xref: /openbmc/linux/mm/mempolicy.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte, *mapped_pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(mapped_pte, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	if (flags & MPOL_F_NUMA_BALANCING) {
879 		if (new && new->mode == MPOL_BIND) {
880 			new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
881 		} else {
882 			ret = -EINVAL;
883 			mpol_put(new);
884 			goto out;
885 		}
886 	}
887 
888 	ret = mpol_set_nodemask(new, nodes, scratch);
889 	if (ret) {
890 		mpol_put(new);
891 		goto out;
892 	}
893 	task_lock(current);
894 	old = current->mempolicy;
895 	current->mempolicy = new;
896 	if (new && new->mode == MPOL_INTERLEAVE)
897 		current->il_prev = MAX_NUMNODES-1;
898 	task_unlock(current);
899 	mpol_put(old);
900 	ret = 0;
901 out:
902 	NODEMASK_SCRATCH_FREE(scratch);
903 	return ret;
904 }
905 
906 /*
907  * Return nodemask for policy for get_mempolicy() query
908  *
909  * Called with task's alloc_lock held
910  */
911 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
912 {
913 	nodes_clear(*nodes);
914 	if (p == &default_policy)
915 		return;
916 
917 	switch (p->mode) {
918 	case MPOL_BIND:
919 	case MPOL_INTERLEAVE:
920 		*nodes = p->v.nodes;
921 		break;
922 	case MPOL_PREFERRED:
923 		if (!(p->flags & MPOL_F_LOCAL))
924 			node_set(p->v.preferred_node, *nodes);
925 		/* else return empty node mask for local allocation */
926 		break;
927 	default:
928 		BUG();
929 	}
930 }
931 
932 static int lookup_node(struct mm_struct *mm, unsigned long addr)
933 {
934 	struct page *p = NULL;
935 	int err;
936 
937 	int locked = 1;
938 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
939 	if (err > 0) {
940 		err = page_to_nid(p);
941 		put_page(p);
942 	}
943 	if (locked)
944 		mmap_read_unlock(mm);
945 	return err;
946 }
947 
948 /* Retrieve NUMA policy */
949 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
950 			     unsigned long addr, unsigned long flags)
951 {
952 	int err;
953 	struct mm_struct *mm = current->mm;
954 	struct vm_area_struct *vma = NULL;
955 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
956 
957 	if (flags &
958 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
959 		return -EINVAL;
960 
961 	if (flags & MPOL_F_MEMS_ALLOWED) {
962 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
963 			return -EINVAL;
964 		*policy = 0;	/* just so it's initialized */
965 		task_lock(current);
966 		*nmask  = cpuset_current_mems_allowed;
967 		task_unlock(current);
968 		return 0;
969 	}
970 
971 	if (flags & MPOL_F_ADDR) {
972 		/*
973 		 * Do NOT fall back to task policy if the
974 		 * vma/shared policy at addr is NULL.  We
975 		 * want to return MPOL_DEFAULT in this case.
976 		 */
977 		mmap_read_lock(mm);
978 		vma = find_vma_intersection(mm, addr, addr+1);
979 		if (!vma) {
980 			mmap_read_unlock(mm);
981 			return -EFAULT;
982 		}
983 		if (vma->vm_ops && vma->vm_ops->get_policy)
984 			pol = vma->vm_ops->get_policy(vma, addr);
985 		else
986 			pol = vma->vm_policy;
987 	} else if (addr)
988 		return -EINVAL;
989 
990 	if (!pol)
991 		pol = &default_policy;	/* indicates default behavior */
992 
993 	if (flags & MPOL_F_NODE) {
994 		if (flags & MPOL_F_ADDR) {
995 			/*
996 			 * Take a refcount on the mpol, lookup_node()
997 			 * wil drop the mmap_lock, so after calling
998 			 * lookup_node() only "pol" remains valid, "vma"
999 			 * is stale.
1000 			 */
1001 			pol_refcount = pol;
1002 			vma = NULL;
1003 			mpol_get(pol);
1004 			err = lookup_node(mm, addr);
1005 			if (err < 0)
1006 				goto out;
1007 			*policy = err;
1008 		} else if (pol == current->mempolicy &&
1009 				pol->mode == MPOL_INTERLEAVE) {
1010 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1011 		} else {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 	} else {
1016 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1017 						pol->mode;
1018 		/*
1019 		 * Internal mempolicy flags must be masked off before exposing
1020 		 * the policy to userspace.
1021 		 */
1022 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1023 	}
1024 
1025 	err = 0;
1026 	if (nmask) {
1027 		if (mpol_store_user_nodemask(pol)) {
1028 			*nmask = pol->w.user_nodemask;
1029 		} else {
1030 			task_lock(current);
1031 			get_policy_nodemask(pol, nmask);
1032 			task_unlock(current);
1033 		}
1034 	}
1035 
1036  out:
1037 	mpol_cond_put(pol);
1038 	if (vma)
1039 		mmap_read_unlock(mm);
1040 	if (pol_refcount)
1041 		mpol_put(pol_refcount);
1042 	return err;
1043 }
1044 
1045 #ifdef CONFIG_MIGRATION
1046 /*
1047  * page migration, thp tail pages can be passed.
1048  */
1049 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1050 				unsigned long flags)
1051 {
1052 	struct page *head = compound_head(page);
1053 	/*
1054 	 * Avoid migrating a page that is shared with others.
1055 	 */
1056 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1057 		if (!isolate_lru_page(head)) {
1058 			list_add_tail(&head->lru, pagelist);
1059 			mod_node_page_state(page_pgdat(head),
1060 				NR_ISOLATED_ANON + page_is_file_lru(head),
1061 				thp_nr_pages(head));
1062 		} else if (flags & MPOL_MF_STRICT) {
1063 			/*
1064 			 * Non-movable page may reach here.  And, there may be
1065 			 * temporary off LRU pages or non-LRU movable pages.
1066 			 * Treat them as unmovable pages since they can't be
1067 			 * isolated, so they can't be moved at the moment.  It
1068 			 * should return -EIO for this case too.
1069 			 */
1070 			return -EIO;
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Migrate pages from one node to a target node.
1079  * Returns error or the number of pages not migrated.
1080  */
1081 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1082 			   int flags)
1083 {
1084 	nodemask_t nmask;
1085 	LIST_HEAD(pagelist);
1086 	int err = 0;
1087 	struct migration_target_control mtc = {
1088 		.nid = dest,
1089 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1090 	};
1091 
1092 	nodes_clear(nmask);
1093 	node_set(source, nmask);
1094 
1095 	/*
1096 	 * This does not "check" the range but isolates all pages that
1097 	 * need migration.  Between passing in the full user address
1098 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1099 	 */
1100 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1101 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1102 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1103 
1104 	if (!list_empty(&pagelist)) {
1105 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1106 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1107 		if (err)
1108 			putback_movable_pages(&pagelist);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 /*
1115  * Move pages between the two nodesets so as to preserve the physical
1116  * layout as much as possible.
1117  *
1118  * Returns the number of page that could not be moved.
1119  */
1120 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1121 		     const nodemask_t *to, int flags)
1122 {
1123 	int busy = 0;
1124 	int err = 0;
1125 	nodemask_t tmp;
1126 
1127 	migrate_prep();
1128 
1129 	mmap_read_lock(mm);
1130 
1131 	/*
1132 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1133 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1134 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1135 	 * The pair of nodemasks 'to' and 'from' define the map.
1136 	 *
1137 	 * If no pair of bits is found that way, fallback to picking some
1138 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1139 	 * 'source' and 'dest' bits are the same, this represents a node
1140 	 * that will be migrating to itself, so no pages need move.
1141 	 *
1142 	 * If no bits are left in 'tmp', or if all remaining bits left
1143 	 * in 'tmp' correspond to the same bit in 'to', return false
1144 	 * (nothing left to migrate).
1145 	 *
1146 	 * This lets us pick a pair of nodes to migrate between, such that
1147 	 * if possible the dest node is not already occupied by some other
1148 	 * source node, minimizing the risk of overloading the memory on a
1149 	 * node that would happen if we migrated incoming memory to a node
1150 	 * before migrating outgoing memory source that same node.
