1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 385 mmap_write_lock(mm); 386 for (vma = mm->mmap; vma; vma = vma->vm_next) 387 mpol_rebind_policy(vma->vm_policy, new); 388 mmap_write_unlock(mm); 389 } 390 391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 392 [MPOL_DEFAULT] = { 393 .rebind = mpol_rebind_default, 394 }, 395 [MPOL_INTERLEAVE] = { 396 .create = mpol_new_nodemask, 397 .rebind = mpol_rebind_nodemask, 398 }, 399 [MPOL_PREFERRED] = { 400 .create = mpol_new_preferred, 401 .rebind = mpol_rebind_preferred, 402 }, 403 [MPOL_BIND] = { 404 .create = mpol_new_nodemask, 405 .rebind = mpol_rebind_nodemask, 406 }, 407 [MPOL_LOCAL] = { 408 .rebind = mpol_rebind_default, 409 }, 410 [MPOL_PREFERRED_MANY] = { 411 .create = mpol_new_nodemask, 412 .rebind = mpol_rebind_preferred, 413 }, 414 }; 415 416 static int migrate_page_add(struct page *page, struct list_head *pagelist, 417 unsigned long flags); 418 419 struct queue_pages { 420 struct list_head *pagelist; 421 unsigned long flags; 422 nodemask_t *nmask; 423 unsigned long start; 424 unsigned long end; 425 struct vm_area_struct *first; 426 }; 427 428 /* 429 * Check if the page's nid is in qp->nmask. 430 * 431 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 432 * in the invert of qp->nmask. 433 */ 434 static inline bool queue_pages_required(struct page *page, 435 struct queue_pages *qp) 436 { 437 int nid = page_to_nid(page); 438 unsigned long flags = qp->flags; 439 440 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 441 } 442 443 /* 444 * queue_pages_pmd() has three possible return values: 445 * 0 - pages are placed on the right node or queued successfully, or 446 * special page is met, i.e. huge zero page. 447 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 448 * specified. 449 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 450 * existing page was already on a node that does not follow the 451 * policy. 452 */ 453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 454 unsigned long end, struct mm_walk *walk) 455 __releases(ptl) 456 { 457 int ret = 0; 458 struct page *page; 459 struct queue_pages *qp = walk->private; 460 unsigned long flags; 461 462 if (unlikely(is_pmd_migration_entry(*pmd))) { 463 ret = -EIO; 464 goto unlock; 465 } 466 page = pmd_page(*pmd); 467 if (is_huge_zero_page(page)) { 468 spin_unlock(ptl); 469 walk->action = ACTION_CONTINUE; 470 goto out; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 out: 488 return ret; 489 } 490 491 /* 492 * Scan through pages checking if pages follow certain conditions, 493 * and move them to the pagelist if they do. 494 * 495 * queue_pages_pte_range() has three possible return values: 496 * 0 - pages are placed on the right node or queued successfully, or 497 * special page is met, i.e. zero page. 498 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 499 * specified. 500 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 501 * on a node that does not follow the policy. 502 */ 503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 504 unsigned long end, struct mm_walk *walk) 505 { 506 struct vm_area_struct *vma = walk->vma; 507 struct page *page; 508 struct queue_pages *qp = walk->private; 509 unsigned long flags = qp->flags; 510 bool has_unmovable = false; 511 pte_t *pte, *mapped_pte; 512 spinlock_t *ptl; 513 514 ptl = pmd_trans_huge_lock(pmd, vma); 515 if (ptl) 516 return queue_pages_pmd(pmd, ptl, addr, end, walk); 517 518 if (pmd_trans_unstable(pmd)) 519 return 0; 520 521 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 522 for (; addr != end; pte++, addr += PAGE_SIZE) { 523 if (!pte_present(*pte)) 524 continue; 525 page = vm_normal_page(vma, addr, *pte); 526 if (!page) 527 continue; 528 /* 529 * vm_normal_page() filters out zero pages, but there might 530 * still be PageReserved pages to skip, perhaps in a VDSO. 531 */ 532 if (PageReserved(page)) 533 continue; 534 if (!queue_pages_required(page, qp)) 535 continue; 536 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 537 /* MPOL_MF_STRICT must be specified if we get here */ 538 if (!vma_migratable(vma)) { 539 has_unmovable = true; 540 break; 541 } 542 543 /* 544 * Do not abort immediately since there may be 545 * temporary off LRU pages in the range. Still 546 * need migrate other LRU pages. 547 */ 548 if (migrate_page_add(page, qp->pagelist, flags)) 549 has_unmovable = true; 550 } else 551 break; 552 } 553 pte_unmap_unlock(mapped_pte, ptl); 554 cond_resched(); 555 556 if (has_unmovable) 557 return 1; 558 559 return addr != end ? -EIO : 0; 560 } 561 562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 563 unsigned long addr, unsigned long end, 564 struct mm_walk *walk) 565 { 566 int ret = 0; 567 #ifdef CONFIG_HUGETLB_PAGE 568 struct queue_pages *qp = walk->private; 569 unsigned long flags = (qp->flags & MPOL_MF_VALID); 570 struct page *page; 571 spinlock_t *ptl; 572 pte_t entry; 573 574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 575 entry = huge_ptep_get(pte); 576 if (!pte_present(entry)) 577 goto unlock; 578 page = pte_page(entry); 579 if (!queue_pages_required(page, qp)) 580 goto unlock; 581 582 if (flags == MPOL_MF_STRICT) { 583 /* 584 * STRICT alone means only detecting misplaced page and no 585 * need to further check other vma. 586 */ 587 ret = -EIO; 588 goto unlock; 589 } 590 591 if (!vma_migratable(walk->vma)) { 592 /* 593 * Must be STRICT with MOVE*, otherwise .test_walk() have 594 * stopped walking current vma. 595 * Detecting misplaced page but allow migrating pages which 596 * have been queued. 597 */ 598 ret = 1; 599 goto unlock; 600 } 601 602 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 603 if (flags & (MPOL_MF_MOVE_ALL) || 604 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 605 if (!isolate_huge_page(page, qp->pagelist) && 606 (flags & MPOL_MF_STRICT)) 607 /* 608 * Failed to isolate page but allow migrating pages 609 * which have been queued. 610 */ 611 ret = 1; 612 } 613 unlock: 614 spin_unlock(ptl); 615 #else 616 BUG(); 617 #endif 618 return ret; 619 } 620 621 #ifdef CONFIG_NUMA_BALANCING 622 /* 623 * This is used to mark a range of virtual addresses to be inaccessible. 624 * These are later cleared by a NUMA hinting fault. Depending on these 625 * faults, pages may be migrated for better NUMA placement. 626 * 627 * This is assuming that NUMA faults are handled using PROT_NONE. If 628 * an architecture makes a different choice, it will need further 629 * changes to the core. 630 */ 631 unsigned long change_prot_numa(struct vm_area_struct *vma, 632 unsigned long addr, unsigned long end) 633 { 634 struct mmu_gather tlb; 635 int nr_updated; 636 637 tlb_gather_mmu(&tlb, vma->vm_mm); 638 639 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE, 640 MM_CP_PROT_NUMA); 641 if (nr_updated) 642 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 643 644 tlb_finish_mmu(&tlb); 645 646 return nr_updated; 647 } 648 #else 649 static unsigned long change_prot_numa(struct vm_area_struct *vma, 650 unsigned long addr, unsigned long end) 651 { 652 return 0; 653 } 654 #endif /* CONFIG_NUMA_BALANCING */ 655 656 static int queue_pages_test_walk(unsigned long start, unsigned long end, 657 struct mm_walk *walk) 658 { 659 struct vm_area_struct *vma = walk->vma; 660 struct queue_pages *qp = walk->private; 661 unsigned long endvma = vma->vm_end; 662 unsigned long flags = qp->flags; 663 664 /* range check first */ 665 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 666 667 if (!qp->first) { 668 qp->first = vma; 669 if (!(flags & MPOL_MF_DISCONTIG_OK) && 670 (qp->start < vma->vm_start)) 671 /* hole at head side of range */ 672 return -EFAULT; 673 } 674 if (!(flags & MPOL_MF_DISCONTIG_OK) && 675 ((vma->vm_end < qp->end) && 676 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 677 /* hole at middle or tail of range */ 678 return -EFAULT; 679 680 /* 681 * Need check MPOL_MF_STRICT to return -EIO if possible 682 * regardless of vma_migratable 683 */ 684 if (!vma_migratable(vma) && 685 !(flags & MPOL_MF_STRICT)) 686 return 1; 687 688 if (endvma > end) 689 endvma = end; 690 691 if (flags & MPOL_MF_LAZY) { 692 /* Similar to task_numa_work, skip inaccessible VMAs */ 693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 694 !(vma->vm_flags & VM_MIXEDMAP)) 695 change_prot_numa(vma, start, endvma); 696 return 1; 697 } 698 699 /* queue pages from current vma */ 700 if (flags & MPOL_MF_VALID) 701 return 0; 702 return 1; 703 } 704 705 static const struct mm_walk_ops queue_pages_walk_ops = { 706 .hugetlb_entry = queue_pages_hugetlb, 707 .pmd_entry = queue_pages_pte_range, 708 .test_walk = queue_pages_test_walk, 709 }; 710 711 /* 712 * Walk through page tables and collect pages to be migrated. 713 * 714 * If pages found in a given range are on a set of nodes (determined by 715 * @nodes and @flags,) it's isolated and queued to the pagelist which is 716 * passed via @private. 717 * 718 * queue_pages_range() has three possible return values: 719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 720 * specified. 721 * 0 - queue pages successfully or no misplaced page. 722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 723 * memory range specified by nodemask and maxnode points outside 724 * your accessible address space (-EFAULT) 725 */ 726 static int 727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 728 nodemask_t *nodes, unsigned long flags, 729 struct list_head *pagelist) 730 { 731 int err; 732 struct queue_pages qp = { 733 .pagelist = pagelist, 734 .flags = flags, 735 .nmask = nodes, 736 .start = start, 737 .end = end, 738 .first = NULL, 739 }; 740 741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 742 743 if (!qp.first) 744 /* whole range in hole */ 745 err = -EFAULT; 746 747 return err; 748 } 749 750 /* 751 * Apply policy to a single VMA 752 * This must be called with the mmap_lock held for writing. 