no difference between
2001 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2002 		 * for huge pages, since vm_pgoff is in units of small
2003 		 * pages, we need to shift off the always 0 bits to get
2004 		 * a useful offset.
2005 		 */
2006 		BUG_ON(shift < PAGE_SHIFT);
2007 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2008 		off += (addr - vma->vm_start) >> shift;
2009 		return offset_il_node(pol, off);
2010 	} else
2011 		return interleave_nodes(pol);
2012 }
2013 
2014 #ifdef CONFIG_HUGETLBFS
2015 /*
2016  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2017  * @vma: virtual memory area whose policy is sought
2018  * @addr: address in @vma for shared policy lookup and interleave policy
2019  * @gfp_flags: for requested zone
2020  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2021  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2022  *
2023  * Returns a nid suitable for a huge page allocation and a pointer
2024  * to the struct mempolicy for conditional unref after allocation.
2025  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2026  * to the mempolicy's @nodemask for filtering the zonelist.
2027  *
2028  * Must be protected by read_mems_allowed_begin()
2029  */
2030 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2031 				struct mempolicy **mpol, nodemask_t **nodemask)
2032 {
2033 	int nid;
2034 	int mode;
2035 
2036 	*mpol = get_vma_policy(vma, addr);
2037 	*nodemask = NULL;
2038 	mode = (*mpol)->mode;
2039 
2040 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2041 		nid = interleave_nid(*mpol, vma, addr,
2042 					huge_page_shift(hstate_vma(vma)));
2043 	} else {
2044 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2045 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2046 			*nodemask = &(*mpol)->nodes;
2047 	}
2048 	return nid;
2049 }
2050 
2051 /*
2052  * init_nodemask_of_mempolicy
2053  *
2054  * If the current task's mempolicy is "default" [NULL], return 'false'
2055  * to indicate default policy.  Otherwise, extract the policy nodemask
2056  * for 'bind' or 'interleave' policy into the argument nodemask, or
2057  * initialize the argument nodemask to contain the single node for
2058  * 'preferred' or 'local' policy and return 'true' to indicate presence
2059  * of non-default mempolicy.
2060  *
2061  * We don't bother with reference counting the mempolicy [mpol_get/put]
2062  * because the current task is examining it's own mempolicy and a task's
2063  * mempolicy is only ever changed by the task itself.
2064  *
2065  * N.B., it is the caller's responsibility to free a returned nodemask.
2066  */
2067 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2068 {
2069 	struct mempolicy *mempolicy;
2070 
2071 	if (!(mask && current->mempolicy))
2072 		return false;
2073 
2074 	task_lock(current);
2075 	mempolicy = current->mempolicy;
2076 	switch (mempolicy->mode) {
2077 	case MPOL_PREFERRED:
2078 	case MPOL_PREFERRED_MANY:
2079 	case MPOL_BIND:
2080 	case MPOL_INTERLEAVE:
2081 		*mask = mempolicy->nodes;
2082 		break;
2083 
2084 	case MPOL_LOCAL:
2085 		init_nodemask_of_node(mask, numa_node_id());
2086 		break;
2087 
2088 	default:
2089 		BUG();
2090 	}
2091 	task_unlock(current);
2092 
2093 	return true;
2094 }
2095 #endif
2096 
2097 /*
2098  * mempolicy_in_oom_domain
2099  *
2100  * If tsk's mempolicy is "bind", check for intersection between mask and
2101  * the policy nodemask. Otherwise, return true for all other policies
2102  * including "interleave", as a tsk with "interleave" policy may have
2103  * memory allocated from all nodes in system.
2104  *
2105  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2106  */
2107 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2108 					const nodemask_t *mask)
2109 {
2110 	struct mempolicy *mempolicy;
2111 	bool ret = true;
2112 
2113 	if (!mask)
2114 		return ret;
2115 
2116 	task_lock(tsk);
2117 	mempolicy = tsk->mempolicy;
2118 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2119 		ret = nodes_intersects(mempolicy->nodes, *mask);
2120 	task_unlock(tsk);
2121 
2122 	return ret;
2123 }
2124 
2125 /* Allocate a page in interleaved policy.
2126    Own path because it needs to do special accounting. */
2127 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2128 					unsigned nid)
2129 {
2130 	struct page *page;
2131 
2132 	page = __alloc_pages(gfp, order, nid, NULL);
2133 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2134 	if (!static_branch_likely(&vm_numa_stat_key))
2135 		return page;
2136 	if (page && page_to_nid(page) == nid) {
2137 		preempt_disable();
2138 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2139 		preempt_enable();
2140 	}
2141 	return page;
2142 }
2143 
2144 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2145 						int nid, struct mempolicy *pol)
2146 {
2147 	struct page *page;
2148 	gfp_t preferred_gfp;
2149 
2150 	/*
2151 	 * This is a two pass approach. The first pass will only try the
2152 	 * preferred nodes but skip the direct reclaim and allow the
2153 	 * allocation to fail, while the second pass will try all the
2154 	 * nodes in system.