1151 	 *
1152 	 * A single scan of tmp is sufficient.  As we go, we remember the
1153 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1154 	 * that not only moved, but what's better, moved to an empty slot
1155 	 * (d is not set in tmp), then we break out then, with that pair.
1156 	 * Otherwise when we finish scanning from_tmp, we at least have the
1157 	 * most recent <s, d> pair that moved.  If we get all the way through
1158 	 * the scan of tmp without finding any node that moved, much less
1159 	 * moved to an empty node, then there is nothing left worth migrating.
1160 	 */
1161 
1162 	tmp = *from;
1163 	while (!nodes_empty(tmp)) {
1164 		int s,d;
1165 		int source = NUMA_NO_NODE;
1166 		int dest = 0;
1167 
1168 		for_each_node_mask(s, tmp) {
1169 
1170 			/*
1171 			 * do_migrate_pages() tries to maintain the relative
1172 			 * node relationship of the pages established between
1173 			 * threads and memory areas.
1174                          *
1175 			 * However if the number of source nodes is not equal to
1176 			 * the number of destination nodes we can not preserve
1177 			 * this node relative relationship.  In that case, skip
1178 			 * copying memory from a node that is in the destination
1179 			 * mask.
1180 			 *
1181 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1182 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1183 			 */
1184 
1185 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1186 						(node_isset(s, *to)))
1187 				continue;
1188 
1189 			d = node_remap(s, *from, *to);
1190 			if (s == d)
1191 				continue;
1192 
1193 			source = s;	/* Node moved. Memorize */
1194 			dest = d;
1195 
1196 			/* dest not in remaining from nodes? */
1197 			if (!node_isset(dest, tmp))
1198 				break;
1199 		}
1200 		if (source == NUMA_NO_NODE)
1201 			break;
1202 
1203 		node_clear(source, tmp);
1204 		err = migrate_to_node(mm, source, dest, flags);
1205 		if (err > 0)
1206 			busy += err;
1207 		if (err < 0)
1208 			break;
1209 	}
1210 	mmap_read_unlock(mm);
1211 	if (err < 0)
1212 		return err;
1213 	return busy;
1214 
1215 }
1216 
1217 /*
1218  * Allocate a new page for page migration based on vma policy.
1219  * Start by assuming the page is mapped by the same vma as contains @start.
1220  * Search forward from there, if not.  N.B., this assumes that the
1221  * list of pages handed to migrate_pages()--which is how we get here--
1222  * is in virtual address order.
1223  */
1224 static struct page *new_page(struct page *page, unsigned long start)
1225 {
1226 	struct vm_area_struct *vma;
1227 	unsigned long address;
1228 
1229 	vma = find_vma(current->mm, start);
1230 	while (vma) {
1231 		address = page_address_in_vma(page, vma);
1232 		if (address != -EFAULT)
1233 			break;
1234 		vma = vma->vm_next;
1235 	}
1236 
1237 	if (PageHuge(page)) {
1238 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1239 				vma, address);
1240 	} else if (PageTransHuge(page)) {
1241 		struct page *thp;
1242 
1243 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1244 					 HPAGE_PMD_ORDER);
1245 		if (!thp)
1246 			return NULL;
1247 		prep_transhuge_page(thp);
1248 		return thp;
1249 	}
1250 	/*
1251 	 * if !vma, alloc_page_vma() will use task or system default policy
1252 	 */
1253 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1254 			vma, address);
1255 }
1256 #else
1257 
1258 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1259 				unsigned long flags)
1260 {
1261 	return -EIO;
1262 }
1263 
1264 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1265 		     const nodemask_t *to, int flags)
1266 {
1267 	return -ENOSYS;
1268 }
1269 
1270 static struct page *new_page(struct page *page, unsigned long start)
1271 {
1272 	return NULL;
1273 }
1274 #endif
1275 
1276 static long do_mbind(unsigned long start, unsigned long len,
1277 		     unsigned short mode, unsigned short mode_flags,
1278 		     nodemask_t *nmask, unsigned long flags)
1279 {
1280 	struct mm_struct *mm = current->mm;
1281 	struct mempolicy *new;
1282 	unsigned long end;
1283 	int err;
1284 	int ret;
1285 	LIST_HEAD(pagelist);
1286 
1287 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1288 		return -EINVAL;
1289 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1290 		return -EPERM;
1291 
1292 	if (start & ~PAGE_MASK)
1293 		return -EINVAL;
1294 
1295 	if (mode == MPOL_DEFAULT)
1296 		flags &= ~MPOL_MF_STRICT;
1297 
1298 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1299 	end = start + len;
1300 
1301 	if (end < start)
1302 		return -EINVAL;
1303 	if (end == start)
1304 		return 0;
1305 
1306 	new = mpol_new(mode, mode_flags, nmask);
1307 	if (IS_ERR(new))
1308 		return PTR_ERR(new);
1309 
1310 	if (flags & MPOL_MF_LAZY)
1311 		new->flags |= MPOL_F_MOF;
1312 
1313 	/*
1314 	 * If we are using the default policy then operation
1315 	 * on discontinuous address spaces is okay after all
1316 	 */
1317 	if (!new)
1318 		flags |= MPOL_MF_DISCONTIG_OK;
1319 
1320 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1321 		 start, start + len, mode, mode_flags,
1322 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1323 
1324 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1325 
1326 		migrate_prep();
1327 	}
1328 	{
1329 		NODEMASK_SCRATCH(scratch);
1330 		if (scratch) {
1331 			mmap_write_lock(mm);
1332 			err = mpol_set_nodemask(new, nmask, scratch);
1333 			if (err)
1334 				mmap_write_unlock(mm);
1335 		} else
1336 			err = -ENOMEM;
1337 		NODEMASK_SCRATCH_FREE(scratch);
1338 	}
1339 	if (err)
1340 		goto mpol_out;
1341 
1342 	ret = queue_pages_range(mm, start, end, nmask,
1343 			  flags | MPOL_MF_INVERT, &pagelist);
1344 
1345 	if (ret < 0) {
1346 		err = ret;
1347 		goto up_out;
1348 	}
1349 
1350 	err = mbind_range(mm, start, end, new);
1351 
1352 	if (!err) {
1353 		int nr_failed = 0;
1354 
1355 		if (!list_empty(&pagelist)) {
1356 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1357 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1358 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1359 			if (nr_failed)
1360 				putback_movable_pages(&pagelist);
1361 		}
1362 
1363 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1364 			err = -EIO;
1365 	} else {
1366 up_out:
1367 		if (!list_empty(&pagelist))
1368 			putback_movable_pages(&pagelist);
1369 	}
1370 
1371 	mmap_write_unlock(mm);
1372 mpol_out:
1373 	mpol_put(new);
1374 	return err;
1375 }
1376 
1377 /*
1378  * User space interface with variable sized bitmaps for nodelists.
1379  */
1380 
1381 /* Copy a node mask from user space. */
1382 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1383 		     unsigned long maxnode)
1384 {
1385 	unsigned long k;
1386 	unsigned long t;
1387 	unsigned long nlongs;
1388 	unsigned long endmask;
1389 
1390 	--maxnode;
1391 	nodes_clear(*nodes);
1392 	if (maxnode == 0 || !nmask)
1393 		return 0;
1394 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 		return -EINVAL;
1396 
1397 	nlongs = BITS_TO_LONGS(maxnode);
1398 	if ((maxnode % BITS_PER_LONG) == 0)
1399 		endmask = ~0UL;
1400 	else
1401 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1402 
1403 	/*
1404 	 * When the user specified more nodes than supported just check
1405 	 * if the non supported part is all zero.