753 */ 754 static int vma_replace_policy(struct vm_area_struct *vma, 755 struct mempolicy *pol) 756 { 757 int err; 758 struct mempolicy *old; 759 struct mempolicy *new; 760 761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 762 vma->vm_start, vma->vm_end, vma->vm_pgoff, 763 vma->vm_ops, vma->vm_file, 764 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 765 766 new = mpol_dup(pol); 767 if (IS_ERR(new)) 768 return PTR_ERR(new); 769 770 if (vma->vm_ops && vma->vm_ops->set_policy) { 771 err = vma->vm_ops->set_policy(vma, new); 772 if (err) 773 goto err_out; 774 } 775 776 old = vma->vm_policy; 777 vma->vm_policy = new; /* protected by mmap_lock */ 778 mpol_put(old); 779 780 return 0; 781 err_out: 782 mpol_put(new); 783 return err; 784 } 785 786 /* Step 2: apply policy to a range and do splits. */ 787 static int mbind_range(struct mm_struct *mm, unsigned long start, 788 unsigned long end, struct mempolicy *new_pol) 789 { 790 struct vm_area_struct *prev; 791 struct vm_area_struct *vma; 792 int err = 0; 793 pgoff_t pgoff; 794 unsigned long vmstart; 795 unsigned long vmend; 796 797 vma = find_vma(mm, start); 798 VM_BUG_ON(!vma); 799 800 prev = vma->vm_prev; 801 if (start > vma->vm_start) 802 prev = vma; 803 804 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) { 805 vmstart = max(start, vma->vm_start); 806 vmend = min(end, vma->vm_end); 807 808 if (mpol_equal(vma_policy(vma), new_pol)) 809 continue; 810 811 pgoff = vma->vm_pgoff + 812 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 813 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 814 vma->anon_vma, vma->vm_file, pgoff, 815 new_pol, vma->vm_userfaultfd_ctx, 816 anon_vma_name(vma)); 817 if (prev) { 818 vma = prev; 819 goto replace; 820 } 821 if (vma->vm_start != vmstart) { 822 err = split_vma(vma->vm_mm, vma, vmstart, 1); 823 if (err) 824 goto out; 825 } 826 if (vma->vm_end != vmend) { 827 err = split_vma(vma->vm_mm, vma, vmend, 0); 828 if (err) 829 goto out; 830 } 831 replace: 832 err = vma_replace_policy(vma, new_pol); 833 if (err) 834 goto out; 835 } 836 837 out: 838 return err; 839 } 840 841 /* Set the process memory policy */ 842 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 843 nodemask_t *nodes) 844 { 845 struct mempolicy *new, *old; 846 NODEMASK_SCRATCH(scratch); 847 int ret; 848 849 if (!scratch) 850 return -ENOMEM; 851 852 new = mpol_new(mode, flags, nodes); 853 if (IS_ERR(new)) { 854 ret = PTR_ERR(new); 855 goto out; 856 } 857 858 ret = mpol_set_nodemask(new, nodes, scratch); 859 if (ret) { 860 mpol_put(new); 861 goto out; 862 } 863 task_lock(current); 864 old = current->mempolicy; 865 current->mempolicy = new; 866 if (new && new->mode == MPOL_INTERLEAVE) 867 current->il_prev = MAX_NUMNODES-1; 868 task_unlock(current); 869 mpol_put(old); 870 ret = 0; 871 out: 872 NODEMASK_SCRATCH_FREE(scratch); 873 return ret; 874 } 875 876 /* 877 * Return nodemask for policy for get_mempolicy() query 878 * 879 * Called with task's alloc_lock held 880 */ 881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 882 { 883 nodes_clear(*nodes); 884 if (p == &default_policy) 885 return; 886 887 switch (p->mode) { 888 case MPOL_BIND: 889 case MPOL_INTERLEAVE: 890 case MPOL_PREFERRED: 891 case MPOL_PREFERRED_MANY: 892 *nodes = p->nodes; 893 break; 894 case MPOL_LOCAL: 895 /* return empty node mask for local allocation */ 896 break; 897 default: 898 BUG(); 899 } 900 } 901 902 static int lookup_node(struct mm_struct *mm, unsigned long addr) 903 { 904 struct page *p = NULL; 905 int ret; 906 907 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 908 if (ret > 0) { 909 ret = page_to_nid(p); 910 put_page(p); 911 } 912 return ret; 913 } 914 915 /* Retrieve NUMA policy */ 916 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 917 unsigned long addr, unsigned long flags) 918 { 919 int err; 920 struct mm_struct *mm = current->mm; 921 struct vm_area_struct *vma = NULL; 922 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 923 924 if (flags & 925 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 926 return -EINVAL; 927 928 if (flags & MPOL_F_MEMS_ALLOWED) { 929 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 930 return -EINVAL; 931 *policy = 0; /* just so it's initialized */ 932 task_lock(current); 933 *nmask = cpuset_current_mems_allowed; 934 task_unlock(current); 935 return 0; 936 } 937 938 if (flags & MPOL_F_ADDR) { 939 /* 940 * Do NOT fall back to task policy if the 941 * vma/shared policy at addr is NULL. We 942 * want to return MPOL_DEFAULT in this case. 943 */ 944 mmap_read_lock(mm); 945 vma = vma_lookup(mm, addr); 946 if (!vma) { 947 mmap_read_unlock(mm); 948 return -EFAULT; 949 } 950 if (vma->vm_ops && vma->vm_ops->get_policy) 951 pol = vma->vm_ops->get_policy(vma, addr); 952 else 953 pol = vma->vm_policy; 954 } else if (addr) 955 return -EINVAL; 956 957 if (!pol) 958 pol = &default_policy; /* indicates default behavior */ 959 960 if (flags & MPOL_F_NODE) { 961 if (flags & MPOL_F_ADDR) { 962 /* 963 * Take a refcount on the mpol, because we are about to 964 * drop the mmap_lock, after which only "pol" remains 965 * valid, "vma" is stale. 966 */ 967 pol_refcount = pol; 968 vma = NULL; 969 mpol_get(pol); 970 mmap_read_unlock(mm); 971 err = lookup_node(mm, addr); 972 if (err < 0) 973 goto out; 974 *policy = err; 975 } else if (pol == current->mempolicy && 976 pol->mode == MPOL_INTERLEAVE) { 977 *policy = next_node_in(current->il_prev, pol->nodes); 978 } else { 979 err = -EINVAL; 980 goto out; 981 } 982 } else { 983 *policy = pol == &default_policy ? MPOL_DEFAULT : 984 pol->mode; 985 /* 986 * Internal mempolicy flags must be masked off before exposing 987 * the policy to userspace. 988 */ 989 *policy |= (pol->flags & MPOL_MODE_FLAGS); 990 } 991 992 err = 0; 993 if (nmask) { 994 if (mpol_store_user_nodemask(pol)) { 995 *nmask = pol->w.user_nodemask; 996 } else { 997 task_lock(current); 998 get_policy_nodemask(pol, nmask); 999 task_unlock(current); 1000 } 1001 } 1002 1003 out: 1004 mpol_cond_put(pol); 1005 if (vma) 1006 mmap_read_unlock(mm); 1007 if (pol_refcount) 1008 mpol_put(pol_refcount); 1009 return err; 1010 } 1011 1012 #ifdef CONFIG_MIGRATION 1013 /* 1014 * page migration, thp tail pages can be passed. 1015 */ 1016 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1017 unsigned long flags) 1018 { 1019 struct page *head = compound_head(page); 1020 /* 1021 * Avoid migrating a page that is shared with others. 1022 */ 1023 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1024 if (!isolate_lru_page(head)) { 1025 list_add_tail(&head->lru, pagelist); 1026 mod_node_page_state(page_pgdat(head), 1027 NR_ISOLATED_ANON + page_is_file_lru(head), 1028 thp_nr_pages(head)); 1029 } else if (flags & MPOL_MF_STRICT) { 1030 /* 1031 * Non-movable page may reach here. And, there may be 1032 * temporary off LRU pages or non-LRU movable pages. 1033 * Treat them as unmovable pages since they can't be 1034 * isolated, so they can't be moved at the moment. It 1035 * should return -EIO for this case too. 1036 */ 1037 return -EIO; 1038 } 1039 } 1040 1041 return 0; 1042 } 1043 1044 /* 1045 * Migrate pages from one node to a target node. 1046 * Returns error or the number of pages not migrated. 1047 */ 1048 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1049 int flags) 1050 { 1051 nodemask_t nmask; 1052 LIST_HEAD(pagelist); 1053 int err = 0; 1054 struct migration_target_control mtc = { 1055 .nid = dest, 1056 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1057 }; 1058 1059 nodes_clear(nmask); 1060 node_set(source, nmask); 1061 1062 /* 1063 * This does not "check" the range but isolates all pages that 1064 * need migration. Between passing in the full user address 1065 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1066 */ 1067 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1068 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1069 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1070 1071 if (!list_empty(&pagelist)) { 1072 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1073 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1074 if (err) 1075 putback_movable_pages(&pagelist); 1076 } 1077 1078 return err; 1079 } 1080 1081 /* 1082 * Move pages between the two nodesets so as to preserve the physical 1083 * layout as much as possible. 1084 * 1085 * Returns the number of page that could not be moved. 1086 */ 1087 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1088 const nodemask_t *to, int flags) 1089 { 1090 int busy = 0; 1091 int err = 0; 1092 nodemask_t tmp; 1093 1094 lru_cache_disable(); 1095 1096 mmap_read_lock(mm); 1097 1098 /* 1099 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1100 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1101 * bit in 'tmp', and return that <source, dest> pair for migration. 1102 * The pair of nodemasks 'to' and 'from' define the map. 1103 * 1104 * If no pair of bits is found that way, fallback to picking some 1105 * pair of 'source' and 'dest' bits that are not the same. If the 1106 * 'source' and 'dest' bits are the same, this represents a node 1107 * that will be migrating to itself, so no pages need move. 1108 * 1109 * If no bits are left in 'tmp', or if all remaining bits left 1110 * in 'tmp' correspond to the same bit in 'to', return false 1111 * (nothing left to migrate). 