2155 	 */
2156 	preferred_gfp = gfp | __GFP_NOWARN;
2157 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2158 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2159 	if (!page)
2160 		page = __alloc_pages(gfp, order, nid, NULL);
2161 
2162 	return page;
2163 }
2164 
2165 /**
2166  * vma_alloc_folio - Allocate a folio for a VMA.
2167  * @gfp: GFP flags.
2168  * @order: Order of the folio.
2169  * @vma: Pointer to VMA or NULL if not available.
2170  * @addr: Virtual address of the allocation.  Must be inside @vma.
2171  * @hugepage: For hugepages try only the preferred node if possible.
2172  *
2173  * Allocate a folio for a specific address in @vma, using the appropriate
2174  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2175  * of the mm_struct of the VMA to prevent it from going away.  Should be
2176  * used for all allocations for folios that will be mapped into user space.
2177  *
2178  * Return: The folio on success or NULL if allocation fails.
2179  */
2180 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2181 		unsigned long addr, bool hugepage)
2182 {
2183 	struct mempolicy *pol;
2184 	int node = numa_node_id();
2185 	struct folio *folio;
2186 	int preferred_nid;
2187 	nodemask_t *nmask;
2188 
2189 	pol = get_vma_policy(vma, addr);
2190 
2191 	if (pol->mode == MPOL_INTERLEAVE) {
2192 		struct page *page;
2193 		unsigned nid;
2194 
2195 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2196 		mpol_cond_put(pol);
2197 		gfp |= __GFP_COMP;
2198 		page = alloc_page_interleave(gfp, order, nid);
2199 		folio = (struct folio *)page;
2200 		if (folio && order > 1)
2201 			folio_prep_large_rmappable(folio);
2202 		goto out;
2203 	}
2204 
2205 	if (pol->mode == MPOL_PREFERRED_MANY) {
2206 		struct page *page;
2207 
2208 		node = policy_node(gfp, pol, node);
2209 		gfp |= __GFP_COMP;
2210 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2211 		mpol_cond_put(pol);
2212 		folio = (struct folio *)page;
2213 		if (folio && order > 1)
2214 			folio_prep_large_rmappable(folio);
2215 		goto out;
2216 	}
2217 
2218 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2219 		int hpage_node = node;
2220 
2221 		/*
2222 		 * For hugepage allocation and non-interleave policy which
2223 		 * allows the current node (or other explicitly preferred
2224 		 * node) we only try to allocate from the current/preferred
2225 		 * node and don't fall back to other nodes, as the cost of
2226 		 * remote accesses would likely offset THP benefits.
2227 		 *
2228 		 * If the policy is interleave or does not allow the current
2229 		 * node in its nodemask, we allocate the standard way.
2230 		 */
2231 		if (pol->mode == MPOL_PREFERRED)
2232 			hpage_node = first_node(pol->nodes);
2233 
2234 		nmask = policy_nodemask(gfp, pol);
2235 		if (!nmask || node_isset(hpage_node, *nmask)) {
2236 			mpol_cond_put(pol);
2237 			/*
2238 			 * First, try to allocate THP only on local node, but
2239 			 * don't reclaim unnecessarily, just compact.
2240 			 */
2241 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2242 					__GFP_NORETRY, order, hpage_node);
2243 
2244 			/*
2245 			 * If hugepage allocations are configured to always
2246 			 * synchronous compact or the vma has been madvised
2247 			 * to prefer hugepage backing, retry allowing remote
2248 			 * memory with both reclaim and compact as well.
2249 			 */
2250 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2251 				folio = __folio_alloc(gfp, order, hpage_node,
2252 						      nmask);
2253 
2254 			goto out;
2255 		}
2256 	}
2257 
2258 	nmask = policy_nodemask(gfp, pol);
2259 	preferred_nid = policy_node(gfp, pol, node);
2260 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2261 	mpol_cond_put(pol);
2262 out:
2263 	return folio;
2264 }
2265 EXPORT_SYMBOL(vma_alloc_folio);
2266 
2267 /**
2268  * alloc_pages - Allocate pages.
2269  * @gfp: GFP flags.
2270  * @order: Power of two of number of pages to allocate.
2271  *
2272  * Allocate 1 << @order contiguous pages.  The physical address of the
2273  * first page is naturally aligned (eg an order-3 allocation will be aligned
2274  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2275  * process is honoured when in process context.
2276  *
2277  * Context: Can be called from any context, providing the appropriate GFP
2278  * flags are used.
2279  * Return: The page on success or NULL if allocation fails.
