1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 #include <linux/random.h> 101 102 #include "internal.h" 103 104 /* Internal flags */ 105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 107 108 static struct kmem_cache *policy_cache; 109 static struct kmem_cache *sn_cache; 110 111 /* Highest zone. An specific allocation for a zone below that is not 112 policied. */ 113 enum zone_type policy_zone = 0; 114 115 /* 116 * run-time system-wide default policy => local allocation 117 */ 118 static struct mempolicy default_policy = { 119 .refcnt = ATOMIC_INIT(1), /* never free it */ 120 .mode = MPOL_PREFERRED, 121 .flags = MPOL_F_LOCAL, 122 }; 123 124 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 125 126 struct mempolicy *get_task_policy(struct task_struct *p) 127 { 128 struct mempolicy *pol = p->mempolicy; 129 int node; 130 131 if (pol) 132 return pol; 133 134 node = numa_node_id(); 135 if (node != NUMA_NO_NODE) { 136 pol = &preferred_node_policy[node]; 137 /* preferred_node_policy is not initialised early in boot */ 138 if (pol->mode) 139 return pol; 140 } 141 142 return &default_policy; 143 } 144 145 static const struct mempolicy_operations { 146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 147 /* 148 * If read-side task has no lock to protect task->mempolicy, write-side 149 * task will rebind the task->mempolicy by two step. The first step is 150 * setting all the newly nodes, and the second step is cleaning all the 151 * disallowed nodes. In this way, we can avoid finding no node to alloc 152 * page. 153 * If we have a lock to protect task->mempolicy in read-side, we do 154 * rebind directly. 155 * 156 * step: 157 * MPOL_REBIND_ONCE - do rebind work at once 158 * MPOL_REBIND_STEP1 - set all the newly nodes 159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 160 */ 161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 162 enum mpol_rebind_step step); 163 } mpol_ops[MPOL_MAX]; 164 165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 166 { 167 return pol->flags & MPOL_MODE_FLAGS; 168 } 169 170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 171 const nodemask_t *rel) 172 { 173 nodemask_t tmp; 174 nodes_fold(tmp, *orig, nodes_weight(*rel)); 175 nodes_onto(*ret, tmp, *rel); 176 } 177 178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 179 { 180 if (nodes_empty(*nodes)) 181 return -EINVAL; 182 pol->v.nodes = *nodes; 183 return 0; 184 } 185 186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (!nodes) 189 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 190 else if (nodes_empty(*nodes)) 191 return -EINVAL; /* no allowed nodes */ 192 else 193 pol->v.preferred_node = first_node(*nodes); 194 return 0; 195 } 196 197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 198 { 199 if (nodes_empty(*nodes)) 200 return -EINVAL; 201 pol->v.nodes = *nodes; 202 return 0; 203 } 204 205 /* 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 207 * any, for the new policy. mpol_new() has already validated the nodes 208 * parameter with respect to the policy mode and flags. But, we need to 209 * handle an empty nodemask with MPOL_PREFERRED here. 210 * 211 * Must be called holding task's alloc_lock to protect task's mems_allowed 212 * and mempolicy. May also be called holding the mmap_semaphore for write. 213 */ 214 static int mpol_set_nodemask(struct mempolicy *pol, 215 const nodemask_t *nodes, struct nodemask_scratch *nsc) 216 { 217 int ret; 218 219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 220 if (pol == NULL) 221 return 0; 222 /* Check N_MEMORY */ 223 nodes_and(nsc->mask1, 224 cpuset_current_mems_allowed, node_states[N_MEMORY]); 225 226 VM_BUG_ON(!nodes); 227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 228 nodes = NULL; /* explicit local allocation */ 229 else { 230 if (pol->flags & MPOL_F_RELATIVE_NODES) 231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 232 else 233 nodes_and(nsc->mask2, *nodes, nsc->mask1); 234 235 if (mpol_store_user_nodemask(pol)) 236 pol->w.user_nodemask = *nodes; 237 else 238 pol->w.cpuset_mems_allowed = 239 cpuset_current_mems_allowed; 240 } 241 242 if (nodes) 243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 244 else 245 ret = mpol_ops[pol->mode].create(pol, NULL); 246 return ret; 247 } 248 249 /* 250 * This function just creates a new policy, does some check and simple 251 * initialization. You must invoke mpol_set_nodemask() to set nodes. 252 */ 253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 254 nodemask_t *nodes) 255 { 256 struct mempolicy *policy; 257 258 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 260 261 if (mode == MPOL_DEFAULT) { 262 if (nodes && !nodes_empty(*nodes)) 263 return ERR_PTR(-EINVAL); 264 return NULL; 265 } 266 VM_BUG_ON(!nodes); 267 268 /* 269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 271 * All other modes require a valid pointer to a non-empty nodemask. 272 */ 273 if (mode == MPOL_PREFERRED) { 274 if (nodes_empty(*nodes)) { 275 if (((flags & MPOL_F_STATIC_NODES) || 276 (flags & MPOL_F_RELATIVE_NODES))) 277 return ERR_PTR(-EINVAL); 278 } 279 } else if (mode == MPOL_LOCAL) { 280 if (!nodes_empty(*nodes)) 281 return ERR_PTR(-EINVAL); 282 mode = MPOL_PREFERRED; 283 } else if (nodes_empty(*nodes)) 284 return ERR_PTR(-EINVAL); 285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 286 if (!policy) 287 return ERR_PTR(-ENOMEM); 288 atomic_set(&policy->refcnt, 1); 289 policy->mode = mode; 290 policy->flags = flags; 291 292 return policy; 293 } 294 295 /* Slow path of a mpol destructor. */ 296 void __mpol_put(struct mempolicy *p) 297 { 298 if (!atomic_dec_and_test(&p->refcnt)) 299 return; 300 kmem_cache_free(policy_cache, p); 301 } 302 303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 } 307 308 /* 309 * step: 310 * MPOL_REBIND_ONCE - do rebind work at once 311 * MPOL_REBIND_STEP1 - set all the newly nodes 312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 313 */ 314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 315 enum mpol_rebind_step step) 316 { 317 nodemask_t tmp; 318 319 if (pol->flags & MPOL_F_STATIC_NODES) 320 nodes_and(tmp, pol->w.user_nodemask, *nodes); 321 else if (pol->flags & MPOL_F_RELATIVE_NODES) 322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 323 else { 324 /* 325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 326 * result 327 */ 328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 329 nodes_remap(tmp, pol->v.nodes, 330 pol->w.cpuset_mems_allowed, *nodes); 331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 332 } else if (step == MPOL_REBIND_STEP2) { 333 tmp = pol->w.cpuset_mems_allowed; 334 pol->w.cpuset_mems_allowed = *nodes; 335 } else 336 BUG(); 337 } 338 339 if (nodes_empty(tmp)) 340 tmp = *nodes; 341 342 if (step == MPOL_REBIND_STEP1) 343 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 345 pol->v.nodes = tmp; 346 else 347 BUG(); 348 349 if (!node_isset(current->il_next, tmp)) { 350 current->il_next = next_node(current->il_next, tmp); 351 if (current->il_next >= MAX_NUMNODES) 352 current->il_next = first_node(tmp); 353 if (current->il_next >= MAX_NUMNODES) 354 current->il_next = numa_node_id(); 355 } 356 } 357 358 static void mpol_rebind_preferred(struct mempolicy *pol, 359 const nodemask_t *nodes, 360 enum mpol_rebind_step step) 361 { 362 nodemask_t tmp; 363 364 if (pol->flags & MPOL_F_STATIC_NODES) { 365 int node = first_node(pol->w.user_nodemask); 366 367 if (node_isset(node, *nodes)) { 368 pol->v.preferred_node = node; 369 pol->flags &= ~MPOL_F_LOCAL; 370 } else 371 pol->flags |= MPOL_F_LOCAL; 372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 374 pol->v.preferred_node = first_node(tmp); 375 } else if (!(pol->flags & MPOL_F_LOCAL)) { 376 pol->v.preferred_node = node_remap(pol->v.preferred_node, 377 pol->w.cpuset_mems_allowed, 378 *nodes); 379 pol->w.cpuset_mems_allowed = *nodes; 380 } 381 } 382 383 /* 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes 385 * 386 * If read-side task has no lock to protect task->mempolicy, write-side 387 * task will rebind the task->mempolicy by two step. The first step is 388 * setting all the newly nodes, and the second step is cleaning all the 389 * disallowed nodes. In this way, we can avoid finding no node to alloc 390 * page. 391 * If we have a lock to protect task->mempolicy in read-side, we do 392 * rebind directly. 393 * 394 * step: 395 * MPOL_REBIND_ONCE - do rebind work at once 396 * MPOL_REBIND_STEP1 - set all the newly nodes 397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 398 */ 399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 400 enum mpol_rebind_step step) 401 { 402 if (!pol) 403 return; 404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 406 return; 407 408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 409 return; 410 411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 412 BUG(); 413 414 if (step == MPOL_REBIND_STEP1) 415 pol->flags |= MPOL_F_REBINDING; 416 else if (step == MPOL_REBIND_STEP2) 417 pol->flags &= ~MPOL_F_REBINDING; 418 else if (step >= MPOL_REBIND_NSTEP) 419 BUG(); 420 421 mpol_ops[pol->mode].rebind(pol, newmask, step); 422 } 423 424 /* 425 * Wrapper for mpol_rebind_policy() that just requires task 426 * pointer, and updates task mempolicy. 427 * 428 * Called with task's alloc_lock held. 429 */ 430 431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 432 enum mpol_rebind_step step) 433 { 434 mpol_rebind_policy(tsk->mempolicy, new, step); 435 } 436 437 /* 438 * Rebind each vma in mm to new nodemask. 