1406 	 *
1407 	 * If maxnode have more longs than MAX_NUMNODES, check
1408 	 * the bits in that area first. And then go through to
1409 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1410 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1411 	 */
1412 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1413 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1414 			if (get_user(t, nmask + k))
1415 				return -EFAULT;
1416 			if (k == nlongs - 1) {
1417 				if (t & endmask)
1418 					return -EINVAL;
1419 			} else if (t)
1420 				return -EINVAL;
1421 		}
1422 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1423 		endmask = ~0UL;
1424 	}
1425 
1426 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1427 		unsigned long valid_mask = endmask;
1428 
1429 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 		if (get_user(t, nmask + nlongs - 1))
1431 			return -EFAULT;
1432 		if (t & valid_mask)
1433 			return -EINVAL;
1434 	}
1435 
1436 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1437 		return -EFAULT;
1438 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1439 	return 0;
1440 }
1441 
1442 /* Copy a kernel node mask to user space */
1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1444 			      nodemask_t *nodes)
1445 {
1446 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1447 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1448 
1449 	if (copy > nbytes) {
1450 		if (copy > PAGE_SIZE)
1451 			return -EINVAL;
1452 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1453 			return -EFAULT;
1454 		copy = nbytes;
1455 	}
1456 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1457 }
1458 
1459 static long kernel_mbind(unsigned long start, unsigned long len,
1460 			 unsigned long mode, const unsigned long __user *nmask,
1461 			 unsigned long maxnode, unsigned int flags)
1462 {
1463 	nodemask_t nodes;
1464 	int err;
1465 	unsigned short mode_flags;
1466 
1467 	start = untagged_addr(start);
1468 	mode_flags = mode & MPOL_MODE_FLAGS;
1469 	mode &= ~MPOL_MODE_FLAGS;
1470 	if (mode >= MPOL_MAX)
1471 		return -EINVAL;
1472 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1473 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1474 		return -EINVAL;
1475 	err = get_nodes(&nodes, nmask, maxnode);
1476 	if (err)
1477 		return err;
1478 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1479 }
1480 
1481 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1482 		unsigned long, mode, const unsigned long __user *, nmask,
1483 		unsigned long, maxnode, unsigned int, flags)
1484 {
1485 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1486 }
1487 
1488 /* Set the process memory policy */
1489 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1490 				 unsigned long maxnode)
1491 {
1492 	int err;
1493 	nodemask_t nodes;
1494 	unsigned short flags;
1495 
1496 	flags = mode & MPOL_MODE_FLAGS;
1497 	mode &= ~MPOL_MODE_FLAGS;
1498 	if ((unsigned int)mode >= MPOL_MAX)
1499 		return -EINVAL;
1500 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1501 		return -EINVAL;
1502 	err = get_nodes(&nodes, nmask, maxnode);
1503 	if (err)
1504 		return err;
1505 	return do_set_mempolicy(mode, flags, &nodes);
1506 }
1507 
1508 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1509 		unsigned long, maxnode)
1510 {
1511 	return kernel_set_mempolicy(mode, nmask, maxnode);
1512 }
1513 
1514 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1515 				const unsigned long __user *old_nodes,
1516 				const unsigned long __user *new_nodes)
1517 {
1518 	struct mm_struct *mm = NULL;
1519 	struct task_struct *task;
1520 	nodemask_t task_nodes;
1521 	int err;
1522 	nodemask_t *old;
1523 	nodemask_t *new;
1524 	NODEMASK_SCRATCH(scratch);
1525 
1526 	if (!scratch)
1527 		return -ENOMEM;
1528 
1529 	old = &scratch->mask1;
1530 	new = &scratch->mask2;
1531 
1532 	err = get_nodes(old, old_nodes, maxnode);
1533 	if (err)
1534 		goto out;
1535 
1536 	err = get_nodes(new, new_nodes, maxnode);
1537 	if (err)
1538 		goto out;
1539 
1540 	/* Find the mm_struct */
1541 	rcu_read_lock();
1542 	task = pid ? find_task_by_vpid(pid) : current;
1543 	if (!task) {
1544 		rcu_read_unlock();
1545 		err = -ESRCH;
1546 		goto out;
1547 	}
1548 	get_task_struct(task);
1549 
1550 	err = -EINVAL;
1551 
1552 	/*
1553 	 * Check if this process has the right to modify the specified process.
1554 	 * Use the regular "ptrace_may_access()" checks.
1555 	 */
1556 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1557 		rcu_read_unlock();
1558 		err = -EPERM;
1559 		goto out_put;
1560 	}
1561 	rcu_read_unlock();
1562 
1563 	task_nodes = cpuset_mems_allowed(task);
1564 	/* Is the user allowed to access the target nodes? */
1565 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1566 		err = -EPERM;
1567 		goto out_put;
1568 	}
1569 
1570 	task_nodes = cpuset_mems_allowed(current);
1571 	nodes_and(*new, *new, task_nodes);
1572 	if (nodes_empty(*new))
1573 		goto out_put;
1574 
1575 	err = security_task_movememory(task);
1576 	if (err)
1577 		goto out_put;
1578 
1579 	mm = get_task_mm(task);
1580 	put_task_struct(task);
1581 
1582 	if (!mm) {
1583 		err = -EINVAL;
1584 		goto out;
1585 	}
1586 
1587 	err = do_migrate_pages(mm, old, new,
1588 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1589 
1590 	mmput(mm);
1591 out:
1592 	NODEMASK_SCRATCH_FREE(scratch);
1593 
1594 	return err;
1595 
1596 out_put:
1597 	put_task_struct(task);
1598 	goto out;
1599 
1600 }
1601 
1602 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1603 		const unsigned long __user *, old_nodes,
1604 		const unsigned long __user *, new_nodes)
1605 {
1606 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1607 }
1608 
1609 
1610 /* Retrieve NUMA policy */
1611 static int kernel_get_mempolicy(int __user *policy,
1612 				unsigned long __user *nmask,
1613 				unsigned long maxnode,
1614 				unsigned long addr,
1615 				unsigned long flags)
1616 {
1617 	int err;
1618 	int pval;
1619 	nodemask_t nodes;
1620 
1621 	if (nmask != NULL && maxnode < nr_node_ids)
1622 		return -EINVAL;
1623 
1624 	addr = untagged_addr(addr);
1625 
1626 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1627 
1628 	if (err)
1629 		return err;
1630 
1631 	if (policy && put_user(pval, policy))
1632 		return -EFAULT;
1633 
1634 	if (nmask)
1635 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1636 
1637 	return err;
1638 }
1639 
1640 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641 		unsigned long __user *, nmask, unsigned long, maxnode,
1642 		unsigned long, addr, unsigned long, flags)
1643 {
1644 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1645 }
1646 
1647 #ifdef CONFIG_COMPAT
1648 
1649 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1650 		       compat_ulong_t __user *, nmask,
1651 		       compat_ulong_t, maxnode,
1652 		       compat_ulong_t, addr, compat_ulong_t, flags)
1653 {
1654 	long err;
1655 	unsigned long __user *nm = NULL;
1656 	unsigned long nr_bits, alloc_size;
1657 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1658 
1659 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1660 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1661 
1662 	if (nmask)
1663 		nm = compat_alloc_user_space(alloc_size);
1664 
1665 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1666 
1667 	if (!err && nmask) {
1668 		unsigned long copy_size;
1669 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1670 		err = copy_from_user(bm, nm, copy_size);
1671 		/* ensure entire bitmap is zeroed */
1672 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1673 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1680 		       compat_ulong_t, maxnode)
1681 {
1682 	unsigned long __user *nm = NULL;
1683 	unsigned long nr_bits, alloc_size;
1684 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1685 
1686 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1687 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1688 
1689 	if (nmask) {
1690 		if (compat_get_bitmap(bm, nmask, nr_bits))
1691 			return -EFAULT;
1692 		nm = compat_alloc_user_space(alloc_size);
1693 		if (copy_to_user(nm, bm, alloc_size))
1694 			return -EFAULT;
1695 	}
1696 
1697 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1698 }
1699 
1700 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1701 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1702 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1703 {
1704 	unsigned long __user *nm = NULL;
1705 	unsigned long nr_bits, alloc_size;
1706 	nodemask_t bm;
1707 
1708 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1709 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1710 
1711 	if (nmask) {
1712 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1713 			return -EFAULT;
1714 		nm = compat_alloc_user_space(alloc_size);
1715 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1716 			return -EFAULT;
1717 	}
1718 
1719 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1720 }
1721 
1722 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1723 		       compat_ulong_t, maxnode,
1724 		       const compat_ulong_t __user *, old_nodes,
1725 		       const compat_ulong_t __user *, new_nodes)
1726 {
1727 	unsigned long __user *old = NULL;
1728 	unsigned long __user *new = NULL;
1729 	nodemask_t tmp_mask;
1730 	unsigned long nr_bits;
1731 	unsigned long size;
1732 
1733 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1734 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1735 	if (old_nodes) {
1736 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1737 			return -EFAULT;
1738 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1739 		if (new_nodes)
1740 			new = old + size / sizeof(unsigned long);
1741 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1742 			return -EFAULT;
1743 	}
1744 	if (new_nodes) {
1745 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1746 			return -EFAULT;
1747 		if (new == NULL)
1748 			new = compat_alloc_user_space(size);
1749 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1750 			return -EFAULT;
1751 	}
1752 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1753 }
1754 
1755 #endif /* CONFIG_COMPAT */
1756 
1757 bool vma_migratable(struct vm_area_struct *vma)
1758 {
1759 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1760 		return false;
1761 
1762 	/*
1763 	 * DAX device mappings require predictable access latency, so avoid
1764 	 * incurring periodic faults.