1112 * 1113 * This lets us pick a pair of nodes to migrate between, such that 1114 * if possible the dest node is not already occupied by some other 1115 * source node, minimizing the risk of overloading the memory on a 1116 * node that would happen if we migrated incoming memory to a node 1117 * before migrating outgoing memory source that same node. 1118 * 1119 * A single scan of tmp is sufficient. As we go, we remember the 1120 * most recent <s, d> pair that moved (s != d). If we find a pair 1121 * that not only moved, but what's better, moved to an empty slot 1122 * (d is not set in tmp), then we break out then, with that pair. 1123 * Otherwise when we finish scanning from_tmp, we at least have the 1124 * most recent <s, d> pair that moved. If we get all the way through 1125 * the scan of tmp without finding any node that moved, much less 1126 * moved to an empty node, then there is nothing left worth migrating. 1127 */ 1128 1129 tmp = *from; 1130 while (!nodes_empty(tmp)) { 1131 int s, d; 1132 int source = NUMA_NO_NODE; 1133 int dest = 0; 1134 1135 for_each_node_mask(s, tmp) { 1136 1137 /* 1138 * do_migrate_pages() tries to maintain the relative 1139 * node relationship of the pages established between 1140 * threads and memory areas. 1141 * 1142 * However if the number of source nodes is not equal to 1143 * the number of destination nodes we can not preserve 1144 * this node relative relationship. In that case, skip 1145 * copying memory from a node that is in the destination 1146 * mask. 1147 * 1148 * Example: [2,3,4] -> [3,4,5] moves everything. 1149 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1150 */ 1151 1152 if ((nodes_weight(*from) != nodes_weight(*to)) && 1153 (node_isset(s, *to))) 1154 continue; 1155 1156 d = node_remap(s, *from, *to); 1157 if (s == d) 1158 continue; 1159 1160 source = s; /* Node moved. Memorize */ 1161 dest = d; 1162 1163 /* dest not in remaining from nodes? */ 1164 if (!node_isset(dest, tmp)) 1165 break; 1166 } 1167 if (source == NUMA_NO_NODE) 1168 break; 1169 1170 node_clear(source, tmp); 1171 err = migrate_to_node(mm, source, dest, flags); 1172 if (err > 0) 1173 busy += err; 1174 if (err < 0) 1175 break; 1176 } 1177 mmap_read_unlock(mm); 1178 1179 lru_cache_enable(); 1180 if (err < 0) 1181 return err; 1182 return busy; 1183 1184 } 1185 1186 /* 1187 * Allocate a new page for page migration based on vma policy. 1188 * Start by assuming the page is mapped by the same vma as contains @start. 1189 * Search forward from there, if not. N.B., this assumes that the 1190 * list of pages handed to migrate_pages()--which is how we get here-- 1191 * is in virtual address order. 1192 */ 1193 static struct page *new_page(struct page *page, unsigned long start) 1194 { 1195 struct folio *dst, *src = page_folio(page); 1196 struct vm_area_struct *vma; 1197 unsigned long address; 1198 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1199 1200 vma = find_vma(current->mm, start); 1201 while (vma) { 1202 address = page_address_in_vma(page, vma); 1203 if (address != -EFAULT) 1204 break; 1205 vma = vma->vm_next; 1206 } 1207 1208 if (folio_test_hugetlb(src)) 1209 return alloc_huge_page_vma(page_hstate(&src->page), 1210 vma, address); 1211 1212 if (folio_test_large(src)) 1213 gfp = GFP_TRANSHUGE; 1214 1215 /* 1216 * if !vma, vma_alloc_folio() will use task or system default policy 1217 */ 1218 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1219 folio_test_large(src)); 1220 return &dst->page; 1221 } 1222 #else 1223 1224 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1225 unsigned long flags) 1226 { 1227 return -EIO; 1228 } 1229 1230 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1231 const nodemask_t *to, int flags) 1232 { 1233 return -ENOSYS; 1234 } 1235 1236 static struct page *new_page(struct page *page, unsigned long start) 1237 { 1238 return NULL; 1239 } 1240 #endif 1241 1242 static long do_mbind(unsigned long start, unsigned long len, 1243 unsigned short mode, unsigned short mode_flags, 1244 nodemask_t *nmask, unsigned long flags) 1245 { 1246 struct mm_struct *mm = current->mm; 1247 struct mempolicy *new; 1248 unsigned long end; 1249 int err; 1250 int ret; 1251 LIST_HEAD(pagelist); 1252 1253 if (flags & ~(unsigned long)MPOL_MF_VALID) 1254 return -EINVAL; 1255 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1256 return -EPERM; 1257 1258 if (start & ~PAGE_MASK) 1259 return -EINVAL; 1260 1261 if (mode == MPOL_DEFAULT) 1262 flags &= ~MPOL_MF_STRICT; 1263 1264 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1265 end = start + len; 1266 1267 if (end < start) 1268 return -EINVAL; 1269 if (end == start) 1270 return 0; 1271 1272 new = mpol_new(mode, mode_flags, nmask); 1273 if (IS_ERR(new)) 1274 return PTR_ERR(new); 1275 1276 if (flags & MPOL_MF_LAZY) 1277 new->flags |= MPOL_F_MOF; 1278 1279 /* 1280 * If we are using the default policy then operation 1281 * on discontinuous address spaces is okay after all 1282 */ 1283 if (!new) 1284 flags |= MPOL_MF_DISCONTIG_OK; 1285 1286 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1287 start, start + len, mode, mode_flags, 1288 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1289 1290 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1291 1292 lru_cache_disable(); 1293 } 1294 { 1295 NODEMASK_SCRATCH(scratch); 1296 if (scratch) { 1297 mmap_write_lock(mm); 1298 err = mpol_set_nodemask(new, nmask, scratch); 1299 if (err) 1300 mmap_write_unlock(mm); 1301 } else 1302 err = -ENOMEM; 1303 NODEMASK_SCRATCH_FREE(scratch); 1304 } 1305 if (err) 1306 goto mpol_out; 1307 1308 ret = queue_pages_range(mm, start, end, nmask, 1309 flags | MPOL_MF_INVERT, &pagelist); 1310 1311 if (ret < 0) { 1312 err = ret; 1313 goto up_out; 1314 } 1315 1316 err = mbind_range(mm, start, end, new); 1317 1318 if (!err) { 1319 int nr_failed = 0; 1320 1321 if (!list_empty(&pagelist)) { 1322 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1323 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1324 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1325 if (nr_failed) 1326 putback_movable_pages(&pagelist); 1327 } 1328 1329 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1330 err = -EIO; 1331 } else { 1332 up_out: 1333 if (!list_empty(&pagelist)) 1334 putback_movable_pages(&pagelist); 1335 } 1336 1337 mmap_write_unlock(mm); 1338 mpol_out: 1339 mpol_put(new); 1340 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1341 lru_cache_enable(); 1342 return err; 1343 } 1344 1345 /* 1346 * User space interface with variable sized bitmaps for nodelists. 1347 */ 1348 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1349 unsigned long maxnode) 1350 { 1351 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1352 int ret; 1353 1354 if (in_compat_syscall()) 1355 ret = compat_get_bitmap(mask, 1356 (const compat_ulong_t __user *)nmask, 1357 maxnode); 1358 else 1359 ret = copy_from_user(mask, nmask, 1360 nlongs * sizeof(unsigned long)); 1361 1362 if (ret) 1363 return -EFAULT; 1364 1365 if (maxnode % BITS_PER_LONG) 1366 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1367 1368 return 0; 1369 } 1370 1371 /* Copy a node mask from user space. */ 1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1373 unsigned long maxnode) 1374 { 1375 --maxnode; 1376 nodes_clear(*nodes); 1377 if (maxnode == 0 || !nmask) 1378 return 0; 1379 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1380 return -EINVAL; 1381 1382 /* 1383 * When the user specified more nodes than supported just check 1384 * if the non supported part is all zero, one word at a time, 1385 * starting at the end. 1386 */ 1387 while (maxnode > MAX_NUMNODES) { 1388 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1389 unsigned long t; 1390 1391 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits)) 1392 return -EFAULT; 1393 1394 if (maxnode - bits >= MAX_NUMNODES) { 1395 maxnode -= bits; 1396 } else { 1397 maxnode = MAX_NUMNODES; 1398 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1399 } 1400 if (t) 1401 return -EINVAL; 1402 } 1403 1404 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1405 } 1406 1407 /* Copy a kernel node mask to user space */ 1408 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1409 nodemask_t *nodes) 1410 { 1411 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1412 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1413 bool compat = in_compat_syscall(); 1414 1415 if (compat) 1416 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1417 1418 if (copy > nbytes) { 1419 if (copy > PAGE_SIZE) 1420 return -EINVAL; 1421 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1422 return -EFAULT; 1423 copy = nbytes; 1424 maxnode = nr_node_ids; 1425 } 1426 1427 if (compat) 1428 return compat_put_bitmap((compat_ulong_t __user *)mask, 1429 nodes_addr(*nodes), maxnode); 1430 1431 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1432 } 1433 1434 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1435 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1436 { 1437 *flags = *mode & MPOL_MODE_FLAGS; 1438 *mode &= ~MPOL_MODE_FLAGS; 1439 1440 if ((unsigned int)(*mode) >= MPOL_MAX) 1441 return -EINVAL; 1442 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1443 