2280  */
2281 struct page *alloc_pages(gfp_t gfp, unsigned order)
2282 {
2283 	struct mempolicy *pol = &default_policy;
2284 	struct page *page;
2285 
2286 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2287 		pol = get_task_policy(current);
2288 
2289 	/*
2290 	 * No reference counting needed for current->mempolicy
2291 	 * nor system default_policy
2292 	 */
2293 	if (pol->mode == MPOL_INTERLEAVE)
2294 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2295 	else if (pol->mode == MPOL_PREFERRED_MANY)
2296 		page = alloc_pages_preferred_many(gfp, order,
2297 				  policy_node(gfp, pol, numa_node_id()), pol);
2298 	else
2299 		page = __alloc_pages(gfp, order,
2300 				policy_node(gfp, pol, numa_node_id()),
2301 				policy_nodemask(gfp, pol));
2302 
2303 	return page;
2304 }
2305 EXPORT_SYMBOL(alloc_pages);
2306 
2307 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2308 {
2309 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2310 	struct folio *folio = (struct folio *)page;
2311 
2312 	if (folio && order > 1)
2313 		folio_prep_large_rmappable(folio);
2314 	return folio;
2315 }
2316 EXPORT_SYMBOL(folio_alloc);
2317 
2318 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2319 		struct mempolicy *pol, unsigned long nr_pages,
2320 		struct page **page_array)
2321 {
2322 	int nodes;
2323 	unsigned long nr_pages_per_node;
2324 	int delta;
2325 	int i;
2326 	unsigned long nr_allocated;
2327 	unsigned long total_allocated = 0;
2328 
2329 	nodes = nodes_weight(pol->nodes);
2330 	nr_pages_per_node = nr_pages / nodes;
2331 	delta = nr_pages - nodes * nr_pages_per_node;
2332 
2333 	for (i = 0; i < nodes; i++) {
2334 		if (delta) {
2335 			nr_allocated = __alloc_pages_bulk(gfp,
2336 					interleave_nodes(pol), NULL,
2337 					nr_pages_per_node + 1, NULL,
2338 					page_array);
2339 			delta--;
2340 		} else {
2341 			nr_allocated = __alloc_pages_bulk(gfp,
2342 					interleave_nodes(pol), NULL,
2343 					nr_pages_per_node, NULL, page_array);
2344 		}
2345 
2346 		page_array += nr_allocated;
2347 		total_allocated += nr_allocated;
2348 	}
2349 
2350 	return total_allocated;
2351 }
2352 
2353 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2354 		struct mempolicy *pol, unsigned long nr_pages,
2355 		struct page **page_array)
2356 {
2357 	gfp_t preferred_gfp;
2358 	unsigned long nr_allocated = 0;
2359 
2360 	preferred_gfp = gfp | __GFP_NOWARN;
2361 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2362 
2363 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2364 					   nr_pages, NULL, page_array);
2365 
2366 	if (nr_allocated < nr_pages)
2367 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2368 				nr_pages - nr_allocated, NULL,
2369 				page_array + nr_allocated);
2370 	return nr_allocated;
2371 }
2372 
2373 /* alloc pages bulk and mempolicy should be considered at the
2374  * same time in some situation such as vmalloc.
2375  *
2376  * It can accelerate memory allocation especially interleaving
2377  * allocate memory.
2378  */
2379 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2380 		unsigned long nr_pages, struct page **page_array)
2381 {
2382 	struct mempolicy *pol = &default_policy;
2383 
2384 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2385 		pol = get_task_policy(current);
2386 
2387 	if (pol->mode == MPOL_INTERLEAVE)
2388 		return alloc_pages_bulk_array_interleave(gfp, pol,
2389 							 nr_pages, page_array);
2390 
2391 	if (pol->mode == MPOL_PREFERRED_MANY)
2392 		return alloc_pages_bulk_array_preferred_many(gfp,
2393 				numa_node_id(), pol, nr_pages, page_array);
2394 
2395 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2396 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2397 				  page_array);
2398 }
2399 
2400 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2401 {
2402 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2403 
2404 	if (IS_ERR(pol))
2405 		return PTR_ERR(pol);
2406 	dst->vm_policy = pol;
2407 	return 0;
2408 }
2409 
2410 /*
2411  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2412  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2413  * with the mems_allowed returned by cpuset_mems_allowed().  This
2414  * keeps mempolicies cpuset relative after its cpuset moves.  See
2415  * further kernel/cpuset.c update_nodemask().
2416  *
2417  * current's mempolicy may be rebinded by the other task(the task that changes
2418  * cpuset's mems), so we needn't do rebind work for current task.