1765 	 */
1766 	if (vma_is_dax(vma))
1767 		return false;
1768 
1769 	if (is_vm_hugetlb_page(vma) &&
1770 		!hugepage_migration_supported(hstate_vma(vma)))
1771 		return false;
1772 
1773 	/*
1774 	 * Migration allocates pages in the highest zone. If we cannot
1775 	 * do so then migration (at least from node to node) is not
1776 	 * possible.
1777 	 */
1778 	if (vma->vm_file &&
1779 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1780 			< policy_zone)
1781 		return false;
1782 	return true;
1783 }
1784 
1785 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1786 						unsigned long addr)
1787 {
1788 	struct mempolicy *pol = NULL;
1789 
1790 	if (vma) {
1791 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1792 			pol = vma->vm_ops->get_policy(vma, addr);
1793 		} else if (vma->vm_policy) {
1794 			pol = vma->vm_policy;
1795 
1796 			/*
1797 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1798 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1799 			 * count on these policies which will be dropped by
1800 			 * mpol_cond_put() later
1801 			 */
1802 			if (mpol_needs_cond_ref(pol))
1803 				mpol_get(pol);
1804 		}
1805 	}
1806 
1807 	return pol;
1808 }
1809 
1810 /*
1811  * get_vma_policy(@vma, @addr)
1812  * @vma: virtual memory area whose policy is sought
1813  * @addr: address in @vma for shared policy lookup
1814  *
1815  * Returns effective policy for a VMA at specified address.
1816  * Falls back to current->mempolicy or system default policy, as necessary.
1817  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818  * count--added by the get_policy() vm_op, as appropriate--to protect against
1819  * freeing by another task.  It is the caller's responsibility to free the
1820  * extra reference for shared policies.
1821  */
1822 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 						unsigned long addr)
1824 {
1825 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1826 
1827 	if (!pol)
1828 		pol = get_task_policy(current);
1829 
1830 	return pol;
1831 }
1832 
1833 bool vma_policy_mof(struct vm_area_struct *vma)
1834 {
1835 	struct mempolicy *pol;
1836 
1837 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1838 		bool ret = false;
1839 
1840 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1841 		if (pol && (pol->flags & MPOL_F_MOF))
1842 			ret = true;
1843 		mpol_cond_put(pol);
1844 
1845 		return ret;
1846 	}
1847 
1848 	pol = vma->vm_policy;
1849 	if (!pol)
1850 		pol = get_task_policy(current);
1851 
1852 	return pol->flags & MPOL_F_MOF;
1853 }
1854 
1855 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1856 {
1857 	enum zone_type dynamic_policy_zone = policy_zone;
1858 
1859 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1860 
1861 	/*
1862 	 * if policy->v.nodes has movable memory only,
1863 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1864 	 *
1865 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1866 	 * so if the following test faile, it implies
1867 	 * policy->v.nodes has movable memory only.
1868 	 */
1869 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1870 		dynamic_policy_zone = ZONE_MOVABLE;
1871 
1872 	return zone >= dynamic_policy_zone;
1873 }
1874 
1875 /*
1876  * Return a nodemask representing a mempolicy for filtering nodes for
1877  * page allocation
1878  */
1879 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1880 {
1881 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1882 	if (unlikely(policy->mode == MPOL_BIND) &&
1883 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1884 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1885 		return &policy->v.nodes;
1886 
1887 	return NULL;
1888 }
1889 
1890 /* Return the node id preferred by the given mempolicy, or the given id */
1891 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1892 {
1893 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1894 		nd = policy->v.preferred_node;
1895 	else {
1896 		/*
1897 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1898 		 * because we might easily break the expectation to stay on the
1899 		 * requested node and not break the policy.
1900 		 */
1901 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1902 	}
1903 
1904 	return nd;
1905 }
1906 
1907 /* Do dynamic interleaving for a process */
1908 static unsigned interleave_nodes(struct mempolicy *policy)
1909 {
1910 	unsigned next;
1911 	struct task_struct *me = current;
1912 
1913 	next = next_node_in(me->il_prev, policy->v.nodes);
1914 	if (next < MAX_NUMNODES)
1915 		me->il_prev = next;
1916 	return next;
1917 }
1918 
1919 /*
1920  * Depending on the memory policy provide a node from which to allocate the
1921  * next slab entry.
1922  */
1923 unsigned int mempolicy_slab_node(void)
1924 {
1925 	struct mempolicy *policy;
1926 	int node = numa_mem_id();
1927 
1928 	if (in_interrupt())
1929 		return node;
1930 
1931 	policy = current->mempolicy;
1932 	if (!policy || policy->flags & MPOL_F_LOCAL)
1933 		return node;
1934 
1935 	switch (policy->mode) {
1936 	case MPOL_PREFERRED:
1937 		/*
1938 		 * handled MPOL_F_LOCAL above
1939 		 */
1940 		return policy->v.preferred_node;
1941 
1942 	case MPOL_INTERLEAVE:
1943 		return interleave_nodes(policy);
1944 
1945 	case MPOL_BIND: {
1946 		struct zoneref *z;
1947 
1948 		/*
1949 		 * Follow bind policy behavior and start allocation at the
1950 		 * first node.
1951 		 */
1952 		struct zonelist *zonelist;
1953 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1954 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1955 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1956 							&policy->v.nodes);
1957 		return z->zone ? zone_to_nid(z->zone) : node;
1958 	}
1959 
1960 	default:
1961 		BUG();
1962 	}
1963 }
1964 
1965 /*
1966  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1967  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1968  * number of present nodes.
1969  */
1970 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1971 {
1972 	unsigned nnodes = nodes_weight(pol->v.nodes);
1973 	unsigned target;
1974 	int i;
1975 	int nid;
1976 
1977 	if (!nnodes)
1978 		return numa_node_id();
1979 	target = (unsigned int)n % nnodes;
1980 	nid = first_node(pol->v.nodes);
1981 	for (i = 0; i < target; i++)
1982 		nid = next_node(nid, pol->v.nodes);
1983 	return nid;
1984 }
1985 
1986 /* Determine a node number for interleave */
1987 static inline unsigned interleave_nid(struct mempolicy *pol,
1988 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1989 {
1990 	if (vma) {
1991 		unsigned long off;
1992 
1993 		/*
1994 		 * for small pages, there is no difference between
1995 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1996 		 * for huge pages, since vm_pgoff is in units of small
1997 		 * pages, we need to shift off the always 0 bits to get
1998 		 * a useful offset.
1999 		 */
2000 		BUG_ON(shift < PAGE_SHIFT);
2001 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2002 		off += (addr - vma->vm_start) >> shift;
2003 		return offset_il_node(pol, off);
2004 	} else
2005 		return interleave_nodes(pol);
2006 }
2007 
2008 #ifdef CONFIG_HUGETLBFS
2009 /*
2010  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2011  * @vma: virtual memory area whose policy is sought
2012  * @addr: address in @vma for shared policy lookup and interleave policy
2013  * @gfp_flags: for requested zone
2014  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2015  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2016  *
2017  * Returns a nid suitable for a huge page allocation and a pointer
2018  * to the struct mempolicy for conditional unref after allocation.
2019  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2020  * @nodemask for filtering the zonelist.
