xref: /openbmc/linux/mm/mempolicy.c (revision 35b1b1fd96388d5e3cf179bf36bd8a4153baf4a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma) {
388 		vma_start_write(vma);
389 		mpol_rebind_policy(vma->vm_policy, new);
390 	}
391 	mmap_write_unlock(mm);
392 }
393 
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
395 	[MPOL_DEFAULT] = {
396 		.rebind = mpol_rebind_default,
397 	},
398 	[MPOL_INTERLEAVE] = {
399 		.create = mpol_new_nodemask,
400 		.rebind = mpol_rebind_nodemask,
401 	},
402 	[MPOL_PREFERRED] = {
403 		.create = mpol_new_preferred,
404 		.rebind = mpol_rebind_preferred,
405 	},
406 	[MPOL_BIND] = {
407 		.create = mpol_new_nodemask,
408 		.rebind = mpol_rebind_nodemask,
409 	},
410 	[MPOL_LOCAL] = {
411 		.rebind = mpol_rebind_default,
412 	},
413 	[MPOL_PREFERRED_MANY] = {
414 		.create = mpol_new_nodemask,
415 		.rebind = mpol_rebind_preferred,
416 	},
417 };
418 
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 				unsigned long flags);
421 
422 struct queue_pages {
423 	struct list_head *pagelist;
424 	unsigned long flags;
425 	nodemask_t *nmask;
426 	unsigned long start;
427 	unsigned long end;
428 	struct vm_area_struct *first;
429 };
430 
431 /*
432  * Check if the folio's nid is in qp->nmask.
433  *
434  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
435  * in the invert of qp->nmask.
436  */
437 static inline bool queue_folio_required(struct folio *folio,
438 					struct queue_pages *qp)
439 {
440 	int nid = folio_nid(folio);
441 	unsigned long flags = qp->flags;
442 
443 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
444 }
445 
446 /*
447  * queue_folios_pmd() has three possible return values:
448  * 0 - folios are placed on the right node or queued successfully, or
449  *     special page is met, i.e. huge zero page.
450  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
451  *     specified.
452  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453  *        existing folio was already on a node that does not follow the
454  *        policy.
455  */
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 				unsigned long end, struct mm_walk *walk)
458 	__releases(ptl)
459 {
460 	int ret = 0;
461 	struct folio *folio;
462 	struct queue_pages *qp = walk->private;
463 	unsigned long flags;
464 
465 	if (unlikely(is_pmd_migration_entry(*pmd))) {
466 		ret = -EIO;
467 		goto unlock;
468 	}
469 	folio = pfn_folio(pmd_pfn(*pmd));
470 	if (is_huge_zero_page(&folio->page)) {
471 		walk->action = ACTION_CONTINUE;
472 		goto unlock;
473 	}
474 	if (!queue_folio_required(folio, qp))
475 		goto unlock;
476 
477 	flags = qp->flags;
478 	/* go to folio migration */
479 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 		if (!vma_migratable(walk->vma) ||
481 		    migrate_folio_add(folio, qp->pagelist, flags)) {
482 			ret = 1;
483 			goto unlock;
484 		}
485 	} else
486 		ret = -EIO;
487 unlock:
488 	spin_unlock(ptl);
489 	return ret;
490 }
491 
492 /*
493  * Scan through pages checking if pages follow certain conditions,
494  * and move them to the pagelist if they do.
495  *
496  * queue_folios_pte_range() has three possible return values:
497  * 0 - folios are placed on the right node or queued successfully, or
498  *     special page is met, i.e. zero page.
499  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
500  *     specified.
501  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
502  *        on a node that does not follow the policy.
503  */
504 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
505 			unsigned long end, struct mm_walk *walk)
506 {
507 	struct vm_area_struct *vma = walk->vma;
508 	struct folio *folio;
509 	struct queue_pages *qp = walk->private;
510 	unsigned long flags = qp->flags;
511 	bool has_unmovable = false;
512 	pte_t *pte, *mapped_pte;
513 	pte_t ptent;
514 	spinlock_t *ptl;
515 
516 	ptl = pmd_trans_huge_lock(pmd, vma);
517 	if (ptl)
518 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	if (!pte) {
522 		walk->action = ACTION_AGAIN;
523 		return 0;
524 	}
525 	for (; addr != end; pte++, addr += PAGE_SIZE) {
526 		ptent = ptep_get(pte);
527 		if (!pte_present(ptent))
528 			continue;
529 		folio = vm_normal_folio(vma, addr, ptent);
530 		if (!folio || folio_is_zone_device(folio))
531 			continue;
532 		/*
533 		 * vm_normal_folio() filters out zero pages, but there might
534 		 * still be reserved folios to skip, perhaps in a VDSO.
535 		 */
536 		if (folio_test_reserved(folio))
537 			continue;
538 		if (!queue_folio_required(folio, qp))
539 			continue;
540 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
541 			/* MPOL_MF_STRICT must be specified if we get here */
542 			if (!vma_migratable(vma)) {
543 				has_unmovable = true;
544 				break;
545 			}
546 
547 			/*
548 			 * Do not abort immediately since there may be
549 			 * temporary off LRU pages in the range.  Still
550 			 * need migrate other LRU pages.
551 			 */
552 			if (migrate_folio_add(folio, qp->pagelist, flags))
553 				has_unmovable = true;
554 		} else
555 			break;
556 	}
557 	pte_unmap_unlock(mapped_pte, ptl);
558 	cond_resched();
559 
560 	if (has_unmovable)
561 		return 1;
562 
563 	return addr != end ? -EIO : 0;
564 }
565 
566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
567 			       unsigned long addr, unsigned long end,
568 			       struct mm_walk *walk)
569 {
570 	int ret = 0;
571 #ifdef CONFIG_HUGETLB_PAGE
572 	struct queue_pages *qp = walk->private;
573 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
574 	struct folio *folio;
575 	spinlock_t *ptl;
576 	pte_t entry;
577 
578 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
579 	entry = huge_ptep_get(pte);
580 	if (!pte_present(entry))
581 		goto unlock;
582 	folio = pfn_folio(pte_pfn(entry));
583 	if (!queue_folio_required(folio, qp))
584 		goto unlock;
585 
586 	if (flags == MPOL_MF_STRICT) {
587 		/*
588 		 * STRICT alone means only detecting misplaced folio and no
589 		 * need to further check other vma.
590 		 */
591 		ret = -EIO;
592 		goto unlock;
593 	}
594 
595 	if (!vma_migratable(walk->vma)) {
596 		/*
597 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
598 		 * stopped walking current vma.
599 		 * Detecting misplaced folio but allow migrating folios which
600 		 * have been queued.
601 		 */
602 		ret = 1;
603 		goto unlock;
604 	}
605 
606 	/*
607 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
608 	 * is shared it is likely not worth migrating.
609 	 *
610 	 * To check if the folio is shared, ideally we want to make sure
611 	 * every page is mapped to the same process. Doing that is very
612 	 * expensive, so check the estimated mapcount of the folio instead.
613 	 */
614 	if (flags & (MPOL_MF_MOVE_ALL) ||
615 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
616 	     !hugetlb_pmd_shared(pte))) {
617 		if (!isolate_hugetlb(folio, qp->pagelist) &&
618 			(flags & MPOL_MF_STRICT))
619 			/*
620 			 * Failed to isolate folio but allow migrating pages
621 			 * which have been queued.
622 			 */
623 			ret = 1;
624 	}
625 unlock:
626 	spin_unlock(ptl);
627 #else
628 	BUG();
629 #endif
630 	return ret;
631 }
632 
633 #ifdef CONFIG_NUMA_BALANCING
634 /*
635  * This is used to mark a range of virtual addresses to be inaccessible.
636  * These are later cleared by a NUMA hinting fault. Depending on these
637  * faults, pages may be migrated for better NUMA placement.
638  *
639  * This is assuming that NUMA faults are handled using PROT_NONE. If
640  * an architecture makes a different choice, it will need further
641  * changes to the core.
642  */
643 unsigned long change_prot_numa(struct vm_area_struct *vma,
644 			unsigned long addr, unsigned long end)
645 {
646 	struct mmu_gather tlb;
647 	long nr_updated;
648 
649 	tlb_gather_mmu(&tlb, vma->vm_mm);
650 
651 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
652 	if (nr_updated > 0)
653 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
654 
655 	tlb_finish_mmu(&tlb);
656 
657 	return nr_updated;
658 }
659 #else
660 static unsigned long change_prot_numa(struct vm_area_struct *vma,
661 			unsigned long addr, unsigned long end)
662 {
663 	return 0;
664 }
665 #endif /* CONFIG_NUMA_BALANCING */
666 
667 static int queue_pages_test_walk(unsigned long start, unsigned long end,
668 				struct mm_walk *walk)
669 {
670 	struct vm_area_struct *next, *vma = walk->vma;
671 	struct queue_pages *qp = walk->private;
672 	unsigned long endvma = vma->vm_end;
673 	unsigned long flags = qp->flags;
674 
675 	/* range check first */
676 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
677 
678 	if (!qp->first) {
679 		qp->first = vma;
680 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
681 			(qp->start < vma->vm_start))
682 			/* hole at head side of range */
683 			return -EFAULT;
684 	}
685 	next = find_vma(vma->vm_mm, vma->vm_end);
686 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
687 		((vma->vm_end < qp->end) &&
688 		(!next || vma->vm_end < next->vm_start)))
689 		/* hole at middle or tail of range */
690 		return -EFAULT;
691 
692 	/*
693 	 * Need check MPOL_MF_STRICT to return -EIO if possible
694 	 * regardless of vma_migratable
695 	 */
696 	if (!vma_migratable(vma) &&
697 	    !(flags & MPOL_MF_STRICT))
698 		return 1;
699 
700 	if (endvma > end)
701 		endvma = end;
702 
703 	if (flags & MPOL_MF_LAZY) {
704 		/* Similar to task_numa_work, skip inaccessible VMAs */
705 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
706 			!(vma->vm_flags & VM_MIXEDMAP))
707 			change_prot_numa(vma, start, endvma);
708 		return 1;
709 	}
710 
711 	/* queue pages from current vma */
712 	if (flags & MPOL_MF_VALID)
713 		return 0;
714 	return 1;
715 }
716 
717 static const struct mm_walk_ops queue_pages_walk_ops = {
718 	.hugetlb_entry		= queue_folios_hugetlb,
719 	.pmd_entry		= queue_folios_pte_range,
720 	.test_walk		= queue_pages_test_walk,
721 };
722 
723 /*
724  * Walk through page tables and collect pages to be migrated.