2419  */
2420 
2421 /* Slow path of a mempolicy duplicate */
2422 struct mempolicy *__mpol_dup(struct mempolicy *old)
2423 {
2424 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2425 
2426 	if (!new)
2427 		return ERR_PTR(-ENOMEM);
2428 
2429 	/* task's mempolicy is protected by alloc_lock */
2430 	if (old == current->mempolicy) {
2431 		task_lock(current);
2432 		*new = *old;
2433 		task_unlock(current);
2434 	} else
2435 		*new = *old;
2436 
2437 	if (current_cpuset_is_being_rebound()) {
2438 		nodemask_t mems = cpuset_mems_allowed(current);
2439 		mpol_rebind_policy(new, &mems);
2440 	}
2441 	atomic_set(&new->refcnt, 1);
2442 	return new;
2443 }
2444 
2445 /* Slow path of a mempolicy comparison */
2446 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2447 {
2448 	if (!a || !b)
2449 		return false;
2450 	if (a->mode != b->mode)
2451 		return false;
2452 	if (a->flags != b->flags)
2453 		return false;
2454 	if (a->home_node != b->home_node)
2455 		return false;
2456 	if (mpol_store_user_nodemask(a))
2457 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2458 			return false;
2459 
2460 	switch (a->mode) {
2461 	case MPOL_BIND:
2462 	case MPOL_INTERLEAVE:
2463 	case MPOL_PREFERRED:
2464 	case MPOL_PREFERRED_MANY:
2465 		return !!nodes_equal(a->nodes, b->nodes);
2466 	case MPOL_LOCAL:
2467 		return true;
2468 	default:
2469 		BUG();
2470 		return false;
2471 	}
2472 }
2473 
2474 /*
2475  * Shared memory backing store policy support.
2476  *
2477  * Remember policies even when nobody has shared memory mapped.
2478  * The policies are kept in Red-Black tree linked from the inode.
2479  * They are protected by the sp->lock rwlock, which should be held
2480  * for any accesses to the tree.
2481  */
2482 
2483 /*
2484  * lookup first element intersecting start-end.  Caller holds sp->lock for
2485  * reading or for writing
2486  */
2487 static struct sp_node *
2488 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2489 {
2490 	struct rb_node *n = sp->root.rb_node;
2491 
2492 	while (n) {
2493 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2494 
2495 		if (start >= p->end)
2496 			n = n->rb_right;
2497 		else if (end <= p->start)
2498 			n = n->rb_left;
2499 		else
2500 			break;
2501 	}
2502 	if (!n)
2503 		return NULL;
2504 	for (;;) {
2505 		struct sp_node *w = NULL;
2506 		struct rb_node *prev = rb_prev(n);
2507 		if (!prev)
2508 			break;
2509 		w = rb_entry(prev, struct sp_node, nd);
2510 		if (w->end <= start)
2511 			break;
2512 		n = prev;
2513 	}
2514 	return rb_entry(n, struct sp_node, nd);
2515 }
2516 
2517 /*
2518  * Insert a new shared policy into the list.  Caller holds sp->lock for
2519  * writing.
2520  */
2521 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2522 {
2523 	struct rb_node **p = &sp->root.rb_node;
2524 	struct rb_node *parent = NULL;
2525 	struct sp_node *nd;
2526 
2527 	while (*p) {
2528 		parent = *p;
2529 		nd = rb_entry(parent, struct sp_node, nd);
2530 		if (new->start < nd->start)
2531 			p = &(*p)->rb_left;
2532 		else if (new->end > nd->end)
2533 			p = &(*p)->rb_right;
2534 		else
2535 			BUG();
2536 	}
2537 	rb_link_node(&new->nd, parent, p);
2538 	rb_insert_color(&new->nd, &sp->root);
2539 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2540 		 new->policy ? new->policy->mode : 0);
2541 }
2542 
2543 /* Find shared policy intersecting idx */
2544 struct mempolicy *
2545 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2546 {
2547 	struct mempolicy *pol = NULL;
2548 	struct sp_node *sn;
2549 
2550 	if (!sp->root.rb_node)
2551 		return NULL;
2552 	read_lock(&sp->lock);
2553 	sn = sp_lookup(sp, idx, idx+1);
2554 	if (sn) {
2555 		mpol_get(sn->policy);
2556 		pol = sn->policy;
2557 	}
2558 	read_unlock(&sp->lock);
2559 	return pol;
2560 }
2561 
2562 static void sp_free(struct sp_node *n)
2563 {
2564 	mpol_put(n->policy);
2565 	kmem_cache_free(sn_cache, n);
2566 }
2567 
2568 /**
2569  * mpol_misplaced - check whether current page node is valid in policy
2570  *
2571  * @page: page to be checked
2572  * @vma: vm area where page mapped
2573  * @addr: virtual address where page mapped
2574  *
2575  * Lookup current policy node id for vma,addr and "compare to" page's
2576  * node id.  Policy determination "mimics" alloc_page_vma().
2577  * Called from fault path where we know the vma and faulting address.
2578  *
2579  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2580  * policy, or a suitable node ID to allocate a replacement page from.