return -EINVAL; 1444 if (*flags & MPOL_F_NUMA_BALANCING) { 1445 if (*mode != MPOL_BIND) 1446 return -EINVAL; 1447 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1448 } 1449 return 0; 1450 } 1451 1452 static long kernel_mbind(unsigned long start, unsigned long len, 1453 unsigned long mode, const unsigned long __user *nmask, 1454 unsigned long maxnode, unsigned int flags) 1455 { 1456 unsigned short mode_flags; 1457 nodemask_t nodes; 1458 int lmode = mode; 1459 int err; 1460 1461 start = untagged_addr(start); 1462 err = sanitize_mpol_flags(&lmode, &mode_flags); 1463 if (err) 1464 return err; 1465 1466 err = get_nodes(&nodes, nmask, maxnode); 1467 if (err) 1468 return err; 1469 1470 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1471 } 1472 1473 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1474 unsigned long, home_node, unsigned long, flags) 1475 { 1476 struct mm_struct *mm = current->mm; 1477 struct vm_area_struct *vma; 1478 struct mempolicy *new; 1479 unsigned long vmstart; 1480 unsigned long vmend; 1481 unsigned long end; 1482 int err = -ENOENT; 1483 1484 start = untagged_addr(start); 1485 if (start & ~PAGE_MASK) 1486 return -EINVAL; 1487 /* 1488 * flags is used for future extension if any. 1489 */ 1490 if (flags != 0) 1491 return -EINVAL; 1492 1493 /* 1494 * Check home_node is online to avoid accessing uninitialized 1495 * NODE_DATA. 1496 */ 1497 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1498 return -EINVAL; 1499 1500 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1501 end = start + len; 1502 1503 if (end < start) 1504 return -EINVAL; 1505 if (end == start) 1506 return 0; 1507 mmap_write_lock(mm); 1508 vma = find_vma(mm, start); 1509 for (; vma && vma->vm_start < end; vma = vma->vm_next) { 1510 1511 vmstart = max(start, vma->vm_start); 1512 vmend = min(end, vma->vm_end); 1513 new = mpol_dup(vma_policy(vma)); 1514 if (IS_ERR(new)) { 1515 err = PTR_ERR(new); 1516 break; 1517 } 1518 /* 1519 * Only update home node if there is an existing vma policy 1520 */ 1521 if (!new) 1522 continue; 1523 1524 /* 1525 * If any vma in the range got policy other than MPOL_BIND 1526 * or MPOL_PREFERRED_MANY we return error. We don't reset 1527 * the home node for vmas we already updated before. 1528 */ 1529 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1530 err = -EOPNOTSUPP; 1531 break; 1532 } 1533 1534 new->home_node = home_node; 1535 err = mbind_range(mm, vmstart, vmend, new); 1536 mpol_put(new); 1537 if (err) 1538 break; 1539 } 1540 mmap_write_unlock(mm); 1541 return err; 1542 } 1543 1544 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1545 unsigned long, mode, const unsigned long __user *, nmask, 1546 unsigned long, maxnode, unsigned int, flags) 1547 { 1548 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1549 } 1550 1551 /* Set the process memory policy */ 1552 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1553 unsigned long maxnode) 1554 { 1555 unsigned short mode_flags; 1556 nodemask_t nodes; 1557 int lmode = mode; 1558 int err; 1559 1560 err = sanitize_mpol_flags(&lmode, &mode_flags); 1561 if (err) 1562 return err; 1563 1564 err = get_nodes(&nodes, nmask, maxnode); 1565 if (err) 1566 return err; 1567 1568 return do_set_mempolicy(lmode, mode_flags, &nodes); 1569 } 1570 1571 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1572 unsigned long, maxnode) 1573 { 1574 return kernel_set_mempolicy(mode, nmask, maxnode); 1575 } 1576 1577 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1578 const unsigned long __user *old_nodes, 1579 const unsigned long __user *new_nodes) 1580 { 1581 struct mm_struct *mm = NULL; 1582 struct task_struct *task; 1583 nodemask_t task_nodes; 1584 int err; 1585 nodemask_t *old; 1586 nodemask_t *new; 1587 NODEMASK_SCRATCH(scratch); 1588 1589 if (!scratch) 1590 return -ENOMEM; 1591 1592 old = &scratch->mask1; 1593 new = &scratch->mask2; 1594 1595 err = get_nodes(old, old_nodes, maxnode); 1596 if (err) 1597 goto out; 1598 1599 err = get_nodes(new, new_nodes, maxnode); 1600 if (err) 1601 goto out; 1602 1603 /* Find the mm_struct */ 1604 rcu_read_lock(); 1605 task = pid ? find_task_by_vpid(pid) : current; 1606 if (!task) { 1607 rcu_read_unlock(); 1608 err = -ESRCH; 1609 goto out; 1610 } 1611 get_task_struct(task); 1612 1613 err = -EINVAL; 1614 1615 /* 1616 * Check if this process has the right to modify the specified process. 1617 * Use the regular "ptrace_may_access()" checks. 1618 */ 1619 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1620 rcu_read_unlock(); 1621 err = -EPERM; 1622 goto out_put; 1623 } 1624 rcu_read_unlock(); 1625 1626 task_nodes = cpuset_mems_allowed(task); 1627 /* Is the user allowed to access the target nodes? */ 1628 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1629 err = -EPERM; 1630 goto out_put; 1631 } 1632 1633 task_nodes = cpuset_mems_allowed(current); 1634 nodes_and(*new, *new, task_nodes); 1635 if (nodes_empty(*new)) 1636 goto out_put; 1637 1638 err = security_task_movememory(task); 1639 if (err) 1640 goto out_put; 1641 1642 mm = get_task_mm(task); 1643 put_task_struct(task); 1644 1645 if (!mm) { 1646 err = -EINVAL; 1647 goto out; 1648 } 1649 1650 err = do_migrate_pages(mm, old, new, 1651 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1652 1653 mmput(mm); 1654 out: 1655 NODEMASK_SCRATCH_FREE(scratch); 1656 1657 return err; 1658 1659 out_put: 1660 put_task_struct(task); 1661 goto out; 1662 1663 } 1664 1665 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1666 const unsigned long __user *, old_nodes, 1667 const unsigned long __user *, new_nodes) 1668 { 1669 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1670 } 1671 1672 1673 /* Retrieve NUMA policy */ 1674 static int kernel_get_mempolicy(int __user *policy, 1675 unsigned long __user *nmask, 1676 unsigned long maxnode, 1677 unsigned long addr, 1678 unsigned long flags) 1679 { 1680 int err; 1681 int pval; 1682 nodemask_t nodes; 1683 1684 if (nmask != NULL && maxnode < nr_node_ids) 1685 return -EINVAL; 1686 1687 addr = untagged_addr(addr); 1688 1689 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1690 1691 if (err) 1692 return err; 1693 1694 if (policy && put_user(pval, policy)) 1695 return -EFAULT; 1696 1697 if (nmask) 1698 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1699 1700 return err; 1701 } 1702 1703 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1704 unsigned long __user *, nmask, unsigned long, maxnode, 1705 unsigned long, addr, unsigned long, flags) 1706 { 1707 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1708 } 1709 1710 bool vma_migratable(struct vm_area_struct *vma) 1711 { 1712 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1713 return false; 1714 1715 /* 1716 * DAX device mappings require predictable access latency, so avoid 1717 * incurring periodic faults. 1718 */ 1719 if (vma_is_dax(vma)) 1720 return false; 1721 1722 if (is_vm_hugetlb_page(vma) && 1723 !hugepage_migration_supported(hstate_vma(vma))) 1724 return false; 1725 1726 /* 1727 * Migration allocates pages in the highest zone. If we cannot 1728 * do so then migration (at least from node to node) is not 1729 * possible. 1730 */ 1731 if (vma->vm_file && 1732 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1733 < policy_zone) 1734 return false; 1735 return true; 1736 } 1737 1738 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1739 unsigned long addr) 1740 { 1741 struct mempolicy *pol = NULL; 1742 1743 if (vma) { 1744 if (vma->vm_ops && vma->vm_ops->get_policy) { 1745 pol = vma->vm_ops->get_policy(vma, addr); 1746 } else if (vma->vm_policy) { 1747 pol = vma->vm_policy; 1748 1749 /* 1750 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1751 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1752 * count on these policies which will be dropped by 1753 * mpol_cond_put() later 1754 */ 1755 if (mpol_needs_cond_ref(pol)) 1756 mpol_get(pol); 1757 } 1758 } 1759 1760 return pol; 1761 } 1762 1763 /* 1764 * get_vma_policy(@vma, @addr) 1765 * @vma: virtual memory area whose policy is sought 1766 * @addr: address in @vma for shared policy lookup 1767 * 1768 * Returns effective policy for a VMA at specified address. 1769 * Falls back to current->mempolicy or system default policy, as necessary. 1770 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1771 * count--added by the get_policy() vm_op, as appropriate--to protect against 1772 * freeing by another task. It is the caller's responsibility to free the 1773 * extra reference for shared policies. 1774 */ 1775 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1776 unsigned long addr) 1777 { 1778 struct mempolicy *pol = __get_vma_policy(vma, addr); 1779 1780 if (!pol) 1781 pol = get_task_policy(current); 1782 1783 return pol; 1784 } 1785 1786 bool vma_policy_mof(struct vm_area_struct *vma) 1787 { 1788 struct mempolicy *pol; 1789 1790 if (vma->vm_ops && vma->vm_ops->get_policy) { 1791 bool ret = false; 1792 1793 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1794 if (pol && (pol->flags & MPOL_F_MOF)) 1795 ret = true; 1796 mpol_cond_put(pol); 1797 1798 return ret; 1799 } 1800 1801 pol = vma->vm_policy; 1802 if (!pol) 1803 pol = get_task_policy(current); 1804 1805 return pol->flags & MPOL_F_MOF; 1806 } 1807 1808 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1809 { 1810 enum zone_type dynamic_policy_zone = policy_zone; 1811 1812 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1813 1814 /* 1815 * if policy->nodes has movable memory only, 1816 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1817 * 1818 * policy->nodes is intersect with node_states[N_MEMORY]. 