725  *
726  * If pages found in a given range are on a set of nodes (determined by
727  * @nodes and @flags,) it's isolated and queued to the pagelist which is
728  * passed via @private.
729  *
730  * queue_pages_range() has three possible return values:
731  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
732  *     specified.
733  * 0 - queue pages successfully or no misplaced page.
734  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
735  *         memory range specified by nodemask and maxnode points outside
736  *         your accessible address space (-EFAULT)
737  */
738 static int
739 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
740 		nodemask_t *nodes, unsigned long flags,
741 		struct list_head *pagelist)
742 {
743 	int err;
744 	struct queue_pages qp = {
745 		.pagelist = pagelist,
746 		.flags = flags,
747 		.nmask = nodes,
748 		.start = start,
749 		.end = end,
750 		.first = NULL,
751 	};
752 
753 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
754 
755 	if (!qp.first)
756 		/* whole range in hole */
757 		err = -EFAULT;
758 
759 	return err;
760 }
761 
762 /*
763  * Apply policy to a single VMA
764  * This must be called with the mmap_lock held for writing.
765  */
766 static int vma_replace_policy(struct vm_area_struct *vma,
767 						struct mempolicy *pol)
768 {
769 	int err;
770 	struct mempolicy *old;
771 	struct mempolicy *new;
772 
773 	vma_assert_write_locked(vma);
774 
775 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
776 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
777 		 vma->vm_ops, vma->vm_file,
778 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
779 
780 	new = mpol_dup(pol);
781 	if (IS_ERR(new))
782 		return PTR_ERR(new);
783 
784 	if (vma->vm_ops && vma->vm_ops->set_policy) {
785 		err = vma->vm_ops->set_policy(vma, new);
786 		if (err)
787 			goto err_out;
788 	}
789 
790 	old = vma->vm_policy;
791 	vma->vm_policy = new; /* protected by mmap_lock */
792 	mpol_put(old);
793 
794 	return 0;
795  err_out:
796 	mpol_put(new);
797 	return err;
798 }
799 
800 /* Split or merge the VMA (if required) and apply the new policy */
801 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
802 		struct vm_area_struct **prev, unsigned long start,
803 		unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *merged;
806 	unsigned long vmstart, vmend;
807 	pgoff_t pgoff;
808 	int err;
809 
810 	vmend = min(end, vma->vm_end);
811 	if (start > vma->vm_start) {
812 		*prev = vma;
813 		vmstart = start;
814 	} else {
815 		vmstart = vma->vm_start;
816 	}
817 
818 	if (mpol_equal(vma_policy(vma), new_pol)) {
819 		*prev = vma;
820 		return 0;
821 	}
822 
823 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
824 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
825 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
826 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
827 	if (merged) {
828 		*prev = merged;
829 		return vma_replace_policy(merged, new_pol);
830 	}
831 
832 	if (vma->vm_start != vmstart) {
833 		err = split_vma(vmi, vma, vmstart, 1);
834 		if (err)
835 			return err;
836 	}
837 
838 	if (vma->vm_end != vmend) {
839 		err = split_vma(vmi, vma, vmend, 0);
840 		if (err)
841 			return err;
842 	}
843 
844 	*prev = vma;
845 	return vma_replace_policy(vma, new_pol);
846 }
847 
848 /* Set the process memory policy */
849 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
850 			     nodemask_t *nodes)
851 {
852 	struct mempolicy *new, *old;
853 	NODEMASK_SCRATCH(scratch);
854 	int ret;
855 
856 	if (!scratch)
857 		return -ENOMEM;
858 
859 	new = mpol_new(mode, flags, nodes);
860 	if (IS_ERR(new)) {
861 		ret = PTR_ERR(new);
862 		goto out;
863 	}
864 
865 	task_lock(current);
866 	ret = mpol_set_nodemask(new, nodes, scratch);
867 	if (ret) {
868 		task_unlock(current);
869 		mpol_put(new);
870 		goto out;
871 	}
872 
873 	old = current->mempolicy;
874 	current->mempolicy = new;
875 	if (new && new->mode == MPOL_INTERLEAVE)
876 		current->il_prev = MAX_NUMNODES-1;
877 	task_unlock(current);
878 	mpol_put(old);
879 	ret = 0;
880 out:
881 	NODEMASK_SCRATCH_FREE(scratch);
882 	return ret;
883 }
884 
885 /*
886  * Return nodemask for policy for get_mempolicy() query
887  *
888  * Called with task's alloc_lock held
889  */
890 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
891 {
892 	nodes_clear(*nodes);
893 	if (p == &default_policy)
894 		return;
895 
896 	switch (p->mode) {
897 	case MPOL_BIND:
898 	case MPOL_INTERLEAVE:
899 	case MPOL_PREFERRED:
900 	case MPOL_PREFERRED_MANY:
901 		*nodes = p->nodes;
902 		break;
903 	case MPOL_LOCAL:
904 		/* return empty node mask for local allocation */
905 		break;
906 	default:
907 		BUG();
908 	}
909 }
910 
911 static int lookup_node(struct mm_struct *mm, unsigned long addr)
912 {
913 	struct page *p = NULL;
914 	int ret;
915 
916 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 	if (ret > 0) {
918 		ret = page_to_nid(p);
919 		put_page(p);
920 	}
921 	return ret;
922 }
923 
924 /* Retrieve NUMA policy */
925 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 			     unsigned long addr, unsigned long flags)
927 {
928 	int err;
929 	struct mm_struct *mm = current->mm;
930 	struct vm_area_struct *vma = NULL;
931 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
932 
933 	if (flags &
934 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
935 		return -EINVAL;
936 
937 	if (flags & MPOL_F_MEMS_ALLOWED) {
938 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 			return -EINVAL;
940 		*policy = 0;	/* just so it's initialized */
941 		task_lock(current);
942 		*nmask  = cpuset_current_mems_allowed;
943 		task_unlock(current);
944 		return 0;
945 	}
946 
947 	if (flags & MPOL_F_ADDR) {
948 		/*
949 		 * Do NOT fall back to task policy if the
950 		 * vma/shared policy at addr is NULL.  We
951 		 * want to return MPOL_DEFAULT in this case.
952 		 */
953 		mmap_read_lock(mm);
954 		vma = vma_lookup(mm, addr);
955 		if (!vma) {
956 			mmap_read_unlock(mm);
957 			return -EFAULT;
958 		}
959 		if (vma->vm_ops && vma->vm_ops->get_policy)
960 			pol = vma->vm_ops->get_policy(vma, addr);
961 		else
962 			pol = vma->vm_policy;
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else {
988 			err = -EINVAL;
989 			goto out;
990 		}
991 	} else {
992 		*policy = pol == &default_policy ? MPOL_DEFAULT :
993 						pol->mode;
994 		/*
995 		 * Internal mempolicy flags must be masked off before exposing
996 		 * the policy to userspace.
997 		 */
998 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
999 	}
1000 
1001 	err = 0;
1002 	if (nmask) {
1003 		if (mpol_store_user_nodemask(pol)) {
1004 			*nmask = pol->w.user_nodemask;
1005 		} else {
1006 			task_lock(current);
1007 			get_policy_nodemask(pol, nmask);
1008 			task_unlock(current);
1009 		}
1010 	}
1011 
1012  out:
1013 	mpol_cond_put(pol);
1014 	if (vma)
1015 		mmap_read_unlock(mm);
1016 	if (pol_refcount)
1017 		mpol_put(pol_refcount);
1018 	return err;
1019 }
1020 
1021 #ifdef CONFIG_MIGRATION
1022 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1023 				unsigned long flags)
1024 {
1025 	/*
1026 	 * We try to migrate only unshared folios. If it is shared it
1027 	 * is likely not worth migrating.
1028 	 *
1029 	 * To check if the folio is shared, ideally we want to make sure
1030 	 * every page is mapped to the same process. Doing that is very
1031 	 * expensive, so check the estimated mapcount of the folio instead.
1032 	 */
1033 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1034 		if (folio_isolate_lru(folio)) {
1035 			list_add_tail(&folio->lru, foliolist);
1036 			node_stat_mod_folio(folio,
1037 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1038 				folio_nr_pages(folio));
1039 		} else if (flags & MPOL_MF_STRICT) {
1040 			/*
1041 			 * Non-movable folio may reach here.  And, there may be
1042 			 * temporary off LRU folios or non-LRU movable folios.
1043 			 * Treat them as unmovable folios since they can't be
1044 			 * isolated, so they can't be moved at the moment.  It
1045 			 * should return -EIO for this case too.
1046 			 */
1047 			return -EIO;
1048 		}
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /*
1055  * Migrate pages from one node to a target node.
1056  * Returns error or the number of pages not migrated.
1057  */
1058 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1059 			   int flags)
1060 {
1061 	nodemask_t nmask;
1062 	struct vm_area_struct *vma;
1063 	LIST_HEAD(pagelist);
1064 	int err = 0;
1065 	struct migration_target_control mtc = {
1066 		.nid = dest,
1067 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1068 	};
1069 
1070 	nodes_clear(nmask);
1071 	node_set(source, nmask);
1072 
1073 	/*
1074 	 * This does not "check" the range but isolates all pages that
1075 	 * need migration.  Between passing in the full user address
1076 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1077 	 */
1078 	vma = find_vma(mm, 0);
1079 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1081 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1082 
1083 	if (!list_empty(&pagelist)) {
1084 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1085 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1086 		if (err)
1087 			putback_movable_pages(&pagelist);
1088 	}
1089 
1090 	return err;
1091 }
1092 
1093 /*
1094  * Move pages between the two nodesets so as to preserve the physical
1095  * layout as much as possible.
1096  *
1097  * Returns the number of page that could not be moved.
1098  */
1099 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1100 		     const nodemask_t *to, int flags)
1101 {
1102 	int busy = 0;
1103 	int err = 0;
1104 	nodemask_t tmp;
1105 
1106 	lru_cache_disable();
1107 
1108 	mmap_read_lock(mm);
1109 
1110 	/*
1111 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1112 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1113 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1114 	 * The pair of nodemasks 'to' and 'from' define the map.
1115 	 *
1116 	 * If no pair of bits is found that way, fallback to picking some
1117 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1118 	 * 'source' and 'dest' bits are the same, this represents a node
1119 	 * that will be migrating to itself, so no pages need move.