2021  *
2022  * Must be protected by read_mems_allowed_begin()
2023  */
2024 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2025 				struct mempolicy **mpol, nodemask_t **nodemask)
2026 {
2027 	int nid;
2028 
2029 	*mpol = get_vma_policy(vma, addr);
2030 	*nodemask = NULL;	/* assume !MPOL_BIND */
2031 
2032 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2033 		nid = interleave_nid(*mpol, vma, addr,
2034 					huge_page_shift(hstate_vma(vma)));
2035 	} else {
2036 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2037 		if ((*mpol)->mode == MPOL_BIND)
2038 			*nodemask = &(*mpol)->v.nodes;
2039 	}
2040 	return nid;
2041 }
2042 
2043 /*
2044  * init_nodemask_of_mempolicy
2045  *
2046  * If the current task's mempolicy is "default" [NULL], return 'false'
2047  * to indicate default policy.  Otherwise, extract the policy nodemask
2048  * for 'bind' or 'interleave' policy into the argument nodemask, or
2049  * initialize the argument nodemask to contain the single node for
2050  * 'preferred' or 'local' policy and return 'true' to indicate presence
2051  * of non-default mempolicy.
2052  *
2053  * We don't bother with reference counting the mempolicy [mpol_get/put]
2054  * because the current task is examining it's own mempolicy and a task's
2055  * mempolicy is only ever changed by the task itself.
2056  *
2057  * N.B., it is the caller's responsibility to free a returned nodemask.
2058  */
2059 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2060 {
2061 	struct mempolicy *mempolicy;
2062 	int nid;
2063 
2064 	if (!(mask && current->mempolicy))
2065 		return false;
2066 
2067 	task_lock(current);
2068 	mempolicy = current->mempolicy;
2069 	switch (mempolicy->mode) {
2070 	case MPOL_PREFERRED:
2071 		if (mempolicy->flags & MPOL_F_LOCAL)
2072 			nid = numa_node_id();
2073 		else
2074 			nid = mempolicy->v.preferred_node;
2075 		init_nodemask_of_node(mask, nid);
2076 		break;
2077 
2078 	case MPOL_BIND:
2079 	case MPOL_INTERLEAVE:
2080 		*mask =  mempolicy->v.nodes;
2081 		break;
2082 
2083 	default:
2084 		BUG();
2085 	}
2086 	task_unlock(current);
2087 
2088 	return true;
2089 }
2090 #endif
2091 
2092 /*
2093  * mempolicy_nodemask_intersects
2094  *
2095  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2096  * policy.  Otherwise, check for intersection between mask and the policy
2097  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2098  * policy, always return true since it may allocate elsewhere on fallback.
2099  *
2100  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2101  */
2102 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2103 					const nodemask_t *mask)
2104 {
2105 	struct mempolicy *mempolicy;
2106 	bool ret = true;
2107 
2108 	if (!mask)
2109 		return ret;
2110 	task_lock(tsk);
2111 	mempolicy = tsk->mempolicy;
2112 	if (!mempolicy)
2113 		goto out;
2114 
2115 	switch (mempolicy->mode) {
2116 	case MPOL_PREFERRED:
2117 		/*
2118 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2119 		 * allocate from, they may fallback to other nodes when oom.
2120 		 * Thus, it's possible for tsk to have allocated memory from
2121 		 * nodes in mask.
2122 		 */
2123 		break;
2124 	case MPOL_BIND:
2125 	case MPOL_INTERLEAVE:
2126 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2127 		break;
2128 	default:
2129 		BUG();
2130 	}
2131 out:
2132 	task_unlock(tsk);
2133 	return ret;
2134 }
2135 
2136 /* Allocate a page in interleaved policy.
2137    Own path because it needs to do special accounting. */
2138 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2139 					unsigned nid)
2140 {
2141 	struct page *page;
2142 
2143 	page = __alloc_pages(gfp, order, nid);
2144 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2145 	if (!static_branch_likely(&vm_numa_stat_key))
2146 		return page;
2147 	if (page && page_to_nid(page) == nid) {
2148 		preempt_disable();
2149 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2150 		preempt_enable();
2151 	}
2152 	return page;
2153 }
2154 
2155 /**
2156  * 	alloc_pages_vma	- Allocate a page for a VMA.
2157  *
2158  * 	@gfp:
2159  *      %GFP_USER    user allocation.
2160  *      %GFP_KERNEL  kernel allocations,
2161  *      %GFP_HIGHMEM highmem/user allocations,
2162  *      %GFP_FS      allocation should not call back into a file system.
2163  *      %GFP_ATOMIC  don't sleep.
2164  *
2165  *	@order:Order of the GFP allocation.
2166  * 	@vma:  Pointer to VMA or NULL if not available.
2167  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2168  *	@node: Which node to prefer for allocation (modulo policy).
2169  *	@hugepage: for hugepages try only the preferred node if possible
2170  *
2171  * 	This function allocates a page from the kernel page pool and applies
2172  *	a NUMA policy associated with the VMA or the current process.
2173  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2174  *	mm_struct of the VMA to prevent it from going away. Should be used for
2175  *	all allocations for pages that will be mapped into user space. Returns
2176  *	NULL when no page can be allocated.
2177  */
2178 struct page *
2179 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2180 		unsigned long addr, int node, bool hugepage)
2181 {
2182 	struct mempolicy *pol;
2183 	struct page *page;
2184 	int preferred_nid;
2185 	nodemask_t *nmask;
2186 
2187 	pol = get_vma_policy(vma, addr);
2188 
2189 	if (pol->mode == MPOL_INTERLEAVE) {
2190 		unsigned nid;
2191 
2192 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2193 		mpol_cond_put(pol);
2194 		page = alloc_page_interleave(gfp, order, nid);
2195 		goto out;
2196 	}
2197 
2198 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2199 		int hpage_node = node;
2200 
2201 		/*
2202 		 * For hugepage allocation and non-interleave policy which
2203 		 * allows the current node (or other explicitly preferred
2204 		 * node) we only try to allocate from the current/preferred
2205 		 * node and don't fall back to other nodes, as the cost of
2206 		 * remote accesses would likely offset THP benefits.
2207 		 *
2208 		 * If the policy is interleave, or does not allow the current
2209 		 * node in its nodemask, we allocate the standard way.
2210 		 */
2211 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2212 			hpage_node = pol->v.preferred_node;
2213 
2214 		nmask = policy_nodemask(gfp, pol);
2215 		if (!nmask || node_isset(hpage_node, *nmask)) {
2216 			mpol_cond_put(pol);
2217 			/*
2218 			 * First, try to allocate THP only on local node, but
2219 			 * don't reclaim unnecessarily, just compact.
2220 			 */
2221 			page = __alloc_pages_node(hpage_node,
2222 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2223 
2224 			/*
2225 			 * If hugepage allocations are configured to always
2226 			 * synchronous compact or the vma has been madvised
2227 			 * to prefer hugepage backing, retry allowing remote
2228 			 * memory with both reclaim and compact as well.
2229 			 */
2230 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2231 				page = __alloc_pages_node(hpage_node,
2232 								gfp, order);
2233 
2234 			goto out;
2235 		}
2236 	}
2237 
2238 	nmask = policy_nodemask(gfp, pol);
2239 	preferred_nid = policy_node(gfp, pol, node);
2240 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2241 	mpol_cond_put(pol);
2242 out:
2243 	return page;
2244 }
2245 EXPORT_SYMBOL(alloc_pages_vma);
2246 
2247 /**
2248  * 	alloc_pages_current - Allocate pages.
2249  *
2250  *	@gfp:
2251  *		%GFP_USER   user allocation,
2252  *      	%GFP_KERNEL kernel allocation,
2253  *      	%GFP_HIGHMEM highmem allocation,
2254  *      	%GFP_FS     don't call back into a file system.
2255  *      	%GFP_ATOMIC don't sleep.
2256  *	@order: Power of two of allocation size in pages. 0 is a single page.
2257  *
2258  *	Allocate a page from the kernel page pool.  When not in
2259  *	interrupt context and apply the current process NUMA policy.
2260  *	Returns NULL when no page can be allocated.