439 * 440 * Call holding a reference to mm. Takes mm->mmap_sem during call. 441 */ 442 443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 444 { 445 struct vm_area_struct *vma; 446 447 down_write(&mm->mmap_sem); 448 for (vma = mm->mmap; vma; vma = vma->vm_next) 449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 450 up_write(&mm->mmap_sem); 451 } 452 453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 454 [MPOL_DEFAULT] = { 455 .rebind = mpol_rebind_default, 456 }, 457 [MPOL_INTERLEAVE] = { 458 .create = mpol_new_interleave, 459 .rebind = mpol_rebind_nodemask, 460 }, 461 [MPOL_PREFERRED] = { 462 .create = mpol_new_preferred, 463 .rebind = mpol_rebind_preferred, 464 }, 465 [MPOL_BIND] = { 466 .create = mpol_new_bind, 467 .rebind = mpol_rebind_nodemask, 468 }, 469 }; 470 471 static void migrate_page_add(struct page *page, struct list_head *pagelist, 472 unsigned long flags); 473 474 struct queue_pages { 475 struct list_head *pagelist; 476 unsigned long flags; 477 nodemask_t *nmask; 478 struct vm_area_struct *prev; 479 }; 480 481 /* 482 * Scan through pages checking if pages follow certain conditions, 483 * and move them to the pagelist if they do. 484 */ 485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 486 unsigned long end, struct mm_walk *walk) 487 { 488 struct vm_area_struct *vma = walk->vma; 489 struct page *page; 490 struct queue_pages *qp = walk->private; 491 unsigned long flags = qp->flags; 492 int nid, ret; 493 pte_t *pte; 494 spinlock_t *ptl; 495 496 if (pmd_trans_huge(*pmd)) { 497 ptl = pmd_lock(walk->mm, pmd); 498 if (pmd_trans_huge(*pmd)) { 499 page = pmd_page(*pmd); 500 if (is_huge_zero_page(page)) { 501 spin_unlock(ptl); 502 split_huge_pmd(vma, pmd, addr); 503 } else { 504 get_page(page); 505 spin_unlock(ptl); 506 lock_page(page); 507 ret = split_huge_page(page); 508 unlock_page(page); 509 put_page(page); 510 if (ret) 511 return 0; 512 } 513 } else { 514 spin_unlock(ptl); 515 } 516 } 517 518 retry: 519 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 520 for (; addr != end; pte++, addr += PAGE_SIZE) { 521 if (!pte_present(*pte)) 522 continue; 523 page = vm_normal_page(vma, addr, *pte); 524 if (!page) 525 continue; 526 /* 527 * vm_normal_page() filters out zero pages, but there might 528 * still be PageReserved pages to skip, perhaps in a VDSO. 529 */ 530 if (PageReserved(page)) 531 continue; 532 nid = page_to_nid(page); 533 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 534 continue; 535 if (PageTail(page) && PageAnon(page)) { 536 get_page(page); 537 pte_unmap_unlock(pte, ptl); 538 lock_page(page); 539 ret = split_huge_page(page); 540 unlock_page(page); 541 put_page(page); 542 /* Failed to split -- skip. */ 543 if (ret) { 544 pte = pte_offset_map_lock(walk->mm, pmd, 545 addr, &ptl); 546 continue; 547 } 548 goto retry; 549 } 550 551 migrate_page_add(page, qp->pagelist, flags); 552 } 553 pte_unmap_unlock(pte - 1, ptl); 554 cond_resched(); 555 return 0; 556 } 557 558 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 559 unsigned long addr, unsigned long end, 560 struct mm_walk *walk) 561 { 562 #ifdef CONFIG_HUGETLB_PAGE 563 struct queue_pages *qp = walk->private; 564 unsigned long flags = qp->flags; 565 int nid; 566 struct page *page; 567 spinlock_t *ptl; 568 pte_t entry; 569 570 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 571 entry = huge_ptep_get(pte); 572 if (!pte_present(entry)) 573 goto unlock; 574 page = pte_page(entry); 575 nid = page_to_nid(page); 576 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 577 goto unlock; 578 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 579 if (flags & (MPOL_MF_MOVE_ALL) || 580 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 581 isolate_huge_page(page, qp->pagelist); 582 unlock: 583 spin_unlock(ptl); 584 #else 585 BUG(); 586 #endif 587 return 0; 588 } 589 590 #ifdef CONFIG_NUMA_BALANCING 591 /* 592 * This is used to mark a range of virtual addresses to be inaccessible. 593 * These are later cleared by a NUMA hinting fault. Depending on these 594 * faults, pages may be migrated for better NUMA placement. 595 * 596 * This is assuming that NUMA faults are handled using PROT_NONE. If 597 * an architecture makes a different choice, it will need further 598 * changes to the core. 599 */ 600 unsigned long change_prot_numa(struct vm_area_struct *vma, 601 unsigned long addr, unsigned long end) 602 { 603 int nr_updated; 604 605 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 606 if (nr_updated) 607 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 608 609 return nr_updated; 610 } 611 #else 612 static unsigned long change_prot_numa(struct vm_area_struct *vma, 613 unsigned long addr, unsigned long end) 614 { 615 return 0; 616 } 617 #endif /* CONFIG_NUMA_BALANCING */ 618 619 static int queue_pages_test_walk(unsigned long start, unsigned long end, 620 struct mm_walk *walk) 621 { 622 struct vm_area_struct *vma = walk->vma; 623 struct queue_pages *qp = walk->private; 624 unsigned long endvma = vma->vm_end; 625 unsigned long flags = qp->flags; 626 627 if (!vma_migratable(vma)) 628 return 1; 629 630 if (endvma > end) 631 endvma = end; 632 if (vma->vm_start > start) 633 start = vma->vm_start; 634 635 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 636 if (!vma->vm_next && vma->vm_end < end) 637 return -EFAULT; 638 if (qp->prev && qp->prev->vm_end < vma->vm_start) 639 return -EFAULT; 640 } 641 642 qp->prev = vma; 643 644 if (flags & MPOL_MF_LAZY) { 645 /* Similar to task_numa_work, skip inaccessible VMAs */ 646 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) 647 change_prot_numa(vma, start, endvma); 648 return 1; 649 } 650 651 /* queue pages from current vma */ 652 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 653 return 0; 654 return 1; 655 } 656 657 /* 658 * Walk through page tables and collect pages to be migrated. 659 * 660 * If pages found in a given range are on a set of nodes (determined by 661 * @nodes and @flags,) it's isolated and queued to the pagelist which is 662 * passed via @private.) 663 */ 664 static int 665 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 666 nodemask_t *nodes, unsigned long flags, 667 struct list_head *pagelist) 668 { 669 struct queue_pages qp = { 670 .pagelist = pagelist, 671 .flags = flags, 672 .nmask = nodes, 673 .prev = NULL, 674 }; 675 struct mm_walk queue_pages_walk = { 676 .hugetlb_entry = queue_pages_hugetlb, 677 .pmd_entry = queue_pages_pte_range, 678 .test_walk = queue_pages_test_walk, 679 .mm = mm, 680 .private = &qp, 681 }; 682 683 return walk_page_range(start, end, &queue_pages_walk); 684 } 685 686 /* 687 * Apply policy to a single VMA 688 * This must be called with the mmap_sem held for writing. 689 */ 690 static int vma_replace_policy(struct vm_area_struct *vma, 691 struct mempolicy *pol) 692 { 693 int err; 694 struct mempolicy *old; 695 struct mempolicy *new; 696 697 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 698 vma->vm_start, vma->vm_end, vma->vm_pgoff, 699 vma->vm_ops, vma->vm_file, 700 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 701 702 new = mpol_dup(pol); 703 if (IS_ERR(new)) 704 return PTR_ERR(new); 705 706 if (vma->vm_ops && vma->vm_ops->set_policy) { 707 err = vma->vm_ops->set_policy(vma, new); 708 if (err) 709 goto err_out; 710 } 711 712 old = vma->vm_policy; 713 vma->vm_policy = new; /* protected by mmap_sem */ 714 mpol_put(old); 715 716 return 0; 717 err_out: 718 mpol_put(new); 719 return err; 720 } 721 722 /* Step 2: apply policy to a range and do splits. */ 723 static int mbind_range(struct mm_struct *mm, unsigned long start, 724 unsigned long end, struct mempolicy *new_pol) 725 { 726 struct vm_area_struct *next; 727 struct vm_area_struct *prev; 728 struct vm_area_struct *vma; 729 int err = 0; 730 pgoff_t pgoff; 731 unsigned long vmstart; 732 unsigned long vmend; 733 734 vma = find_vma(mm, start); 735 if (!vma || vma->vm_start > start) 736 return -EFAULT; 737 738 prev = vma->vm_prev; 739 if (start > vma->vm_start) 740 prev = vma; 741 742 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 743 next = vma->vm_next; 744 vmstart = max(start, vma->vm_start); 745 vmend = min(end, vma->vm_end); 746 747 if (mpol_equal(vma_policy(vma), new_pol)) 748 continue; 749 750 pgoff = vma->vm_pgoff + 751 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 752 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 753 vma->anon_vma, vma->vm_file, pgoff, 754 new_pol, vma->vm_userfaultfd_ctx); 755 if (prev) { 756 vma = prev; 757 next = vma->vm_next; 758 if (mpol_equal(vma_policy(vma), new_pol)) 759 continue; 760 /* vma_merge() joined vma && vma->next, case 8 */ 761 goto replace; 762 } 763 if (vma->vm_start != vmstart) { 764 err = split_vma(vma->vm_mm, vma, vmstart, 1); 765 if (err) 766 goto out; 767 } 768 if (vma->vm_end != vmend) { 769 err = split_vma(vma->vm_mm, vma, vmend, 0); 770 if (err) 771 goto out; 772 } 773 replace: 774 err = vma_replace_policy(vma, new_pol); 775 if (err) 776 goto out; 777 } 778 779 out: 780 return err; 781 } 782 783 /* Set the process memory policy */ 784 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 785 nodemask_t *nodes) 786 { 787 struct mempolicy *new, *old; 788 NODEMASK_SCRATCH(scratch); 789 int ret; 790 791 if (!scratch) 792 return -ENOMEM; 793 794 new = mpol_new(mode, flags, nodes); 795 if (IS_ERR(new)) { 796 ret = PTR_ERR(new); 797 goto out; 798 } 799 800 task_lock(current); 801 ret = mpol_set_nodemask(new, nodes, scratch); 802 if (ret) { 803 task_unlock(current); 804 mpol_put(new); 805 goto out; 806 } 807 old = current->mempolicy; 808 current->mempolicy = new; 809 if (new && new->mode == MPOL_INTERLEAVE && 810 nodes_weight(new->v.nodes)) 811 current->il_next = first_node(new->v.nodes); 812 task_unlock(current); 813 mpol_put(old); 814 ret = 0; 815 out: 816 NODEMASK_SCRATCH_FREE(scratch); 817 return ret; 818 } 819 820 /* 821 * Return nodemask for policy for get_mempolicy() query 822 * 823 * Called with task's alloc_lock held 824 */ 825 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 826 { 827 nodes_clear(*nodes); 828 if (p == &default_policy) 829 return; 830 831 switch (p->mode) { 832 case MPOL_BIND: 833 /* Fall through */ 834 case MPOL_INTERLEAVE: 835 *nodes = p->v.nodes; 836 break; 837 case MPOL_PREFERRED: 838 if (!