1120 	 *
1121 	 * If no bits are left in 'tmp', or if all remaining bits left
1122 	 * in 'tmp' correspond to the same bit in 'to', return false
1123 	 * (nothing left to migrate).
1124 	 *
1125 	 * This lets us pick a pair of nodes to migrate between, such that
1126 	 * if possible the dest node is not already occupied by some other
1127 	 * source node, minimizing the risk of overloading the memory on a
1128 	 * node that would happen if we migrated incoming memory to a node
1129 	 * before migrating outgoing memory source that same node.
1130 	 *
1131 	 * A single scan of tmp is sufficient.  As we go, we remember the
1132 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1133 	 * that not only moved, but what's better, moved to an empty slot
1134 	 * (d is not set in tmp), then we break out then, with that pair.
1135 	 * Otherwise when we finish scanning from_tmp, we at least have the
1136 	 * most recent <s, d> pair that moved.  If we get all the way through
1137 	 * the scan of tmp without finding any node that moved, much less
1138 	 * moved to an empty node, then there is nothing left worth migrating.
1139 	 */
1140 
1141 	tmp = *from;
1142 	while (!nodes_empty(tmp)) {
1143 		int s, d;
1144 		int source = NUMA_NO_NODE;
1145 		int dest = 0;
1146 
1147 		for_each_node_mask(s, tmp) {
1148 
1149 			/*
1150 			 * do_migrate_pages() tries to maintain the relative
1151 			 * node relationship of the pages established between
1152 			 * threads and memory areas.
1153                          *
1154 			 * However if the number of source nodes is not equal to
1155 			 * the number of destination nodes we can not preserve
1156 			 * this node relative relationship.  In that case, skip
1157 			 * copying memory from a node that is in the destination
1158 			 * mask.
1159 			 *
1160 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1161 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1162 			 */
1163 
1164 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1165 						(node_isset(s, *to)))
1166 				continue;
1167 
1168 			d = node_remap(s, *from, *to);
1169 			if (s == d)
1170 				continue;
1171 
1172 			source = s;	/* Node moved. Memorize */
1173 			dest = d;
1174 
1175 			/* dest not in remaining from nodes? */
1176 			if (!node_isset(dest, tmp))
1177 				break;
1178 		}
1179 		if (source == NUMA_NO_NODE)
1180 			break;
1181 
1182 		node_clear(source, tmp);
1183 		err = migrate_to_node(mm, source, dest, flags);
1184 		if (err > 0)
1185 			busy += err;
1186 		if (err < 0)
1187 			break;
1188 	}
1189 	mmap_read_unlock(mm);
1190 
1191 	lru_cache_enable();
1192 	if (err < 0)
1193 		return err;
1194 	return busy;
1195 
1196 }
1197 
1198 /*
1199  * Allocate a new page for page migration based on vma policy.
1200  * Start by assuming the page is mapped by the same vma as contains @start.
1201  * Search forward from there, if not.  N.B., this assumes that the
1202  * list of pages handed to migrate_pages()--which is how we get here--
1203  * is in virtual address order.
1204  */
1205 static struct folio *new_folio(struct folio *src, unsigned long start)
1206 {
1207 	struct vm_area_struct *vma;
1208 	unsigned long address;
1209 	VMA_ITERATOR(vmi, current->mm, start);
1210 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1211 
1212 	for_each_vma(vmi, vma) {
1213 		address = page_address_in_vma(&src->page, vma);
1214 		if (address != -EFAULT)
1215 			break;
1216 	}
1217 
1218 	if (folio_test_hugetlb(src)) {
1219 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1220 				vma, address);
1221 	}
1222 
1223 	if (folio_test_large(src))
1224 		gfp = GFP_TRANSHUGE;
1225 
1226 	/*
1227 	 * if !vma, vma_alloc_folio() will use task or system default policy
1228 	 */
1229 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1230 			folio_test_large(src));
1231 }
1232 #else
1233 
1234 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1235 				unsigned long flags)
1236 {
1237 	return -EIO;
1238 }
1239 
1240 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1241 		     const nodemask_t *to, int flags)
1242 {
1243 	return -ENOSYS;
1244 }
1245 
1246 static struct folio *new_folio(struct folio *src, unsigned long start)
1247 {
1248 	return NULL;
1249 }
1250 #endif
1251 
1252 static long do_mbind(unsigned long start, unsigned long len,
1253 		     unsigned short mode, unsigned short mode_flags,
1254 		     nodemask_t *nmask, unsigned long flags)
1255 {
1256 	struct mm_struct *mm = current->mm;
1257 	struct vm_area_struct *vma, *prev;
1258 	struct vma_iterator vmi;
1259 	struct mempolicy *new;
1260 	unsigned long end;
1261 	int err;
1262 	int ret;
1263 	LIST_HEAD(pagelist);
1264 
1265 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1266 		return -EINVAL;
1267 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1268 		return -EPERM;
1269 
1270 	if (start & ~PAGE_MASK)
1271 		return -EINVAL;
1272 
1273 	if (mode == MPOL_DEFAULT)
1274 		flags &= ~MPOL_MF_STRICT;
1275 
1276 	len = PAGE_ALIGN(len);
1277 	end = start + len;
1278 
1279 	if (end < start)
1280 		return -EINVAL;
1281 	if (end == start)
1282 		return 0;
1283 
1284 	new = mpol_new(mode, mode_flags, nmask);
1285 	if (IS_ERR(new))
1286 		return PTR_ERR(new);
1287 
1288 	if (flags & MPOL_MF_LAZY)
1289 		new->flags |= MPOL_F_MOF;
1290 
1291 	/*
1292 	 * If we are using the default policy then operation
1293 	 * on discontinuous address spaces is okay after all
1294 	 */
1295 	if (!new)
1296 		flags |= MPOL_MF_DISCONTIG_OK;
1297 
1298 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1299 		 start, start + len, mode, mode_flags,
1300 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1301 
1302 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1303 
1304 		lru_cache_disable();
1305 	}
1306 	{
1307 		NODEMASK_SCRATCH(scratch);
1308 		if (scratch) {
1309 			mmap_write_lock(mm);
1310 			err = mpol_set_nodemask(new, nmask, scratch);
1311 			if (err)
1312 				mmap_write_unlock(mm);
1313 		} else
1314 			err = -ENOMEM;
1315 		NODEMASK_SCRATCH_FREE(scratch);
1316 	}
1317 	if (err)
1318 		goto mpol_out;
1319 
1320 	/*
1321 	 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1322 	 * miss a concurrently inserted page.
1323 	 */
1324 	vma_iter_init(&vmi, mm, start);
1325 	for_each_vma_range(vmi, vma, end)
1326 		vma_start_write(vma);
1327 
1328 	ret = queue_pages_range(mm, start, end, nmask,
1329 			  flags | MPOL_MF_INVERT, &pagelist);
1330 
1331 	if (ret < 0) {
1332 		err = ret;
1333 		goto up_out;
1334 	}
1335 
1336 	vma_iter_init(&vmi, mm, start);
1337 	prev = vma_prev(&vmi);
1338 	for_each_vma_range(vmi, vma, end) {
1339 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1340 		if (err)
1341 			break;
1342 	}
1343 
1344 	if (!err) {
1345 		int nr_failed = 0;
1346 
1347 		if (!list_empty(&pagelist)) {
1348 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1349 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1350 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1351 			if (nr_failed)
1352 				putback_movable_pages(&pagelist);
1353 		}
1354 
1355 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1356 			err = -EIO;
1357 	} else {
1358 up_out:
1359 		if (!list_empty(&pagelist))
1360 			putback_movable_pages(&pagelist);
1361 	}
1362 
1363 	mmap_write_unlock(mm);
1364 mpol_out:
1365 	mpol_put(new);
1366 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1367 		lru_cache_enable();
1368 	return err;
1369 }
1370 
1371 /*
1372  * User space interface with variable sized bitmaps for nodelists.
1373  */
1374 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1375 		      unsigned long maxnode)
1376 {
1377 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1378 	int ret;
1379 
1380 	if (in_compat_syscall())
1381 		ret = compat_get_bitmap(mask,
1382 					(const compat_ulong_t __user *)nmask,
1383 					maxnode);
1384 	else
1385 		ret = copy_from_user(mask, nmask,
1386 				     nlongs * sizeof(unsigned long));
1387 
1388 	if (ret)
1389 		return -EFAULT;
1390 
1391 	if (maxnode % BITS_PER_LONG)
1392 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1393 
1394 	return 0;
1395 }
1396 
1397 /* Copy a node mask from user space. */
1398 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1399 		     unsigned long maxnode)
1400 {
1401 	--maxnode;
1402 	nodes_clear(*nodes);
1403 	if (maxnode == 0 || !nmask)
1404 		return 0;
1405 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1406 		return -EINVAL;
1407 
1408 	/*
1409 	 * When the user specified more nodes than supported just check
1410 	 * if the non supported part is all zero, one word at a time,
1411 	 * starting at the end.
1412 	 */
1413 	while (maxnode > MAX_NUMNODES) {
1414 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1415 		unsigned long t;
1416 
1417 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1418 			return -EFAULT;
1419 
1420 		if (maxnode - bits >= MAX_NUMNODES) {
1421 			maxnode -= bits;
1422 		} else {
1423 			maxnode = MAX_NUMNODES;
1424 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1425 		}
1426 		if (t)
1427 			return -EINVAL;
1428 	}
1429 
1430 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1431 }
1432 
1433 /* Copy a kernel node mask to user space */
1434 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1435 			      nodemask_t *nodes)
1436 {
1437 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1438 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1439 	bool compat = in_compat_syscall();
1440 
1441 	if (compat)
1442 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1443 
1444 	if (copy > nbytes) {
1445 		if (copy > PAGE_SIZE)
1446 			return -EINVAL;
1447 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1448 			return -EFAULT;
1449 		copy = nbytes;
1450 		maxnode = nr_node_ids;
1451 	}
1452 
1453 	if (compat)
1454 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1455 					 nodes_addr(*nodes), maxnode);
1456 
1457 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1458 }
1459 
1460 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1461 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1462 {
1463 	*flags = *mode & MPOL_MODE_FLAGS;
1464 	*mode &= ~MPOL_MODE_FLAGS;
1465 
1466 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1467 		return -EINVAL;
1468 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1469 		return -EINVAL;
1470 	if (*flags & MPOL_F_NUMA_BALANCING) {
1471 		if (*mode != MPOL_BIND)
1472 			return -EINVAL;
1473 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1474 	}
1475 	return 0;
1476 }
1477 
1478 static long kernel_mbind(unsigned long start, unsigned long len,
1479 			 unsigned long mode, const unsigned long __user *nmask,
1480 			 unsigned long maxnode, unsigned int flags)
1481 {
1482 	unsigned short mode_flags;
1483 	nodemask_t nodes;
1484 	int lmode = mode;
1485 	int err;
1486 
1487 	start = untagged_addr(start);
1488 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1489 	if (err)
1490 		return err;
1491 
1492 	err = get_nodes(&nodes, nmask, maxnode);
1493 	if (err)
1494 		return err;
1495 
1496 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1497 }
1498 
1499 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1500 		unsigned long, home_node, unsigned long, flags)
1501 {
1502 	struct mm_struct *mm = current->mm;
1503 	struct vm_area_struct *vma, *prev;
1504 	struct mempolicy *new, *old;
1505 	unsigned long end;
1506 	int err = -ENOENT;
1507 	VMA_ITERATOR(vmi, mm, start);
1508 
1509 	start = untagged_addr(start);
1510 	if (start & ~PAGE_MASK)
1511 		return -EINVAL;
1512 	/*
1513 	 * flags is used for future extension if any.