1819 * so if the following test fails, it implies 1820 * policy->nodes has movable memory only. 1821 */ 1822 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1823 dynamic_policy_zone = ZONE_MOVABLE; 1824 1825 return zone >= dynamic_policy_zone; 1826 } 1827 1828 /* 1829 * Return a nodemask representing a mempolicy for filtering nodes for 1830 * page allocation 1831 */ 1832 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1833 { 1834 int mode = policy->mode; 1835 1836 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1837 if (unlikely(mode == MPOL_BIND) && 1838 apply_policy_zone(policy, gfp_zone(gfp)) && 1839 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1840 return &policy->nodes; 1841 1842 if (mode == MPOL_PREFERRED_MANY) 1843 return &policy->nodes; 1844 1845 return NULL; 1846 } 1847 1848 /* 1849 * Return the preferred node id for 'prefer' mempolicy, and return 1850 * the given id for all other policies. 1851 * 1852 * policy_node() is always coupled with policy_nodemask(), which 1853 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1854 */ 1855 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1856 { 1857 if (policy->mode == MPOL_PREFERRED) { 1858 nd = first_node(policy->nodes); 1859 } else { 1860 /* 1861 * __GFP_THISNODE shouldn't even be used with the bind policy 1862 * because we might easily break the expectation to stay on the 1863 * requested node and not break the policy. 1864 */ 1865 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1866 } 1867 1868 if ((policy->mode == MPOL_BIND || 1869 policy->mode == MPOL_PREFERRED_MANY) && 1870 policy->home_node != NUMA_NO_NODE) 1871 return policy->home_node; 1872 1873 return nd; 1874 } 1875 1876 /* Do dynamic interleaving for a process */ 1877 static unsigned interleave_nodes(struct mempolicy *policy) 1878 { 1879 unsigned next; 1880 struct task_struct *me = current; 1881 1882 next = next_node_in(me->il_prev, policy->nodes); 1883 if (next < MAX_NUMNODES) 1884 me->il_prev = next; 1885 return next; 1886 } 1887 1888 /* 1889 * Depending on the memory policy provide a node from which to allocate the 1890 * next slab entry. 1891 */ 1892 unsigned int mempolicy_slab_node(void) 1893 { 1894 struct mempolicy *policy; 1895 int node = numa_mem_id(); 1896 1897 if (!in_task()) 1898 return node; 1899 1900 policy = current->mempolicy; 1901 if (!policy) 1902 return node; 1903 1904 switch (policy->mode) { 1905 case MPOL_PREFERRED: 1906 return first_node(policy->nodes); 1907 1908 case MPOL_INTERLEAVE: 1909 return interleave_nodes(policy); 1910 1911 case MPOL_BIND: 1912 case MPOL_PREFERRED_MANY: 1913 { 1914 struct zoneref *z; 1915 1916 /* 1917 * Follow bind policy behavior and start allocation at the 1918 * first node. 1919 */ 1920 struct zonelist *zonelist; 1921 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1922 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1923 z = first_zones_zonelist(zonelist, highest_zoneidx, 1924 &policy->nodes); 1925 return z->zone ? zone_to_nid(z->zone) : node; 1926 } 1927 case MPOL_LOCAL: 1928 return node; 1929 1930 default: 1931 BUG(); 1932 } 1933 } 1934 1935 /* 1936 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1937 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1938 * number of present nodes. 1939 */ 1940 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1941 { 1942 nodemask_t nodemask = pol->nodes; 1943 unsigned int target, nnodes; 1944 int i; 1945 int nid; 1946 /* 1947 * The barrier will stabilize the nodemask in a register or on 1948 * the stack so that it will stop changing under the code. 1949 * 1950 * Between first_node() and next_node(), pol->nodes could be changed 1951 * by other threads. So we put pol->nodes in a local stack. 1952 */ 1953 barrier(); 1954 1955 nnodes = nodes_weight(nodemask); 1956 if (!nnodes) 1957 return numa_node_id(); 1958 target = (unsigned int)n % nnodes; 1959 nid = first_node(nodemask); 1960 for (i = 0; i < target; i++) 1961 nid = next_node(nid, nodemask); 1962 return nid; 1963 } 1964 1965 /* Determine a node number for interleave */ 1966 static inline unsigned interleave_nid(struct mempolicy *pol, 1967 struct vm_area_struct *vma, unsigned long addr, int shift) 1968 { 1969 if (vma) { 1970 unsigned long off; 1971 1972 /* 1973 * for small pages, there is no difference between 1974 * shift and PAGE_SHIFT, so the bit-shift is safe. 1975 * for huge pages, since vm_pgoff is in units of small 1976 * pages, we need to shift off the always 0 bits to get 1977 * a useful offset. 1978 */ 1979 BUG_ON(shift < PAGE_SHIFT); 1980 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1981 off += (addr - vma->vm_start) >> shift; 1982 return offset_il_node(pol, off); 1983 } else 1984 return interleave_nodes(pol); 1985 } 1986 1987 #ifdef CONFIG_HUGETLBFS 1988 /* 1989 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1990 * @vma: virtual memory area whose policy is sought 1991 * @addr: address in @vma for shared policy lookup and interleave policy 1992 * @gfp_flags: for requested zone 1993 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1994 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 1995 * 1996 * Returns a nid suitable for a huge page allocation and a pointer 1997 * to the struct mempolicy for conditional unref after allocation. 1998 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 1999 * to the mempolicy's @nodemask for filtering the zonelist. 2000 * 2001 * Must be protected by read_mems_allowed_begin() 2002 */ 2003 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2004 struct mempolicy **mpol, nodemask_t **nodemask) 2005 { 2006 int nid; 2007 int mode; 2008 2009 *mpol = get_vma_policy(vma, addr); 2010 *nodemask = NULL; 2011 mode = (*mpol)->mode; 2012 2013 if (unlikely(mode == MPOL_INTERLEAVE)) { 2014 nid = interleave_nid(*mpol, vma, addr, 2015 huge_page_shift(hstate_vma(vma))); 2016 } else { 2017 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2018 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2019 *nodemask = &(*mpol)->nodes; 2020 } 2021 return nid; 2022 } 2023 2024 /* 2025 * init_nodemask_of_mempolicy 2026 * 2027 * If the current task's mempolicy is "default" [NULL], return 'false' 2028 * to indicate default policy. Otherwise, extract the policy nodemask 2029 * for 'bind' or 'interleave' policy into the argument nodemask, or 2030 * initialize the argument nodemask to contain the single node for 2031 * 'preferred' or 'local' policy and return 'true' to indicate presence 2032 * of non-default mempolicy. 2033 * 2034 * We don't bother with reference counting the mempolicy [mpol_get/put] 2035 * because the current task is examining it's own mempolicy and a task's 2036 * mempolicy is only ever changed by the task itself. 2037 * 2038 * N.B., it is the caller's responsibility to free a returned nodemask. 2039 */ 2040 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2041 { 2042 struct mempolicy *mempolicy; 2043 2044 if (!(mask && current->mempolicy)) 2045 return false; 2046 2047 task_lock(current); 2048 mempolicy = current->mempolicy; 2049 switch (mempolicy->mode) { 2050 case MPOL_PREFERRED: 2051 case MPOL_PREFERRED_MANY: 2052 case MPOL_BIND: 2053 case MPOL_INTERLEAVE: 2054 *mask = mempolicy->nodes; 2055 break; 2056 2057 case MPOL_LOCAL: 2058 init_nodemask_of_node(mask, numa_node_id()); 2059 break; 2060 2061 default: 2062 BUG(); 2063 } 2064 task_unlock(current); 2065 2066 return true; 2067 } 2068 #endif 2069 2070 /* 2071 * mempolicy_in_oom_domain 2072 * 2073 * If tsk's mempolicy is "bind", check for intersection between mask and 2074 * the policy nodemask. Otherwise, return true for all other policies 2075 * including "interleave", as a tsk with "interleave" policy may have 2076 * memory allocated from all nodes in system. 2077 * 2078 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2079 */ 2080 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2081 const nodemask_t *mask) 2082 { 2083 struct mempolicy *mempolicy; 2084 bool ret = true; 2085 2086 if (!mask) 2087 return ret; 2088 2089 task_lock(tsk); 2090 mempolicy = tsk->mempolicy; 2091 if (mempolicy && mempolicy->mode == MPOL_BIND) 2092 ret = nodes_intersects(mempolicy->nodes, *mask); 2093 task_unlock(tsk); 2094 2095 return ret; 2096 } 2097 2098 /* Allocate a page in interleaved policy. 2099 Own path because it needs to do special accounting. */ 2100 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2101 unsigned nid) 2102 { 2103 struct page *page; 2104 2105 page = __alloc_pages(gfp, order, nid, NULL); 2106 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2107 if (!static_branch_likely(&vm_numa_stat_key)) 2108 return page; 2109 if (page && page_to_nid(page) == nid) { 2110 preempt_disable(); 2111 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2112 preempt_enable(); 2113 } 2114 return page; 2115 } 2116 2117 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2118 int nid, struct mempolicy *pol) 2119 { 2120 struct page *page; 2121 gfp_t preferred_gfp; 2122 2123 /* 2124 * This is a two pass approach. The first pass will only try the 2125 * preferred nodes but skip the direct reclaim and allow the 2126 * allocation to fail, while the second pass will try all the 2127 * nodes in system. 