(p->flags & MPOL_F_LOCAL)) 839 node_set(p->v.preferred_node, *nodes); 840 /* else return empty node mask for local allocation */ 841 break; 842 default: 843 BUG(); 844 } 845 } 846 847 static int lookup_node(struct mm_struct *mm, unsigned long addr) 848 { 849 struct page *p; 850 int err; 851 852 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 853 if (err >= 0) { 854 err = page_to_nid(p); 855 put_page(p); 856 } 857 return err; 858 } 859 860 /* Retrieve NUMA policy */ 861 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 862 unsigned long addr, unsigned long flags) 863 { 864 int err; 865 struct mm_struct *mm = current->mm; 866 struct vm_area_struct *vma = NULL; 867 struct mempolicy *pol = current->mempolicy; 868 869 if (flags & 870 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 871 return -EINVAL; 872 873 if (flags & MPOL_F_MEMS_ALLOWED) { 874 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 875 return -EINVAL; 876 *policy = 0; /* just so it's initialized */ 877 task_lock(current); 878 *nmask = cpuset_current_mems_allowed; 879 task_unlock(current); 880 return 0; 881 } 882 883 if (flags & MPOL_F_ADDR) { 884 /* 885 * Do NOT fall back to task policy if the 886 * vma/shared policy at addr is NULL. We 887 * want to return MPOL_DEFAULT in this case. 888 */ 889 down_read(&mm->mmap_sem); 890 vma = find_vma_intersection(mm, addr, addr+1); 891 if (!vma) { 892 up_read(&mm->mmap_sem); 893 return -EFAULT; 894 } 895 if (vma->vm_ops && vma->vm_ops->get_policy) 896 pol = vma->vm_ops->get_policy(vma, addr); 897 else 898 pol = vma->vm_policy; 899 } else if (addr) 900 return -EINVAL; 901 902 if (!pol) 903 pol = &default_policy; /* indicates default behavior */ 904 905 if (flags & MPOL_F_NODE) { 906 if (flags & MPOL_F_ADDR) { 907 err = lookup_node(mm, addr); 908 if (err < 0) 909 goto out; 910 *policy = err; 911 } else if (pol == current->mempolicy && 912 pol->mode == MPOL_INTERLEAVE) { 913 *policy = current->il_next; 914 } else { 915 err = -EINVAL; 916 goto out; 917 } 918 } else { 919 *policy = pol == &default_policy ? MPOL_DEFAULT : 920 pol->mode; 921 /* 922 * Internal mempolicy flags must be masked off before exposing 923 * the policy to userspace. 924 */ 925 *policy |= (pol->flags & MPOL_MODE_FLAGS); 926 } 927 928 if (vma) { 929 up_read(¤t->mm->mmap_sem); 930 vma = NULL; 931 } 932 933 err = 0; 934 if (nmask) { 935 if (mpol_store_user_nodemask(pol)) { 936 *nmask = pol->w.user_nodemask; 937 } else { 938 task_lock(current); 939 get_policy_nodemask(pol, nmask); 940 task_unlock(current); 941 } 942 } 943 944 out: 945 mpol_cond_put(pol); 946 if (vma) 947 up_read(¤t->mm->mmap_sem); 948 return err; 949 } 950 951 #ifdef CONFIG_MIGRATION 952 /* 953 * page migration 954 */ 955 static void migrate_page_add(struct page *page, struct list_head *pagelist, 956 unsigned long flags) 957 { 958 /* 959 * Avoid migrating a page that is shared with others. 960 */ 961 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 962 if (!isolate_lru_page(page)) { 963 list_add_tail(&page->lru, pagelist); 964 inc_zone_page_state(page, NR_ISOLATED_ANON + 965 page_is_file_cache(page)); 966 } 967 } 968 } 969 970 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 971 { 972 if (PageHuge(page)) 973 return alloc_huge_page_node(page_hstate(compound_head(page)), 974 node); 975 else 976 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 977 __GFP_THISNODE, 0); 978 } 979 980 /* 981 * Migrate pages from one node to a target node. 982 * Returns error or the number of pages not migrated. 983 */ 984 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 985 int flags) 986 { 987 nodemask_t nmask; 988 LIST_HEAD(pagelist); 989 int err = 0; 990 991 nodes_clear(nmask); 992 node_set(source, nmask); 993 994 /* 995 * This does not "check" the range but isolates all pages that 996 * need migration. Between passing in the full user address 997 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 998 */ 999 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1000 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1001 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1002 1003 if (!list_empty(&pagelist)) { 1004 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1005 MIGRATE_SYNC, MR_SYSCALL); 1006 if (err) 1007 putback_movable_pages(&pagelist); 1008 } 1009 1010 return err; 1011 } 1012 1013 /* 1014 * Move pages between the two nodesets so as to preserve the physical 1015 * layout as much as possible. 1016 * 1017 * Returns the number of page that could not be moved. 1018 */ 1019 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1020 const nodemask_t *to, int flags) 1021 { 1022 int busy = 0; 1023 int err; 1024 nodemask_t tmp; 1025 1026 err = migrate_prep(); 1027 if (err) 1028 return err; 1029 1030 down_read(&mm->mmap_sem); 1031 1032 /* 1033 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1034 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1035 * bit in 'tmp', and return that <source, dest> pair for migration. 1036 * The pair of nodemasks 'to' and 'from' define the map. 1037 * 1038 * If no pair of bits is found that way, fallback to picking some 1039 * pair of 'source' and 'dest' bits that are not the same. If the 1040 * 'source' and 'dest' bits are the same, this represents a node 1041 * that will be migrating to itself, so no pages need move. 1042 * 1043 * If no bits are left in 'tmp', or if all remaining bits left 1044 * in 'tmp' correspond to the same bit in 'to', return false 1045 * (nothing left to migrate). 1046 * 1047 * This lets us pick a pair of nodes to migrate between, such that 1048 * if possible the dest node is not already occupied by some other 1049 * source node, minimizing the risk of overloading the memory on a 1050 * node that would happen if we migrated incoming memory to a node 1051 * before migrating outgoing memory source that same node. 1052 * 1053 * A single scan of tmp is sufficient. As we go, we remember the 1054 * most recent <s, d> pair that moved (s != d). If we find a pair 1055 * that not only moved, but what's better, moved to an empty slot 1056 * (d is not set in tmp), then we break out then, with that pair. 1057 * Otherwise when we finish scanning from_tmp, we at least have the 1058 * most recent <s, d> pair that moved. If we get all the way through 1059 * the scan of tmp without finding any node that moved, much less 1060 * moved to an empty node, then there is nothing left worth migrating. 1061 */ 1062 1063 tmp = *from; 1064 while (!nodes_empty(tmp)) { 1065 int s,d; 1066 int source = NUMA_NO_NODE; 1067 int dest = 0; 1068 1069 for_each_node_mask(s, tmp) { 1070 1071 /* 1072 * do_migrate_pages() tries to maintain the relative 1073 * node relationship of the pages established between 1074 * threads and memory areas. 1075 * 1076 * However if the number of source nodes is not equal to 1077 * the number of destination nodes we can not preserve 1078 * this node relative relationship. In that case, skip 1079 * copying memory from a node that is in the destination 1080 * mask. 1081 * 1082 * Example: [2,3,4] -> [3,4,5] moves everything. 1083 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1084 */ 1085 1086 if ((nodes_weight(*from) != nodes_weight(*to)) && 1087 (node_isset(s, *to))) 1088 continue; 1089 1090 d = node_remap(s, *from, *to); 1091 if (s == d) 1092 continue; 1093 1094 source = s; /* Node moved. Memorize */ 1095 dest = d; 1096 1097 /* dest not in remaining from nodes? */ 1098 if (!node_isset(dest, tmp)) 1099 break; 1100 } 1101 if (source == NUMA_NO_NODE) 1102 break; 1103 1104 node_clear(source, tmp); 1105 err = migrate_to_node(mm, source, dest, flags); 1106 if (err > 0) 1107 busy += err; 1108 if (err < 0) 1109 break; 1110 } 1111 up_read(&mm->mmap_sem); 1112 if (err < 0) 1113 return err; 1114 return busy; 1115 1116 } 1117 1118 /* 1119 * Allocate a new page for page migration based on vma policy. 1120 * Start by assuming the page is mapped by the same vma as contains @start. 1121 * Search forward from there, if not. N.B., this assumes that the 1122 * list of pages handed to migrate_pages()--which is how we get here-- 1123 * is in virtual address order. 