2581  */
2582 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2583 {
2584 	struct mempolicy *pol;
2585 	struct zoneref *z;
2586 	int curnid = page_to_nid(page);
2587 	unsigned long pgoff;
2588 	int thiscpu = raw_smp_processor_id();
2589 	int thisnid = cpu_to_node(thiscpu);
2590 	int polnid = NUMA_NO_NODE;
2591 	int ret = NUMA_NO_NODE;
2592 
2593 	pol = get_vma_policy(vma, addr);
2594 	if (!(pol->flags & MPOL_F_MOF))
2595 		goto out;
2596 
2597 	switch (pol->mode) {
2598 	case MPOL_INTERLEAVE:
2599 		pgoff = vma->vm_pgoff;
2600 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2601 		polnid = offset_il_node(pol, pgoff);
2602 		break;
2603 
2604 	case MPOL_PREFERRED:
2605 		if (node_isset(curnid, pol->nodes))
2606 			goto out;
2607 		polnid = first_node(pol->nodes);
2608 		break;
2609 
2610 	case MPOL_LOCAL:
2611 		polnid = numa_node_id();
2612 		break;
2613 
2614 	case MPOL_BIND:
2615 		/* Optimize placement among multiple nodes via NUMA balancing */
2616 		if (pol->flags & MPOL_F_MORON) {
2617 			if (node_isset(thisnid, pol->nodes))
2618 				break;
2619 			goto out;
2620 		}
2621 		fallthrough;
2622 
2623 	case MPOL_PREFERRED_MANY:
2624 		/*
2625 		 * use current page if in policy nodemask,
2626 		 * else select nearest allowed node, if any.
2627 		 * If no allowed nodes, use current [!misplaced].
2628 		 */
2629 		if (node_isset(curnid, pol->nodes))
2630 			goto out;
2631 		z = first_zones_zonelist(
2632 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2633 				gfp_zone(GFP_HIGHUSER),
2634 				&pol->nodes);
2635 		polnid = zone_to_nid(z->zone);
2636 		break;
2637 
2638 	default:
2639 		BUG();
2640 	}
2641 
2642 	/* Migrate the page towards the node whose CPU is referencing it */
2643 	if (pol->flags & MPOL_F_MORON) {
2644 		polnid = thisnid;
2645 
2646 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2647 			goto out;
2648 	}
2649 
2650 	if (curnid != polnid)
2651 		ret = polnid;
2652 out:
2653 	mpol_cond_put(pol);
2654 
2655 	return ret;
2656 }
2657 
2658 /*
2659  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2660  * dropped after task->mempolicy is set to NULL so that any allocation done as
2661  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2662  * policy.
2663  */
2664 void mpol_put_task_policy(struct task_struct *task)
2665 {
2666 	struct mempolicy *pol;
2667 
2668 	task_lock(task);
2669 	pol = task->mempolicy;
2670 	task->mempolicy = NULL;
2671 	task_unlock(task);
2672 	mpol_put(pol);
2673 }
2674 
2675 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2676 {
2677 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2678 	rb_erase(&n->nd, &sp->root);
2679 	sp_free(n);
2680 }
2681 
2682 static void sp_node_init(struct sp_node *node, unsigned long start,
2683 			unsigned long end, struct mempolicy *pol)
2684 {
2685 	node->start = start;
2686 	node->end = end;
2687 	node->policy = pol;
2688 }
2689 
2690 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2691 				struct mempolicy *pol)
2692 {
2693 	struct sp_node *n;
2694 	struct mempolicy *newpol;
2695 
2696 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2697 	if (!n)
2698 		return NULL;
2699 
2700 	newpol = mpol_dup(pol);
2701 	if (IS_ERR(newpol)) {
2702 		kmem_cache_free(sn_cache, n);
2703 		return NULL;
2704 	}
2705 	newpol->flags |= MPOL_F_SHARED;
2706 	sp_node_init(n, start, end, newpol);
2707 
2708 	return n;
2709 }
2710 
2711 /* Replace a policy range. */
2712 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2713 				 unsigned long end, struct sp_node *new)
2714 {
2715 	struct sp_node *n;
2716 	struct sp_node *n_new = NULL;
2717 	struct mempolicy *mpol_new = NULL;
2718 	int ret = 0;
2719 
2720 restart:
2721 	write_lock(&sp->lock);
2722 	n = sp_lookup(sp, start, end);
2723 	/* Take care of old policies in the same range. */
2724 	while (n && n->start < end) {
2725 		struct rb_node *next = rb_next(&n->nd);
2726 		if (n->start >= start) {
2727 			if (n->end <= end)
2728 				sp_delete(sp, n);
2729 			else
2730 				n->start = end;
2731 		} else {
2732 			/* Old policy spanning whole new range. */
2733 			if (n->end > end) {
2734 				if (!n_new)
2735 					goto alloc_new;
2736 
2737 				*mpol_new = *n->policy;
2738 				atomic_set(&mpol_new->refcnt, 1);