1514 	 */
1515 	if (flags != 0)
1516 		return -EINVAL;
1517 
1518 	/*
1519 	 * Check home_node is online to avoid accessing uninitialized
1520 	 * NODE_DATA.
1521 	 */
1522 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1523 		return -EINVAL;
1524 
1525 	len = PAGE_ALIGN(len);
1526 	end = start + len;
1527 
1528 	if (end < start)
1529 		return -EINVAL;
1530 	if (end == start)
1531 		return 0;
1532 	mmap_write_lock(mm);
1533 	prev = vma_prev(&vmi);
1534 	for_each_vma_range(vmi, vma, end) {
1535 		/*
1536 		 * If any vma in the range got policy other than MPOL_BIND
1537 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1538 		 * the home node for vmas we already updated before.
1539 		 */
1540 		old = vma_policy(vma);
1541 		if (!old)
1542 			continue;
1543 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1544 			err = -EOPNOTSUPP;
1545 			break;
1546 		}
1547 		new = mpol_dup(old);
1548 		if (IS_ERR(new)) {
1549 			err = PTR_ERR(new);
1550 			break;
1551 		}
1552 
1553 		vma_start_write(vma);
1554 		new->home_node = home_node;
1555 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1556 		mpol_put(new);
1557 		if (err)
1558 			break;
1559 	}
1560 	mmap_write_unlock(mm);
1561 	return err;
1562 }
1563 
1564 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1565 		unsigned long, mode, const unsigned long __user *, nmask,
1566 		unsigned long, maxnode, unsigned int, flags)
1567 {
1568 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1569 }
1570 
1571 /* Set the process memory policy */
1572 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1573 				 unsigned long maxnode)
1574 {
1575 	unsigned short mode_flags;
1576 	nodemask_t nodes;
1577 	int lmode = mode;
1578 	int err;
1579 
1580 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1581 	if (err)
1582 		return err;
1583 
1584 	err = get_nodes(&nodes, nmask, maxnode);
1585 	if (err)
1586 		return err;
1587 
1588 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1589 }
1590 
1591 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1592 		unsigned long, maxnode)
1593 {
1594 	return kernel_set_mempolicy(mode, nmask, maxnode);
1595 }
1596 
1597 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1598 				const unsigned long __user *old_nodes,
1599 				const unsigned long __user *new_nodes)
1600 {
1601 	struct mm_struct *mm = NULL;
1602 	struct task_struct *task;
1603 	nodemask_t task_nodes;
1604 	int err;
1605 	nodemask_t *old;
1606 	nodemask_t *new;
1607 	NODEMASK_SCRATCH(scratch);
1608 
1609 	if (!scratch)
1610 		return -ENOMEM;
1611 
1612 	old = &scratch->mask1;
1613 	new = &scratch->mask2;
1614 
1615 	err = get_nodes(old, old_nodes, maxnode);
1616 	if (err)
1617 		goto out;
1618 
1619 	err = get_nodes(new, new_nodes, maxnode);
1620 	if (err)
1621 		goto out;
1622 
1623 	/* Find the mm_struct */
1624 	rcu_read_lock();
1625 	task = pid ? find_task_by_vpid(pid) : current;
1626 	if (!task) {
1627 		rcu_read_unlock();
1628 		err = -ESRCH;
1629 		goto out;
1630 	}
1631 	get_task_struct(task);
1632 
1633 	err = -EINVAL;
1634 
1635 	/*
1636 	 * Check if this process has the right to modify the specified process.
1637 	 * Use the regular "ptrace_may_access()" checks.
1638 	 */
1639 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1640 		rcu_read_unlock();
1641 		err = -EPERM;
1642 		goto out_put;
1643 	}
1644 	rcu_read_unlock();
1645 
1646 	task_nodes = cpuset_mems_allowed(task);
1647 	/* Is the user allowed to access the target nodes? */
1648 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1649 		err = -EPERM;
1650 		goto out_put;
1651 	}
1652 
1653 	task_nodes = cpuset_mems_allowed(current);
1654 	nodes_and(*new, *new, task_nodes);
1655 	if (nodes_empty(*new))
1656 		goto out_put;
1657 
1658 	err = security_task_movememory(task);
1659 	if (err)
1660 		goto out_put;
1661 
1662 	mm = get_task_mm(task);
1663 	put_task_struct(task);
1664 
1665 	if (!mm) {
1666 		err = -EINVAL;
1667 		goto out;
1668 	}
1669 
1670 	err = do_migrate_pages(mm, old, new,
1671 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1672 
1673 	mmput(mm);
1674 out:
1675 	NODEMASK_SCRATCH_FREE(scratch);
1676 
1677 	return err;
1678 
1679 out_put:
1680 	put_task_struct(task);
1681 	goto out;
1682 
1683 }
1684 
1685 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1686 		const unsigned long __user *, old_nodes,
1687 		const unsigned long __user *, new_nodes)
1688 {
1689 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1690 }
1691 
1692 
1693 /* Retrieve NUMA policy */
1694 static int kernel_get_mempolicy(int __user *policy,
1695 				unsigned long __user *nmask,
1696 				unsigned long maxnode,
1697 				unsigned long addr,
1698 				unsigned long flags)
1699 {
1700 	int err;
1701 	int pval;
1702 	nodemask_t nodes;
1703 
1704 	if (nmask != NULL && maxnode < nr_node_ids)
1705 		return -EINVAL;
1706 
1707 	addr = untagged_addr(addr);
1708 
1709 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1710 
1711 	if (err)
1712 		return err;
1713 
1714 	if (policy && put_user(pval, policy))
1715 		return -EFAULT;
1716 
1717 	if (nmask)
1718 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1719 
1720 	return err;
1721 }
1722 
1723 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1724 		unsigned long __user *, nmask, unsigned long, maxnode,
1725 		unsigned long, addr, unsigned long, flags)
1726 {
1727 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1728 }
1729 
1730 bool vma_migratable(struct vm_area_struct *vma)
1731 {
1732 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1733 		return false;
1734 
1735 	/*
1736 	 * DAX device mappings require predictable access latency, so avoid
1737 	 * incurring periodic faults.
1738 	 */
1739 	if (vma_is_dax(vma))
1740 		return false;
1741 
1742 	if (is_vm_hugetlb_page(vma) &&
1743 		!hugepage_migration_supported(hstate_vma(vma)))
1744 		return false;
1745 
1746 	/*
1747 	 * Migration allocates pages in the highest zone. If we cannot
1748 	 * do so then migration (at least from node to node) is not
1749 	 * possible.
1750 	 */
1751 	if (vma->vm_file &&
1752 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1753 			< policy_zone)
1754 		return false;
1755 	return true;
1756 }
1757 
1758 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1759 						unsigned long addr)
1760 {
1761 	struct mempolicy *pol = NULL;
1762 
1763 	if (vma) {
1764 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1765 			pol = vma->vm_ops->get_policy(vma, addr);
1766 		} else if (vma->vm_policy) {
1767 			pol = vma->vm_policy;
1768 
1769 			/*
1770 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1771 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1772 			 * count on these policies which will be dropped by
1773 			 * mpol_cond_put() later
1774 			 */
1775 			if (mpol_needs_cond_ref(pol))
1776 				mpol_get(pol);
1777 		}
1778 	}
1779 
1780 	return pol;
1781 }
1782 
1783 /*
1784  * get_vma_policy(@vma, @addr)
1785  * @vma: virtual memory area whose policy is sought
1786  * @addr: address in @vma for shared policy lookup
1787  *
1788  * Returns effective policy for a VMA at specified address.
1789  * Falls back to current->mempolicy or system default policy, as necessary.
1790  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1791  * count--added by the get_policy() vm_op, as appropriate--to protect against
1792  * freeing by another task.  It is the caller's responsibility to free the
1793  * extra reference for shared policies.
1794  */
1795 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1796 						unsigned long addr)
1797 {
1798 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1799 
1800 	if (!pol)
1801 		pol = get_task_policy(current);
1802 
1803 	return pol;
1804 }
1805 
1806 bool vma_policy_mof(struct vm_area_struct *vma)
1807 {
1808 	struct mempolicy *pol;
1809 
1810 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1811 		bool ret = false;
1812 
1813 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1814 		if (pol && (pol->flags & MPOL_F_MOF))
1815 			ret = true;
1816 		mpol_cond_put(pol);
1817 
1818 		return ret;
1819 	}
1820 
1821 	pol = vma->vm_policy;
1822 	if (!pol)
1823 		pol = get_task_policy(current);
1824 
1825 	return pol->flags & MPOL_F_MOF;
1826 }
1827 
1828 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1829 {
1830 	enum zone_type dynamic_policy_zone = policy_zone;
1831 
1832 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1833 
1834 	/*
1835 	 * if policy->nodes has movable memory only,
1836 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1837 	 *
1838 	 * policy->nodes is intersect with node_states[N_MEMORY].
1839 	 * so if the following test fails, it implies
1840 	 * policy->nodes has movable memory only.