2128 */ 2129 preferred_gfp = gfp | __GFP_NOWARN; 2130 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2131 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2132 if (!page) 2133 page = __alloc_pages(gfp, order, nid, NULL); 2134 2135 return page; 2136 } 2137 2138 /** 2139 * alloc_pages_vma - Allocate a page for a VMA. 2140 * @gfp: GFP flags. 2141 * @order: Order of the GFP allocation. 2142 * @vma: Pointer to VMA or NULL if not available. 2143 * @addr: Virtual address of the allocation. Must be inside @vma. 2144 * @hugepage: For hugepages try only the preferred node if possible. 2145 * 2146 * Allocate a page for a specific address in @vma, using the appropriate 2147 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2148 * of the mm_struct of the VMA to prevent it from going away. Should be 2149 * used for all allocations for pages that will be mapped into user space. 2150 * 2151 * Return: The page on success or NULL if allocation fails. 2152 */ 2153 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2154 unsigned long addr, bool hugepage) 2155 { 2156 struct mempolicy *pol; 2157 int node = numa_node_id(); 2158 struct page *page; 2159 int preferred_nid; 2160 nodemask_t *nmask; 2161 2162 pol = get_vma_policy(vma, addr); 2163 2164 if (pol->mode == MPOL_INTERLEAVE) { 2165 unsigned nid; 2166 2167 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2168 mpol_cond_put(pol); 2169 page = alloc_page_interleave(gfp, order, nid); 2170 goto out; 2171 } 2172 2173 if (pol->mode == MPOL_PREFERRED_MANY) { 2174 node = policy_node(gfp, pol, node); 2175 page = alloc_pages_preferred_many(gfp, order, node, pol); 2176 mpol_cond_put(pol); 2177 goto out; 2178 } 2179 2180 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2181 int hpage_node = node; 2182 2183 /* 2184 * For hugepage allocation and non-interleave policy which 2185 * allows the current node (or other explicitly preferred 2186 * node) we only try to allocate from the current/preferred 2187 * node and don't fall back to other nodes, as the cost of 2188 * remote accesses would likely offset THP benefits. 2189 * 2190 * If the policy is interleave or does not allow the current 2191 * node in its nodemask, we allocate the standard way. 2192 */ 2193 if (pol->mode == MPOL_PREFERRED) 2194 hpage_node = first_node(pol->nodes); 2195 2196 nmask = policy_nodemask(gfp, pol); 2197 if (!nmask || node_isset(hpage_node, *nmask)) { 2198 mpol_cond_put(pol); 2199 /* 2200 * First, try to allocate THP only on local node, but 2201 * don't reclaim unnecessarily, just compact. 2202 */ 2203 page = __alloc_pages_node(hpage_node, 2204 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2205 2206 /* 2207 * If hugepage allocations are configured to always 2208 * synchronous compact or the vma has been madvised 2209 * to prefer hugepage backing, retry allowing remote 2210 * memory with both reclaim and compact as well. 2211 */ 2212 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2213 page = __alloc_pages(gfp, order, hpage_node, nmask); 2214 2215 goto out; 2216 } 2217 } 2218 2219 nmask = policy_nodemask(gfp, pol); 2220 preferred_nid = policy_node(gfp, pol, node); 2221 page = __alloc_pages(gfp, order, preferred_nid, nmask); 2222 mpol_cond_put(pol); 2223 out: 2224 return page; 2225 } 2226 EXPORT_SYMBOL(alloc_pages_vma); 2227 2228 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2229 unsigned long addr, bool hugepage) 2230 { 2231 struct folio *folio; 2232 2233 folio = (struct folio *)alloc_pages_vma(gfp, order, vma, addr, 2234 hugepage); 2235 if (folio && order > 1) 2236 prep_transhuge_page(&folio->page); 2237 2238 return folio; 2239 } 2240 2241 /** 2242 * alloc_pages - Allocate pages. 2243 * @gfp: GFP flags. 2244 * @order: Power of two of number of pages to allocate. 2245 * 2246 * Allocate 1 << @order contiguous pages. The physical address of the 2247 * first page is naturally aligned (eg an order-3 allocation will be aligned 2248 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2249 * process is honoured when in process context. 2250 * 2251 * Context: Can be called from any context, providing the appropriate GFP 2252 * flags are used. 2253 * Return: The page on success or NULL if allocation fails. 2254 */ 2255 struct page *alloc_pages(gfp_t gfp, unsigned order) 2256 { 2257 struct mempolicy *pol = &default_policy; 2258 struct page *page; 2259 2260 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2261 pol = get_task_policy(current); 2262 2263 /* 2264 * No reference counting needed for current->mempolicy 2265 * nor system default_policy 2266 */ 2267 if (pol->mode == MPOL_INTERLEAVE) 2268 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2269 else if (pol->mode == MPOL_PREFERRED_MANY) 2270 page = alloc_pages_preferred_many(gfp, order, 2271 policy_node(gfp, pol, numa_node_id()), pol); 2272 else 2273 page = __alloc_pages(gfp, order, 2274 policy_node(gfp, pol, numa_node_id()), 2275 policy_nodemask(gfp, pol)); 2276 2277 return page; 2278 } 2279 EXPORT_SYMBOL(alloc_pages); 2280 2281 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2282 { 2283 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2284 2285 if (page && order > 1) 2286 prep_transhuge_page(page); 2287 return (struct folio *)page; 2288 } 2289 EXPORT_SYMBOL(folio_alloc); 2290 2291 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2292 struct mempolicy *pol, unsigned long nr_pages, 2293 struct page **page_array) 2294 { 2295 int nodes; 2296 unsigned long nr_pages_per_node; 2297 int delta; 2298 int i; 2299 unsigned long nr_allocated; 2300 unsigned long total_allocated = 0; 2301 2302 nodes = nodes_weight(pol->nodes); 2303 nr_pages_per_node = nr_pages / nodes; 2304 delta = nr_pages - nodes * nr_pages_per_node; 2305 2306 for (i = 0; i < nodes; i++) { 2307 if (delta) { 2308 nr_allocated = __alloc_pages_bulk(gfp, 2309 interleave_nodes(pol), NULL, 2310 nr_pages_per_node + 1, NULL, 2311 page_array); 2312 delta--; 2313 } else { 2314 nr_allocated = __alloc_pages_bulk(gfp, 2315 interleave_nodes(pol), NULL, 2316 nr_pages_per_node, NULL, page_array); 2317 } 2318 2319 page_array += nr_allocated; 2320 total_allocated += nr_allocated; 2321 } 2322 2323 return total_allocated; 2324 } 2325 2326 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2327 struct mempolicy *pol, unsigned long nr_pages, 2328 struct page **page_array) 2329 { 2330 gfp_t preferred_gfp; 2331 unsigned long nr_allocated = 0; 2332 2333 preferred_gfp = gfp | __GFP_NOWARN; 2334 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2335 2336 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2337 nr_pages, NULL, page_array); 2338 2339 if (nr_allocated < nr_pages) 2340 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2341 nr_pages - nr_allocated, NULL, 2342 page_array + nr_allocated); 2343 return nr_allocated; 2344 } 2345 2346 /* alloc pages bulk and mempolicy should be considered at the 2347 * same time in some situation such as vmalloc. 2348 * 2349 * It can accelerate memory allocation especially interleaving 2350 * allocate memory. 2351 */ 2352 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2353 unsigned long nr_pages, struct page **page_array) 2354 { 2355 struct mempolicy *pol = &default_policy; 2356 2357 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2358 pol = get_task_policy(current); 2359 2360 if (pol->mode == MPOL_INTERLEAVE) 2361 return alloc_pages_bulk_array_interleave(gfp, pol, 2362 nr_pages, page_array); 2363 2364 if (pol->mode == MPOL_PREFERRED_MANY) 2365 return alloc_pages_bulk_array_preferred_many(gfp, 2366 numa_node_id(), pol, nr_pages, page_array); 2367 2368 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2369 policy_nodemask(gfp, pol), nr_pages, NULL, 2370 page_array); 2371 } 2372 2373 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2374 { 2375 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2376 2377 if (IS_ERR(pol)) 2378 return PTR_ERR(pol); 2379 dst->vm_policy = pol; 2380 return 0; 2381 } 2382 2383 /* 2384 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2385 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2386 * with the mems_allowed returned by cpuset_mems_allowed(). This 2387 * keeps mempolicies cpuset relative after its cpuset moves. See 2388 * further kernel/cpuset.c update_nodemask(). 2389 * 2390 * current's mempolicy may be rebinded by the other task(the task that changes 2391 * cpuset's mems), so we needn't do rebind work for current task. 2392 */ 2393 2394 /* Slow path of a mempolicy duplicate */ 2395 struct mempolicy *__mpol_dup(struct mempolicy *old) 2396 { 2397 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2398 2399 if (!new) 2400 return ERR_PTR(-ENOMEM); 2401 2402 /* task's mempolicy is protected by alloc_lock */ 2403 if (old == current->mempolicy) { 2404 task_lock(current); 2405 *new = *old; 2406 task_unlock(current); 2407 } else 2408 *new = *old; 2409 2410 if (current_cpuset_is_being_rebound()) { 2411 nodemask_t mems = cpuset_mems_allowed(current); 2412 mpol_rebind_policy(new, &mems); 2413 } 2414 atomic_set(&new->refcnt, 1); 2415 return new; 2416 } 2417 2418 /* Slow path of a mempolicy comparison */ 2419 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2420 { 2421 if (!a || !b) 2422 return false; 2423 if (a->mode != b->mode) 2424 return false; 2425 if (a->flags != b->flags) 2426 return false; 2427 if (a->home_node != b->home_node) 2428 return false; 2429 if (mpol_store_user_nodemask(a)) 2430 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2431 return false; 2432 2433 switch (a->mode) { 2434 case MPOL_BIND: 2435 case MPOL_INTERLEAVE: 2436 case MPOL_PREFERRED: 2437 case MPOL_PREFERRED_MANY: 2438 return !!nodes_equal(a->nodes, b->nodes); 2439 case MPOL_LOCAL: 2440 return true; 2441 default: 2442 BUG(); 2443 return false; 2444 } 2445 } 2446 2447 /* 2448 * Shared memory backing store policy support. 