1124 */ 1125 static struct page *new_page(struct page *page, unsigned long start, int **x) 1126 { 1127 struct vm_area_struct *vma; 1128 unsigned long uninitialized_var(address); 1129 1130 vma = find_vma(current->mm, start); 1131 while (vma) { 1132 address = page_address_in_vma(page, vma); 1133 if (address != -EFAULT) 1134 break; 1135 vma = vma->vm_next; 1136 } 1137 1138 if (PageHuge(page)) { 1139 BUG_ON(!vma); 1140 return alloc_huge_page_noerr(vma, address, 1); 1141 } 1142 /* 1143 * if !vma, alloc_page_vma() will use task or system default policy 1144 */ 1145 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1146 } 1147 #else 1148 1149 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1150 unsigned long flags) 1151 { 1152 } 1153 1154 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1155 const nodemask_t *to, int flags) 1156 { 1157 return -ENOSYS; 1158 } 1159 1160 static struct page *new_page(struct page *page, unsigned long start, int **x) 1161 { 1162 return NULL; 1163 } 1164 #endif 1165 1166 static long do_mbind(unsigned long start, unsigned long len, 1167 unsigned short mode, unsigned short mode_flags, 1168 nodemask_t *nmask, unsigned long flags) 1169 { 1170 struct mm_struct *mm = current->mm; 1171 struct mempolicy *new; 1172 unsigned long end; 1173 int err; 1174 LIST_HEAD(pagelist); 1175 1176 if (flags & ~(unsigned long)MPOL_MF_VALID) 1177 return -EINVAL; 1178 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1179 return -EPERM; 1180 1181 if (start & ~PAGE_MASK) 1182 return -EINVAL; 1183 1184 if (mode == MPOL_DEFAULT) 1185 flags &= ~MPOL_MF_STRICT; 1186 1187 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1188 end = start + len; 1189 1190 if (end < start) 1191 return -EINVAL; 1192 if (end == start) 1193 return 0; 1194 1195 new = mpol_new(mode, mode_flags, nmask); 1196 if (IS_ERR(new)) 1197 return PTR_ERR(new); 1198 1199 if (flags & MPOL_MF_LAZY) 1200 new->flags |= MPOL_F_MOF; 1201 1202 /* 1203 * If we are using the default policy then operation 1204 * on discontinuous address spaces is okay after all 1205 */ 1206 if (!new) 1207 flags |= MPOL_MF_DISCONTIG_OK; 1208 1209 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1210 start, start + len, mode, mode_flags, 1211 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1212 1213 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1214 1215 err = migrate_prep(); 1216 if (err) 1217 goto mpol_out; 1218 } 1219 { 1220 NODEMASK_SCRATCH(scratch); 1221 if (scratch) { 1222 down_write(&mm->mmap_sem); 1223 task_lock(current); 1224 err = mpol_set_nodemask(new, nmask, scratch); 1225 task_unlock(current); 1226 if (err) 1227 up_write(&mm->mmap_sem); 1228 } else 1229 err = -ENOMEM; 1230 NODEMASK_SCRATCH_FREE(scratch); 1231 } 1232 if (err) 1233 goto mpol_out; 1234 1235 err = queue_pages_range(mm, start, end, nmask, 1236 flags | MPOL_MF_INVERT, &pagelist); 1237 if (!err) 1238 err = mbind_range(mm, start, end, new); 1239 1240 if (!err) { 1241 int nr_failed = 0; 1242 1243 if (!list_empty(&pagelist)) { 1244 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1245 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1246 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1247 if (nr_failed) 1248 putback_movable_pages(&pagelist); 1249 } 1250 1251 if (nr_failed && (flags & MPOL_MF_STRICT)) 1252 err = -EIO; 1253 } else 1254 putback_movable_pages(&pagelist); 1255 1256 up_write(&mm->mmap_sem); 1257 mpol_out: 1258 mpol_put(new); 1259 return err; 1260 } 1261 1262 /* 1263 * User space interface with variable sized bitmaps for nodelists. 1264 */ 1265 1266 /* Copy a node mask from user space. */ 1267 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1268 unsigned long maxnode) 1269 { 1270 unsigned long k; 1271 unsigned long nlongs; 1272 unsigned long endmask; 1273 1274 --maxnode; 1275 nodes_clear(*nodes); 1276 if (maxnode == 0 || !nmask) 1277 return 0; 1278 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1279 return -EINVAL; 1280 1281 nlongs = BITS_TO_LONGS(maxnode); 1282 if ((maxnode % BITS_PER_LONG) == 0) 1283 endmask = ~0UL; 1284 else 1285 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1286 1287 /* When the user specified more nodes than supported just check 1288 if the non supported part is all zero. */ 1289 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1290 if (nlongs > PAGE_SIZE/sizeof(long)) 1291 return -EINVAL; 1292 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1293 unsigned long t; 1294 if (get_user(t, nmask + k)) 1295 return -EFAULT; 1296 if (k == nlongs - 1) { 1297 if (t & endmask) 1298 return -EINVAL; 1299 } else if (t) 1300 return -EINVAL; 1301 } 1302 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1303 endmask = ~0UL; 1304 } 1305 1306 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1307 return -EFAULT; 1308 nodes_addr(*nodes)[nlongs-1] &= endmask; 1309 return 0; 1310 } 1311 1312 /* Copy a kernel node mask to user space */ 1313 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1314 nodemask_t *nodes) 1315 { 1316 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1317 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1318 1319 if (copy > nbytes) { 1320 if (copy > PAGE_SIZE) 1321 return -EINVAL; 1322 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1323 return -EFAULT; 1324 copy = nbytes; 1325 } 1326 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1327 } 1328 1329 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1330 unsigned long, mode, const unsigned long __user *, nmask, 1331 unsigned long, maxnode, unsigned, flags) 1332 { 1333 nodemask_t nodes; 1334 int err; 1335 unsigned short mode_flags; 1336 1337 mode_flags = mode & MPOL_MODE_FLAGS; 1338 mode &= ~MPOL_MODE_FLAGS; 1339 if (mode >= MPOL_MAX) 1340 return -EINVAL; 1341 if ((mode_flags & MPOL_F_STATIC_NODES) && 1342 (mode_flags & MPOL_F_RELATIVE_NODES)) 1343 return -EINVAL; 1344 err = get_nodes(&nodes, nmask, maxnode); 1345 if (err) 1346 return err; 1347 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1348 } 1349 1350 /* Set the process memory policy */ 1351 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1352 unsigned long, maxnode) 1353 { 1354 int err; 1355 nodemask_t nodes; 1356 unsigned short flags; 1357 1358 flags = mode & MPOL_MODE_FLAGS; 1359 mode &= ~MPOL_MODE_FLAGS; 1360 if ((unsigned int)mode >= MPOL_MAX) 1361 return -EINVAL; 1362 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1363 return -EINVAL; 1364 err = get_nodes(&nodes, nmask, maxnode); 1365 if (err) 1366 return err; 1367 return do_set_mempolicy(mode, flags, &nodes); 1368 } 1369 1370 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1371 const unsigned long __user *, old_nodes, 1372 const unsigned long __user *, new_nodes) 1373 { 1374 const struct cred *cred = current_cred(), *tcred; 1375 struct mm_struct *mm = NULL; 1376 struct task_struct *task; 1377 nodemask_t task_nodes; 1378 int err; 1379 nodemask_t *old; 1380 nodemask_t *new; 1381 NODEMASK_SCRATCH(scratch); 1382 1383 if (!scratch) 1384 return -ENOMEM; 1385 1386 old = &scratch->mask1; 1387 new = &scratch->mask2; 1388 1389 err = get_nodes(old, old_nodes, maxnode); 1390 if (err) 1391 goto out; 1392 1393 err = get_nodes(new, new_nodes, maxnode); 1394 if (err) 1395 goto out; 1396 1397 /* Find the mm_struct */ 1398 rcu_read_lock(); 1399 task = pid ? find_task_by_vpid(pid) : current; 1400 if (!task) { 1401 rcu_read_unlock(); 1402 err = -ESRCH; 1403 goto out; 1404 } 1405 get_task_struct(task); 1406 1407 err = -EINVAL; 1408 1409 /* 1410 * Check if this process has the right to modify the specified 1411 * process. The right exists if the process has administrative 1412 * capabilities, superuser privileges or the same 1413 * userid as the target process. 1414 */ 1415 tcred = __task_cred(task); 1416 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1417 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1418 !capable(CAP_SYS_NICE)) { 1419 rcu_read_unlock(); 1420 err = -EPERM; 1421 goto out_put; 1422 } 1423 rcu_read_unlock(); 1424 1425 task_nodes = cpuset_mems_allowed(task); 1426 /* Is the user allowed to access the target nodes? */ 1427 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1428 err = -EPERM; 1429 goto out_put; 1430 } 1431 1432 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1433 err = -EINVAL; 1434 goto out_put; 1435 } 1436 1437 err = security_task_movememory(task); 1438 if (err) 1439 goto out_put; 1440 1441 mm = get_task_mm(task); 1442 put_task_struct(task); 1443 1444 if (!mm) { 1445 err = -EINVAL; 1446 goto out; 1447 } 1448 1449 err = do_migrate_pages(mm, old, new, 1450 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1451 1452 mmput(mm); 1453 out: 1454 NODEMASK_SCRATCH_FREE(scratch); 1455 1456 return err; 1457 1458 out_put: 1459 put_task_struct(task); 1460 goto out; 1461 1462 } 1463 1464 1465 /* Retrieve NUMA policy */ 1466 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1467 unsigned long __user *, nmask, unsigned long, maxnode, 1468 unsigned long, addr, unsigned long, flags) 1469 { 1470 int err; 1471 int uninitialized_var(pval); 1472 nodemask_t nodes; 1473 1474 if (nmask != NULL && maxnode < MAX_NUMNODES) 1475 return -EINVAL; 1476 1477 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1478 1479 if (err) 1480 return err; 1481 1482 if (policy && put_user(pval, policy)) 1483 return -EFAULT; 1484 1485 if (nmask) 1486 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1487 1488 return err; 1489 } 1490 1491 #ifdef CONFIG_COMPAT 1492 1493 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1494 compat_ulong_t __user *, nmask, 1495 compat_ulong_t, maxnode, 1496 compat_ulong_t, addr, compat_ulong_t, flags) 1497 { 1498 long err; 1499 unsigned long __user *nm = NULL; 1500 unsigned long nr_bits, alloc_size; 1501 DECLARE_BITMAP(bm, MAX_NUMNODES); 1502 1503 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1504 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1505 1506 if (nmask) 1507 nm = compat_alloc_user_space(alloc_size); 