2261  */
2262 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2263 {
2264 	struct mempolicy *pol = &default_policy;
2265 	struct page *page;
2266 
2267 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2268 		pol = get_task_policy(current);
2269 
2270 	/*
2271 	 * No reference counting needed for current->mempolicy
2272 	 * nor system default_policy
2273 	 */
2274 	if (pol->mode == MPOL_INTERLEAVE)
2275 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2276 	else
2277 		page = __alloc_pages_nodemask(gfp, order,
2278 				policy_node(gfp, pol, numa_node_id()),
2279 				policy_nodemask(gfp, pol));
2280 
2281 	return page;
2282 }
2283 EXPORT_SYMBOL(alloc_pages_current);
2284 
2285 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2286 {
2287 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2288 
2289 	if (IS_ERR(pol))
2290 		return PTR_ERR(pol);
2291 	dst->vm_policy = pol;
2292 	return 0;
2293 }
2294 
2295 /*
2296  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2297  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2298  * with the mems_allowed returned by cpuset_mems_allowed().  This
2299  * keeps mempolicies cpuset relative after its cpuset moves.  See
2300  * further kernel/cpuset.c update_nodemask().
2301  *
2302  * current's mempolicy may be rebinded by the other task(the task that changes
2303  * cpuset's mems), so we needn't do rebind work for current task.
2304  */
2305 
2306 /* Slow path of a mempolicy duplicate */
2307 struct mempolicy *__mpol_dup(struct mempolicy *old)
2308 {
2309 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2310 
2311 	if (!new)
2312 		return ERR_PTR(-ENOMEM);
2313 
2314 	/* task's mempolicy is protected by alloc_lock */
2315 	if (old == current->mempolicy) {
2316 		task_lock(current);
2317 		*new = *old;
2318 		task_unlock(current);
2319 	} else
2320 		*new = *old;
2321 
2322 	if (current_cpuset_is_being_rebound()) {
2323 		nodemask_t mems = cpuset_mems_allowed(current);
2324 		mpol_rebind_policy(new, &mems);
2325 	}
2326 	atomic_set(&new->refcnt, 1);
2327 	return new;
2328 }
2329 
2330 /* Slow path of a mempolicy comparison */
2331 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2332 {
2333 	if (!a || !b)
2334 		return false;
2335 	if (a->mode != b->mode)
2336 		return false;
2337 	if (a->flags != b->flags)
2338 		return false;
2339 	if (mpol_store_user_nodemask(a))
2340 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2341 			return false;
2342 
2343 	switch (a->mode) {
2344 	case MPOL_BIND:
2345 	case MPOL_INTERLEAVE:
2346 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2347 	case MPOL_PREFERRED:
2348 		/* a's ->flags is the same as b's */
2349 		if (a->flags & MPOL_F_LOCAL)
2350 			return true;
2351 		return a->v.preferred_node == b->v.preferred_node;
2352 	default:
2353 		BUG();
2354 		return false;
2355 	}
2356 }
2357 
2358 /*
2359  * Shared memory backing store policy support.
2360  *
2361  * Remember policies even when nobody has shared memory mapped.
2362  * The policies are kept in Red-Black tree linked from the inode.
2363  * They are protected by the sp->lock rwlock, which should be held
2364  * for any accesses to the tree.
2365  */
2366 
2367 /*
2368  * lookup first element intersecting start-end.  Caller holds sp->lock for
2369  * reading or for writing
2370  */
2371 static struct sp_node *
2372 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2373 {
2374 	struct rb_node *n = sp->root.rb_node;
2375 
2376 	while (n) {
2377 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2378 
2379 		if (start >= p->end)
2380 			n = n->rb_right;
2381 		else if (end <= p->start)
2382 			n = n->rb_left;
2383 		else
2384 			break;
2385 	}
2386 	if (!n)
2387 		return NULL;
2388 	for (;;) {
2389 		struct sp_node *w = NULL;
2390 		struct rb_node *prev = rb_prev(n);
2391 		if (!prev)
2392 			break;
2393 		w = rb_entry(prev, struct sp_node, nd);
2394 		if (w->end <= start)
2395 			break;
2396 		n = prev;
2397 	}
2398 	return rb_entry(n, struct sp_node, nd);
2399 }
2400 
2401 /*
2402  * Insert a new shared policy into the list.  Caller holds sp->lock for
2403  * writing.
2404  */
2405 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2406 {
2407 	struct rb_node **p = &sp->root.rb_node;
2408 	struct rb_node *parent = NULL;
2409 	struct sp_node *nd;
2410 
2411 	while (*p) {
2412 		parent = *p;
2413 		nd = rb_entry(parent, struct sp_node, nd);
2414 		if (new->start < nd->start)
2415 			p = &(*p)->rb_left;
2416 		else if (new->end > nd->end)
2417 			p = &(*p)->rb_right;
2418 		else
2419 			BUG();
2420 	}
2421 	rb_link_node(&new->nd, parent, p);
2422 	rb_insert_color(&new->nd, &sp->root);
2423 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2424 		 new->policy ? new->policy->mode : 0);
2425 }
2426 
2427 /* Find shared policy intersecting idx */
2428 struct mempolicy *
2429 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2430 {
2431 	struct mempolicy *pol = NULL;
2432 	struct sp_node *sn;
2433 
2434 	if (!sp->root.rb_node)
2435 		return NULL;
2436 	read_lock(&sp->lock);
2437 	sn = sp_lookup(sp, idx, idx+1);
2438 	if (sn) {
2439 		mpol_get(sn->policy);
2440 		pol = sn->policy;
2441 	}
2442 	read_unlock(&sp->lock);
2443 	return pol;
2444 }
2445 
2446 static void sp_free(struct sp_node *n)
2447 {
2448 	mpol_put(n->policy);
2449 	kmem_cache_free(sn_cache, n);
2450 }
2451 
2452 /**
2453  * mpol_misplaced - check whether current page node is valid in policy
2454  *
2455  * @page: page to be checked
2456  * @vma: vm area where page mapped
2457  * @addr: virtual address where page mapped
2458  *
2459  * Lookup current policy node id for vma,addr and "compare to" page's
2460  * node id.
2461  *
2462  * Returns:
2463  *	-1	- not misplaced, page is in the right node
2464  *	node	- node id where the page should be
2465  *
2466  * Policy determination "mimics" alloc_page_vma().
2467  * Called from fault path where we know the vma and faulting address.
2468  */
2469 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2470 {
2471 	struct mempolicy *pol;
2472 	struct zoneref *z;
2473 	int curnid = page_to_nid(page);
2474 	unsigned long pgoff;
2475 	int thiscpu = raw_smp_processor_id();
2476 	int thisnid = cpu_to_node(thiscpu);
2477 	int polnid = NUMA_NO_NODE;
2478 	int ret = -1;
2479 
2480 	pol = get_vma_policy(vma, addr);
2481 	if (!(pol->flags & MPOL_F_MOF))
2482 		goto out;
2483 
2484 	switch (pol->mode) {
2485 	case MPOL_INTERLEAVE:
2486 		pgoff = vma->vm_pgoff;
2487 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2488 		polnid = offset_il_node(pol, pgoff);
2489 		break;
2490 
2491 	case MPOL_PREFERRED:
2492 		if (pol->flags & MPOL_F_LOCAL)
2493 			polnid = numa_node_id();
2494 		else
2495 			polnid = pol->v.preferred_node;
2496 		break;
2497 
2498 	case MPOL_BIND:
2499 		/* Optimize placement among multiple nodes via NUMA balancing */
2500 		if (pol->flags & MPOL_F_MORON) {
2501 			if (node_isset(thisnid, pol->v.nodes))
2502 				break;
2503 			goto out;
2504 		}
2505 
2506 		/*
2507 		 * allows binding to multiple nodes.
2508 		 * use current page if in policy nodemask,
2509 		 * else select nearest allowed node, if any.
2510 		 * If no allowed nodes, use current [!misplaced].
2511 		 */
2512 		if (node_isset(curnid, pol->v.nodes))
2513 			goto out;
2514 		z = first_zones_zonelist(
2515 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2516 				gfp_zone(GFP_HIGHUSER),
2517 				&pol->v.nodes);
2518 		polnid = zone_to_nid(z->zone);
2519 		break;
2520 
2521 	default:
2522 		BUG();
2523 	}
2524 
2525 	/* Migrate the page towards the node whose CPU is referencing it */
2526 	if (pol->flags & MPOL_F_MORON) {
2527 		polnid = thisnid;
2528 
2529 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2530 			goto out;
2531 	}
2532 
2533 	if (curnid != polnid)
2534 		ret = polnid;
2535 out:
2536 	mpol_cond_put(pol);
2537 
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2543  * dropped after task->mempolicy is set to NULL so that any allocation done as
2544  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2545  * policy.
