xref: /openbmc/linux/mm/mempolicy.c (revision 22246614)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95 
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
100 
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103 
104 /* Highest zone. An specific allocation for a zone below that is not
105    policied. */
106 enum zone_type policy_zone = 0;
107 
108 /*
109  * run-time system-wide default policy => local allocation
110  */
111 struct mempolicy default_policy = {
112 	.refcnt = ATOMIC_INIT(1), /* never free it */
113 	.mode = MPOL_PREFERRED,
114 	.flags = MPOL_F_LOCAL,
115 };
116 
117 static const struct mempolicy_operations {
118 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
119 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
120 } mpol_ops[MPOL_MAX];
121 
122 /* Check that the nodemask contains at least one populated zone */
123 static int is_valid_nodemask(const nodemask_t *nodemask)
124 {
125 	int nd, k;
126 
127 	/* Check that there is something useful in this mask */
128 	k = policy_zone;
129 
130 	for_each_node_mask(nd, *nodemask) {
131 		struct zone *z;
132 
133 		for (k = 0; k <= policy_zone; k++) {
134 			z = &NODE_DATA(nd)->node_zones[k];
135 			if (z->present_pages > 0)
136 				return 1;
137 		}
138 	}
139 
140 	return 0;
141 }
142 
143 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
144 {
145 	return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
146 }
147 
148 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
149 				   const nodemask_t *rel)
150 {
151 	nodemask_t tmp;
152 	nodes_fold(tmp, *orig, nodes_weight(*rel));
153 	nodes_onto(*ret, tmp, *rel);
154 }
155 
156 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
157 {
158 	if (nodes_empty(*nodes))
159 		return -EINVAL;
160 	pol->v.nodes = *nodes;
161 	return 0;
162 }
163 
164 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
165 {
166 	if (!nodes)
167 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
168 	else if (nodes_empty(*nodes))
169 		return -EINVAL;			/*  no allowed nodes */
170 	else
171 		pol->v.preferred_node = first_node(*nodes);
172 	return 0;
173 }
174 
175 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!is_valid_nodemask(nodes))
178 		return -EINVAL;
179 	pol->v.nodes = *nodes;
180 	return 0;
181 }
182 
183 /* Create a new policy */
184 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
185 				  nodemask_t *nodes)
186 {
187 	struct mempolicy *policy;
188 	nodemask_t cpuset_context_nmask;
189 	int ret;
190 
191 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
192 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
193 
194 	if (mode == MPOL_DEFAULT) {
195 		if (nodes && !nodes_empty(*nodes))
196 			return ERR_PTR(-EINVAL);
197 		return NULL;	/* simply delete any existing policy */
198 	}
199 	VM_BUG_ON(!nodes);
200 
201 	/*
202 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
203 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
204 	 * All other modes require a valid pointer to a non-empty nodemask.
205 	 */
206 	if (mode == MPOL_PREFERRED) {
207 		if (nodes_empty(*nodes)) {
208 			if (((flags & MPOL_F_STATIC_NODES) ||
209 			     (flags & MPOL_F_RELATIVE_NODES)))
210 				return ERR_PTR(-EINVAL);
211 			nodes = NULL;	/* flag local alloc */
212 		}
213 	} else if (nodes_empty(*nodes))
214 		return ERR_PTR(-EINVAL);
215 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
216 	if (!policy)
217 		return ERR_PTR(-ENOMEM);
218 	atomic_set(&policy->refcnt, 1);
219 	policy->mode = mode;
220 	policy->flags = flags;
221 
222 	if (nodes) {
223 		/*
224 		 * cpuset related setup doesn't apply to local allocation
225 		 */
226 		cpuset_update_task_memory_state();
227 		if (flags & MPOL_F_RELATIVE_NODES)
228 			mpol_relative_nodemask(&cpuset_context_nmask, nodes,
229 					       &cpuset_current_mems_allowed);
230 		else
231 			nodes_and(cpuset_context_nmask, *nodes,
232 				  cpuset_current_mems_allowed);
233 		if (mpol_store_user_nodemask(policy))
234 			policy->w.user_nodemask = *nodes;
235 		else
236 			policy->w.cpuset_mems_allowed =
237 						cpuset_mems_allowed(current);
238 	}
239 
240 	ret = mpol_ops[mode].create(policy,
241 				nodes ? &cpuset_context_nmask : NULL);
242 	if (ret < 0) {
243 		kmem_cache_free(policy_cache, policy);
244 		return ERR_PTR(ret);
245 	}
246 	return policy;
247 }
248 
249 /* Slow path of a mpol destructor. */
250 void __mpol_put(struct mempolicy *p)
251 {
252 	if (!atomic_dec_and_test(&p->refcnt))
253 		return;
254 	kmem_cache_free(policy_cache, p);
255 }
256 
257 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
258 {
259 }
260 
261 static void mpol_rebind_nodemask(struct mempolicy *pol,
262 				 const nodemask_t *nodes)
263 {
264 	nodemask_t tmp;
265 
266 	if (pol->flags & MPOL_F_STATIC_NODES)
267 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
268 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
269 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
270 	else {
271 		nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
272 			    *nodes);
273 		pol->w.cpuset_mems_allowed = *nodes;
274 	}
275 
276 	pol->v.nodes = tmp;
277 	if (!node_isset(current->il_next, tmp)) {
278 		current->il_next = next_node(current->il_next, tmp);
279 		if (current->il_next >= MAX_NUMNODES)
280 			current->il_next = first_node(tmp);
281 		if (current->il_next >= MAX_NUMNODES)
282 			current->il_next = numa_node_id();
283 	}
284 }
285 
286 static void mpol_rebind_preferred(struct mempolicy *pol,
287 				  const nodemask_t *nodes)
288 {
289 	nodemask_t tmp;
290 
291 	if (pol->flags & MPOL_F_STATIC_NODES) {
292 		int node = first_node(pol->w.user_nodemask);
293 
294 		if (node_isset(node, *nodes)) {
295 			pol->v.preferred_node = node;
296 			pol->flags &= ~MPOL_F_LOCAL;
297 		} else
298 			pol->flags |= MPOL_F_LOCAL;
299 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
300 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
301 		pol->v.preferred_node = first_node(tmp);
302 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
303 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
304 						   pol->w.cpuset_mems_allowed,
305 						   *nodes);
306 		pol->w.cpuset_mems_allowed = *nodes;
307 	}
308 }
309 
310 /* Migrate a policy to a different set of nodes */
311 static void mpol_rebind_policy(struct mempolicy *pol,
312 			       const nodemask_t *newmask)
313 {
314 	if (!pol)
315 		return;
316 	if (!mpol_store_user_nodemask(pol) &&
317 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
318 		return;
319 	mpol_ops[pol->mode].rebind(pol, newmask);
320 }
321 
322 /*
323  * Wrapper for mpol_rebind_policy() that just requires task
324  * pointer, and updates task mempolicy.
325  */
326 
327 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
328 {
329 	mpol_rebind_policy(tsk->mempolicy, new);
330 }
331 
332 /*
333  * Rebind each vma in mm to new nodemask.
334  *
335  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
336  */
337 
338 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
339 {
340 	struct vm_area_struct *vma;
341 
342 	down_write(&mm->mmap_sem);
343 	for (vma = mm->mmap; vma; vma = vma->vm_next)
344 		mpol_rebind_policy(vma->vm_policy, new);
345 	up_write(&mm->mmap_sem);
346 }
347 
348 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
349 	[MPOL_DEFAULT] = {
350 		.rebind = mpol_rebind_default,
351 	},
352 	[MPOL_INTERLEAVE] = {
353 		.create = mpol_new_interleave,
354 		.rebind = mpol_rebind_nodemask,
355 	},
356 	[MPOL_PREFERRED] = {
357 		.create = mpol_new_preferred,
358 		.rebind = mpol_rebind_preferred,
359 	},
360 	[MPOL_BIND] = {
361 		.create = mpol_new_bind,
362 		.rebind = mpol_rebind_nodemask,
363 	},
364 };
365 
366 static void gather_stats(struct page *, void *, int pte_dirty);
367 static void migrate_page_add(struct page *page, struct list_head *pagelist,
368 				unsigned long flags);
369 
370 /* Scan through pages checking if pages follow certain conditions. */
371 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
372 		unsigned long addr, unsigned long end,
373 		const nodemask_t *nodes, unsigned long flags,
374 		void *private)
375 {
376 	pte_t *orig_pte;
377 	pte_t *pte;
378 	spinlock_t *ptl;
379 
380 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
381 	do {
382 		struct page *page;
383 		int nid;
384 
385 		if (!pte_present(*pte))
386 			continue;
387 		page = vm_normal_page(vma, addr, *pte);
388 		if (!page)
389 			continue;
390 		/*
391 		 * The check for PageReserved here is important to avoid
392 		 * handling zero pages and other pages that may have been
393 		 * marked special by the system.