1508 1509 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1510 1511 if (!err && nmask) { 1512 unsigned long copy_size; 1513 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1514 err = copy_from_user(bm, nm, copy_size); 1515 /* ensure entire bitmap is zeroed */ 1516 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1517 err |= compat_put_bitmap(nmask, bm, nr_bits); 1518 } 1519 1520 return err; 1521 } 1522 1523 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1524 compat_ulong_t, maxnode) 1525 { 1526 long err = 0; 1527 unsigned long __user *nm = NULL; 1528 unsigned long nr_bits, alloc_size; 1529 DECLARE_BITMAP(bm, MAX_NUMNODES); 1530 1531 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1532 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1533 1534 if (nmask) { 1535 err = compat_get_bitmap(bm, nmask, nr_bits); 1536 nm = compat_alloc_user_space(alloc_size); 1537 err |= copy_to_user(nm, bm, alloc_size); 1538 } 1539 1540 if (err) 1541 return -EFAULT; 1542 1543 return sys_set_mempolicy(mode, nm, nr_bits+1); 1544 } 1545 1546 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1547 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1548 compat_ulong_t, maxnode, compat_ulong_t, flags) 1549 { 1550 long err = 0; 1551 unsigned long __user *nm = NULL; 1552 unsigned long nr_bits, alloc_size; 1553 nodemask_t bm; 1554 1555 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1556 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1557 1558 if (nmask) { 1559 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1560 nm = compat_alloc_user_space(alloc_size); 1561 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1562 } 1563 1564 if (err) 1565 return -EFAULT; 1566 1567 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1568 } 1569 1570 #endif 1571 1572 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1573 unsigned long addr) 1574 { 1575 struct mempolicy *pol = NULL; 1576 1577 if (vma) { 1578 if (vma->vm_ops && vma->vm_ops->get_policy) { 1579 pol = vma->vm_ops->get_policy(vma, addr); 1580 } else if (vma->vm_policy) { 1581 pol = vma->vm_policy; 1582 1583 /* 1584 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1585 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1586 * count on these policies which will be dropped by 1587 * mpol_cond_put() later 1588 */ 1589 if (mpol_needs_cond_ref(pol)) 1590 mpol_get(pol); 1591 } 1592 } 1593 1594 return pol; 1595 } 1596 1597 /* 1598 * get_vma_policy(@vma, @addr) 1599 * @vma: virtual memory area whose policy is sought 1600 * @addr: address in @vma for shared policy lookup 1601 * 1602 * Returns effective policy for a VMA at specified address. 1603 * Falls back to current->mempolicy or system default policy, as necessary. 1604 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1605 * count--added by the get_policy() vm_op, as appropriate--to protect against 1606 * freeing by another task. It is the caller's responsibility to free the 1607 * extra reference for shared policies. 1608 */ 1609 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1610 unsigned long addr) 1611 { 1612 struct mempolicy *pol = __get_vma_policy(vma, addr); 1613 1614 if (!pol) 1615 pol = get_task_policy(current); 1616 1617 return pol; 1618 } 1619 1620 bool vma_policy_mof(struct vm_area_struct *vma) 1621 { 1622 struct mempolicy *pol; 1623 1624 if (vma->vm_ops && vma->vm_ops->get_policy) { 1625 bool ret = false; 1626 1627 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1628 if (pol && (pol->flags & MPOL_F_MOF)) 1629 ret = true; 1630 mpol_cond_put(pol); 1631 1632 return ret; 1633 } 1634 1635 pol = vma->vm_policy; 1636 if (!pol) 1637 pol = get_task_policy(current); 1638 1639 return pol->flags & MPOL_F_MOF; 1640 } 1641 1642 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1643 { 1644 enum zone_type dynamic_policy_zone = policy_zone; 1645 1646 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1647 1648 /* 1649 * if policy->v.nodes has movable memory only, 1650 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1651 * 1652 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1653 * so if the following test faile, it implies 1654 * policy->v.nodes has movable memory only. 1655 */ 1656 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1657 dynamic_policy_zone = ZONE_MOVABLE; 1658 1659 return zone >= dynamic_policy_zone; 1660 } 1661 1662 /* 1663 * Return a nodemask representing a mempolicy for filtering nodes for 1664 * page allocation 1665 */ 1666 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1667 { 1668 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1669 if (unlikely(policy->mode == MPOL_BIND) && 1670 apply_policy_zone(policy, gfp_zone(gfp)) && 1671 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1672 return &policy->v.nodes; 1673 1674 return NULL; 1675 } 1676 1677 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1678 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1679 int nd) 1680 { 1681 switch (policy->mode) { 1682 case MPOL_PREFERRED: 1683 if (!(policy->flags & MPOL_F_LOCAL)) 1684 nd = policy->v.preferred_node; 1685 break; 1686 case MPOL_BIND: 1687 /* 1688 * Normally, MPOL_BIND allocations are node-local within the 1689 * allowed nodemask. However, if __GFP_THISNODE is set and the 1690 * current node isn't part of the mask, we use the zonelist for 1691 * the first node in the mask instead. 1692 */ 1693 if (unlikely(gfp & __GFP_THISNODE) && 1694 unlikely(!node_isset(nd, policy->v.nodes))) 1695 nd = first_node(policy->v.nodes); 1696 break; 1697 default: 1698 BUG(); 1699 } 1700 return node_zonelist(nd, gfp); 1701 } 1702 1703 /* Do dynamic interleaving for a process */ 1704 static unsigned interleave_nodes(struct mempolicy *policy) 1705 { 1706 unsigned nid, next; 1707 struct task_struct *me = current; 1708 1709 nid = me->il_next; 1710 next = next_node(nid, policy->v.nodes); 1711 if (next >= MAX_NUMNODES) 1712 next = first_node(policy->v.nodes); 1713 if (next < MAX_NUMNODES) 1714 me->il_next = next; 1715 return nid; 1716 } 1717 1718 /* 1719 * Depending on the memory policy provide a node from which to allocate the 1720 * next slab entry. 1721 */ 1722 unsigned int mempolicy_slab_node(void) 1723 { 1724 struct mempolicy *policy; 1725 int node = numa_mem_id(); 1726 1727 if (in_interrupt()) 1728 return node; 1729 1730 policy = current->mempolicy; 1731 if (!policy || policy->flags & MPOL_F_LOCAL) 1732 return node; 1733 1734 switch (policy->mode) { 1735 case MPOL_PREFERRED: 1736 /* 1737 * handled MPOL_F_LOCAL above 1738 */ 1739 return policy->v.preferred_node; 1740 1741 case MPOL_INTERLEAVE: 1742 return interleave_nodes(policy); 1743 1744 case MPOL_BIND: { 1745 /* 1746 * Follow bind policy behavior and start allocation at the 1747 * first node. 1748 */ 1749 struct zonelist *zonelist; 1750 struct zone *zone; 1751 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1752 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1753 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1754 &policy->v.nodes, 1755 &zone); 1756 return zone ? zone->node : node; 1757 } 1758 1759 default: 1760 BUG(); 1761 } 1762 } 1763 1764 /* Do static interleaving for a VMA with known offset. */ 1765 static unsigned offset_il_node(struct mempolicy *pol, 1766 struct vm_area_struct *vma, unsigned long off) 1767 { 1768 unsigned nnodes = nodes_weight(pol->v.nodes); 1769 unsigned target; 1770 int c; 1771 int nid = NUMA_NO_NODE; 1772 1773 if (!nnodes) 1774 return numa_node_id(); 1775 target = (unsigned int)off % nnodes; 1776 c = 0; 1777 do { 1778 nid = next_node(nid, pol->v.nodes); 1779 c++; 1780 } while (c <= target); 1781 return nid; 1782 } 1783 1784 /* Determine a node number for interleave */ 1785 static inline unsigned interleave_nid(struct mempolicy *pol, 1786 struct vm_area_struct *vma, unsigned long addr, int shift) 1787 { 1788 if (vma) { 1789 unsigned long off; 1790 1791 /* 1792 * for small pages, there is no difference between 1793 * shift and PAGE_SHIFT, so the bit-shift is safe. 1794 * for huge pages, since vm_pgoff is in units of small 1795 * pages, we need to shift off the always 0 bits to get 1796 * a useful offset. 1797 */ 1798 BUG_ON(shift < PAGE_SHIFT); 1799 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1800 off += (addr - vma->vm_start) >> shift; 1801 return offset_il_node(pol, vma, off); 1802 } else 1803 return interleave_nodes(pol); 1804 } 1805 1806 /* 1807 * Return the bit number of a random bit set in the nodemask. 1808 * (returns NUMA_NO_NODE if nodemask is empty) 1809 */ 1810 int node_random(const nodemask_t *maskp) 1811 { 1812 int w, bit = NUMA_NO_NODE; 1813 1814 w = nodes_weight(*maskp); 1815 if (w) 1816 bit = bitmap_ord_to_pos(maskp->bits, 1817 get_random_int() % w, MAX_NUMNODES); 1818 return bit; 1819 } 1820 1821 #ifdef CONFIG_HUGETLBFS 1822 /* 1823 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1824 * @vma: virtual memory area whose policy is sought 1825 * @addr: address in @vma for shared policy lookup and interleave policy 1826 * @gfp_flags: for requested zone 1827 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1828 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1829 * 1830 * Returns a zonelist suitable for a huge page allocation and a pointer 1831 * to the struct mempolicy for conditional unref after allocation. 1832 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1833 * @nodemask for filtering the zonelist. 