2546  */
2547 void mpol_put_task_policy(struct task_struct *task)
2548 {
2549 	struct mempolicy *pol;
2550 
2551 	task_lock(task);
2552 	pol = task->mempolicy;
2553 	task->mempolicy = NULL;
2554 	task_unlock(task);
2555 	mpol_put(pol);
2556 }
2557 
2558 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2559 {
2560 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2561 	rb_erase(&n->nd, &sp->root);
2562 	sp_free(n);
2563 }
2564 
2565 static void sp_node_init(struct sp_node *node, unsigned long start,
2566 			unsigned long end, struct mempolicy *pol)
2567 {
2568 	node->start = start;
2569 	node->end = end;
2570 	node->policy = pol;
2571 }
2572 
2573 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2574 				struct mempolicy *pol)
2575 {
2576 	struct sp_node *n;
2577 	struct mempolicy *newpol;
2578 
2579 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2580 	if (!n)
2581 		return NULL;
2582 
2583 	newpol = mpol_dup(pol);
2584 	if (IS_ERR(newpol)) {
2585 		kmem_cache_free(sn_cache, n);
2586 		return NULL;
2587 	}
2588 	newpol->flags |= MPOL_F_SHARED;
2589 	sp_node_init(n, start, end, newpol);
2590 
2591 	return n;
2592 }
2593 
2594 /* Replace a policy range. */
2595 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2596 				 unsigned long end, struct sp_node *new)
2597 {
2598 	struct sp_node *n;
2599 	struct sp_node *n_new = NULL;
2600 	struct mempolicy *mpol_new = NULL;
2601 	int ret = 0;
2602 
2603 restart:
2604 	write_lock(&sp->lock);
2605 	n = sp_lookup(sp, start, end);
2606 	/* Take care of old policies in the same range. */
2607 	while (n && n->start < end) {
2608 		struct rb_node *next = rb_next(&n->nd);
2609 		if (n->start >= start) {
2610 			if (n->end <= end)
2611 				sp_delete(sp, n);
2612 			else
2613 				n->start = end;
2614 		} else {
2615 			/* Old policy spanning whole new range. */
2616 			if (n->end > end) {
2617 				if (!n_new)
2618 					goto alloc_new;
2619 
2620 				*mpol_new = *n->policy;
2621 				atomic_set(&mpol_new->refcnt, 1);
2622 				sp_node_init(n_new, end, n->end, mpol_new);
2623 				n->end = start;
2624 				sp_insert(sp, n_new);
2625 				n_new = NULL;
2626 				mpol_new = NULL;
2627 				break;
2628 			} else
2629 				n->end = start;
2630 		}
2631 		if (!next)
2632 			break;
2633 		n = rb_entry(next, struct sp_node, nd);
2634 	}
2635 	if (new)
2636 		sp_insert(sp, new);
2637 	write_unlock(&sp->lock);
2638 	ret = 0;
2639 
2640 err_out:
2641 	if (mpol_new)
2642 		mpol_put(mpol_new);
2643 	if (n_new)
2644 		kmem_cache_free(sn_cache, n_new);
2645 
2646 	return ret;
2647 
2648 alloc_new:
2649 	write_unlock(&sp->lock);
2650 	ret = -ENOMEM;
2651 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2652 	if (!n_new)
2653 		goto err_out;
2654 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2655 	if (!mpol_new)
2656 		goto err_out;
2657 	goto restart;
2658 }
2659 
2660 /**
2661  * mpol_shared_policy_init - initialize shared policy for inode
2662  * @sp: pointer to inode shared policy
2663  * @mpol:  struct mempolicy to install
2664  *
2665  * Install non-NULL @mpol in inode's shared policy rb-tree.
2666  * On entry, the current task has a reference on a non-NULL @mpol.
2667  * This must be released on exit.
2668  * This is called at get_inode() calls and we can use GFP_KERNEL.
2669  */
2670 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2671 {
2672 	int ret;
2673 
2674 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2675 	rwlock_init(&sp->lock);
2676 
2677 	if (mpol) {
2678 		struct vm_area_struct pvma;
2679 		struct mempolicy *new;
2680 		NODEMASK_SCRATCH(scratch);
2681 
2682 		if (!scratch)
2683 			goto put_mpol;
2684 		/* contextualize the tmpfs mount point mempolicy */
2685 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2686 		if (IS_ERR(new))
2687 			goto free_scratch; /* no valid nodemask intersection */
2688 
2689 		task_lock(current);
2690 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2691 		task_unlock(current);
2692 		if (ret)
2693 			goto put_new;
2694 
2695 		/* Create pseudo-vma that contains just the policy */
2696 		vma_init(&pvma, NULL);
2697 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2698 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2699 
2700 put_new:
2701 		mpol_put(new);			/* drop initial ref */
2702 free_scratch:
2703 		NODEMASK_SCRATCH_FREE(scratch);
2704 put_mpol:
2705 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2706 	}
2707 }
2708 
2709 int mpol_set_shared_policy(struct shared_policy *info,
2710 			struct vm_area_struct *vma, struct mempolicy *npol)
2711 {
2712 	int err;
2713 	struct sp_node *new = NULL;
2714 	unsigned long sz = vma_pages(vma);
2715 
2716 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2717 		 vma->vm_pgoff,
2718 		 sz, npol ? npol->mode : -1,
2719 		 npol ? npol->flags : -1,
2720 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2721 
2722 	if (npol) {
2723 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2724 		if (!new)
2725 			return -ENOMEM;
2726 	}
2727 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2728 	if (err && new)
2729 		sp_free(new);
2730 	return err;
2731 }
2732 
2733 /* Free a backing policy store on inode delete. */
2734 void mpol_free_shared_policy(struct shared_policy *p)
2735 {
2736 	struct sp_node *n;
2737 	struct rb_node *next;
2738 
2739 	if (!p->root.rb_node)
2740 		return;
2741 	write_lock(&p->lock);
2742 	next = rb_first(&p->root);
2743 	while (next) {
2744 		n = rb_entry(next, struct sp_node, nd);
2745 		next = rb_next(&n->nd);
2746 		sp_delete(p, n);
2747 	}
2748 	write_unlock(&p->lock);
2749 }
2750 
2751 #ifdef CONFIG_NUMA_BALANCING
2752 static int __initdata numabalancing_override;
2753 
2754 static void __init check_numabalancing_enable(void)
2755 {
2756 	bool numabalancing_default = false;
2757 
2758 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2759 		numabalancing_default = true;
2760 
2761 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2762 	if (numabalancing_override)
2763 		set_numabalancing_state(numabalancing_override == 1);
2764 
2765 	if (num_online_nodes() > 1 && !numabalancing_override) {
2766 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2767 			numabalancing_default ? "Enabling" : "Disabling");
2768 		set_numabalancing_state(numabalancing_default);
2769 	}
2770 }
2771 
2772 static int __init setup_numabalancing(char *str)
2773 {
2774 	int ret = 0;
2775 	if (!str)
2776 		goto out;
2777 
2778 	if (!strcmp(str, "enable")) {
2779 		numabalancing_override = 1;
2780 		ret = 1;
2781 	} else if (!strcmp(str, "disable")) {
2782 		numabalancing_override = -1;
2783 		ret = 1;
2784 	}
2785 out:
2786 	if (!ret)
2787 		pr_warn("Unable to parse numa_balancing=\n");
2788 
2789 	return ret;
2790 }
2791 __setup("numa_balancing=", setup_numabalancing);
2792 #else
2793 static inline void __init check_numabalancing_enable(void)
2794 {
2795 }
2796 #endif /* CONFIG_NUMA_BALANCING */
2797 
2798 /* assumes fs == KERNEL_DS */
2799 void __init numa_policy_init(void)
2800 {
2801 	nodemask_t interleave_nodes;
2802 	unsigned long largest = 0;
2803 	int nid, prefer = 0;
2804 
2805 	policy_cache = kmem_cache_create("numa_policy",
2806 					 sizeof(struct mempolicy),
2807 					 0, SLAB_PANIC, NULL);
2808 
2809 	sn_cache = kmem_cache_create("shared_policy_node",
2810 				     sizeof(struct sp_node),
2811 				     0, SLAB_PANIC, NULL);
2812 
2813 	for_each_node(nid) {
2814 		preferred_node_policy[nid] = (struct mempolicy) {
2815 			.refcnt = ATOMIC_INIT(1),
2816 			.mode = MPOL_PREFERRED,
2817 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2818 			.v = { .preferred_node = nid, },
2819 		};
2820 	}
2821 
2822 	/*
2823 	 * Set interleaving policy for system init. Interleaving is only
2824 	 * enabled across suitably sized nodes (default is >= 16MB), or
2825 	 * fall back to the largest node if they're all smaller.