394 		 *
395 		 * If the PageReserved would not be checked here then f.e.
396 		 * the location of the zero page could have an influence
397 		 * on MPOL_MF_STRICT, zero pages would be counted for
398 		 * the per node stats, and there would be useless attempts
399 		 * to put zero pages on the migration list.
400 		 */
401 		if (PageReserved(page))
402 			continue;
403 		nid = page_to_nid(page);
404 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
405 			continue;
406 
407 		if (flags & MPOL_MF_STATS)
408 			gather_stats(page, private, pte_dirty(*pte));
409 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
410 			migrate_page_add(page, private, flags);
411 		else
412 			break;
413 	} while (pte++, addr += PAGE_SIZE, addr != end);
414 	pte_unmap_unlock(orig_pte, ptl);
415 	return addr != end;
416 }
417 
418 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
419 		unsigned long addr, unsigned long end,
420 		const nodemask_t *nodes, unsigned long flags,
421 		void *private)
422 {
423 	pmd_t *pmd;
424 	unsigned long next;
425 
426 	pmd = pmd_offset(pud, addr);
427 	do {
428 		next = pmd_addr_end(addr, end);
429 		if (pmd_none_or_clear_bad(pmd))
430 			continue;
431 		if (check_pte_range(vma, pmd, addr, next, nodes,
432 				    flags, private))
433 			return -EIO;
434 	} while (pmd++, addr = next, addr != end);
435 	return 0;
436 }
437 
438 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
439 		unsigned long addr, unsigned long end,
440 		const nodemask_t *nodes, unsigned long flags,
441 		void *private)
442 {
443 	pud_t *pud;
444 	unsigned long next;
445 
446 	pud = pud_offset(pgd, addr);
447 	do {
448 		next = pud_addr_end(addr, end);
449 		if (pud_none_or_clear_bad(pud))
450 			continue;
451 		if (check_pmd_range(vma, pud, addr, next, nodes,
452 				    flags, private))
453 			return -EIO;
454 	} while (pud++, addr = next, addr != end);
455 	return 0;
456 }
457 
458 static inline int check_pgd_range(struct vm_area_struct *vma,
459 		unsigned long addr, unsigned long end,
460 		const nodemask_t *nodes, unsigned long flags,
461 		void *private)
462 {
463 	pgd_t *pgd;
464 	unsigned long next;
465 
466 	pgd = pgd_offset(vma->vm_mm, addr);
467 	do {
468 		next = pgd_addr_end(addr, end);
469 		if (pgd_none_or_clear_bad(pgd))
470 			continue;
471 		if (check_pud_range(vma, pgd, addr, next, nodes,
472 				    flags, private))
473 			return -EIO;
474 	} while (pgd++, addr = next, addr != end);
475 	return 0;
476 }
477 
478 /*
479  * Check if all pages in a range are on a set of nodes.
480  * If pagelist != NULL then isolate pages from the LRU and
481  * put them on the pagelist.
482  */
483 static struct vm_area_struct *
484 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
485 		const nodemask_t *nodes, unsigned long flags, void *private)
486 {
487 	int err;
488 	struct vm_area_struct *first, *vma, *prev;
489 
490 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
491 
492 		err = migrate_prep();
493 		if (err)
494 			return ERR_PTR(err);
495 	}
496 
497 	first = find_vma(mm, start);
498 	if (!first)
499 		return ERR_PTR(-EFAULT);
500 	prev = NULL;
501 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
502 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
503 			if (!vma->vm_next && vma->vm_end < end)
504 				return ERR_PTR(-EFAULT);
505 			if (prev && prev->vm_end < vma->vm_start)
506 				return ERR_PTR(-EFAULT);
507 		}
508 		if (!is_vm_hugetlb_page(vma) &&
509 		    ((flags & MPOL_MF_STRICT) ||
510 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
511 				vma_migratable(vma)))) {
512 			unsigned long endvma = vma->vm_end;
513 
514 			if (endvma > end)
515 				endvma = end;
516 			if (vma->vm_start > start)
517 				start = vma->vm_start;
518 			err = check_pgd_range(vma, start, endvma, nodes,
519 						flags, private);
520 			if (err) {
521 				first = ERR_PTR(err);
522 				break;
523 			}
524 		}
525 		prev = vma;
526 	}
527 	return first;
528 }
529 
530 /* Apply policy to a single VMA */
531 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
532 {
533 	int err = 0;
534 	struct mempolicy *old = vma->vm_policy;
535 
536 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
537 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
538 		 vma->vm_ops, vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
540 
541 	if (vma->vm_ops && vma->vm_ops->set_policy)
542 		err = vma->vm_ops->set_policy(vma, new);
543 	if (!err) {
544 		mpol_get(new);
545 		vma->vm_policy = new;
546 		mpol_put(old);
547 	}
548 	return err;
549 }
550 
551 /* Step 2: apply policy to a range and do splits. */
552 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
553 		       unsigned long end, struct mempolicy *new)
554 {
555 	struct vm_area_struct *next;
556 	int err;
557 
558 	err = 0;
559 	for (; vma && vma->vm_start < end; vma = next) {
560 		next = vma->vm_next;
561 		if (vma->vm_start < start)
562 			err = split_vma(vma->vm_mm, vma, start, 1);
563 		if (!err && vma->vm_end > end)
564 			err = split_vma(vma->vm_mm, vma, end, 0);
565 		if (!err)
566 			err = policy_vma(vma, new);
567 		if (err)
568 			break;
569 	}
570 	return err;
571 }
572 
573 /*
574  * Update task->flags PF_MEMPOLICY bit: set iff non-default
575  * mempolicy.  Allows more rapid checking of this (combined perhaps
576  * with other PF_* flag bits) on memory allocation hot code paths.
577  *
578  * If called from outside this file, the task 'p' should -only- be
579  * a newly forked child not yet visible on the task list, because
580  * manipulating the task flags of a visible task is not safe.
581  *
582  * The above limitation is why this routine has the funny name
583  * mpol_fix_fork_child_flag().
584  *
585  * It is also safe to call this with a task pointer of current,
586  * which the static wrapper mpol_set_task_struct_flag() does,
587  * for use within this file.
588  */
589 
590 void mpol_fix_fork_child_flag(struct task_struct *p)
591 {
592 	if (p->mempolicy)
593 		p->flags |= PF_MEMPOLICY;
594 	else
595 		p->flags &= ~PF_MEMPOLICY;
596 }
597 
598 static void mpol_set_task_struct_flag(void)
599 {
600 	mpol_fix_fork_child_flag(current);
601 }
602 
603 /* Set the process memory policy */
604 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
605 			     nodemask_t *nodes)
606 {
607 	struct mempolicy *new;
608 	struct mm_struct *mm = current->mm;
609 
610 	new = mpol_new(mode, flags, nodes);
611 	if (IS_ERR(new))
612 		return PTR_ERR(new);
613 
614 	/*
615 	 * prevent changing our mempolicy while show_numa_maps()
616 	 * is using it.
617 	 * Note:  do_set_mempolicy() can be called at init time
618 	 * with no 'mm'.