2449 * 2450 * Remember policies even when nobody has shared memory mapped. 2451 * The policies are kept in Red-Black tree linked from the inode. 2452 * They are protected by the sp->lock rwlock, which should be held 2453 * for any accesses to the tree. 2454 */ 2455 2456 /* 2457 * lookup first element intersecting start-end. Caller holds sp->lock for 2458 * reading or for writing 2459 */ 2460 static struct sp_node * 2461 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2462 { 2463 struct rb_node *n = sp->root.rb_node; 2464 2465 while (n) { 2466 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2467 2468 if (start >= p->end) 2469 n = n->rb_right; 2470 else if (end <= p->start) 2471 n = n->rb_left; 2472 else 2473 break; 2474 } 2475 if (!n) 2476 return NULL; 2477 for (;;) { 2478 struct sp_node *w = NULL; 2479 struct rb_node *prev = rb_prev(n); 2480 if (!prev) 2481 break; 2482 w = rb_entry(prev, struct sp_node, nd); 2483 if (w->end <= start) 2484 break; 2485 n = prev; 2486 } 2487 return rb_entry(n, struct sp_node, nd); 2488 } 2489 2490 /* 2491 * Insert a new shared policy into the list. Caller holds sp->lock for 2492 * writing. 2493 */ 2494 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2495 { 2496 struct rb_node **p = &sp->root.rb_node; 2497 struct rb_node *parent = NULL; 2498 struct sp_node *nd; 2499 2500 while (*p) { 2501 parent = *p; 2502 nd = rb_entry(parent, struct sp_node, nd); 2503 if (new->start < nd->start) 2504 p = &(*p)->rb_left; 2505 else if (new->end > nd->end) 2506 p = &(*p)->rb_right; 2507 else 2508 BUG(); 2509 } 2510 rb_link_node(&new->nd, parent, p); 2511 rb_insert_color(&new->nd, &sp->root); 2512 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2513 new->policy ? new->policy->mode : 0); 2514 } 2515 2516 /* Find shared policy intersecting idx */ 2517 struct mempolicy * 2518 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2519 { 2520 struct mempolicy *pol = NULL; 2521 struct sp_node *sn; 2522 2523 if (!sp->root.rb_node) 2524 return NULL; 2525 read_lock(&sp->lock); 2526 sn = sp_lookup(sp, idx, idx+1); 2527 if (sn) { 2528 mpol_get(sn->policy); 2529 pol = sn->policy; 2530 } 2531 read_unlock(&sp->lock); 2532 return pol; 2533 } 2534 2535 static void sp_free(struct sp_node *n) 2536 { 2537 mpol_put(n->policy); 2538 kmem_cache_free(sn_cache, n); 2539 } 2540 2541 /** 2542 * mpol_misplaced - check whether current page node is valid in policy 2543 * 2544 * @page: page to be checked 2545 * @vma: vm area where page mapped 2546 * @addr: virtual address where page mapped 2547 * 2548 * Lookup current policy node id for vma,addr and "compare to" page's 2549 * node id. Policy determination "mimics" alloc_page_vma(). 2550 * Called from fault path where we know the vma and faulting address. 2551 * 2552 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2553 * policy, or a suitable node ID to allocate a replacement page from. 2554 */ 2555 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2556 { 2557 struct mempolicy *pol; 2558 struct zoneref *z; 2559 int curnid = page_to_nid(page); 2560 unsigned long pgoff; 2561 int thiscpu = raw_smp_processor_id(); 2562 int thisnid = cpu_to_node(thiscpu); 2563 int polnid = NUMA_NO_NODE; 2564 int ret = NUMA_NO_NODE; 2565 2566 pol = get_vma_policy(vma, addr); 2567 if (!(pol->flags & MPOL_F_MOF)) 2568 goto out; 2569 2570 switch (pol->mode) { 2571 case MPOL_INTERLEAVE: 2572 pgoff = vma->vm_pgoff; 2573 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2574 polnid = offset_il_node(pol, pgoff); 2575 break; 2576 2577 case MPOL_PREFERRED: 2578 if (node_isset(curnid, pol->nodes)) 2579 goto out; 2580 polnid = first_node(pol->nodes); 2581 break; 2582 2583 case MPOL_LOCAL: 2584 polnid = numa_node_id(); 2585 break; 2586 2587 case MPOL_BIND: 2588 /* Optimize placement among multiple nodes via NUMA balancing */ 2589 if (pol->flags & MPOL_F_MORON) { 2590 if (node_isset(thisnid, pol->nodes)) 2591 break; 2592 goto out; 2593 } 2594 fallthrough; 2595 2596 case MPOL_PREFERRED_MANY: 2597 /* 2598 * use current page if in policy nodemask, 2599 * else select nearest allowed node, if any. 2600 * If no allowed nodes, use current [!misplaced]. 2601 */ 2602 if (node_isset(curnid, pol->nodes)) 2603 goto out; 2604 z = first_zones_zonelist( 2605 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2606 gfp_zone(GFP_HIGHUSER), 2607 &pol->nodes); 2608 polnid = zone_to_nid(z->zone); 2609 break; 2610 2611 default: 2612 BUG(); 2613 } 2614 2615 /* Migrate the page towards the node whose CPU is referencing it */ 2616 if (pol->flags & MPOL_F_MORON) { 2617 polnid = thisnid; 2618 2619 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2620 goto out; 2621 } 2622 2623 if (curnid != polnid) 2624 ret = polnid; 2625 out: 2626 mpol_cond_put(pol); 2627 2628 return ret; 2629 } 2630 2631 /* 2632 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2633 * dropped after task->mempolicy is set to NULL so that any allocation done as 2634 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2635 * policy. 2636 */ 2637 void mpol_put_task_policy(struct task_struct *task) 2638 { 2639 struct mempolicy *pol; 2640 2641 task_lock(task); 2642 pol = task->mempolicy; 2643 task->mempolicy = NULL; 2644 task_unlock(task); 2645 mpol_put(pol); 2646 } 2647 2648 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2649 { 2650 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2651 rb_erase(&n->nd, &sp->root); 2652 sp_free(n); 2653 } 2654 2655 static void sp_node_init(struct sp_node *node, unsigned long start, 2656 unsigned long end, struct mempolicy *pol) 2657 { 2658 node->start = start; 2659 node->end = end; 2660 node->policy = pol; 2661 } 2662 2663 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2664 struct mempolicy *pol) 2665 { 2666 struct sp_node *n; 2667 struct mempolicy *newpol; 2668 2669 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2670 if (!n) 2671 return NULL; 2672 2673 newpol = mpol_dup(pol); 2674 if (IS_ERR(newpol)) { 2675 kmem_cache_free(sn_cache, n); 2676 return NULL; 2677 } 2678 newpol->flags |= MPOL_F_SHARED; 2679 sp_node_init(n, start, end, newpol); 2680 2681 return n; 2682 } 2683 2684 /* Replace a policy range. */ 2685 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2686 unsigned long end, struct sp_node *new) 2687 { 2688 struct sp_node *n; 2689 struct sp_node *n_new = NULL; 2690 struct mempolicy *mpol_new = NULL; 2691 int ret = 0; 2692 2693 restart: 2694 write_lock(&sp->lock); 2695 n = sp_lookup(sp, start, end); 2696 /* Take care of old policies in the same range. */ 2697 while (n && n->start < end) { 2698 struct rb_node *next = rb_next(&n->nd); 2699 if (n->start >= start) { 2700 if (n->end <= end) 2701 sp_delete(sp, n); 2702 else 2703 n->start = end; 2704 } else { 2705 /* Old policy spanning whole new range. */ 2706 if (n->end > end) { 2707 if (!n_new) 2708 goto alloc_new; 2709 2710 *mpol_new = *n->policy; 2711 atomic_set(&mpol_new->refcnt, 1); 2712 sp_node_init(n_new, end, n->end, mpol_new); 2713 n->end = start; 2714 sp_insert(sp, n_new); 2715 n_new = NULL; 2716 mpol_new = NULL; 2717 break; 2718 } else 2719 n->end = start; 2720 } 2721 if (!next) 2722 break; 2723 n = rb_entry(next, struct sp_node, nd); 2724 } 2725 if (new) 2726 sp_insert(sp, new); 2727 write_unlock(&sp->lock); 2728 ret = 0; 2729 2730 err_out: 2731 if (mpol_new) 2732 mpol_put(mpol_new); 2733 if (n_new) 2734 kmem_cache_free(sn_cache, n_new); 2735 2736 return ret; 2737 2738 alloc_new: 2739 write_unlock(&sp->lock); 2740 ret = -ENOMEM; 2741 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2742 if (!n_new) 2743 goto err_out; 2744 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2745 if (!mpol_new) 2746 goto err_out; 2747 atomic_set(&mpol_new->refcnt, 1); 2748 goto restart; 2749 } 2750 2751 /** 2752 * mpol_shared_policy_init - initialize shared policy for inode 2753 * @sp: pointer to inode shared policy 2754 * @mpol: struct mempolicy to install 2755 * 2756 * Install non-NULL @mpol in inode's shared policy rb-tree. 2757 * On entry, the current task has a reference on a non-NULL @mpol. 2758 * This must be released on exit. 2759 * This is called at get_inode() calls and we can use GFP_KERNEL. 