1841 	 */
1842 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1843 		dynamic_policy_zone = ZONE_MOVABLE;
1844 
1845 	return zone >= dynamic_policy_zone;
1846 }
1847 
1848 /*
1849  * Return a nodemask representing a mempolicy for filtering nodes for
1850  * page allocation
1851  */
1852 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1853 {
1854 	int mode = policy->mode;
1855 
1856 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1857 	if (unlikely(mode == MPOL_BIND) &&
1858 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1859 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1860 		return &policy->nodes;
1861 
1862 	if (mode == MPOL_PREFERRED_MANY)
1863 		return &policy->nodes;
1864 
1865 	return NULL;
1866 }
1867 
1868 /*
1869  * Return the  preferred node id for 'prefer' mempolicy, and return
1870  * the given id for all other policies.
1871  *
1872  * policy_node() is always coupled with policy_nodemask(), which
1873  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1874  */
1875 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1876 {
1877 	if (policy->mode == MPOL_PREFERRED) {
1878 		nd = first_node(policy->nodes);
1879 	} else {
1880 		/*
1881 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1882 		 * because we might easily break the expectation to stay on the
1883 		 * requested node and not break the policy.
1884 		 */
1885 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1886 	}
1887 
1888 	if ((policy->mode == MPOL_BIND ||
1889 	     policy->mode == MPOL_PREFERRED_MANY) &&
1890 	    policy->home_node != NUMA_NO_NODE)
1891 		return policy->home_node;
1892 
1893 	return nd;
1894 }
1895 
1896 /* Do dynamic interleaving for a process */
1897 static unsigned interleave_nodes(struct mempolicy *policy)
1898 {
1899 	unsigned next;
1900 	struct task_struct *me = current;
1901 
1902 	next = next_node_in(me->il_prev, policy->nodes);
1903 	if (next < MAX_NUMNODES)
1904 		me->il_prev = next;
1905 	return next;
1906 }
1907 
1908 /*
1909  * Depending on the memory policy provide a node from which to allocate the
1910  * next slab entry.
1911  */
1912 unsigned int mempolicy_slab_node(void)
1913 {
1914 	struct mempolicy *policy;
1915 	int node = numa_mem_id();
1916 
1917 	if (!in_task())
1918 		return node;
1919 
1920 	policy = current->mempolicy;
1921 	if (!policy)
1922 		return node;
1923 
1924 	switch (policy->mode) {
1925 	case MPOL_PREFERRED:
1926 		return first_node(policy->nodes);
1927 
1928 	case MPOL_INTERLEAVE:
1929 		return interleave_nodes(policy);
1930 
1931 	case MPOL_BIND:
1932 	case MPOL_PREFERRED_MANY:
1933 	{
1934 		struct zoneref *z;
1935 
1936 		/*
1937 		 * Follow bind policy behavior and start allocation at the
1938 		 * first node.
1939 		 */
1940 		struct zonelist *zonelist;
1941 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1942 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1943 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1944 							&policy->nodes);
1945 		return z->zone ? zone_to_nid(z->zone) : node;
1946 	}
1947 	case MPOL_LOCAL:
1948 		return node;
1949 
1950 	default:
1951 		BUG();
1952 	}
1953 }
1954 
1955 /*
1956  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1957  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1958  * number of present nodes.
1959  */
1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961 {
1962 	nodemask_t nodemask = pol->nodes;
1963 	unsigned int target, nnodes;
1964 	int i;
1965 	int nid;
1966 	/*
1967 	 * The barrier will stabilize the nodemask in a register or on
1968 	 * the stack so that it will stop changing under the code.
1969 	 *
1970 	 * Between first_node() and next_node(), pol->nodes could be changed
1971 	 * by other threads. So we put pol->nodes in a local stack.
1972 	 */
1973 	barrier();
1974 
1975 	nnodes = nodes_weight(nodemask);
1976 	if (!nnodes)
1977 		return numa_node_id();
1978 	target = (unsigned int)n % nnodes;
1979 	nid = first_node(nodemask);
1980 	for (i = 0; i < target; i++)
1981 		nid = next_node(nid, nodemask);
1982 	return nid;
1983 }
1984 
1985 /* Determine a node number for interleave */
1986 static inline unsigned interleave_nid(struct mempolicy *pol,
1987 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1988 {
1989 	if (vma) {
1990 		unsigned long off;
1991 
1992 		/*
1993 		 * for small pages, there is no difference between
1994 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1995 		 * for huge pages, since vm_pgoff is in units of small
1996 		 * pages, we need to shift off the always 0 bits to get
1997 		 * a useful offset.
1998 		 */
1999 		BUG_ON(shift < PAGE_SHIFT);
2000 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2001 		off += (addr - vma->vm_start) >> shift;
2002 		return offset_il_node(pol, off);
2003 	} else
2004 		return interleave_nodes(pol);
2005 }
2006 
2007 #ifdef CONFIG_HUGETLBFS
2008 /*
2009  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2010  * @vma: virtual memory area whose policy is sought
2011  * @addr: address in @vma for shared policy lookup and interleave policy
2012  * @gfp_flags: for requested zone
2013  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2014  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2015  *
2016  * Returns a nid suitable for a huge page allocation and a pointer
2017  * to the struct mempolicy for conditional unref after allocation.
2018  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2019  * to the mempolicy's @nodemask for filtering the zonelist.
2020  *
2021  * Must be protected by read_mems_allowed_begin()
2022  */
2023 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2024 				struct mempolicy **mpol, nodemask_t **nodemask)
2025 {
2026 	int nid;
2027 	int mode;
2028 
2029 	*mpol = get_vma_policy(vma, addr);
2030 	*nodemask = NULL;
2031 	mode = (*mpol)->mode;
2032 
2033 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2034 		nid = interleave_nid(*mpol, vma, addr,
2035 					huge_page_shift(hstate_vma(vma)));
2036 	} else {
2037 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2038 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2039 			*nodemask = &(*mpol)->nodes;
2040 	}
2041 	return nid;
2042 }
2043 
2044 /*
2045  * init_nodemask_of_mempolicy
2046  *
2047  * If the current task's mempolicy is "default" [NULL], return 'false'
2048  * to indicate default policy.  Otherwise, extract the policy nodemask
2049  * for 'bind' or 'interleave' policy into the argument nodemask, or
2050  * initialize the argument nodemask to contain the single node for
2051  * 'preferred' or 'local' policy and return 'true' to indicate presence
2052  * of non-default mempolicy.
2053  *
2054  * We don't bother with reference counting the mempolicy [mpol_get/put]
2055  * because the current task is examining it's own mempolicy and a task's
2056  * mempolicy is only ever changed by the task itself.
2057  *
2058  * N.B., it is the caller's responsibility to free a returned nodemask.
2059  */
2060 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2061 {
2062 	struct mempolicy *mempolicy;
2063 
2064 	if (!(mask && current->mempolicy))
2065 		return false;
2066 
2067 	task_lock(current);
2068 	mempolicy = current->mempolicy;
2069 	switch (mempolicy->mode) {
2070 	case MPOL_PREFERRED:
2071 	case MPOL_PREFERRED_MANY:
2072 	case MPOL_BIND:
2073 	case MPOL_INTERLEAVE:
2074 		*mask = mempolicy->nodes;
2075 		break;
2076 
2077 	case MPOL_LOCAL:
2078 		init_nodemask_of_node(mask, numa_node_id());
2079 		break;
2080 
2081 	default:
2082 		BUG();
2083 	}
2084 	task_unlock(current);
2085 
2086 	return true;
2087 }
2088 #endif
2089 
2090 /*
2091  * mempolicy_in_oom_domain
2092  *
2093  * If tsk's mempolicy is "bind", check for intersection between mask and
2094  * the policy nodemask. Otherwise, return true for all other policies
2095  * including "interleave", as a tsk with "interleave" policy may have
2096  * memory allocated from all nodes in system.
2097  *
2098  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2099  */
2100 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2101 					const nodemask_t *mask)
2102 {
2103 	struct mempolicy *mempolicy;
2104 	bool ret = true;
2105 
2106 	if (!mask)
2107 		return ret;
2108 
2109 	task_lock(tsk);
2110 	mempolicy = tsk->mempolicy;
2111 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2112 		ret = nodes_intersects(mempolicy->nodes, *mask);
2113 	task_unlock(tsk);
2114 
2115 	return ret;
2116 }
2117 
2118 /* Allocate a page in interleaved policy.
2119    Own path because it needs to do special accounting. */
2120 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2121 					unsigned nid)
2122 {
2123 	struct page *page;
2124 
2125 	page = __alloc_pages(gfp, order, nid, NULL);
2126 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2127 	if (!static_branch_likely(&vm_numa_stat_key))
2128 		return page;
2129 	if (page && page_to_nid(page) == nid) {
2130 		preempt_disable();
2131 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2132 		preempt_enable();
2133 	}
2134 	return page;
2135 }
2136 
2137 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2138 						int nid, struct mempolicy *pol)
2139 {
2140 	struct page *page;
2141 	gfp_t preferred_gfp;
2142 
2143 	/*
2144 	 * This is a two pass approach. The first pass will only try the
2145 	 * preferred nodes but skip the direct reclaim and allow the
2146 	 * allocation to fail, while the second pass will try all the
2147 	 * nodes in system.
2148 	 */
2149 	preferred_gfp = gfp | __GFP_NOWARN;
2150 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2151 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2152 	if (!page)
2153 		page = __alloc_pages(gfp, order, nid, NULL);
2154 
2155 	return page;
2156 }
2157 
2158 /**
2159  * vma_alloc_folio - Allocate a folio for a VMA.
2160  * @gfp: GFP flags.
2161  * @order: Order of the folio.
2162  * @vma: Pointer to VMA or NULL if not available.
2163  * @addr: Virtual address of the allocation.  Must be inside @vma.
2164  * @hugepage: For hugepages try only the preferred node if possible.
2165  *
2166  * Allocate a folio for a specific address in @vma, using the appropriate
2167  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2168  * of the mm_struct of the VMA to prevent it from going away.  Should be
2169  * used for all allocations for folios that will be mapped into user space.
2170  *
2171  * Return: The folio on success or NULL if allocation fails.