619 	 */
620 	if (mm)
621 		down_write(&mm->mmap_sem);
622 	mpol_put(current->mempolicy);
623 	current->mempolicy = new;
624 	mpol_set_task_struct_flag();
625 	if (new && new->mode == MPOL_INTERLEAVE &&
626 	    nodes_weight(new->v.nodes))
627 		current->il_next = first_node(new->v.nodes);
628 	if (mm)
629 		up_write(&mm->mmap_sem);
630 
631 	return 0;
632 }
633 
634 /*
635  * Return nodemask for policy for get_mempolicy() query
636  */
637 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
638 {
639 	nodes_clear(*nodes);
640 	if (p == &default_policy)
641 		return;
642 
643 	switch (p->mode) {
644 	case MPOL_BIND:
645 		/* Fall through */
646 	case MPOL_INTERLEAVE:
647 		*nodes = p->v.nodes;
648 		break;
649 	case MPOL_PREFERRED:
650 		if (!(p->flags & MPOL_F_LOCAL))
651 			node_set(p->v.preferred_node, *nodes);
652 		/* else return empty node mask for local allocation */
653 		break;
654 	default:
655 		BUG();
656 	}
657 }
658 
659 static int lookup_node(struct mm_struct *mm, unsigned long addr)
660 {
661 	struct page *p;
662 	int err;
663 
664 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
665 	if (err >= 0) {
666 		err = page_to_nid(p);
667 		put_page(p);
668 	}
669 	return err;
670 }
671 
672 /* Retrieve NUMA policy */
673 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
674 			     unsigned long addr, unsigned long flags)
675 {
676 	int err;
677 	struct mm_struct *mm = current->mm;
678 	struct vm_area_struct *vma = NULL;
679 	struct mempolicy *pol = current->mempolicy;
680 
681 	cpuset_update_task_memory_state();
682 	if (flags &
683 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
684 		return -EINVAL;
685 
686 	if (flags & MPOL_F_MEMS_ALLOWED) {
687 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
688 			return -EINVAL;
689 		*policy = 0;	/* just so it's initialized */
690 		*nmask  = cpuset_current_mems_allowed;
691 		return 0;
692 	}
693 
694 	if (flags & MPOL_F_ADDR) {
695 		/*
696 		 * Do NOT fall back to task policy if the
697 		 * vma/shared policy at addr is NULL.  We
698 		 * want to return MPOL_DEFAULT in this case.
699 		 */
700 		down_read(&mm->mmap_sem);
701 		vma = find_vma_intersection(mm, addr, addr+1);
702 		if (!vma) {
703 			up_read(&mm->mmap_sem);
704 			return -EFAULT;
705 		}
706 		if (vma->vm_ops && vma->vm_ops->get_policy)
707 			pol = vma->vm_ops->get_policy(vma, addr);
708 		else
709 			pol = vma->vm_policy;
710 	} else if (addr)
711 		return -EINVAL;
712 
713 	if (!pol)
714 		pol = &default_policy;	/* indicates default behavior */
715 
716 	if (flags & MPOL_F_NODE) {
717 		if (flags & MPOL_F_ADDR) {
718 			err = lookup_node(mm, addr);
719 			if (err < 0)
720 				goto out;
721 			*policy = err;
722 		} else if (pol == current->mempolicy &&
723 				pol->mode == MPOL_INTERLEAVE) {
724 			*policy = current->il_next;
725 		} else {
726 			err = -EINVAL;
727 			goto out;
728 		}
729 	} else {
730 		*policy = pol == &default_policy ? MPOL_DEFAULT :
731 						pol->mode;
732 		*policy |= pol->flags;
733 	}
734 
735 	if (vma) {
736 		up_read(&current->mm->mmap_sem);
737 		vma = NULL;
738 	}
739 
740 	err = 0;
741 	if (nmask)
742 		get_policy_nodemask(pol, nmask);
743 
744  out:
745 	mpol_cond_put(pol);
746 	if (vma)
747 		up_read(&current->mm->mmap_sem);
748 	return err;
749 }
750 
751 #ifdef CONFIG_MIGRATION
752 /*
753  * page migration
754  */
755 static void migrate_page_add(struct page *page, struct list_head *pagelist,
756 				unsigned long flags)
757 {
758 	/*
759 	 * Avoid migrating a page that is shared with others.
760 	 */
761 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
762 		isolate_lru_page(page, pagelist);
763 }
764 
765 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
766 {
767 	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
768 }
769 
770 /*
771  * Migrate pages from one node to a target node.
772  * Returns error or the number of pages not migrated.
773  */
774 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
775 			   int flags)
776 {
777 	nodemask_t nmask;
778 	LIST_HEAD(pagelist);
779 	int err = 0;
780 
781 	nodes_clear(nmask);
782 	node_set(source, nmask);
783 
784 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
785 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
786 
787 	if (!list_empty(&pagelist))
788 		err = migrate_pages(&pagelist, new_node_page, dest);
789 
790 	return err;
791 }
792 
793 /*
794  * Move pages between the two nodesets so as to preserve the physical
795  * layout as much as possible.
796  *
797  * Returns the number of page that could not be moved.
798  */
799 int do_migrate_pages(struct mm_struct *mm,
800 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
801 {
802 	LIST_HEAD(pagelist);
803 	int busy = 0;
804 	int err = 0;
805 	nodemask_t tmp;
806 
807 	down_read(&mm->mmap_sem);
808 
809 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
810 	if (err)
811 		goto out;
812 
813 /*
814  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
815  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
816  * bit in 'tmp', and return that <source, dest> pair for migration.
817  * The pair of nodemasks 'to' and 'from' define the map.
818  *
819  * If no pair of bits is found that way, fallback to picking some
820  * pair of 'source' and 'dest' bits that are not the same.  If the
821  * 'source' and 'dest' bits are the same, this represents a node
822  * that will be migrating to itself, so no pages need move.
823  *
824  * If no bits are left in 'tmp', or if all remaining bits left
825  * in 'tmp' correspond to the same bit in 'to', return false
826  * (nothing left to migrate).
827  *
828  * This lets us pick a pair of nodes to migrate between, such that
829  * if possible the dest node is not already occupied by some other
830  * source node, minimizing the risk of overloading the memory on a
831  * node that would happen if we migrated incoming memory to a node
832  * before migrating outgoing memory source that same node.
833  *
834  * A single scan of tmp is sufficient.  As we go, we remember the
835  * most recent <s, d> pair that moved (s != d).  If we find a pair
836  * that not only moved, but what's better, moved to an empty slot
837  * (d is not set in tmp), then we break out then, with that pair.
838  * Otherwise when we finish scannng from_tmp, we at least have the
839  * most recent <s, d> pair that moved.  If we get all the way through
840  * the scan of tmp without finding any node that moved, much less
841  * moved to an empty node, then there is nothing left worth migrating.
842  */
843 
844 	tmp = *from_nodes;
845 	while (!nodes_empty(tmp)) {
846 		int s,d;
847 		int source = -1;
848 		int dest = 0;
849 
850 		for_each_node_mask(s, tmp) {
851 			d = node_remap(s, *from_nodes, *to_nodes);
852 			if (s == d)
853 				continue;
854 
855 			source = s;	/* Node moved. Memorize */
856 			dest = d;
857 
858 			/* dest not in remaining from nodes? */
859 			if (!node_isset(dest, tmp))
860 				break;
861 		}
862 		if (source == -1)
863 			break;
864 
865 		node_clear(source, tmp);
866 		err = migrate_to_node(mm, source, dest, flags);
867 		if (err > 0)
868 			busy += err;
869 		if (err < 0)
870 			break;
871 	}
872 out:
873 	up_read(&mm->mmap_sem);
874 	if (err < 0)
875 		return err;
876 	return busy;
877 
878 }
879 
880 /*
881  * Allocate a new page for page migration based on vma policy.
882  * Start assuming that page is mapped by vma pointed to by @private.
883  * Search forward from there, if not.  N.B., this assumes that the
884  * list of pages handed to migrate_pages()--which is how we get here--
885  * is in virtual address order.