2739 				sp_node_init(n_new, end, n->end, mpol_new);
2740 				n->end = start;
2741 				sp_insert(sp, n_new);
2742 				n_new = NULL;
2743 				mpol_new = NULL;
2744 				break;
2745 			} else
2746 				n->end = start;
2747 		}
2748 		if (!next)
2749 			break;
2750 		n = rb_entry(next, struct sp_node, nd);
2751 	}
2752 	if (new)
2753 		sp_insert(sp, new);
2754 	write_unlock(&sp->lock);
2755 	ret = 0;
2756 
2757 err_out:
2758 	if (mpol_new)
2759 		mpol_put(mpol_new);
2760 	if (n_new)
2761 		kmem_cache_free(sn_cache, n_new);
2762 
2763 	return ret;
2764 
2765 alloc_new:
2766 	write_unlock(&sp->lock);
2767 	ret = -ENOMEM;
2768 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2769 	if (!n_new)
2770 		goto err_out;
2771 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2772 	if (!mpol_new)
2773 		goto err_out;
2774 	atomic_set(&mpol_new->refcnt, 1);
2775 	goto restart;
2776 }
2777 
2778 /**
2779  * mpol_shared_policy_init - initialize shared policy for inode
2780  * @sp: pointer to inode shared policy
2781  * @mpol:  struct mempolicy to install
2782  *
2783  * Install non-NULL @mpol in inode's shared policy rb-tree.
2784  * On entry, the current task has a reference on a non-NULL @mpol.
2785  * This must be released on exit.
2786  * This is called at get_inode() calls and we can use GFP_KERNEL.
2787  */
2788 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2789 {
2790 	int ret;
2791 
2792 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2793 	rwlock_init(&sp->lock);
2794 
2795 	if (mpol) {
2796 		struct vm_area_struct pvma;
2797 		struct mempolicy *new;
2798 		NODEMASK_SCRATCH(scratch);
2799 
2800 		if (!scratch)
2801 			goto put_mpol;
2802 		/* contextualize the tmpfs mount point mempolicy */
2803 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2804 		if (IS_ERR(new))
2805 			goto free_scratch; /* no valid nodemask intersection */
2806 
2807 		task_lock(current);
2808 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2809 		task_unlock(current);
2810 		if (ret)
2811 			goto put_new;
2812 
2813 		/* Create pseudo-vma that contains just the policy */
2814 		vma_init(&pvma, NULL);
2815 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2816 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2817 
2818 put_new:
2819 		mpol_put(new);			/* drop initial ref */
2820 free_scratch:
2821 		NODEMASK_SCRATCH_FREE(scratch);
2822 put_mpol:
2823 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2824 	}
2825 }
2826 
2827 int mpol_set_shared_policy(struct shared_policy *info,
2828 			struct vm_area_struct *vma, struct mempolicy *npol)
2829 {
2830 	int err;
2831 	struct sp_node *new = NULL;
2832 	unsigned long sz = vma_pages(vma);
2833 
2834 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2835 		 vma->vm_pgoff,
2836 		 sz, npol ? npol->mode : -1,
2837 		 npol ? npol->flags : -1,
2838 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2839 
2840 	if (npol) {
2841 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2842 		if (!new)
2843 			return -ENOMEM;
2844 	}
2845 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2846 	if (err && new)
2847 		sp_free(new);
2848 	return err;
2849 }
2850 
2851 /* Free a backing policy store on inode delete. */
2852 void mpol_free_shared_policy(struct shared_policy *p)
2853 {
2854 	struct sp_node *n;
2855 	struct rb_node *next;
2856 
2857 	if (!p->root.rb_node)
2858 		return;
2859 	write_lock(&p->lock);
2860 	next = rb_first(&p->root);
2861 	while (next) {
2862 		n = rb_entry(next, struct sp_node, nd);
2863 		next = rb_next(&n->nd);
2864 		sp_delete(p, n);
2865 	}
2866 	write_unlock(&p->lock);
2867 }
2868 
2869 #ifdef CONFIG_NUMA_BALANCING
2870 static int __initdata numabalancing_override;
2871 
2872 static void __init check_numabalancing_enable(void)
2873 {
2874 	bool numabalancing_default = false;
2875 
2876 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2877 		numabalancing_default = true;
2878 
2879 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2880 	if (numabalancing_override)
2881 		set_numabalancing_state(numabalancing_override == 1);
2882 
2883 	if (num_online_nodes() > 1 && !numabalancing_override) {
2884 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2885 			numabalancing_default ? "Enabling" : "Disabling");