2172  */
2173 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2174 		unsigned long addr, bool hugepage)
2175 {
2176 	struct mempolicy *pol;
2177 	int node = numa_node_id();
2178 	struct folio *folio;
2179 	int preferred_nid;
2180 	nodemask_t *nmask;
2181 
2182 	pol = get_vma_policy(vma, addr);
2183 
2184 	if (pol->mode == MPOL_INTERLEAVE) {
2185 		struct page *page;
2186 		unsigned nid;
2187 
2188 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2189 		mpol_cond_put(pol);
2190 		gfp |= __GFP_COMP;
2191 		page = alloc_page_interleave(gfp, order, nid);
2192 		if (page && order > 1)
2193 			prep_transhuge_page(page);
2194 		folio = (struct folio *)page;
2195 		goto out;
2196 	}
2197 
2198 	if (pol->mode == MPOL_PREFERRED_MANY) {
2199 		struct page *page;
2200 
2201 		node = policy_node(gfp, pol, node);
2202 		gfp |= __GFP_COMP;
2203 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2204 		mpol_cond_put(pol);
2205 		if (page && order > 1)
2206 			prep_transhuge_page(page);
2207 		folio = (struct folio *)page;
2208 		goto out;
2209 	}
2210 
2211 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2212 		int hpage_node = node;
2213 
2214 		/*
2215 		 * For hugepage allocation and non-interleave policy which
2216 		 * allows the current node (or other explicitly preferred
2217 		 * node) we only try to allocate from the current/preferred
2218 		 * node and don't fall back to other nodes, as the cost of
2219 		 * remote accesses would likely offset THP benefits.
2220 		 *
2221 		 * If the policy is interleave or does not allow the current
2222 		 * node in its nodemask, we allocate the standard way.
2223 		 */
2224 		if (pol->mode == MPOL_PREFERRED)
2225 			hpage_node = first_node(pol->nodes);
2226 
2227 		nmask = policy_nodemask(gfp, pol);
2228 		if (!nmask || node_isset(hpage_node, *nmask)) {
2229 			mpol_cond_put(pol);
2230 			/*
2231 			 * First, try to allocate THP only on local node, but
2232 			 * don't reclaim unnecessarily, just compact.
2233 			 */
2234 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2235 					__GFP_NORETRY, order, hpage_node);
2236 
2237 			/*
2238 			 * If hugepage allocations are configured to always
2239 			 * synchronous compact or the vma has been madvised
2240 			 * to prefer hugepage backing, retry allowing remote
2241 			 * memory with both reclaim and compact as well.
2242 			 */
2243 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2244 				folio = __folio_alloc(gfp, order, hpage_node,
2245 						      nmask);
2246 
2247 			goto out;
2248 		}
2249 	}
2250 
2251 	nmask = policy_nodemask(gfp, pol);
2252 	preferred_nid = policy_node(gfp, pol, node);
2253 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2254 	mpol_cond_put(pol);
2255 out:
2256 	return folio;
2257 }
2258 EXPORT_SYMBOL(vma_alloc_folio);
2259 
2260 /**
2261  * alloc_pages - Allocate pages.
2262  * @gfp: GFP flags.
2263  * @order: Power of two of number of pages to allocate.
2264  *
2265  * Allocate 1 << @order contiguous pages.  The physical address of the
2266  * first page is naturally aligned (eg an order-3 allocation will be aligned
2267  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2268  * process is honoured when in process context.
2269  *
2270  * Context: Can be called from any context, providing the appropriate GFP
2271  * flags are used.
2272  * Return: The page on success or NULL if allocation fails.
2273  */
2274 struct page *alloc_pages(gfp_t gfp, unsigned order)
2275 {
2276 	struct mempolicy *pol = &default_policy;
2277 	struct page *page;
2278 
2279 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2280 		pol = get_task_policy(current);
2281 
2282 	/*
2283 	 * No reference counting needed for current->mempolicy
2284 	 * nor system default_policy
2285 	 */
2286 	if (pol->mode == MPOL_INTERLEAVE)
2287 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2288 	else if (pol->mode == MPOL_PREFERRED_MANY)
2289 		page = alloc_pages_preferred_many(gfp, order,
2290 				  policy_node(gfp, pol, numa_node_id()), pol);
2291 	else
2292 		page = __alloc_pages(gfp, order,
2293 				policy_node(gfp, pol, numa_node_id()),
2294 				policy_nodemask(gfp, pol));
2295 
2296 	return page;
2297 }
2298 EXPORT_SYMBOL(alloc_pages);
2299 
2300 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2301 {
2302 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2303 
2304 	if (page && order > 1)
2305 		prep_transhuge_page(page);
2306 	return (struct folio *)page;
2307 }
2308 EXPORT_SYMBOL(folio_alloc);
2309 
2310 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2311 		struct mempolicy *pol, unsigned long nr_pages,
2312 		struct page **page_array)
2313 {
2314 	int nodes;
2315 	unsigned long nr_pages_per_node;
2316 	int delta;
2317 	int i;
2318 	unsigned long nr_allocated;
2319 	unsigned long total_allocated = 0;
2320 
2321 	nodes = nodes_weight(pol->nodes);
2322 	nr_pages_per_node = nr_pages / nodes;
2323 	delta = nr_pages - nodes * nr_pages_per_node;
2324 
2325 	for (i = 0; i < nodes; i++) {
2326 		if (delta) {
2327 			nr_allocated = __alloc_pages_bulk(gfp,
2328 					interleave_nodes(pol), NULL,
2329 					nr_pages_per_node + 1, NULL,
2330 					page_array);
2331 			delta--;
2332 		} else {
2333 			nr_allocated = __alloc_pages_bulk(gfp,
2334 					interleave_nodes(pol), NULL,
2335 					nr_pages_per_node, NULL, page_array);
2336 		}
2337 
2338 		page_array += nr_allocated;
2339 		total_allocated += nr_allocated;
2340 	}
2341 
2342 	return total_allocated;
2343 }
2344 
2345 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2346 		struct mempolicy *pol, unsigned long nr_pages,
2347 		struct page **page_array)
2348 {
2349 	gfp_t preferred_gfp;
2350 	unsigned long nr_allocated = 0;
2351 
2352 	preferred_gfp = gfp | __GFP_NOWARN;
2353 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2354 
2355 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2356 					   nr_pages, NULL, page_array);
2357 
2358 	if (nr_allocated < nr_pages)
2359 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2360 				nr_pages - nr_allocated, NULL,
2361 				page_array + nr_allocated);
2362 	return nr_allocated;
2363 }
2364 
2365 /* alloc pages bulk and mempolicy should be considered at the
2366  * same time in some situation such as vmalloc.
2367  *
2368  * It can accelerate memory allocation especially interleaving
2369  * allocate memory.
2370  */
2371 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2372 		unsigned long nr_pages, struct page **page_array)
2373 {
2374 	struct mempolicy *pol = &default_policy;
2375 
2376 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2377 		pol = get_task_policy(current);
2378 
2379 	if (pol->mode == MPOL_INTERLEAVE)
2380 		return alloc_pages_bulk_array_interleave(gfp, pol,
2381 							 nr_pages, page_array);
2382 
2383 	if (pol->mode == MPOL_PREFERRED_MANY)
2384 		return alloc_pages_bulk_array_preferred_many(gfp,
2385 				numa_node_id(), pol, nr_pages, page_array);
2386 
2387 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2388 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2389 				  page_array);
2390 }
2391 
2392 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2393 {
2394 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2395 
2396 	if (IS_ERR(pol))
2397 		return PTR_ERR(pol);
2398 	dst->vm_policy = pol;
2399 	return 0;
2400 }
2401 
2402 /*
2403  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2404  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2405  * with the mems_allowed returned by cpuset_mems_allowed().  This
2406  * keeps mempolicies cpuset relative after its cpuset moves.  See
2407  * further kernel/cpuset.c update_nodemask().
2408  *
2409  * current's mempolicy may be rebinded by the other task(the task that changes
2410  * cpuset's mems), so we needn't do rebind work for current task.
2411  */
2412 
2413 /* Slow path of a mempolicy duplicate */
2414 struct mempolicy *__mpol_dup(struct mempolicy *old)
2415 {
2416 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2417 
2418 	if (!new)
2419 		return ERR_PTR(-ENOMEM);
2420 
2421 	/* task's mempolicy is protected by alloc_lock */
2422 	if (old == current->mempolicy) {
2423 		task_lock(current);
2424 		*new = *old;
2425 		task_unlock(current);
2426 	} else
2427 		*new = *old;
2428 
2429 	if (current_cpuset_is_being_rebound()) {
2430 		nodemask_t mems = cpuset_mems_allowed(current);
2431 		mpol_rebind_policy(new, &mems);
2432 	}
2433 	atomic_set(&new->refcnt, 1);
2434 	return new;
2435 }
2436 
2437 /* Slow path of a mempolicy comparison */
2438 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2439 {
2440 	if (!a || !b)
2441 		return false;
2442 	if (a->mode != b->mode)
2443 		return false;
2444 	if (a->flags != b->flags)
2445 		return false;
2446 	if (a->home_node != b->home_node)
2447 		return false;
2448 	if (mpol_store_user_nodemask(a))
2449 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2450 			return false;
2451 
2452 	switch (a->mode) {
2453 	case MPOL_BIND:
2454 	case MPOL_INTERLEAVE:
2455 	case MPOL_PREFERRED:
2456 	case MPOL_PREFERRED_MANY:
2457 		return !!nodes_equal(a->nodes, b->nodes);
2458 	case MPOL_LOCAL:
2459 		return true;
2460 	default:
2461 		BUG();
2462 		return false;
2463 	}
2464 }
2465 
2466 /*
2467  * Shared memory backing store policy support.
2468  *
2469  * Remember policies even when nobody has shared memory mapped.
2470  * The policies are kept in Red-Black tree linked from the inode.
2471  * They are protected by the sp->lock rwlock, which should be held
2472  * for any accesses to the tree.
2473  */
2474 
2475 /*
2476  * lookup first element intersecting start-end.  Caller holds sp->lock for
2477  * reading or for writing
2478  */
2479 static struct sp_node *
2480 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2481 {
2482 	struct rb_node *n = sp->root.rb_node;
2483 
2484 	while (n) {
2485 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2486 
2487 		if (start >= p->end)
2488 			n = n->rb_right;
2489 		else if (end <= p->start)
2490 			n = n->rb_left;
2491 		else
2492 			break;
2493 	}
2494 	if (!n)
2495 		return NULL;
2496 	for (;;) {
2497 		struct sp_node *w = NULL;
2498 		struct rb_node *prev = rb_prev(n);
2499 		if (!prev)
2500 			break;
2501 		w = rb_entry(prev, struct sp_node, nd);
2502 		if (w->end <= start)
2503 			break;
2504 		n = prev;
2505 	}
2506 	return rb_entry(n, struct sp_node, nd);
2507 }
2508 
2509 /*
2510  * Insert a new shared policy into the list.  Caller holds sp->lock for
2511  * writing.