886  */
887 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
888 {
889 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
890 	unsigned long uninitialized_var(address);
891 
892 	while (vma) {
893 		address = page_address_in_vma(page, vma);
894 		if (address != -EFAULT)
895 			break;
896 		vma = vma->vm_next;
897 	}
898 
899 	/*
900 	 * if !vma, alloc_page_vma() will use task or system default policy
901 	 */
902 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
903 }
904 #else
905 
906 static void migrate_page_add(struct page *page, struct list_head *pagelist,
907 				unsigned long flags)
908 {
909 }
910 
911 int do_migrate_pages(struct mm_struct *mm,
912 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
913 {
914 	return -ENOSYS;
915 }
916 
917 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
918 {
919 	return NULL;
920 }
921 #endif
922 
923 static long do_mbind(unsigned long start, unsigned long len,
924 		     unsigned short mode, unsigned short mode_flags,
925 		     nodemask_t *nmask, unsigned long flags)
926 {
927 	struct vm_area_struct *vma;
928 	struct mm_struct *mm = current->mm;
929 	struct mempolicy *new;
930 	unsigned long end;
931 	int err;
932 	LIST_HEAD(pagelist);
933 
934 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
935 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
936 		return -EINVAL;
937 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
938 		return -EPERM;
939 
940 	if (start & ~PAGE_MASK)
941 		return -EINVAL;
942 
943 	if (mode == MPOL_DEFAULT)
944 		flags &= ~MPOL_MF_STRICT;
945 
946 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
947 	end = start + len;
948 
949 	if (end < start)
950 		return -EINVAL;
951 	if (end == start)
952 		return 0;
953 
954 	new = mpol_new(mode, mode_flags, nmask);
955 	if (IS_ERR(new))
956 		return PTR_ERR(new);
957 
958 	/*
959 	 * If we are using the default policy then operation
960 	 * on discontinuous address spaces is okay after all
961 	 */
962 	if (!new)
963 		flags |= MPOL_MF_DISCONTIG_OK;
964 
965 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
966 		 start, start + len, mode, mode_flags,
967 		 nmask ? nodes_addr(*nmask)[0] : -1);
968 
969 	down_write(&mm->mmap_sem);
970 	vma = check_range(mm, start, end, nmask,
971 			  flags | MPOL_MF_INVERT, &pagelist);
972 
973 	err = PTR_ERR(vma);
974 	if (!IS_ERR(vma)) {
975 		int nr_failed = 0;
976 
977 		err = mbind_range(vma, start, end, new);
978 
979 		if (!list_empty(&pagelist))
980 			nr_failed = migrate_pages(&pagelist, new_vma_page,
981 						(unsigned long)vma);
982 
983 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
984 			err = -EIO;
985 	}
986 
987 	up_write(&mm->mmap_sem);
988 	mpol_put(new);
989 	return err;
990 }
991 
992 /*
993  * User space interface with variable sized bitmaps for nodelists.
994  */
995 
996 /* Copy a node mask from user space. */
997 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
998 		     unsigned long maxnode)
999 {
1000 	unsigned long k;
1001 	unsigned long nlongs;
1002 	unsigned long endmask;
1003 
1004 	--maxnode;
1005 	nodes_clear(*nodes);
1006 	if (maxnode == 0 || !nmask)
1007 		return 0;
1008 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1009 		return -EINVAL;
1010 
1011 	nlongs = BITS_TO_LONGS(maxnode);
1012 	if ((maxnode % BITS_PER_LONG) == 0)
1013 		endmask = ~0UL;
1014 	else
1015 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1016 
1017 	/* When the user specified more nodes than supported just check
1018 	   if the non supported part is all zero. */
1019 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1020 		if (nlongs > PAGE_SIZE/sizeof(long))
1021 			return -EINVAL;
1022 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1023 			unsigned long t;
1024 			if (get_user(t, nmask + k))
1025 				return -EFAULT;
1026 			if (k == nlongs - 1) {
1027 				if (t & endmask)
1028 					return -EINVAL;
1029 			} else if (t)
1030 				return -EINVAL;
1031 		}
1032 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1033 		endmask = ~0UL;
1034 	}
1035 
1036 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1037 		return -EFAULT;
1038 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1039 	return 0;
1040 }
1041 
1042 /* Copy a kernel node mask to user space */
1043 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1044 			      nodemask_t *nodes)
1045 {
1046 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1047 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1048 
1049 	if (copy > nbytes) {
1050 		if (copy > PAGE_SIZE)
1051 			return -EINVAL;
1052 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1053 			return -EFAULT;
1054 		copy = nbytes;
1055 	}
1056 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1057 }
1058 
1059 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1060 			unsigned long mode,
1061 			unsigned long __user *nmask, unsigned long maxnode,
1062 			unsigned flags)
1063 {
1064 	nodemask_t nodes;
1065 	int err;
1066 	unsigned short mode_flags;
1067 
1068 	mode_flags = mode & MPOL_MODE_FLAGS;
1069 	mode &= ~MPOL_MODE_FLAGS;
1070 	if (mode >= MPOL_MAX)
1071 		return -EINVAL;
1072 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1073 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1074 		return -EINVAL;
1075 	err = get_nodes(&nodes, nmask, maxnode);
1076 	if (err)
1077 		return err;
1078 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1079 }
1080 
1081 /* Set the process memory policy */
1082 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1083 		unsigned long maxnode)
1084 {
1085 	int err;
1086 	nodemask_t nodes;
1087 	unsigned short flags;
1088 
1089 	flags = mode & MPOL_MODE_FLAGS;
1090 	mode &= ~MPOL_MODE_FLAGS;
1091 	if ((unsigned int)mode >= MPOL_MAX)
1092 		return -EINVAL;
1093 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1094 		return -EINVAL;
1095 	err = get_nodes(&nodes, nmask, maxnode);
1096 	if (err)
1097 		return err;
1098 	return do_set_mempolicy(mode, flags, &nodes);
1099 }
1100 
1101 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1102 		const unsigned long __user *old_nodes,
1103 		const unsigned long __user *new_nodes)
1104 {
1105 	struct mm_struct *mm;
1106 	struct task_struct *task;
1107 	nodemask_t old;
1108 	nodemask_t new;
1109 	nodemask_t task_nodes;
1110 	int err;
1111 
1112 	err = get_nodes(&old, old_nodes, maxnode);
1113 	if (err)
1114 		return err;
1115 
1116 	err = get_nodes(&new, new_nodes, maxnode);
1117 	if (err)
1118 		return err;
1119 
1120 	/* Find the mm_struct */
1121 	read_lock(&tasklist_lock);
1122 	task = pid ? find_task_by_vpid(pid) : current;
1123 	if (!task) {
1124 		read_unlock(&tasklist_lock);
1125 		return -ESRCH;
1126 	}
1127 	mm = get_task_mm(task);
1128 	read_unlock(&tasklist_lock);
1129 
1130 	if (!mm)
1131 		return -EINVAL;
1132 
1133 	/*
1134 	 * Check if this process has the right to modify the specified
1135 	 * process. The right exists if the process has administrative
1136 	 * capabilities, superuser privileges or the same
1137 	 * userid as the target process.
1138 	 */
1139 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1140 	    (current->uid != task->suid) && (current->uid != task->uid) &&
1141 	    !capable(CAP_SYS_NICE)) {
1142 		err = -EPERM;
1143 		goto out;
1144 	}
1145 
1146 	task_nodes = cpuset_mems_allowed(task);
1147 	/* Is the user allowed to access the target nodes? */
1148 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1149 		err = -EPERM;
1150 		goto out;
1151 	}
1152 
1153 	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1154 		err = -EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	err = security_task_movememory(task);
1159 	if (err)
1160 		goto out;
1161 
1162 	err = do_migrate_pages(mm, &old, &new,
1163 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1164 out:
1165 	mmput(mm);
1166 	return err;
1167 }
1168 
1169 
1170 /* Retrieve NUMA policy */
1171 asmlinkage long sys_get_mempolicy(int __user *policy,
1172 				unsigned long __user *nmask,
1173 				unsigned long maxnode,
1174 				unsigned long addr, unsigned long flags)
1175 {
1176 	int err;
1177 	int uninitialized_var(pval);
1178 	nodemask_t nodes;
1179 
1180 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1181 		return -EINVAL;
1182 
1183 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1184 
1185 	if (err)
1186 		return err;
1187 
1188 	if (policy && put_user(pval, policy))
1189 		return -EFAULT;
1190 
1191 	if (nmask)
1192 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1193 
1194 	return err;
1195 }
1196 
1197 #ifdef CONFIG_COMPAT
1198 
1199 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1200 				     compat_ulong_t __user *nmask,
1201 				     compat_ulong_t maxnode,
1202 				     compat_ulong_t addr, compat_ulong_t flags)
1203 {
1204 	long err;
1205 	unsigned long __user *nm = NULL;
1206 	unsigned long nr_bits, alloc_size;
1207 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1208 
1209 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1210 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1211 
1212 	if (nmask)
1213 		nm = compat_alloc_user_space(alloc_size);
1214 
1215 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1216 
1217 	if (!err && nmask) {
1218 		err = copy_from_user(bm, nm, alloc_size);
1219 		/* ensure entire bitmap is zeroed */
1220 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1221 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1222 	}
1223 
1224 	return err;
1225 }
1226 
1227 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1228 				     compat_ulong_t maxnode)
1229 {
1230 	long err = 0;
1231 	unsigned long __user *nm = NULL;
1232 	unsigned long nr_bits, alloc_size;
1233 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1234 
1235 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1236 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1237 
1238 	if (nmask) {
1239 		err = compat_get_bitmap(bm, nmask, nr_bits);
1240 		nm = compat_alloc_user_space(alloc_size);
1241 		err |= copy_to_user(nm, bm, alloc_size);
1242 	}
1243 
1244 	if (err)
1245 		return -EFAULT;
1246 
1247 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1248 }
1249 
1250 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1251 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1252 			     compat_ulong_t maxnode, compat_ulong_t flags)
1253 {
1254 	long err = 0;
1255 	unsigned long __user *nm = NULL;
1256 	unsigned long nr_bits, alloc_size;
1257 	nodemask_t bm;
1258 
1259 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1260 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1261 
1262 	if (nmask) {
1263 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1264 		nm = compat_alloc_user_space(alloc_size);
1265 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1266 	}
1267 
1268 	if (err)
1269 		return -EFAULT;
1270 
1271 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1272 }
1273 
1274 #endif
1275 
1276 /*
1277  * get_vma_policy(@task, @vma, @addr)
1278  * @task - task for fallback if vma policy == default
1279  * @vma   - virtual memory area whose policy is sought
1280  * @addr  - address in @vma for shared policy lookup
1281  *
1282  * Returns effective policy for a VMA at specified address.