2886 		set_numabalancing_state(numabalancing_default);
2887 	}
2888 }
2889 
2890 static int __init setup_numabalancing(char *str)
2891 {
2892 	int ret = 0;
2893 	if (!str)
2894 		goto out;
2895 
2896 	if (!strcmp(str, "enable")) {
2897 		numabalancing_override = 1;
2898 		ret = 1;
2899 	} else if (!strcmp(str, "disable")) {
2900 		numabalancing_override = -1;
2901 		ret = 1;
2902 	}
2903 out:
2904 	if (!ret)
2905 		pr_warn("Unable to parse numa_balancing=\n");
2906 
2907 	return ret;
2908 }
2909 __setup("numa_balancing=", setup_numabalancing);
2910 #else
2911 static inline void __init check_numabalancing_enable(void)
2912 {
2913 }
2914 #endif /* CONFIG_NUMA_BALANCING */
2915 
2916 /* assumes fs == KERNEL_DS */
2917 void __init numa_policy_init(void)
2918 {
2919 	nodemask_t interleave_nodes;
2920 	unsigned long largest = 0;
2921 	int nid, prefer = 0;
2922 
2923 	policy_cache = kmem_cache_create("numa_policy",
2924 					 sizeof(struct mempolicy),
2925 					 0, SLAB_PANIC, NULL);
2926 
2927 	sn_cache = kmem_cache_create("shared_policy_node",
2928 				     sizeof(struct sp_node),
2929 				     0, SLAB_PANIC, NULL);
2930 
2931 	for_each_node(nid) {
2932 		preferred_node_policy[nid] = (struct mempolicy) {
2933 			.refcnt = ATOMIC_INIT(1),
2934 			.mode = MPOL_PREFERRED,
2935 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2936 			.nodes = nodemask_of_node(nid),
2937 		};
2938 	}
2939 
2940 	/*
2941 	 * Set interleaving policy for system init. Interleaving is only
2942 	 * enabled across suitably sized nodes (default is >= 16MB), or
2943 	 * fall back to the largest node if they're all smaller.
2944 	 */
2945 	nodes_clear(interleave_nodes);
2946 	for_each_node_state(nid, N_MEMORY) {
2947 		unsigned long total_pages = node_present_pages(nid);
2948 
2949 		/* Preserve the largest node */
2950 		if (largest < total_pages) {
2951 			largest = total_pages;
2952 			prefer = nid;
2953 		}
2954 
2955 		/* Interleave this node? */
2956 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2957 			node_set(nid, interleave_nodes);
2958 	}
2959 
2960 	/* All too small, use the largest */
2961 	if (unlikely(nodes_empty(interleave_nodes)))
2962 		node_set(prefer, interleave_nodes);
2963 
2964 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2965 		pr_err("%s: interleaving failed\n", __func__);
2966 
2967 	check_numabalancing_enable();
2968 }
2969 
2970 /* Reset policy of current process to default */
2971 void numa_default_policy(void)
2972 {
2973 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2974 }
2975 
2976 /*
2977  * Parse and format mempolicy from/to strings
2978  */
2979 
2980 static const char * const policy_modes[] =
2981 {
2982 	[MPOL_DEFAULT]    = "default",
2983 	[MPOL_PREFERRED]  = "prefer",
2984 	[MPOL_BIND]       = "bind",
2985 	[MPOL_INTERLEAVE] = "interleave",
2986 	[MPOL_LOCAL]      = "local",
2987 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2988 };
2989 
2990 
2991 #ifdef CONFIG_TMPFS
2992 /**
2993  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2994  * @str:  string containing mempolicy to parse
2995  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2996  *
2997  * Format of input:
2998  *	<mode>[=<flags>][:<nodelist>]
2999  *
3000  * Return: %0 on success, else %1
3001  */
3002 int mpol_parse_str(char *str, struct mempolicy **mpol)
3003 {
3004 	struct mempolicy *new = NULL;
3005 	unsigned short mode_flags;
3006 	nodemask_t nodes;
3007 	char *nodelist = strchr(str, ':');
3008 	char *flags = strchr(str, '=');
3009 	int err = 1, mode;
3010 
3011 	if (flags)
3012 		*flags++ = '\0';	/* terminate mode string */
3013 
3014 	if (nodelist) {
3015 		/* NUL-terminate mode or flags string */
3016 		*nodelist++ = '\0';
3017 		if (nodelist_parse(nodelist, nodes))
3018 			goto out;
3019 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3020 			goto out;
3021 	} else
3022 		nodes_clear(nodes);
3023 
3024 	mode = match_string(policy_modes, MPOL_MAX, str);
3025 	if (mode < 0)
3026 		goto out;
3027 
3028 	switch (mode) {
3029 	case MPOL_PREFERRED:
3030 		/*
3031 		 * Insist on a nodelist of one node only, although later
3032 		 * we use first_node(nodes) to grab a single node, so here
3033 		 * nodelist (or nodes) cannot be empty.