2512  */
2513 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2514 {
2515 	struct rb_node **p = &sp->root.rb_node;
2516 	struct rb_node *parent = NULL;
2517 	struct sp_node *nd;
2518 
2519 	while (*p) {
2520 		parent = *p;
2521 		nd = rb_entry(parent, struct sp_node, nd);
2522 		if (new->start < nd->start)
2523 			p = &(*p)->rb_left;
2524 		else if (new->end > nd->end)
2525 			p = &(*p)->rb_right;
2526 		else
2527 			BUG();
2528 	}
2529 	rb_link_node(&new->nd, parent, p);
2530 	rb_insert_color(&new->nd, &sp->root);
2531 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2532 		 new->policy ? new->policy->mode : 0);
2533 }
2534 
2535 /* Find shared policy intersecting idx */
2536 struct mempolicy *
2537 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2538 {
2539 	struct mempolicy *pol = NULL;
2540 	struct sp_node *sn;
2541 
2542 	if (!sp->root.rb_node)
2543 		return NULL;
2544 	read_lock(&sp->lock);
2545 	sn = sp_lookup(sp, idx, idx+1);
2546 	if (sn) {
2547 		mpol_get(sn->policy);
2548 		pol = sn->policy;
2549 	}
2550 	read_unlock(&sp->lock);
2551 	return pol;
2552 }
2553 
2554 static void sp_free(struct sp_node *n)
2555 {
2556 	mpol_put(n->policy);
2557 	kmem_cache_free(sn_cache, n);
2558 }
2559 
2560 /**
2561  * mpol_misplaced - check whether current page node is valid in policy
2562  *
2563  * @page: page to be checked
2564  * @vma: vm area where page mapped
2565  * @addr: virtual address where page mapped
2566  *
2567  * Lookup current policy node id for vma,addr and "compare to" page's
2568  * node id.  Policy determination "mimics" alloc_page_vma().
2569  * Called from fault path where we know the vma and faulting address.
2570  *
2571  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2572  * policy, or a suitable node ID to allocate a replacement page from.
2573  */
2574 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2575 {
2576 	struct mempolicy *pol;
2577 	struct zoneref *z;
2578 	int curnid = page_to_nid(page);
2579 	unsigned long pgoff;
2580 	int thiscpu = raw_smp_processor_id();
2581 	int thisnid = cpu_to_node(thiscpu);
2582 	int polnid = NUMA_NO_NODE;
2583 	int ret = NUMA_NO_NODE;
2584 
2585 	pol = get_vma_policy(vma, addr);
2586 	if (!(pol->flags & MPOL_F_MOF))
2587 		goto out;
2588 
2589 	switch (pol->mode) {
2590 	case MPOL_INTERLEAVE:
2591 		pgoff = vma->vm_pgoff;
2592 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2593 		polnid = offset_il_node(pol, pgoff);
2594 		break;
2595 
2596 	case MPOL_PREFERRED:
2597 		if (node_isset(curnid, pol->nodes))
2598 			goto out;
2599 		polnid = first_node(pol->nodes);
2600 		break;
2601 
2602 	case MPOL_LOCAL:
2603 		polnid = numa_node_id();
2604 		break;
2605 
2606 	case MPOL_BIND:
2607 		/* Optimize placement among multiple nodes via NUMA balancing */
2608 		if (pol->flags & MPOL_F_MORON) {
2609 			if (node_isset(thisnid, pol->nodes))
2610 				break;
2611 			goto out;
2612 		}
2613 		fallthrough;
2614 
2615 	case MPOL_PREFERRED_MANY:
2616 		/*
2617 		 * use current page if in policy nodemask,
2618 		 * else select nearest allowed node, if any.
2619 		 * If no allowed nodes, use current [!misplaced].
2620 		 */
2621 		if (node_isset(curnid, pol->nodes))
2622 			goto out;
2623 		z = first_zones_zonelist(
2624 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2625 				gfp_zone(GFP_HIGHUSER),
2626 				&pol->nodes);
2627 		polnid = zone_to_nid(z->zone);
2628 		break;
2629 
2630 	default:
2631 		BUG();
2632 	}
2633 
2634 	/* Migrate the page towards the node whose CPU is referencing it */
2635 	if (pol->flags & MPOL_F_MORON) {
2636 		polnid = thisnid;
2637 
2638 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2639 			goto out;
2640 	}
2641 
2642 	if (curnid != polnid)
2643 		ret = polnid;
2644 out:
2645 	mpol_cond_put(pol);
2646 
2647 	return ret;
2648 }
2649 
2650 /*
2651  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2652  * dropped after task->mempolicy is set to NULL so that any allocation done as
2653  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2654  * policy.
2655  */
2656 void mpol_put_task_policy(struct task_struct *task)
2657 {
2658 	struct mempolicy *pol;
2659 
2660 	task_lock(task);
2661 	pol = task->mempolicy;
2662 	task->mempolicy = NULL;
2663 	task_unlock(task);
2664 	mpol_put(pol);
2665 }
2666 
2667 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2668 {
2669 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2670 	rb_erase(&n->nd, &sp->root);
2671 	sp_free(n);
2672 }
2673 
2674 static void sp_node_init(struct sp_node *node, unsigned long start,
2675 			unsigned long end, struct mempolicy *pol)
2676 {
2677 	node->start = start;
2678 	node->end = end;
2679 	node->policy = pol;
2680 }
2681 
2682 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2683 				struct mempolicy *pol)
2684 {
2685 	struct sp_node *n;
2686 	struct mempolicy *newpol;
2687 
2688 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2689 	if (!n)
2690 		return NULL;
2691 
2692 	newpol = mpol_dup(pol);
2693 	if (IS_ERR(newpol)) {
2694 		kmem_cache_free(sn_cache, n);
2695 		return NULL;
2696 	}
2697 	newpol->flags |= MPOL_F_SHARED;
2698 	sp_node_init(n, start, end, newpol);
2699 
2700 	return n;
2701 }
2702 
2703 /* Replace a policy range. */
2704 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2705 				 unsigned long end, struct sp_node *new)
2706 {
2707 	struct sp_node *n;
2708 	struct sp_node *n_new = NULL;
2709 	struct mempolicy *mpol_new = NULL;
2710 	int ret = 0;
2711 
2712 restart:
2713 	write_lock(&sp->lock);
2714 	n = sp_lookup(sp, start, end);
2715 	/* Take care of old policies in the same range. */
2716 	while (n && n->start < end) {
2717 		struct rb_node *next = rb_next(&n->nd);
2718 		if (n->start >= start) {
2719 			if (n->end <= end)
2720 				sp_delete(sp, n);
2721 			else
2722 				n->start = end;
2723 		} else {
2724 			/* Old policy spanning whole new range. */
2725 			if (n->end > end) {
2726 				if (!n_new)
2727 					goto alloc_new;
2728 
2729 				*mpol_new = *n->policy;
2730 				atomic_set(&mpol_new->refcnt, 1);
2731 				sp_node_init(n_new, end, n->end, mpol_new);
2732 				n->end = start;
2733 				sp_insert(sp, n_new);
2734 				n_new = NULL;
2735 				mpol_new = NULL;
2736 				break;
2737 			} else
2738 				n->end = start;
2739 		}
2740 		if (!next)
2741 			break;
2742 		n = rb_entry(next, struct sp_node, nd);
2743 	}
2744 	if (new)
2745 		sp_insert(sp, new);
2746 	write_unlock(&sp->lock);
2747 	ret = 0;
2748 
2749 err_out:
2750 	if (mpol_new)
2751 		mpol_put(mpol_new);
2752 	if (n_new)
2753 		kmem_cache_free(sn_cache, n_new);
2754 
2755 	return ret;
2756 
2757 alloc_new:
2758 	write_unlock(&sp->lock);
2759 	ret = -ENOMEM;
2760 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2761 	if (!n_new)
2762 		goto err_out;
2763 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2764 	if (!mpol_new)
2765 		goto err_out;
2766 	atomic_set(&mpol_new->refcnt, 1);
2767 	goto restart;
2768 }
2769 
2770 /**
2771  * mpol_shared_policy_init - initialize shared policy for inode
2772  * @sp: pointer to inode shared policy
2773  * @mpol:  struct mempolicy to install
2774  *
2775  * Install non-NULL @mpol in inode's shared policy rb-tree.
2776  * On entry, the current task has a reference on a non-NULL @mpol.
2777  * This must be released on exit.
2778  * This is called at get_inode() calls and we can use GFP_KERNEL.