1283  * Falls back to @task or system default policy, as necessary.
1284  * Current or other task's task mempolicy and non-shared vma policies
1285  * are protected by the task's mmap_sem, which must be held for read by
1286  * the caller.
1287  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1288  * count--added by the get_policy() vm_op, as appropriate--to protect against
1289  * freeing by another task.  It is the caller's responsibility to free the
1290  * extra reference for shared policies.
1291  */
1292 static struct mempolicy *get_vma_policy(struct task_struct *task,
1293 		struct vm_area_struct *vma, unsigned long addr)
1294 {
1295 	struct mempolicy *pol = task->mempolicy;
1296 
1297 	if (vma) {
1298 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1299 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1300 									addr);
1301 			if (vpol)
1302 				pol = vpol;
1303 		} else if (vma->vm_policy)
1304 			pol = vma->vm_policy;
1305 	}
1306 	if (!pol)
1307 		pol = &default_policy;
1308 	return pol;
1309 }
1310 
1311 /*
1312  * Return a nodemask representing a mempolicy for filtering nodes for
1313  * page allocation
1314  */
1315 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1316 {
1317 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1318 	if (unlikely(policy->mode == MPOL_BIND) &&
1319 			gfp_zone(gfp) >= policy_zone &&
1320 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1321 		return &policy->v.nodes;
1322 
1323 	return NULL;
1324 }
1325 
1326 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1327 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1328 {
1329 	int nd = numa_node_id();
1330 
1331 	switch (policy->mode) {
1332 	case MPOL_PREFERRED:
1333 		if (!(policy->flags & MPOL_F_LOCAL))
1334 			nd = policy->v.preferred_node;
1335 		break;
1336 	case MPOL_BIND:
1337 		/*
1338 		 * Normally, MPOL_BIND allocations are node-local within the
1339 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1340 		 * current node is part of the mask, we use the zonelist for
1341 		 * the first node in the mask instead.
1342 		 */
1343 		if (unlikely(gfp & __GFP_THISNODE) &&
1344 				unlikely(!node_isset(nd, policy->v.nodes)))
1345 			nd = first_node(policy->v.nodes);
1346 		break;
1347 	case MPOL_INTERLEAVE: /* should not happen */
1348 		break;
1349 	default:
1350 		BUG();
1351 	}
1352 	return node_zonelist(nd, gfp);
1353 }
1354 
1355 /* Do dynamic interleaving for a process */
1356 static unsigned interleave_nodes(struct mempolicy *policy)
1357 {
1358 	unsigned nid, next;
1359 	struct task_struct *me = current;
1360 
1361 	nid = me->il_next;
1362 	next = next_node(nid, policy->v.nodes);
1363 	if (next >= MAX_NUMNODES)
1364 		next = first_node(policy->v.nodes);
1365 	if (next < MAX_NUMNODES)
1366 		me->il_next = next;
1367 	return nid;
1368 }
1369 
1370 /*
1371  * Depending on the memory policy provide a node from which to allocate the
1372  * next slab entry.
1373  * @policy must be protected by freeing by the caller.  If @policy is
1374  * the current task's mempolicy, this protection is implicit, as only the
1375  * task can change it's policy.  The system default policy requires no
1376  * such protection.
1377  */
1378 unsigned slab_node(struct mempolicy *policy)
1379 {
1380 	if (!policy || policy->flags & MPOL_F_LOCAL)
1381 		return numa_node_id();
1382 
1383 	switch (policy->mode) {
1384 	case MPOL_PREFERRED:
1385 		/*
1386 		 * handled MPOL_F_LOCAL above
1387 		 */
1388 		return policy->v.preferred_node;
1389 
1390 	case MPOL_INTERLEAVE:
1391 		return interleave_nodes(policy);
1392 
1393 	case MPOL_BIND: {
1394 		/*
1395 		 * Follow bind policy behavior and start allocation at the
1396 		 * first node.
1397 		 */
1398 		struct zonelist *zonelist;
1399 		struct zone *zone;
1400 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1401 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1402 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1403 							&policy->v.nodes,
1404 							&zone);
1405 		return zone->node;
1406 	}
1407 
1408 	default:
1409 		BUG();
1410 	}
1411 }
1412 
1413 /* Do static interleaving for a VMA with known offset. */
1414 static unsigned offset_il_node(struct mempolicy *pol,
1415 		struct vm_area_struct *vma, unsigned long off)
1416 {
1417 	unsigned nnodes = nodes_weight(pol->v.nodes);
1418 	unsigned target;
1419 	int c;
1420 	int nid = -1;
1421 
1422 	if (!nnodes)
1423 		return numa_node_id();
1424 	target = (unsigned int)off % nnodes;
1425 	c = 0;
1426 	do {
1427 		nid = next_node(nid, pol->v.nodes);
1428 		c++;
1429 	} while (c <= target);
1430 	return nid;
1431 }
1432 
1433 /* Determine a node number for interleave */
1434 static inline unsigned interleave_nid(struct mempolicy *pol,
1435 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1436 {
1437 	if (vma) {
1438 		unsigned long off;
1439 
1440 		/*
1441 		 * for small pages, there is no difference between
1442 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1443 		 * for huge pages, since vm_pgoff is in units of small
1444 		 * pages, we need to shift off the always 0 bits to get
1445 		 * a useful offset.
1446 		 */
1447 		BUG_ON(shift < PAGE_SHIFT);
1448 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1449 		off += (addr - vma->vm_start) >> shift;
1450 		return offset_il_node(pol, vma, off);
1451 	} else
1452 		return interleave_nodes(pol);
1453 }
1454 
1455 #ifdef CONFIG_HUGETLBFS
1456 /*
1457  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1458  * @vma = virtual memory area whose policy is sought
1459  * @addr = address in @vma for shared policy lookup and interleave policy
1460  * @gfp_flags = for requested zone
1461  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1462  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1463  *
1464  * Returns a zonelist suitable for a huge page allocation and a pointer
1465  * to the struct mempolicy for conditional unref after allocation.
1466  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1467  * @nodemask for filtering the zonelist.
1468  */
1469 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1470 				gfp_t gfp_flags, struct mempolicy **mpol,
1471 				nodemask_t **nodemask)
1472 {
1473 	struct zonelist *zl;
1474 
1475 	*mpol = get_vma_policy(current, vma, addr);
1476 	*nodemask = NULL;	/* assume !MPOL_BIND */
1477 
1478 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1479 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1480 						HPAGE_SHIFT), gfp_flags);
1481 	} else {
1482 		zl = policy_zonelist(gfp_flags, *mpol);
1483 		if ((*mpol)->mode == MPOL_BIND)
1484 			*nodemask = &(*mpol)->v.nodes;
1485 	}
1486 	return zl;
1487 }
1488 #endif
1489 
1490 /* Allocate a page in interleaved policy.
1491    Own path because it needs to do special accounting. */
1492 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1493 					unsigned nid)
1494 {
1495 	struct zonelist *zl;
1496 	struct page *page;
1497 
1498 	zl = node_zonelist(nid, gfp);
1499 	page = __alloc_pages(gfp, order, zl);
1500 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1501 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1502 	return page;
1503 }
1504 
1505 /**
1506  * 	alloc_page_vma	- Allocate a page for a VMA.