1834 * 1835 * Must be protected by read_mems_allowed_begin() 1836 */ 1837 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1838 gfp_t gfp_flags, struct mempolicy **mpol, 1839 nodemask_t **nodemask) 1840 { 1841 struct zonelist *zl; 1842 1843 *mpol = get_vma_policy(vma, addr); 1844 *nodemask = NULL; /* assume !MPOL_BIND */ 1845 1846 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1847 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1848 huge_page_shift(hstate_vma(vma))), gfp_flags); 1849 } else { 1850 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1851 if ((*mpol)->mode == MPOL_BIND) 1852 *nodemask = &(*mpol)->v.nodes; 1853 } 1854 return zl; 1855 } 1856 1857 /* 1858 * init_nodemask_of_mempolicy 1859 * 1860 * If the current task's mempolicy is "default" [NULL], return 'false' 1861 * to indicate default policy. Otherwise, extract the policy nodemask 1862 * for 'bind' or 'interleave' policy into the argument nodemask, or 1863 * initialize the argument nodemask to contain the single node for 1864 * 'preferred' or 'local' policy and return 'true' to indicate presence 1865 * of non-default mempolicy. 1866 * 1867 * We don't bother with reference counting the mempolicy [mpol_get/put] 1868 * because the current task is examining it's own mempolicy and a task's 1869 * mempolicy is only ever changed by the task itself. 1870 * 1871 * N.B., it is the caller's responsibility to free a returned nodemask. 1872 */ 1873 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1874 { 1875 struct mempolicy *mempolicy; 1876 int nid; 1877 1878 if (!(mask && current->mempolicy)) 1879 return false; 1880 1881 task_lock(current); 1882 mempolicy = current->mempolicy; 1883 switch (mempolicy->mode) { 1884 case MPOL_PREFERRED: 1885 if (mempolicy->flags & MPOL_F_LOCAL) 1886 nid = numa_node_id(); 1887 else 1888 nid = mempolicy->v.preferred_node; 1889 init_nodemask_of_node(mask, nid); 1890 break; 1891 1892 case MPOL_BIND: 1893 /* Fall through */ 1894 case MPOL_INTERLEAVE: 1895 *mask = mempolicy->v.nodes; 1896 break; 1897 1898 default: 1899 BUG(); 1900 } 1901 task_unlock(current); 1902 1903 return true; 1904 } 1905 #endif 1906 1907 /* 1908 * mempolicy_nodemask_intersects 1909 * 1910 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1911 * policy. Otherwise, check for intersection between mask and the policy 1912 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1913 * policy, always return true since it may allocate elsewhere on fallback. 1914 * 1915 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1916 */ 1917 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1918 const nodemask_t *mask) 1919 { 1920 struct mempolicy *mempolicy; 1921 bool ret = true; 1922 1923 if (!mask) 1924 return ret; 1925 task_lock(tsk); 1926 mempolicy = tsk->mempolicy; 1927 if (!mempolicy) 1928 goto out; 1929 1930 switch (mempolicy->mode) { 1931 case MPOL_PREFERRED: 1932 /* 1933 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1934 * allocate from, they may fallback to other nodes when oom. 1935 * Thus, it's possible for tsk to have allocated memory from 1936 * nodes in mask. 1937 */ 1938 break; 1939 case MPOL_BIND: 1940 case MPOL_INTERLEAVE: 1941 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1942 break; 1943 default: 1944 BUG(); 1945 } 1946 out: 1947 task_unlock(tsk); 1948 return ret; 1949 } 1950 1951 /* Allocate a page in interleaved policy. 1952 Own path because it needs to do special accounting. */ 1953 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1954 unsigned nid) 1955 { 1956 struct zonelist *zl; 1957 struct page *page; 1958 1959 zl = node_zonelist(nid, gfp); 1960 page = __alloc_pages(gfp, order, zl); 1961 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1962 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1963 return page; 1964 } 1965 1966 /** 1967 * alloc_pages_vma - Allocate a page for a VMA. 1968 * 1969 * @gfp: 1970 * %GFP_USER user allocation. 1971 * %GFP_KERNEL kernel allocations, 1972 * %GFP_HIGHMEM highmem/user allocations, 1973 * %GFP_FS allocation should not call back into a file system. 1974 * %GFP_ATOMIC don't sleep. 1975 * 1976 * @order:Order of the GFP allocation. 1977 * @vma: Pointer to VMA or NULL if not available. 1978 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1979 * @node: Which node to prefer for allocation (modulo policy). 1980 * @hugepage: for hugepages try only the preferred node if possible 1981 * 1982 * This function allocates a page from the kernel page pool and applies 1983 * a NUMA policy associated with the VMA or the current process. 1984 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1985 * mm_struct of the VMA to prevent it from going away. Should be used for 1986 * all allocations for pages that will be mapped into user space. Returns 1987 * NULL when no page can be allocated. 1988 */ 1989 struct page * 1990 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1991 unsigned long addr, int node, bool hugepage) 1992 { 1993 struct mempolicy *pol; 1994 struct page *page; 1995 unsigned int cpuset_mems_cookie; 1996 struct zonelist *zl; 1997 nodemask_t *nmask; 1998 1999 retry_cpuset: 2000 pol = get_vma_policy(vma, addr); 2001 cpuset_mems_cookie = read_mems_allowed_begin(); 2002 2003 if (pol->mode == MPOL_INTERLEAVE) { 2004 unsigned nid; 2005 2006 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2007 mpol_cond_put(pol); 2008 page = alloc_page_interleave(gfp, order, nid); 2009 goto out; 2010 } 2011 2012 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2013 int hpage_node = node; 2014 2015 /* 2016 * For hugepage allocation and non-interleave policy which 2017 * allows the current node (or other explicitly preferred 2018 * node) we only try to allocate from the current/preferred 2019 * node and don't fall back to other nodes, as the cost of 2020 * remote accesses would likely offset THP benefits. 2021 * 2022 * If the policy is interleave, or does not allow the current 2023 * node in its nodemask, we allocate the standard way. 2024 */ 2025 if (pol->mode == MPOL_PREFERRED && 2026 !(pol->flags & MPOL_F_LOCAL)) 2027 hpage_node = pol->v.preferred_node; 2028 2029 nmask = policy_nodemask(gfp, pol); 2030 if (!nmask || node_isset(hpage_node, *nmask)) { 2031 mpol_cond_put(pol); 2032 page = __alloc_pages_node(hpage_node, 2033 gfp | __GFP_THISNODE, order); 2034 goto out; 2035 } 2036 } 2037 2038 nmask = policy_nodemask(gfp, pol); 2039 zl = policy_zonelist(gfp, pol, node); 2040 mpol_cond_put(pol); 2041 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2042 out: 2043 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2044 goto retry_cpuset; 2045 return page; 2046 } 2047 2048 /** 2049 * alloc_pages_current - Allocate pages. 2050 * 2051 * @gfp: 2052 * %GFP_USER user allocation, 2053 * %GFP_KERNEL kernel allocation, 2054 * %GFP_HIGHMEM highmem allocation, 2055 * %GFP_FS don't call back into a file system. 2056 * %GFP_ATOMIC don't sleep. 2057 * @order: Power of two of allocation size in pages. 0 is a single page. 2058 * 2059 * Allocate a page from the kernel page pool. When not in 2060 * interrupt context and apply the current process NUMA policy. 2061 * Returns NULL when no page can be allocated. 2062 * 2063 * Don't call cpuset_update_task_memory_state() unless 2064 * 1) it's ok to take cpuset_sem (can WAIT), and 2065 * 2) allocating for current task (not interrupt). 2066 */ 2067 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2068 { 2069 struct mempolicy *pol = &default_policy; 2070 struct page *page; 2071 unsigned int cpuset_mems_cookie; 2072 2073 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2074 pol = get_task_policy(current); 2075 2076 retry_cpuset: 2077 cpuset_mems_cookie = read_mems_allowed_begin(); 2078 2079 /* 2080 * No reference counting needed for current->mempolicy 2081 * nor system default_policy 2082 */ 2083 if (pol->mode == MPOL_INTERLEAVE) 2084 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2085 else 2086 page = __alloc_pages_nodemask(gfp, order, 2087 policy_zonelist(gfp, pol, numa_node_id()), 2088 policy_nodemask(gfp, pol)); 2089 2090 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2091 goto retry_cpuset; 2092 2093 return page; 2094 } 2095 EXPORT_SYMBOL(alloc_pages_current); 2096 2097 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2098 { 2099 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2100 2101 if (IS_ERR(pol)) 2102 return PTR_ERR(pol); 2103 dst->vm_policy = pol; 2104 return 0; 2105 } 2106 2107 /* 2108 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2109 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2110 * with the mems_allowed returned by cpuset_mems_allowed(). This 2111 * keeps mempolicies cpuset relative after its cpuset moves. See 2112 * further kernel/cpuset.c update_nodemask(). 