2779  */
2780 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2781 {
2782 	int ret;
2783 
2784 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2785 	rwlock_init(&sp->lock);
2786 
2787 	if (mpol) {
2788 		struct vm_area_struct pvma;
2789 		struct mempolicy *new;
2790 		NODEMASK_SCRATCH(scratch);
2791 
2792 		if (!scratch)
2793 			goto put_mpol;
2794 		/* contextualize the tmpfs mount point mempolicy */
2795 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2796 		if (IS_ERR(new))
2797 			goto free_scratch; /* no valid nodemask intersection */
2798 
2799 		task_lock(current);
2800 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2801 		task_unlock(current);
2802 		if (ret)
2803 			goto put_new;
2804 
2805 		/* Create pseudo-vma that contains just the policy */
2806 		vma_init(&pvma, NULL);
2807 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2808 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2809 
2810 put_new:
2811 		mpol_put(new);			/* drop initial ref */
2812 free_scratch:
2813 		NODEMASK_SCRATCH_FREE(scratch);
2814 put_mpol:
2815 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2816 	}
2817 }
2818 
2819 int mpol_set_shared_policy(struct shared_policy *info,
2820 			struct vm_area_struct *vma, struct mempolicy *npol)
2821 {
2822 	int err;
2823 	struct sp_node *new = NULL;
2824 	unsigned long sz = vma_pages(vma);
2825 
2826 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2827 		 vma->vm_pgoff,
2828 		 sz, npol ? npol->mode : -1,
2829 		 npol ? npol->flags : -1,
2830 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2831 
2832 	if (npol) {
2833 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2834 		if (!new)
2835 			return -ENOMEM;
2836 	}
2837 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2838 	if (err && new)
2839 		sp_free(new);
2840 	return err;
2841 }
2842 
2843 /* Free a backing policy store on inode delete. */
2844 void mpol_free_shared_policy(struct shared_policy *p)
2845 {
2846 	struct sp_node *n;
2847 	struct rb_node *next;
2848 
2849 	if (!p->root.rb_node)
2850 		return;
2851 	write_lock(&p->lock);
2852 	next = rb_first(&p->root);
2853 	while (next) {
2854 		n = rb_entry(next, struct sp_node, nd);
2855 		next = rb_next(&n->nd);
2856 		sp_delete(p, n);
2857 	}
2858 	write_unlock(&p->lock);
2859 }
2860 
2861 #ifdef CONFIG_NUMA_BALANCING
2862 static int __initdata numabalancing_override;
2863 
2864 static void __init check_numabalancing_enable(void)
2865 {
2866 	bool numabalancing_default = false;
2867 
2868 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2869 		numabalancing_default = true;
2870 
2871 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2872 	if (numabalancing_override)
2873 		set_numabalancing_state(numabalancing_override == 1);
2874 
2875 	if (num_online_nodes() > 1 && !numabalancing_override) {
2876 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2877 			numabalancing_default ? "Enabling" : "Disabling");
2878 		set_numabalancing_state(numabalancing_default);
2879 	}
2880 }
2881 
2882 static int __init setup_numabalancing(char *str)
2883 {
2884 	int ret = 0;
2885 	if (!str)
2886 		goto out;
2887 
2888 	if (!strcmp(str, "enable")) {
2889 		numabalancing_override = 1;
2890 		ret = 1;
2891 	} else if (!strcmp(str, "disable")) {
2892 		numabalancing_override = -1;
2893 		ret = 1;
2894 	}
2895 out:
2896 	if (!ret)
2897 		pr_warn("Unable to parse numa_balancing=\n");
2898 
2899 	return ret;
2900 }
2901 __setup("numa_balancing=", setup_numabalancing);
2902 #else
2903 static inline void __init check_numabalancing_enable(void)
2904 {
2905 }
2906 #endif /* CONFIG_NUMA_BALANCING */
2907 
2908 /* assumes fs == KERNEL_DS */
2909 void __init numa_policy_init(void)
2910 {
2911 	nodemask_t interleave_nodes;
2912 	unsigned long largest = 0;
2913 	int nid, prefer = 0;
2914 
2915 	policy_cache = kmem_cache_create("numa_policy",
2916 					 sizeof(struct mempolicy),
2917 					 0, SLAB_PANIC, NULL);
2918 
2919 	sn_cache = kmem_cache_create("shared_policy_node",
2920 				     sizeof(struct sp_node),
2921 				     0, SLAB_PANIC, NULL);
2922 
2923 	for_each_node(nid) {
2924 		preferred_node_policy[nid] = (struct mempolicy) {
2925 			.refcnt = ATOMIC_INIT(1),
2926 			.mode = MPOL_PREFERRED,
2927 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2928 			.nodes = nodemask_of_node(nid),
2929 		};
2930 	}
2931 
2932 	/*
2933 	 * Set interleaving policy for system init. Interleaving is only
2934 	 * enabled across suitably sized nodes (default is >= 16MB), or
2935 	 * fall back to the largest node if they're all smaller.
2936 	 */
2937 	nodes_clear(interleave_nodes);
2938 	for_each_node_state(nid, N_MEMORY) {
2939 		unsigned long total_pages = node_present_pages(nid);
2940 
2941 		/* Preserve the largest node */
2942 		if (largest < total_pages) {
2943 			largest = total_pages;
2944 			prefer = nid;
2945 		}
2946 
2947 		/* Interleave this node? */
2948 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2949 			node_set(nid, interleave_nodes);
2950 	}
2951 
2952 	/* All too small, use the largest */
2953 	if (unlikely(nodes_empty(interleave_nodes)))
2954 		node_set(prefer, interleave_nodes);
2955 
2956 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2957 		pr_err("%s: interleaving failed\n", __func__);
2958 
2959 	check_numabalancing_enable();
2960 }
2961 
2962 /* Reset policy of current process to default */
2963 void numa_default_policy(void)
2964 {
2965 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2966 }
2967 
2968 /*
2969  * Parse and format mempolicy from/to strings
2970  */
2971 
2972 static const char * const policy_modes[] =
2973 {
2974 	[MPOL_DEFAULT]    = "default",
2975 	[MPOL_PREFERRED]  = "prefer",
2976 	[MPOL_BIND]       = "bind",
2977 	[MPOL_INTERLEAVE] = "interleave",
2978 	[MPOL_LOCAL]      = "local",
2979 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2980 };
2981 
2982 
2983 #ifdef CONFIG_TMPFS
2984 /**
2985  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2986  * @str:  string containing mempolicy to parse
2987  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2988  *
2989  * Format of input:
2990  *	<mode>[=<flags>][:<nodelist>]
2991  *
2992  * Return: %0 on success, else %1
2993  */
2994 int mpol_parse_str(char *str, struct mempolicy **mpol)
2995 {
2996 	struct mempolicy *new = NULL;
2997 	unsigned short mode_flags;
2998 	nodemask_t nodes;
2999 	char *nodelist = strchr(str, ':');
3000 	char *flags = strchr(str, '=');
3001 	int err = 1, mode;
3002 
3003 	if (flags)
3004 		*flags++ = '\0';	/* terminate mode string */
3005 
3006 	if (nodelist) {
3007 		/* NUL-terminate mode or flags string */
3008 		*nodelist++ = '\0';
3009 		if (nodelist_parse(nodelist, nodes))
3010 			goto out;
3011 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3012 			goto out;
3013 	} else
3014 		nodes_clear(nodes);
3015 
3016 	mode = match_string(policy_modes, MPOL_MAX, str);
3017 	if (mode < 0)
3018 		goto out;
3019 
3020 	switch (mode) {
3021 	case MPOL_PREFERRED:
3022 		/*
3023 		 * Insist on a nodelist of one node only, although later
3024 		 * we use first_node(nodes) to grab a single node, so here
3025 		 * nodelist (or nodes) cannot be empty.
3026 		 */
3027 		if (nodelist) {
3028 			char *rest = nodelist;
3029 			while (isdigit(*rest))
3030 				rest++;
3031 			if (*rest)
3032 				goto out;
3033 			if (nodes_empty(nodes))
3034 				goto out;
3035 		}
3036 		break;
3037 	case MPOL_INTERLEAVE:
3038 		/*
3039 		 * Default to online nodes with memory if no nodelist
3040 		 */
3041 		if (!nodelist)
3042 			nodes = node_states[N_MEMORY];
3043 		break;
3044 	case MPOL_LOCAL:
3045 		/*
3046 		 * Don't allow a nodelist;  mpol_new() checks flags
3047 		 */
3048 		if (nodelist)
3049 			goto out;
3050 		break;
3051 	case MPOL_DEFAULT:
3052 		/*
3053 		 * Insist on a empty nodelist
3054 		 */
3055 		if (!nodelist)
3056 			err = 0;
3057 		goto out;
3058 	case MPOL_PREFERRED_MANY:
3059 	case MPOL_BIND:
3060 		/*
3061 		 * Insist on a nodelist
3062 		 */
3063 		if (!nodelist)
3064 			goto out;
3065 	}
3066 
3067 	mode_flags = 0;
3068 	if (flags) {
3069 		/*
3070 		 * Currently, we only support two mutually exclusive
3071 		 * mode flags.
3072 		 */
3073 		if (!strcmp(flags, "static"))
3074 			mode_flags |= MPOL_F_STATIC_NODES;
3075 		else if (!strcmp(flags, "relative"))
3076 			mode_flags |= MPOL_F_RELATIVE_NODES;
3077 		else
3078 			goto out;
3079 	}
3080 
3081 	new = mpol_new(mode, mode_flags, &nodes);
3082 	if (IS_ERR(new))
3083 		goto out;
3084 
3085 	/*
3086 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3087 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3088 	 */
3089 	if (mode != MPOL_PREFERRED) {
3090 		new->nodes = nodes;
3091 	} else if (nodelist) {
3092 		nodes_clear(new->nodes);
3093 		node_set(first_node(nodes), new->nodes);
3094 	} else {
3095 		new->mode = MPOL_LOCAL;
3096 	}
3097 
3098 	/*
3099 	 * Save nodes for contextualization: this will be used to "clone"
3100 	 * the mempolicy in a specific context [cpuset] at a later time.
3101 	 */
3102 	new->w.user_nodemask = nodes;
3103 
3104 	err = 0;
3105 
3106 out:
3107 	/* Restore string for error message */
3108 	if (nodelist)
3109 		*--nodelist = ':';
3110 	if (flags)
3111 		*--flags = '=';
3112 	if (!err)
3113 		*mpol = new;
3114 	return err;
3115 }
3116 #endif /* CONFIG_TMPFS */
3117 
3118 /**
3119  * mpol_to_str - format a mempolicy structure for printing
3120  * @buffer:  to contain formatted mempolicy string
3121  * @maxlen:  length of @buffer
3122  * @pol:  pointer to mempolicy to be formatted
3123  *
3124  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3125  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3126  * longest flag, "relative", and to display at least a few node ids.
3127  */
3128 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3129 {
3130 	char *p = buffer;
3131 	nodemask_t nodes = NODE_MASK_NONE;
3132 	unsigned short mode = MPOL_DEFAULT;
3133 	unsigned short flags = 0;
3134 
3135 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3136 		mode = pol->mode;
3137 		flags = pol->flags;
3138 	}
3139 
3140 	switch (mode) {
3141 	case MPOL_DEFAULT:
3142 	case MPOL_LOCAL:
3143 		break;
3144 	case MPOL_PREFERRED:
3145 	case MPOL_PREFERRED_MANY:
3146 	case MPOL_BIND:
3147 	case MPOL_INTERLEAVE:
3148 		nodes = pol->nodes;
3149 		break;
3150 	default:
3151 		WARN_ON_ONCE(1);
3152 		snprintf(p, maxlen, "unknown");
3153 		return;
3154 	}
3155 
3156 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3157 
3158 	if (flags & MPOL_MODE_FLAGS) {
3159 		p += snprintf(p, buffer + maxlen - p, "=");
3160 
3161 		/*
3162 		 * Currently, the only defined flags are mutually exclusive
3163 		 */
3164 		if (flags & MPOL_F_STATIC_NODES)
3165 			p += snprintf(p, buffer + maxlen - p, "static");
3166 		else if (flags & MPOL_F_RELATIVE_NODES)
3167 			p += snprintf(p, buffer + maxlen - p, "relative");
3168 	}
3169 
3170 	if (!nodes_empty(nodes))
3171 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3172 			       nodemask_pr_args(&nodes));
3173 }
3174