1507  *
1508  * 	@gfp:
1509  *      %GFP_USER    user allocation.
1510  *      %GFP_KERNEL  kernel allocations,
1511  *      %GFP_HIGHMEM highmem/user allocations,
1512  *      %GFP_FS      allocation should not call back into a file system.
1513  *      %GFP_ATOMIC  don't sleep.
1514  *
1515  * 	@vma:  Pointer to VMA or NULL if not available.
1516  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1517  *
1518  * 	This function allocates a page from the kernel page pool and applies
1519  *	a NUMA policy associated with the VMA or the current process.
1520  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1521  *	mm_struct of the VMA to prevent it from going away. Should be used for
1522  *	all allocations for pages that will be mapped into
1523  * 	user space. Returns NULL when no page can be allocated.
1524  *
1525  *	Should be called with the mm_sem of the vma hold.
1526  */
1527 struct page *
1528 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1529 {
1530 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1531 	struct zonelist *zl;
1532 
1533 	cpuset_update_task_memory_state();
1534 
1535 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1536 		unsigned nid;
1537 
1538 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1539 		mpol_cond_put(pol);
1540 		return alloc_page_interleave(gfp, 0, nid);
1541 	}
1542 	zl = policy_zonelist(gfp, pol);
1543 	if (unlikely(mpol_needs_cond_ref(pol))) {
1544 		/*
1545 		 * slow path: ref counted shared policy
1546 		 */
1547 		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1548 						zl, policy_nodemask(gfp, pol));
1549 		__mpol_put(pol);
1550 		return page;
1551 	}
1552 	/*
1553 	 * fast path:  default or task policy
1554 	 */
1555 	return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1556 }
1557 
1558 /**
1559  * 	alloc_pages_current - Allocate pages.
1560  *
1561  *	@gfp:
1562  *		%GFP_USER   user allocation,
1563  *      	%GFP_KERNEL kernel allocation,
1564  *      	%GFP_HIGHMEM highmem allocation,
1565  *      	%GFP_FS     don't call back into a file system.
1566  *      	%GFP_ATOMIC don't sleep.
1567  *	@order: Power of two of allocation size in pages. 0 is a single page.
1568  *
1569  *	Allocate a page from the kernel page pool.  When not in
1570  *	interrupt context and apply the current process NUMA policy.
1571  *	Returns NULL when no page can be allocated.
1572  *
1573  *	Don't call cpuset_update_task_memory_state() unless
1574  *	1) it's ok to take cpuset_sem (can WAIT), and
1575  *	2) allocating for current task (not interrupt).
1576  */
1577 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1578 {
1579 	struct mempolicy *pol = current->mempolicy;
1580 
1581 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1582 		cpuset_update_task_memory_state();
1583 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1584 		pol = &default_policy;
1585 
1586 	/*
1587 	 * No reference counting needed for current->mempolicy
1588 	 * nor system default_policy
1589 	 */
1590 	if (pol->mode == MPOL_INTERLEAVE)
1591 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1592 	return __alloc_pages_nodemask(gfp, order,
1593 			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1594 }
1595 EXPORT_SYMBOL(alloc_pages_current);
1596 
1597 /*
1598  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1599  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1600  * with the mems_allowed returned by cpuset_mems_allowed().  This
1601  * keeps mempolicies cpuset relative after its cpuset moves.  See
1602  * further kernel/cpuset.c update_nodemask().
1603  */
1604 
1605 /* Slow path of a mempolicy duplicate */
1606 struct mempolicy *__mpol_dup(struct mempolicy *old)
1607 {
1608 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1609 
1610 	if (!new)
1611 		return ERR_PTR(-ENOMEM);
1612 	if (current_cpuset_is_being_rebound()) {
1613 		nodemask_t mems = cpuset_mems_allowed(current);
1614 		mpol_rebind_policy(old, &mems);
1615 	}
1616 	*new = *old;
1617 	atomic_set(&new->refcnt, 1);
1618 	return new;
1619 }
1620 
1621 /*
1622  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1623  * eliminate the * MPOL_F_* flags that require conditional ref and
1624  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1625  * after return.  Use the returned value.
1626  *
1627  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1628  * policy lookup, even if the policy needs/has extra ref on lookup.
1629  * shmem_readahead needs this.
1630  */
1631 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1632 						struct mempolicy *frompol)
1633 {
1634 	if (!mpol_needs_cond_ref(frompol))
1635 		return frompol;
1636 
1637 	*tompol = *frompol;
1638 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1639 	__mpol_put(frompol);
1640 	return tompol;
1641 }
1642 
1643 static int mpol_match_intent(const struct mempolicy *a,
1644 			     const struct mempolicy *b)
1645 {
1646 	if (a->flags != b->flags)
1647 		return 0;
1648 	if (!mpol_store_user_nodemask(a))
1649 		return 1;
1650 	return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1651 }
1652 
1653 /* Slow path of a mempolicy comparison */
1654 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1655 {
1656 	if (!a || !b)
1657 		return 0;
1658 	if (a->mode != b->mode)
1659 		return 0;
1660 	if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1661 		return 0;
1662 	switch (a->mode) {
1663 	case MPOL_BIND:
1664 		/* Fall through */
1665 	case MPOL_INTERLEAVE:
1666 		return nodes_equal(a->v.nodes, b->v.nodes);
1667 	case MPOL_PREFERRED:
1668 		return a->v.preferred_node == b->v.preferred_node &&
1669 			a->flags == b->flags;
1670 	default:
1671 		BUG();
1672 		return 0;
1673 	}
1674 }
1675 
1676 /*
1677  * Shared memory backing store policy support.
1678  *
1679  * Remember policies even when nobody has shared memory mapped.
1680  * The policies are kept in Red-Black tree linked from the inode.
1681  * They are protected by the sp->lock spinlock, which should be held
1682  * for any accesses to the tree.
1683  */
1684 
1685 /* lookup first element intersecting start-end */
1686 /* Caller holds sp->lock */
1687 static struct sp_node *
1688 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1689 {
1690 	struct rb_node *n = sp->root.rb_node;
1691 
1692 	while (n) {
1693 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1694 
1695 		if (start >= p->end)
1696 			n = n->rb_right;
1697 		else if (end <= p->start)
1698 			n = n->rb_left;
1699 		else
1700 			break;
1701 	}
1702 	if (!n)
1703 		return NULL;
1704 	for (;;) {
1705 		struct sp_node *w = NULL;
1706 		struct rb_node *prev = rb_prev(n);
1707 		if (!prev)
1708 			break;
1709 		w = rb_entry(prev, struct sp_node, nd);
1710 		if (w->end <= start)
1711 			break;
1712 		n = prev;
1713 	}
1714 	return rb_entry(n, struct sp_node, nd);
1715 }
1716 
1717 /* Insert a new shared policy into the list. */
1718 /* Caller holds sp->lock */
1719 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1720 {
1721 	struct rb_node **p = &sp->root.rb_node;
1722 	struct rb_node *parent = NULL;
1723 	struct sp_node *nd;
1724 
1725 	while (*p) {
1726 		parent = *p;
1727 		nd = rb_entry(parent, struct sp_node, nd);
1728 		if (new->start < nd->start)
1729 			p = &(*p)->rb_left;
1730 		else if (new->end > nd->end)
1731 			p = &(*p)->rb_right;
1732 		else
1733 			BUG();
1734 	}
1735 	rb_link_node(&new->nd, parent, p);
1736 	rb_insert_color(&new->nd, &sp->root);
1737 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1738 		 new->policy ? new->policy->mode : 0);
1739 }
1740 
1741 /* Find shared policy intersecting idx */
1742 struct mempolicy *
1743 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1744 {
1745 	struct mempolicy *pol = NULL;
1746 	struct sp_node *sn;
1747 
1748 	if (!sp->root.rb_node)
1749 		return NULL;
1750 	spin_lock(&sp->lock);
1751 	sn = sp_lookup(sp, idx, idx+1);
1752 	if (sn) {
1753 		mpol_get(sn->policy);
1754 		pol = sn->policy;
1755 	}
1756 	spin_unlock(&sp->lock);
1757 	return pol;
1758 }
1759 
1760 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1761 {
1762 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1763 	rb_erase(&n->nd, &sp->root);
1764 	mpol_put(n->policy);
1765 	kmem_cache_free(sn_cache, n);
1766 }
1767 
1768 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1769 				struct mempolicy *pol)
1770 {
1771 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1772 
1773 	if (!n)
1774 		return NULL;
1775 	n->start = start;
1776 	n->end = end;
1777 	mpol_get(pol);
1778 	pol->flags |= MPOL_F_SHARED;	/* for unref */
1779 	n->policy = pol;
1780 	return n;
1781 }
1782 
1783 /* Replace a policy range. */
1784 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1785 				 unsigned long end, struct sp_node *new)
1786 {
1787 	struct sp_node *n, *new2 = NULL;
1788 
1789 restart:
1790 	spin_lock(&sp->lock);
1791 	n = sp_lookup(sp, start, end);
1792 	/* Take care of old policies in the same range. */
1793 	while (n && n->start < end) {
1794 		struct rb_node *next = rb_next(&n->nd);
1795 		if (n->start >= start) {
1796 			if (n->end <= end)
1797 				sp_delete(sp, n);
1798 			else
1799 				n->start = end;
1800 		} else {
1801 			/* Old policy spanning whole new range. */
1802 			if (n->end > end) {
1803 				if (!new2) {
1804 					spin_unlock(&sp->lock);
1805 					new2 = sp_alloc(end, n->end, n->policy);
1806 					if (!new2)
1807 						return -ENOMEM;
1808 					goto restart;
1809 				}
1810 				n->end = start;
1811 				sp_insert(sp, new2);
1812 				new2 = NULL;
1813 				break;
1814 			} else
1815 				n->end = start;
1816 		}
1817 		if (!next)
1818 			break;
1819 		n = rb_entry(next, struct sp_node, nd);
1820 	}
1821 	if (new)
1822 		sp_insert(sp, new);
1823 	spin_unlock(&sp->lock);
1824 	if (new2) {
1825 		mpol_put(new2->policy);
1826 		kmem_cache_free(sn_cache, new2);
1827 	}
1828 	return 0;
1829 }
1830 
1831 /**
1832  * mpol_shared_policy_init - initialize shared policy for inode
1833  * @sp: pointer to inode shared policy
1834  * @mpol:  struct mempolicy to install
1835  *
1836  * Install non-NULL @mpol in inode's shared policy rb-tree.