2113 * 2114 * current's mempolicy may be rebinded by the other task(the task that changes 2115 * cpuset's mems), so we needn't do rebind work for current task. 2116 */ 2117 2118 /* Slow path of a mempolicy duplicate */ 2119 struct mempolicy *__mpol_dup(struct mempolicy *old) 2120 { 2121 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2122 2123 if (!new) 2124 return ERR_PTR(-ENOMEM); 2125 2126 /* task's mempolicy is protected by alloc_lock */ 2127 if (old == current->mempolicy) { 2128 task_lock(current); 2129 *new = *old; 2130 task_unlock(current); 2131 } else 2132 *new = *old; 2133 2134 if (current_cpuset_is_being_rebound()) { 2135 nodemask_t mems = cpuset_mems_allowed(current); 2136 if (new->flags & MPOL_F_REBINDING) 2137 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2138 else 2139 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2140 } 2141 atomic_set(&new->refcnt, 1); 2142 return new; 2143 } 2144 2145 /* Slow path of a mempolicy comparison */ 2146 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2147 { 2148 if (!a || !b) 2149 return false; 2150 if (a->mode != b->mode) 2151 return false; 2152 if (a->flags != b->flags) 2153 return false; 2154 if (mpol_store_user_nodemask(a)) 2155 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2156 return false; 2157 2158 switch (a->mode) { 2159 case MPOL_BIND: 2160 /* Fall through */ 2161 case MPOL_INTERLEAVE: 2162 return !!nodes_equal(a->v.nodes, b->v.nodes); 2163 case MPOL_PREFERRED: 2164 return a->v.preferred_node == b->v.preferred_node; 2165 default: 2166 BUG(); 2167 return false; 2168 } 2169 } 2170 2171 /* 2172 * Shared memory backing store policy support. 2173 * 2174 * Remember policies even when nobody has shared memory mapped. 2175 * The policies are kept in Red-Black tree linked from the inode. 2176 * They are protected by the sp->lock rwlock, which should be held 2177 * for any accesses to the tree. 2178 */ 2179 2180 /* 2181 * lookup first element intersecting start-end. Caller holds sp->lock for 2182 * reading or for writing 2183 */ 2184 static struct sp_node * 2185 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2186 { 2187 struct rb_node *n = sp->root.rb_node; 2188 2189 while (n) { 2190 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2191 2192 if (start >= p->end) 2193 n = n->rb_right; 2194 else if (end <= p->start) 2195 n = n->rb_left; 2196 else 2197 break; 2198 } 2199 if (!n) 2200 return NULL; 2201 for (;;) { 2202 struct sp_node *w = NULL; 2203 struct rb_node *prev = rb_prev(n); 2204 if (!prev) 2205 break; 2206 w = rb_entry(prev, struct sp_node, nd); 2207 if (w->end <= start) 2208 break; 2209 n = prev; 2210 } 2211 return rb_entry(n, struct sp_node, nd); 2212 } 2213 2214 /* 2215 * Insert a new shared policy into the list. Caller holds sp->lock for 2216 * writing. 2217 */ 2218 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2219 { 2220 struct rb_node **p = &sp->root.rb_node; 2221 struct rb_node *parent = NULL; 2222 struct sp_node *nd; 2223 2224 while (*p) { 2225 parent = *p; 2226 nd = rb_entry(parent, struct sp_node, nd); 2227 if (new->start < nd->start) 2228 p = &(*p)->rb_left; 2229 else if (new->end > nd->end) 2230 p = &(*p)->rb_right; 2231 else 2232 BUG(); 2233 } 2234 rb_link_node(&new->nd, parent, p); 2235 rb_insert_color(&new->nd, &sp->root); 2236 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2237 new->policy ? new->policy->mode : 0); 2238 } 2239 2240 /* Find shared policy intersecting idx */ 2241 struct mempolicy * 2242 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2243 { 2244 struct mempolicy *pol = NULL; 2245 struct sp_node *sn; 2246 2247 if (!sp->root.rb_node) 2248 return NULL; 2249 read_lock(&sp->lock); 2250 sn = sp_lookup(sp, idx, idx+1); 2251 if (sn) { 2252 mpol_get(sn->policy); 2253 pol = sn->policy; 2254 } 2255 read_unlock(&sp->lock); 2256 return pol; 2257 } 2258 2259 static void sp_free(struct sp_node *n) 2260 { 2261 mpol_put(n->policy); 2262 kmem_cache_free(sn_cache, n); 2263 } 2264 2265 /** 2266 * mpol_misplaced - check whether current page node is valid in policy 2267 * 2268 * @page: page to be checked 2269 * @vma: vm area where page mapped 2270 * @addr: virtual address where page mapped 2271 * 2272 * Lookup current policy node id for vma,addr and "compare to" page's 2273 * node id. 2274 * 2275 * Returns: 2276 * -1 - not misplaced, page is in the right node 2277 * node - node id where the page should be 2278 * 2279 * Policy determination "mimics" alloc_page_vma(). 2280 * Called from fault path where we know the vma and faulting address. 2281 */ 2282 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2283 { 2284 struct mempolicy *pol; 2285 struct zone *zone; 2286 int curnid = page_to_nid(page); 2287 unsigned long pgoff; 2288 int thiscpu = raw_smp_processor_id(); 2289 int thisnid = cpu_to_node(thiscpu); 2290 int polnid = -1; 2291 int ret = -1; 2292 2293 BUG_ON(!vma); 2294 2295 pol = get_vma_policy(vma, addr); 2296 if (!(pol->flags & MPOL_F_MOF)) 2297 goto out; 2298 2299 switch (pol->mode) { 2300 case MPOL_INTERLEAVE: 2301 BUG_ON(addr >= vma->vm_end); 2302 BUG_ON(addr < vma->vm_start); 2303 2304 pgoff = vma->vm_pgoff; 2305 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2306 polnid = offset_il_node(pol, vma, pgoff); 2307 break; 2308 2309 case MPOL_PREFERRED: 2310 if (pol->flags & MPOL_F_LOCAL) 2311 polnid = numa_node_id(); 2312 else 2313 polnid = pol->v.preferred_node; 2314 break; 2315 2316 case MPOL_BIND: 2317 /* 2318 * allows binding to multiple nodes. 2319 * use current page if in policy nodemask, 2320 * else select nearest allowed node, if any. 2321 * If no allowed nodes, use current [!misplaced]. 2322 */ 2323 if (node_isset(curnid, pol->v.nodes)) 2324 goto out; 2325 (void)first_zones_zonelist( 2326 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2327 gfp_zone(GFP_HIGHUSER), 2328 &pol->v.nodes, &zone); 2329 polnid = zone->node; 2330 break; 2331 2332 default: 2333 BUG(); 2334 } 2335 2336 /* Migrate the page towards the node whose CPU is referencing it */ 2337 if (pol->flags & MPOL_F_MORON) { 2338 polnid = thisnid; 2339 2340 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2341 goto out; 2342 } 2343 2344 if (curnid != polnid) 2345 ret = polnid; 2346 out: 2347 mpol_cond_put(pol); 2348 2349 return ret; 2350 } 2351 2352 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2353 { 2354 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2355 rb_erase(&n->nd, &sp->root); 2356 sp_free(n); 2357 } 2358 2359 static void sp_node_init(struct sp_node *node, unsigned long start, 2360 unsigned long end, struct mempolicy *pol) 2361 { 2362 node->start = start; 2363 node->end = end; 2364 node->policy = pol; 2365 } 2366 2367 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2368 struct mempolicy *pol) 2369 { 2370 struct sp_node *n; 2371 struct mempolicy *newpol; 2372 2373 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2374 if (!n) 2375 return NULL; 2376 2377 newpol = mpol_dup(pol); 2378 if (IS_ERR(newpol)) { 2379 kmem_cache_free(sn_cache, n); 2380 return NULL; 2381 } 2382 newpol->flags |= MPOL_F_SHARED; 2383 sp_node_init(n, start, end, newpol); 2384 2385 return n; 2386 } 2387 2388 /* Replace a policy range. */ 2389 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2390 unsigned long end, struct sp_node *new) 2391 { 2392 struct sp_node *n; 2393 struct sp_node *n_new = NULL; 2394 struct mempolicy *mpol_new = NULL; 2395 int ret = 0; 2396 2397 restart: 2398 write_lock(&sp->lock); 2399 n = sp_lookup(sp, start, end); 2400 /* Take care of old policies in the same range. */ 2401 while (n && n->start < end) { 2402 struct rb_node *next = rb_next(&n->nd); 2403 if (n->start >= start) { 2404 if (n->end <= end) 2405 sp_delete(sp, n); 2406 else 2407 n->start = end; 2408 } else { 2409 /* Old policy spanning whole new range. */ 2410 if (n->end > end) { 2411 if (!n_new) 2412 goto alloc_new; 2413 2414 *mpol_new = *n->policy; 2415 atomic_set(&mpol_new->refcnt, 1); 2416 sp_node_init(n_new, end, n->end, mpol_new); 2417 n->end = start; 2418 sp_insert(sp, n_new); 2419 n_new = NULL; 2420 mpol_new = NULL; 2421 break; 2422 } else 2423 n->end = start; 2424 } 2425 if (!next) 2426 break; 2427 n = rb_entry(next, struct sp_node, nd); 2428 } 2429 if (new) 2430 sp_insert(sp, new); 2431 write_unlock(&sp->lock); 2432 ret = 0; 2433 2434 err_out: 2435 if (mpol_new) 2436 mpol_put(mpol_new); 2437 if (n_new) 2438 kmem_cache_free(sn_cache, n_new); 2439 2440 return ret; 2441 2442 alloc_new: 2443 write_unlock(&sp->lock); 2444 ret = -ENOMEM; 2445 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2446 if (!n_new) 2447 goto err_out; 2448 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2449 if (!mpol_new) 2450 goto err_out; 2451 goto restart; 2452 } 2453 2454 /** 2455 * mpol_shared_policy_init - initialize shared policy for inode 2456 * @sp: pointer to inode shared policy 2457 * @mpol: struct mempolicy to install 2458 * 2459 * Install non-NULL @mpol in inode's shared policy rb-tree. 2460 * On entry, the current task has a reference on a non-NULL @mpol. 2461 * This must be released on exit. 2462 * This is called at get_inode() calls and we can use GFP_KERNEL. 