3034 		 */
3035 		if (nodelist) {
3036 			char *rest = nodelist;
3037 			while (isdigit(*rest))
3038 				rest++;
3039 			if (*rest)
3040 				goto out;
3041 			if (nodes_empty(nodes))
3042 				goto out;
3043 		}
3044 		break;
3045 	case MPOL_INTERLEAVE:
3046 		/*
3047 		 * Default to online nodes with memory if no nodelist
3048 		 */
3049 		if (!nodelist)
3050 			nodes = node_states[N_MEMORY];
3051 		break;
3052 	case MPOL_LOCAL:
3053 		/*
3054 		 * Don't allow a nodelist;  mpol_new() checks flags
3055 		 */
3056 		if (nodelist)
3057 			goto out;
3058 		break;
3059 	case MPOL_DEFAULT:
3060 		/*
3061 		 * Insist on a empty nodelist
3062 		 */
3063 		if (!nodelist)
3064 			err = 0;
3065 		goto out;
3066 	case MPOL_PREFERRED_MANY:
3067 	case MPOL_BIND:
3068 		/*
3069 		 * Insist on a nodelist
3070 		 */
3071 		if (!nodelist)
3072 			goto out;
3073 	}
3074 
3075 	mode_flags = 0;
3076 	if (flags) {
3077 		/*
3078 		 * Currently, we only support two mutually exclusive
3079 		 * mode flags.
3080 		 */
3081 		if (!strcmp(flags, "static"))
3082 			mode_flags |= MPOL_F_STATIC_NODES;
3083 		else if (!strcmp(flags, "relative"))
3084 			mode_flags |= MPOL_F_RELATIVE_NODES;
3085 		else
3086 			goto out;
3087 	}
3088 
3089 	new = mpol_new(mode, mode_flags, &nodes);
3090 	if (IS_ERR(new))
3091 		goto out;
3092 
3093 	/*
3094 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3095 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3096 	 */
3097 	if (mode != MPOL_PREFERRED) {
3098 		new->nodes = nodes;
3099 	} else if (nodelist) {
3100 		nodes_clear(new->nodes);
3101 		node_set(first_node(nodes), new->nodes);
3102 	} else {
3103 		new->mode = MPOL_LOCAL;
3104 	}
3105 
3106 	/*
3107 	 * Save nodes for contextualization: this will be used to "clone"
3108 	 * the mempolicy in a specific context [cpuset] at a later time.
3109 	 */
3110 	new->w.user_nodemask = nodes;
3111 
3112 	err = 0;
3113 
3114 out:
3115 	/* Restore string for error message */
3116 	if (nodelist)
3117 		*--nodelist = ':';
3118 	if (flags)
3119 		*--flags = '=';
3120 	if (!err)
3121 		*mpol = new;
3122 	return err;
3123 }
3124 #endif /* CONFIG_TMPFS */
3125 
3126 /**
3127  * mpol_to_str - format a mempolicy structure for printing
3128  * @buffer:  to contain formatted mempolicy string
3129  * @maxlen:  length of @buffer
3130  * @pol:  pointer to mempolicy to be formatted
3131  *
3132  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3133  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3134  * longest flag, "relative", and to display at least a few node ids.
3135  */
3136 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3137 {
3138 	char *p = buffer;
3139 	nodemask_t nodes = NODE_MASK_NONE;
3140 	unsigned short mode = MPOL_DEFAULT;
3141 	unsigned short flags = 0;
3142 
3143 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3144 		mode = pol->mode;
3145 		flags = pol->flags;
3146 	}
3147 
3148 	switch (mode) {
3149 	case MPOL_DEFAULT:
3150 	case MPOL_LOCAL:
3151 		break;
3152 	case MPOL_PREFERRED:
3153 	case MPOL_PREFERRED_MANY:
3154 	case MPOL_BIND:
3155 	case MPOL_INTERLEAVE:
3156 		nodes = pol->nodes;
3157 		break;
3158 	default:
3159 		WARN_ON_ONCE(1);
3160 		snprintf(p, maxlen, "unknown");
3161 		return;
3162 	}
3163 
3164 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3165 
3166 	if (flags & MPOL_MODE_FLAGS) {
3167 		p += snprintf(p, buffer + maxlen - p, "=");
3168 
3169 		/*
3170 		 * Currently, the only defined flags are mutually exclusive
3171 		 */
3172 		if (flags & MPOL_F_STATIC_NODES)
3173 			p += snprintf(p, buffer + maxlen - p, "static");
3174 		else if (flags & MPOL_F_RELATIVE_NODES)
3175 			p += snprintf(p, buffer + maxlen - p, "relative");
3176 	}
3177 
3178 	if (!nodes_empty(nodes))
3179 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3180 			       nodemask_pr_args(&nodes));
3181 }
3182