1837  * On entry, the current task has a reference on a non-NULL @mpol.
1838  * This must be released on exit.
1839  */
1840 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1841 {
1842 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
1843 	spin_lock_init(&sp->lock);
1844 
1845 	if (mpol) {
1846 		struct vm_area_struct pvma;
1847 		struct mempolicy *new;
1848 
1849 		/* contextualize the tmpfs mount point mempolicy */
1850 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1851 		mpol_put(mpol);	/* drop our ref on sb mpol */
1852 		if (IS_ERR(new))
1853 			return;		/* no valid nodemask intersection */
1854 
1855 		/* Create pseudo-vma that contains just the policy */
1856 		memset(&pvma, 0, sizeof(struct vm_area_struct));
1857 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
1858 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1859 		mpol_put(new);			/* drop initial ref */
1860 	}
1861 }
1862 
1863 int mpol_set_shared_policy(struct shared_policy *info,
1864 			struct vm_area_struct *vma, struct mempolicy *npol)
1865 {
1866 	int err;
1867 	struct sp_node *new = NULL;
1868 	unsigned long sz = vma_pages(vma);
1869 
1870 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1871 		 vma->vm_pgoff,
1872 		 sz, npol ? npol->mode : -1,
1873 		 npol ? npol->flags : -1,
1874 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1875 
1876 	if (npol) {
1877 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1878 		if (!new)
1879 			return -ENOMEM;
1880 	}
1881 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1882 	if (err && new)
1883 		kmem_cache_free(sn_cache, new);
1884 	return err;
1885 }
1886 
1887 /* Free a backing policy store on inode delete. */
1888 void mpol_free_shared_policy(struct shared_policy *p)
1889 {
1890 	struct sp_node *n;
1891 	struct rb_node *next;
1892 
1893 	if (!p->root.rb_node)
1894 		return;
1895 	spin_lock(&p->lock);
1896 	next = rb_first(&p->root);
1897 	while (next) {
1898 		n = rb_entry(next, struct sp_node, nd);
1899 		next = rb_next(&n->nd);
1900 		rb_erase(&n->nd, &p->root);
1901 		mpol_put(n->policy);
1902 		kmem_cache_free(sn_cache, n);
1903 	}
1904 	spin_unlock(&p->lock);
1905 }
1906 
1907 /* assumes fs == KERNEL_DS */
1908 void __init numa_policy_init(void)
1909 {
1910 	nodemask_t interleave_nodes;
1911 	unsigned long largest = 0;
1912 	int nid, prefer = 0;
1913 
1914 	policy_cache = kmem_cache_create("numa_policy",
1915 					 sizeof(struct mempolicy),
1916 					 0, SLAB_PANIC, NULL);
1917 
1918 	sn_cache = kmem_cache_create("shared_policy_node",
1919 				     sizeof(struct sp_node),
1920 				     0, SLAB_PANIC, NULL);
1921 
1922 	/*
1923 	 * Set interleaving policy for system init. Interleaving is only
1924 	 * enabled across suitably sized nodes (default is >= 16MB), or
1925 	 * fall back to the largest node if they're all smaller.
1926 	 */
1927 	nodes_clear(interleave_nodes);
1928 	for_each_node_state(nid, N_HIGH_MEMORY) {
1929 		unsigned long total_pages = node_present_pages(nid);
1930 
1931 		/* Preserve the largest node */
1932 		if (largest < total_pages) {
1933 			largest = total_pages;
1934 			prefer = nid;
1935 		}
1936 
1937 		/* Interleave this node? */
1938 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1939 			node_set(nid, interleave_nodes);
1940 	}
1941 
1942 	/* All too small, use the largest */
1943 	if (unlikely(nodes_empty(interleave_nodes)))
1944 		node_set(prefer, interleave_nodes);
1945 
1946 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1947 		printk("numa_policy_init: interleaving failed\n");
1948 }
1949 
1950 /* Reset policy of current process to default */
1951 void numa_default_policy(void)
1952 {
1953 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1954 }
1955 
1956 /*
1957  * Parse and format mempolicy from/to strings
1958  */
1959 
1960 /*
1961  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
1962  * Used only for mpol_parse_str() and mpol_to_str()
1963  */
1964 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1965 static const char * const policy_types[] =
1966 	{ "default", "prefer", "bind", "interleave", "local" };
1967 
1968 
1969 #ifdef CONFIG_TMPFS
1970 /**
1971  * mpol_parse_str - parse string to mempolicy
1972  * @str:  string containing mempolicy to parse
1973  * @mpol:  pointer to struct mempolicy pointer, returned on success.
1974  * @no_context:  flag whether to "contextualize" the mempolicy
1975  *
1976  * Format of input:
1977  *	<mode>[=<flags>][:<nodelist>]
1978  *
1979  * if @no_context is true, save the input nodemask in w.user_nodemask in
1980  * the returned mempolicy.  This will be used to "clone" the mempolicy in
1981  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
1982  * mount option.  Note that if 'static' or 'relative' mode flags were
1983  * specified, the input nodemask will already have been saved.  Saving
1984  * it again is redundant, but safe.
1985  *
1986  * On success, returns 0, else 1
1987  */
1988 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
1989 {
1990 	struct mempolicy *new = NULL;
1991 	unsigned short uninitialized_var(mode);
1992 	unsigned short uninitialized_var(mode_flags);
1993 	nodemask_t nodes;
1994 	char *nodelist = strchr(str, ':');
1995 	char *flags = strchr(str, '=');
1996 	int i;
1997 	int err = 1;
1998 
1999 	if (nodelist) {
2000 		/* NUL-terminate mode or flags string */
2001 		*nodelist++ = '\0';
2002 		if (nodelist_parse(nodelist, nodes))
2003 			goto out;
2004 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2005 			goto out;
2006 	} else
2007 		nodes_clear(nodes);
2008 
2009 	if (flags)
2010 		*flags++ = '\0';	/* terminate mode string */
2011 
2012 	for (i = 0; i <= MPOL_LOCAL; i++) {
2013 		if (!strcmp(str, policy_types[i])) {
2014 			mode = i;
2015 			break;
2016 		}
2017 	}
2018 	if (i > MPOL_LOCAL)
2019 		goto out;
2020 
2021 	switch (mode) {
2022 	case MPOL_PREFERRED:
2023 		/*
2024 		 * Insist on a nodelist of one node only
2025 		 */
2026 		if (nodelist) {
2027 			char *rest = nodelist;
2028 			while (isdigit(*rest))
2029 				rest++;
2030 			if (!*rest)
2031 				err = 0;
2032 		}
2033 		break;
2034 	case MPOL_INTERLEAVE:
2035 		/*
2036 		 * Default to online nodes with memory if no nodelist
2037 		 */
2038 		if (!nodelist)
2039 			nodes = node_states[N_HIGH_MEMORY];
2040 		err = 0;
2041 		break;
2042 	case MPOL_LOCAL:
2043 		/*
2044 		 * Don't allow a nodelist;  mpol_new() checks flags
2045 		 */
2046 		if (nodelist)
2047 			goto out;
2048 		mode = MPOL_PREFERRED;
2049 		break;
2050 
2051 	/*
2052 	 * case MPOL_BIND:    mpol_new() enforces non-empty nodemask.