2463 */ 2464 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2465 { 2466 int ret; 2467 2468 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2469 rwlock_init(&sp->lock); 2470 2471 if (mpol) { 2472 struct vm_area_struct pvma; 2473 struct mempolicy *new; 2474 NODEMASK_SCRATCH(scratch); 2475 2476 if (!scratch) 2477 goto put_mpol; 2478 /* contextualize the tmpfs mount point mempolicy */ 2479 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2480 if (IS_ERR(new)) 2481 goto free_scratch; /* no valid nodemask intersection */ 2482 2483 task_lock(current); 2484 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2485 task_unlock(current); 2486 if (ret) 2487 goto put_new; 2488 2489 /* Create pseudo-vma that contains just the policy */ 2490 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2491 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2492 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2493 2494 put_new: 2495 mpol_put(new); /* drop initial ref */ 2496 free_scratch: 2497 NODEMASK_SCRATCH_FREE(scratch); 2498 put_mpol: 2499 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2500 } 2501 } 2502 2503 int mpol_set_shared_policy(struct shared_policy *info, 2504 struct vm_area_struct *vma, struct mempolicy *npol) 2505 { 2506 int err; 2507 struct sp_node *new = NULL; 2508 unsigned long sz = vma_pages(vma); 2509 2510 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2511 vma->vm_pgoff, 2512 sz, npol ? npol->mode : -1, 2513 npol ? npol->flags : -1, 2514 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2515 2516 if (npol) { 2517 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2518 if (!new) 2519 return -ENOMEM; 2520 } 2521 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2522 if (err && new) 2523 sp_free(new); 2524 return err; 2525 } 2526 2527 /* Free a backing policy store on inode delete. */ 2528 void mpol_free_shared_policy(struct shared_policy *p) 2529 { 2530 struct sp_node *n; 2531 struct rb_node *next; 2532 2533 if (!p->root.rb_node) 2534 return; 2535 write_lock(&p->lock); 2536 next = rb_first(&p->root); 2537 while (next) { 2538 n = rb_entry(next, struct sp_node, nd); 2539 next = rb_next(&n->nd); 2540 sp_delete(p, n); 2541 } 2542 write_unlock(&p->lock); 2543 } 2544 2545 #ifdef CONFIG_NUMA_BALANCING 2546 static int __initdata numabalancing_override; 2547 2548 static void __init check_numabalancing_enable(void) 2549 { 2550 bool numabalancing_default = false; 2551 2552 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2553 numabalancing_default = true; 2554 2555 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2556 if (numabalancing_override) 2557 set_numabalancing_state(numabalancing_override == 1); 2558 2559 if (num_online_nodes() > 1 && !numabalancing_override) { 2560 pr_info("%s automatic NUMA balancing. " 2561 "Configure with numa_balancing= or the " 2562 "kernel.numa_balancing sysctl", 2563 numabalancing_default ? "Enabling" : "Disabling"); 2564 set_numabalancing_state(numabalancing_default); 2565 } 2566 } 2567 2568 static int __init setup_numabalancing(char *str) 2569 { 2570 int ret = 0; 2571 if (!str) 2572 goto out; 2573 2574 if (!strcmp(str, "enable")) { 2575 numabalancing_override = 1; 2576 ret = 1; 2577 } else if (!strcmp(str, "disable")) { 2578 numabalancing_override = -1; 2579 ret = 1; 2580 } 2581 out: 2582 if (!ret) 2583 pr_warn("Unable to parse numa_balancing=\n"); 2584 2585 return ret; 2586 } 2587 __setup("numa_balancing=", setup_numabalancing); 2588 #else 2589 static inline void __init check_numabalancing_enable(void) 2590 { 2591 } 2592 #endif /* CONFIG_NUMA_BALANCING */ 2593 2594 /* assumes fs == KERNEL_DS */ 2595 void __init numa_policy_init(void) 2596 { 2597 nodemask_t interleave_nodes; 2598 unsigned long largest = 0; 2599 int nid, prefer = 0; 2600 2601 policy_cache = kmem_cache_create("numa_policy", 2602 sizeof(struct mempolicy), 2603 0, SLAB_PANIC, NULL); 2604 2605 sn_cache = kmem_cache_create("shared_policy_node", 2606 sizeof(struct sp_node), 2607 0, SLAB_PANIC, NULL); 2608 2609 for_each_node(nid) { 2610 preferred_node_policy[nid] = (struct mempolicy) { 2611 .refcnt = ATOMIC_INIT(1), 2612 .mode = MPOL_PREFERRED, 2613 .flags = MPOL_F_MOF | MPOL_F_MORON, 2614 .v = { .preferred_node = nid, }, 2615 }; 2616 } 2617 2618 /* 2619 * Set interleaving policy for system init. Interleaving is only 2620 * enabled across suitably sized nodes (default is >= 16MB), or 2621 * fall back to the largest node if they're all smaller. 2622 */ 2623 nodes_clear(interleave_nodes); 2624 for_each_node_state(nid, N_MEMORY) { 2625 unsigned long total_pages = node_present_pages(nid); 2626 2627 /* Preserve the largest node */ 2628 if (largest < total_pages) { 2629 largest = total_pages; 2630 prefer = nid; 2631 } 2632 2633 /* Interleave this node? */ 2634 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2635 node_set(nid, interleave_nodes); 2636 } 2637 2638 /* All too small, use the largest */ 2639 if (unlikely(nodes_empty(interleave_nodes))) 2640 node_set(prefer, interleave_nodes); 2641 2642 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2643 pr_err("%s: interleaving failed\n", __func__); 2644 2645 check_numabalancing_enable(); 2646 } 2647 2648 /* Reset policy of current process to default */ 2649 void numa_default_policy(void) 2650 { 2651 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2652 } 2653 2654 /* 2655 * Parse and format mempolicy from/to strings 2656 */ 2657 2658 /* 2659 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2660 */ 2661 static const char * const policy_modes[] = 2662 { 2663 [MPOL_DEFAULT] = "default", 2664 [MPOL_PREFERRED] = "prefer", 2665 [MPOL_BIND] = "bind", 2666 [MPOL_INTERLEAVE] = "interleave", 2667 [MPOL_LOCAL] = "local", 2668 }; 2669 2670 2671 #ifdef CONFIG_TMPFS 2672 /** 2673 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2674 * @str: string containing mempolicy to parse 2675 * @mpol: pointer to struct mempolicy pointer, returned on success. 2676 * 2677 * Format of input: 2678 * <mode>[=<flags>][:<nodelist>] 2679 * 2680 * On success, returns 0, else 1 2681 */ 2682 int mpol_parse_str(char *str, struct mempolicy **mpol) 2683 { 2684 struct mempolicy *new = NULL; 2685 unsigned short mode; 2686 unsigned short mode_flags; 2687 nodemask_t nodes; 2688 char *nodelist = strchr(str, ':'); 2689 char *flags = strchr(str, '='); 2690 int err = 1; 2691 2692 if (nodelist) { 2693 /* NUL-terminate mode or flags string */ 2694 *nodelist++ = '\0'; 2695 if (nodelist_parse(nodelist, nodes)) 2696 goto out; 2697 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2698 goto out; 2699 } else 2700 nodes_clear(nodes); 2701 2702 if (flags) 2703 *flags++ = '\0'; /* terminate mode string */ 2704 2705 for (mode = 0; mode < MPOL_MAX; mode++) { 2706 if (!strcmp(str, policy_modes[mode])) { 2707 break; 2708 } 2709 } 2710 if (mode >= MPOL_MAX) 2711 goto out; 2712 2713 switch (mode) { 2714 case MPOL_PREFERRED: 2715 /* 2716 * Insist on a nodelist of one node only 2717 */ 2718 if (nodelist) { 2719 char *rest = nodelist; 2720 while (isdigit(*rest)) 2721 rest++; 2722 if (*rest) 2723 goto out; 2724 } 2725 break; 2726 case MPOL_INTERLEAVE: 2727 /* 2728 * Default to online nodes with memory if no nodelist 2729 */ 2730 if (!nodelist) 2731 nodes = node_states[N_MEMORY]; 2732 break; 2733 case MPOL_LOCAL: 2734 /* 2735 * Don't allow a nodelist; mpol_new() checks flags 2736 */ 2737 if (nodelist) 2738 goto out; 2739 mode = MPOL_PREFERRED; 2740 break; 2741 case MPOL_DEFAULT: 2742 /* 2743 * Insist on a empty nodelist 2744 */ 2745 if (!nodelist) 2746 err = 0; 2747 goto out; 2748 case MPOL_BIND: 2749 /* 2750 * Insist on a nodelist 2751 */ 2752 if (!nodelist) 2753 goto out; 2754 } 2755 2756 mode_flags = 0; 2757 if (flags) { 2758 /* 2759 * Currently, we only support two mutually exclusive 2760 * mode flags. 2761 */ 2762 if (!strcmp(flags, "static")) 2763 mode_flags |= MPOL_F_STATIC_NODES; 2764 else if (!strcmp(flags, "relative")) 2765 mode_flags |= MPOL_F_RELATIVE_NODES; 2766 else 2767 goto out; 2768 } 2769 2770 new = mpol_new(mode, mode_flags, &nodes); 2771 if (IS_ERR(new)) 2772 goto out; 2773 2774 /* 2775 * Save nodes for mpol_to_str() to show the tmpfs mount options 2776 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2777 */ 2778 if (mode != MPOL_PREFERRED) 2779 new->v.nodes = nodes; 2780 else if (nodelist) 2781 new->v.preferred_node = first_node(nodes); 2782 else 2783 new->flags |= MPOL_F_LOCAL; 2784 2785 /* 2786 * Save nodes for contextualization: this will be used to "clone" 2787 * the mempolicy in a specific context [cpuset] at a later time. 2788 */ 2789 new->w.user_nodemask = nodes; 2790 2791 err = 0; 2792 2793 out: 2794 /* Restore string for error message */ 2795 if (nodelist) 2796 *--nodelist = ':'; 2797 if (flags) 2798 *--flags = '='; 2799 if (!err) 2800 *mpol = new; 2801 return err; 2802 } 2803 #endif /* CONFIG_TMPFS */ 2804 2805 /** 2806 * mpol_to_str - format a mempolicy structure for printing 2807 * @buffer: to contain formatted mempolicy string 2808 * @maxlen: length of @buffer 2809 * @pol: pointer to mempolicy to be formatted 2810 * 2811 * Convert @pol into a string. If @buffer is too short, truncate the string. 2812 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2813 * longest flag, "relative", and to display at least a few node ids. 2814 */ 2815 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2816 { 2817 char *p = buffer; 2818 nodemask_t nodes = NODE_MASK_NONE; 2819 unsigned short mode = MPOL_DEFAULT; 2820 unsigned short flags = 0; 2821 2822 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2823 mode = pol->mode; 2824 flags = pol->flags; 2825 } 2826 2827 switch (mode) { 2828 case MPOL_DEFAULT: 2829 break; 2830 case MPOL_PREFERRED: 2831 if (flags & MPOL_F_LOCAL) 2832 mode = MPOL_LOCAL; 2833 else 2834 node_set(pol->v.preferred_node, nodes); 2835 break; 2836 case MPOL_BIND: 2837 case MPOL_INTERLEAVE: 2838 nodes = pol->v.nodes; 2839 break; 2840 default: 2841 WARN_ON_ONCE(1); 2842 snprintf(p, maxlen, "unknown"); 2843 return; 2844 } 2845 2846 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2847 2848 if (flags & MPOL_MODE_FLAGS) { 2849 p += snprintf(p, buffer + maxlen - p, "="); 2850 2851 /* 2852 * Currently, the only defined flags are mutually exclusive 2853 */ 2854 if (flags & MPOL_F_STATIC_NODES) 2855 p += snprintf(p, buffer + maxlen - p, "static"); 2856 else if (flags & MPOL_F_RELATIVE_NODES) 2857 p += snprintf(p, buffer + maxlen - p, "relative"); 2858 } 2859 2860 if (!nodes_empty(nodes)) 2861 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2862 nodemask_pr_args(&nodes)); 2863 } 2864