2760 */ 2761 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2762 { 2763 int ret; 2764 2765 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2766 rwlock_init(&sp->lock); 2767 2768 if (mpol) { 2769 struct vm_area_struct pvma; 2770 struct mempolicy *new; 2771 NODEMASK_SCRATCH(scratch); 2772 2773 if (!scratch) 2774 goto put_mpol; 2775 /* contextualize the tmpfs mount point mempolicy */ 2776 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2777 if (IS_ERR(new)) 2778 goto free_scratch; /* no valid nodemask intersection */ 2779 2780 task_lock(current); 2781 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2782 task_unlock(current); 2783 if (ret) 2784 goto put_new; 2785 2786 /* Create pseudo-vma that contains just the policy */ 2787 vma_init(&pvma, NULL); 2788 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2789 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2790 2791 put_new: 2792 mpol_put(new); /* drop initial ref */ 2793 free_scratch: 2794 NODEMASK_SCRATCH_FREE(scratch); 2795 put_mpol: 2796 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2797 } 2798 } 2799 2800 int mpol_set_shared_policy(struct shared_policy *info, 2801 struct vm_area_struct *vma, struct mempolicy *npol) 2802 { 2803 int err; 2804 struct sp_node *new = NULL; 2805 unsigned long sz = vma_pages(vma); 2806 2807 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2808 vma->vm_pgoff, 2809 sz, npol ? npol->mode : -1, 2810 npol ? npol->flags : -1, 2811 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2812 2813 if (npol) { 2814 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2815 if (!new) 2816 return -ENOMEM; 2817 } 2818 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2819 if (err && new) 2820 sp_free(new); 2821 return err; 2822 } 2823 2824 /* Free a backing policy store on inode delete. */ 2825 void mpol_free_shared_policy(struct shared_policy *p) 2826 { 2827 struct sp_node *n; 2828 struct rb_node *next; 2829 2830 if (!p->root.rb_node) 2831 return; 2832 write_lock(&p->lock); 2833 next = rb_first(&p->root); 2834 while (next) { 2835 n = rb_entry(next, struct sp_node, nd); 2836 next = rb_next(&n->nd); 2837 sp_delete(p, n); 2838 } 2839 write_unlock(&p->lock); 2840 } 2841 2842 #ifdef CONFIG_NUMA_BALANCING 2843 static int __initdata numabalancing_override; 2844 2845 static void __init check_numabalancing_enable(void) 2846 { 2847 bool numabalancing_default = false; 2848 2849 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2850 numabalancing_default = true; 2851 2852 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2853 if (numabalancing_override) 2854 set_numabalancing_state(numabalancing_override == 1); 2855 2856 if (num_online_nodes() > 1 && !numabalancing_override) { 2857 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2858 numabalancing_default ? "Enabling" : "Disabling"); 2859 set_numabalancing_state(numabalancing_default); 2860 } 2861 } 2862 2863 static int __init setup_numabalancing(char *str) 2864 { 2865 int ret = 0; 2866 if (!str) 2867 goto out; 2868 2869 if (!strcmp(str, "enable")) { 2870 numabalancing_override = 1; 2871 ret = 1; 2872 } else if (!strcmp(str, "disable")) { 2873 numabalancing_override = -1; 2874 ret = 1; 2875 } 2876 out: 2877 if (!ret) 2878 pr_warn("Unable to parse numa_balancing=\n"); 2879 2880 return ret; 2881 } 2882 __setup("numa_balancing=", setup_numabalancing); 2883 #else 2884 static inline void __init check_numabalancing_enable(void) 2885 { 2886 } 2887 #endif /* CONFIG_NUMA_BALANCING */ 2888 2889 /* assumes fs == KERNEL_DS */ 2890 void __init numa_policy_init(void) 2891 { 2892 nodemask_t interleave_nodes; 2893 unsigned long largest = 0; 2894 int nid, prefer = 0; 2895 2896 policy_cache = kmem_cache_create("numa_policy", 2897 sizeof(struct mempolicy), 2898 0, SLAB_PANIC, NULL); 2899 2900 sn_cache = kmem_cache_create("shared_policy_node", 2901 sizeof(struct sp_node), 2902 0, SLAB_PANIC, NULL); 2903 2904 for_each_node(nid) { 2905 preferred_node_policy[nid] = (struct mempolicy) { 2906 .refcnt = ATOMIC_INIT(1), 2907 .mode = MPOL_PREFERRED, 2908 .flags = MPOL_F_MOF | MPOL_F_MORON, 2909 .nodes = nodemask_of_node(nid), 2910 }; 2911 } 2912 2913 /* 2914 * Set interleaving policy for system init. Interleaving is only 2915 * enabled across suitably sized nodes (default is >= 16MB), or 2916 * fall back to the largest node if they're all smaller. 2917 */ 2918 nodes_clear(interleave_nodes); 2919 for_each_node_state(nid, N_MEMORY) { 2920 unsigned long total_pages = node_present_pages(nid); 2921 2922 /* Preserve the largest node */ 2923 if (largest < total_pages) { 2924 largest = total_pages; 2925 prefer = nid; 2926 } 2927 2928 /* Interleave this node? */ 2929 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2930 node_set(nid, interleave_nodes); 2931 } 2932 2933 /* All too small, use the largest */ 2934 if (unlikely(nodes_empty(interleave_nodes))) 2935 node_set(prefer, interleave_nodes); 2936 2937 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2938 pr_err("%s: interleaving failed\n", __func__); 2939 2940 check_numabalancing_enable(); 2941 } 2942 2943 /* Reset policy of current process to default */ 2944 void numa_default_policy(void) 2945 { 2946 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2947 } 2948 2949 /* 2950 * Parse and format mempolicy from/to strings 2951 */ 2952 2953 static const char * const policy_modes[] = 2954 { 2955 [MPOL_DEFAULT] = "default", 2956 [MPOL_PREFERRED] = "prefer", 2957 [MPOL_BIND] = "bind", 2958 [MPOL_INTERLEAVE] = "interleave", 2959 [MPOL_LOCAL] = "local", 2960 [MPOL_PREFERRED_MANY] = "prefer (many)", 2961 }; 2962 2963 2964 #ifdef CONFIG_TMPFS 2965 /** 2966 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2967 * @str: string containing mempolicy to parse 2968 * @mpol: pointer to struct mempolicy pointer, returned on success. 2969 * 2970 * Format of input: 2971 * <mode>[=<flags>][:<nodelist>] 2972 * 2973 * Return: %0 on success, else %1 2974 */ 2975 int mpol_parse_str(char *str, struct mempolicy **mpol) 2976 { 2977 struct mempolicy *new = NULL; 2978 unsigned short mode_flags; 2979 nodemask_t nodes; 2980 char *nodelist = strchr(str, ':'); 2981 char *flags = strchr(str, '='); 2982 int err = 1, mode; 2983 2984 if (flags) 2985 *flags++ = '\0'; /* terminate mode string */ 2986 2987 if (nodelist) { 2988 /* NUL-terminate mode or flags string */ 2989 *nodelist++ = '\0'; 2990 if (nodelist_parse(nodelist, nodes)) 2991 goto out; 2992 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2993 goto out; 2994 } else 2995 nodes_clear(nodes); 2996 2997 mode = match_string(policy_modes, MPOL_MAX, str); 2998 if (mode < 0) 2999 goto out; 3000 3001 switch (mode) { 3002 case MPOL_PREFERRED: 3003 /* 3004 * Insist on a nodelist of one node only, although later 3005 * we use first_node(nodes) to grab a single node, so here 3006 * nodelist (or nodes) cannot be empty. 3007 */ 3008 if (nodelist) { 3009 char *rest = nodelist; 3010 while (isdigit(*rest)) 3011 rest++; 3012 if (*rest) 3013 goto out; 3014 if (nodes_empty(nodes)) 3015 goto out; 3016 } 3017 break; 3018 case MPOL_INTERLEAVE: 3019 /* 3020 * Default to online nodes with memory if no nodelist 3021 */ 3022 if (!nodelist) 3023 nodes = node_states[N_MEMORY]; 3024 break; 3025 case MPOL_LOCAL: 3026 /* 3027 * Don't allow a nodelist; mpol_new() checks flags 3028 */ 3029 if (nodelist) 3030 goto out; 3031 break; 3032 case MPOL_DEFAULT: 3033 /* 3034 * Insist on a empty nodelist 3035 */ 3036 if (!nodelist) 3037 err = 0; 3038 goto out; 3039 case MPOL_PREFERRED_MANY: 3040 case MPOL_BIND: 3041 /* 3042 * Insist on a nodelist 3043 */ 3044 if (!nodelist) 3045 goto out; 3046 } 3047 3048 mode_flags = 0; 3049 if (flags) { 3050 /* 3051 * Currently, we only support two mutually exclusive 3052 * mode flags. 3053 */ 3054 if (!strcmp(flags, "static")) 3055 mode_flags |= MPOL_F_STATIC_NODES; 3056 else if (!strcmp(flags, "relative")) 3057 mode_flags |= MPOL_F_RELATIVE_NODES; 3058 else 3059 goto out; 3060 } 3061 3062 new = mpol_new(mode, mode_flags, &nodes); 3063 if (IS_ERR(new)) 3064 goto out; 3065 3066 /* 3067 * Save nodes for mpol_to_str() to show the tmpfs mount options 3068 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3069 */ 3070 if (mode != MPOL_PREFERRED) { 3071 new->nodes = nodes; 3072 } else if (nodelist) { 3073 nodes_clear(new->nodes); 3074 node_set(first_node(nodes), new->nodes); 3075 } else { 3076 new->mode = MPOL_LOCAL; 3077 } 3078 3079 /* 3080 * Save nodes for contextualization: this will be used to "clone" 3081 * the mempolicy in a specific context [cpuset] at a later time. 3082 */ 3083 new->w.user_nodemask = nodes; 3084 3085 err = 0; 3086 3087 out: 3088 /* Restore string for error message */ 3089 if (nodelist) 3090 *--nodelist = ':'; 3091 if (flags) 3092 *--flags = '='; 3093 if (!err) 3094 *mpol = new; 3095 return err; 3096 } 3097 #endif /* CONFIG_TMPFS */ 3098 3099 /** 3100 * mpol_to_str - format a mempolicy structure for printing 3101 * @buffer: to contain formatted mempolicy string 3102 * @maxlen: length of @buffer 3103 * @pol: pointer to mempolicy to be formatted 3104 * 3105 * Convert @pol into a string. If @buffer is too short, truncate the string. 3106 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3107 * longest flag, "relative", and to display at least a few node ids. 3108 */ 3109 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3110 { 3111 char *p = buffer; 3112 nodemask_t nodes = NODE_MASK_NONE; 3113 unsigned short mode = MPOL_DEFAULT; 3114 unsigned short flags = 0; 3115 3116 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3117 mode = pol->mode; 3118 flags = pol->flags; 3119 } 3120 3121 switch (mode) { 3122 case MPOL_DEFAULT: 3123 case MPOL_LOCAL: 3124 break; 3125 case MPOL_PREFERRED: 3126 case MPOL_PREFERRED_MANY: 3127 case MPOL_BIND: 3128 case MPOL_INTERLEAVE: 3129 nodes = pol->nodes; 3130 break; 3131 default: 3132 WARN_ON_ONCE(1); 3133 snprintf(p, maxlen, "unknown"); 3134 return; 3135 } 3136 3137 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3138 3139 if (flags & MPOL_MODE_FLAGS) { 3140 p += snprintf(p, buffer + maxlen - p, "="); 3141 3142 /* 3143 * Currently, the only defined flags are mutually exclusive 3144 */ 3145 if (flags & MPOL_F_STATIC_NODES) 3146 p += snprintf(p, buffer + maxlen - p, "static"); 3147 else if (flags & MPOL_F_RELATIVE_NODES) 3148 p += snprintf(p, buffer + maxlen - p, "relative"); 3149 } 3150 3151 if (!nodes_empty(nodes)) 3152 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3153 nodemask_pr_args(&nodes)); 3154 } 3155