2826 	 */
2827 	nodes_clear(interleave_nodes);
2828 	for_each_node_state(nid, N_MEMORY) {
2829 		unsigned long total_pages = node_present_pages(nid);
2830 
2831 		/* Preserve the largest node */
2832 		if (largest < total_pages) {
2833 			largest = total_pages;
2834 			prefer = nid;
2835 		}
2836 
2837 		/* Interleave this node? */
2838 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2839 			node_set(nid, interleave_nodes);
2840 	}
2841 
2842 	/* All too small, use the largest */
2843 	if (unlikely(nodes_empty(interleave_nodes)))
2844 		node_set(prefer, interleave_nodes);
2845 
2846 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2847 		pr_err("%s: interleaving failed\n", __func__);
2848 
2849 	check_numabalancing_enable();
2850 }
2851 
2852 /* Reset policy of current process to default */
2853 void numa_default_policy(void)
2854 {
2855 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2856 }
2857 
2858 /*
2859  * Parse and format mempolicy from/to strings
2860  */
2861 
2862 /*
2863  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2864  */
2865 static const char * const policy_modes[] =
2866 {
2867 	[MPOL_DEFAULT]    = "default",
2868 	[MPOL_PREFERRED]  = "prefer",
2869 	[MPOL_BIND]       = "bind",
2870 	[MPOL_INTERLEAVE] = "interleave",
2871 	[MPOL_LOCAL]      = "local",
2872 };
2873 
2874 
2875 #ifdef CONFIG_TMPFS
2876 /**
2877  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2878  * @str:  string containing mempolicy to parse
2879  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2880  *
2881  * Format of input:
2882  *	<mode>[=<flags>][:<nodelist>]
2883  *
2884  * On success, returns 0, else 1
2885  */
2886 int mpol_parse_str(char *str, struct mempolicy **mpol)
2887 {
2888 	struct mempolicy *new = NULL;
2889 	unsigned short mode_flags;
2890 	nodemask_t nodes;
2891 	char *nodelist = strchr(str, ':');
2892 	char *flags = strchr(str, '=');
2893 	int err = 1, mode;
2894 
2895 	if (flags)
2896 		*flags++ = '\0';	/* terminate mode string */
2897 
2898 	if (nodelist) {
2899 		/* NUL-terminate mode or flags string */
2900 		*nodelist++ = '\0';
2901 		if (nodelist_parse(nodelist, nodes))
2902 			goto out;
2903 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2904 			goto out;
2905 	} else
2906 		nodes_clear(nodes);
2907 
2908 	mode = match_string(policy_modes, MPOL_MAX, str);
2909 	if (mode < 0)
2910 		goto out;
2911 
2912 	switch (mode) {
2913 	case MPOL_PREFERRED:
2914 		/*
2915 		 * Insist on a nodelist of one node only, although later
2916 		 * we use first_node(nodes) to grab a single node, so here
2917 		 * nodelist (or nodes) cannot be empty.
2918 		 */
2919 		if (nodelist) {
2920 			char *rest = nodelist;
2921 			while (isdigit(*rest))
2922 				rest++;
2923 			if (*rest)
2924 				goto out;
2925 			if (nodes_empty(nodes))
2926 				goto out;
2927 		}
2928 		break;
2929 	case MPOL_INTERLEAVE:
2930 		/*
2931 		 * Default to online nodes with memory if no nodelist
2932 		 */
2933 		if (!nodelist)
2934 			nodes = node_states[N_MEMORY];
2935 		break;
2936 	case MPOL_LOCAL:
2937 		/*
2938 		 * Don't allow a nodelist;  mpol_new() checks flags
2939 		 */
2940 		if (nodelist)
2941 			goto out;
2942 		mode = MPOL_PREFERRED;
2943 		break;
2944 	case MPOL_DEFAULT:
2945 		/*
2946 		 * Insist on a empty nodelist
2947 		 */
2948 		if (!nodelist)
2949 			err = 0;
2950 		goto out;
2951 	case MPOL_BIND:
2952 		/*
2953 		 * Insist on a nodelist
2954 		 */
2955 		if (!nodelist)
2956 			goto out;
2957 	}
2958 
2959 	mode_flags = 0;
2960 	if (flags) {
2961 		/*
2962 		 * Currently, we only support two mutually exclusive
2963 		 * mode flags.
2964 		 */
2965 		if (!strcmp(flags, "static"))
2966 			mode_flags |= MPOL_F_STATIC_NODES;
2967 		else if (!strcmp(flags, "relative"))
2968 			mode_flags |= MPOL_F_RELATIVE_NODES;
2969 		else
2970 			goto out;
2971 	}
2972 
2973 	new = mpol_new(mode, mode_flags, &nodes);
2974 	if (IS_ERR(new))
2975 		goto out;
2976 
2977 	/*
2978 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2979 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2980 	 */
2981 	if (mode != MPOL_PREFERRED)
2982 		new->v.nodes = nodes;
2983 	else if (nodelist)
2984 		new->v.preferred_node = first_node(nodes);
2985 	else
2986 		new->flags |= MPOL_F_LOCAL;
2987 
2988 	/*
2989 	 * Save nodes for contextualization: this will be used to "clone"
2990 	 * the mempolicy in a specific context [cpuset] at a later time.
2991 	 */
2992 	new->w.user_nodemask = nodes;
2993 
2994 	err = 0;
2995 
2996 out:
2997 	/* Restore string for error message */
2998 	if (nodelist)
2999 		*--nodelist = ':';
3000 	if (flags)
3001 		*--flags = '=';
3002 	if (!err)
3003 		*mpol = new;
3004 	return err;
3005 }
3006 #endif /* CONFIG_TMPFS */
3007 
3008 /**
3009  * mpol_to_str - format a mempolicy structure for printing
3010  * @buffer:  to contain formatted mempolicy string
3011  * @maxlen:  length of @buffer
3012  * @pol:  pointer to mempolicy to be formatted
3013  *
3014  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3015  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3016  * longest flag, "relative", and to display at least a few node ids.
3017  */
3018 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3019 {
3020 	char *p = buffer;
3021 	nodemask_t nodes = NODE_MASK_NONE;
3022 	unsigned short mode = MPOL_DEFAULT;
3023 	unsigned short flags = 0;
3024 
3025 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3026 		mode = pol->mode;
3027 		flags = pol->flags;
3028 	}
3029 
3030 	switch (mode) {
3031 	case MPOL_DEFAULT:
3032 		break;
3033 	case MPOL_PREFERRED:
3034 		if (flags & MPOL_F_LOCAL)
3035 			mode = MPOL_LOCAL;
3036 		else
3037 			node_set(pol->v.preferred_node, nodes);
3038 		break;
3039 	case MPOL_BIND:
3040 	case MPOL_INTERLEAVE:
3041 		nodes = pol->v.nodes;
3042 		break;
3043 	default:
3044 		WARN_ON_ONCE(1);
3045 		snprintf(p, maxlen, "unknown");
3046 		return;
3047 	}
3048 
3049 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3050 
3051 	if (flags & MPOL_MODE_FLAGS) {
3052 		p += snprintf(p, buffer + maxlen - p, "=");
3053 
3054 		/*
3055 		 * Currently, the only defined flags are mutually exclusive
3056 		 */
3057 		if (flags & MPOL_F_STATIC_NODES)
3058 			p += snprintf(p, buffer + maxlen - p, "static");
3059 		else if (flags & MPOL_F_RELATIVE_NODES)
3060 			p += snprintf(p, buffer + maxlen - p, "relative");
3061 	}
3062 
3063 	if (!nodes_empty(nodes))
3064 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3065 			       nodemask_pr_args(&nodes));
3066 }
3067