2053 	 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2054 	 */
2055 	}
2056 
2057 	mode_flags = 0;
2058 	if (flags) {
2059 		/*
2060 		 * Currently, we only support two mutually exclusive
2061 		 * mode flags.
2062 		 */
2063 		if (!strcmp(flags, "static"))
2064 			mode_flags |= MPOL_F_STATIC_NODES;
2065 		else if (!strcmp(flags, "relative"))
2066 			mode_flags |= MPOL_F_RELATIVE_NODES;
2067 		else
2068 			err = 1;
2069 	}
2070 
2071 	new = mpol_new(mode, mode_flags, &nodes);
2072 	if (IS_ERR(new))
2073 		err = 1;
2074 	else if (no_context)
2075 		new->w.user_nodemask = nodes;	/* save for contextualization */
2076 
2077 out:
2078 	/* Restore string for error message */
2079 	if (nodelist)
2080 		*--nodelist = ':';
2081 	if (flags)
2082 		*--flags = '=';
2083 	if (!err)
2084 		*mpol = new;
2085 	return err;
2086 }
2087 #endif /* CONFIG_TMPFS */
2088 
2089 /**
2090  * mpol_to_str - format a mempolicy structure for printing
2091  * @buffer:  to contain formatted mempolicy string
2092  * @maxlen:  length of @buffer
2093  * @pol:  pointer to mempolicy to be formatted
2094  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2095  *
2096  * Convert a mempolicy into a string.
2097  * Returns the number of characters in buffer (if positive)
2098  * or an error (negative)
2099  */
2100 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2101 {
2102 	char *p = buffer;
2103 	int l;
2104 	nodemask_t nodes;
2105 	unsigned short mode;
2106 	unsigned short flags = pol ? pol->flags : 0;
2107 
2108 	/*
2109 	 * Sanity check:  room for longest mode, flag and some nodes
2110 	 */
2111 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2112 
2113 	if (!pol || pol == &default_policy)
2114 		mode = MPOL_DEFAULT;
2115 	else
2116 		mode = pol->mode;
2117 
2118 	switch (mode) {
2119 	case MPOL_DEFAULT:
2120 		nodes_clear(nodes);
2121 		break;
2122 
2123 	case MPOL_PREFERRED:
2124 		nodes_clear(nodes);
2125 		if (flags & MPOL_F_LOCAL)
2126 			mode = MPOL_LOCAL;	/* pseudo-policy */
2127 		else
2128 			node_set(pol->v.preferred_node, nodes);
2129 		break;
2130 
2131 	case MPOL_BIND:
2132 		/* Fall through */
2133 	case MPOL_INTERLEAVE:
2134 		if (no_context)
2135 			nodes = pol->w.user_nodemask;
2136 		else
2137 			nodes = pol->v.nodes;
2138 		break;
2139 
2140 	default:
2141 		BUG();
2142 	}
2143 
2144 	l = strlen(policy_types[mode]);
2145 	if (buffer + maxlen < p + l + 1)
2146 		return -ENOSPC;
2147 
2148 	strcpy(p, policy_types[mode]);
2149 	p += l;
2150 
2151 	if (flags & MPOL_MODE_FLAGS) {
2152 		if (buffer + maxlen < p + 2)
2153 			return -ENOSPC;
2154 		*p++ = '=';
2155 
2156 		/*
2157 		 * Currently, the only defined flags are mutually exclusive
2158 		 */
2159 		if (flags & MPOL_F_STATIC_NODES)
2160 			p += snprintf(p, buffer + maxlen - p, "static");
2161 		else if (flags & MPOL_F_RELATIVE_NODES)
2162 			p += snprintf(p, buffer + maxlen - p, "relative");
2163 	}
2164 
2165 	if (!nodes_empty(nodes)) {
2166 		if (buffer + maxlen < p + 2)
2167 			return -ENOSPC;
2168 		*p++ = ':';
2169 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2170 	}
2171 	return p - buffer;
2172 }
2173 
2174 struct numa_maps {
2175 	unsigned long pages;
2176 	unsigned long anon;
2177 	unsigned long active;
2178 	unsigned long writeback;
2179 	unsigned long mapcount_max;
2180 	unsigned long dirty;
2181 	unsigned long swapcache;
2182 	unsigned long node[MAX_NUMNODES];
2183 };
2184 
2185 static void gather_stats(struct page *page, void *private, int pte_dirty)
2186 {
2187 	struct numa_maps *md = private;
2188 	int count = page_mapcount(page);
2189 
2190 	md->pages++;
2191 	if (pte_dirty || PageDirty(page))
2192 		md->dirty++;
2193 
2194 	if (PageSwapCache(page))
2195 		md->swapcache++;
2196 
2197 	if (PageActive(page))
2198 		md->active++;
2199 
2200 	if (PageWriteback(page))
2201 		md->writeback++;
2202 
2203 	if (PageAnon(page))
2204 		md->anon++;
2205 
2206 	if (count > md->mapcount_max)
2207 		md->mapcount_max = count;
2208 
2209 	md->node[page_to_nid(page)]++;
2210 }
2211 
2212 #ifdef CONFIG_HUGETLB_PAGE
2213 static void check_huge_range(struct vm_area_struct *vma,
2214 		unsigned long start, unsigned long end,
2215 		struct numa_maps *md)
2216 {
2217 	unsigned long addr;
2218 	struct page *page;
2219 
2220 	for (addr = start; addr < end; addr += HPAGE_SIZE) {
2221 		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2222 		pte_t pte;
2223 
2224 		if (!ptep)
2225 			continue;
2226 
2227 		pte = *ptep;
2228 		if (pte_none(pte))
2229 			continue;
2230 
2231 		page = pte_page(pte);
2232 		if (!page)
2233 			continue;
2234 
2235 		gather_stats(page, md, pte_dirty(*ptep));
2236 	}
2237 }
2238 #else
2239 static inline void check_huge_range(struct vm_area_struct *vma,
2240 		unsigned long start, unsigned long end,
2241 		struct numa_maps *md)
2242 {
2243 }
2244 #endif
2245 
2246 /*
2247  * Display pages allocated per node and memory policy via /proc.
2248  */
2249 int show_numa_map(struct seq_file *m, void *v)
2250 {
2251 	struct proc_maps_private *priv = m->private;
2252 	struct vm_area_struct *vma = v;
2253 	struct numa_maps *md;
2254 	struct file *file = vma->vm_file;
2255 	struct mm_struct *mm = vma->vm_mm;
2256 	struct mempolicy *pol;
2257 	int n;
2258 	char buffer[50];
2259 
2260 	if (!mm)
2261 		return 0;
2262 
2263 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2264 	if (!md)
2265 		return 0;
2266 
2267 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2268 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2269 	mpol_cond_put(pol);
2270 
2271 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2272 
2273 	if (file) {
2274 		seq_printf(m, " file=");
2275 		seq_path(m, &file->f_path, "\n\t= ");
2276 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2277 		seq_printf(m, " heap");
2278 	} else if (vma->vm_start <= mm->start_stack &&
2279 			vma->vm_end >= mm->start_stack) {
2280 		seq_printf(m, " stack");
2281 	}
2282 
2283 	if (is_vm_hugetlb_page(vma)) {
2284 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2285 		seq_printf(m, " huge");
2286 	} else {
2287 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2288 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2289 	}
2290 
2291 	if (!md->pages)
2292 		goto out;
2293 
2294 	if (md->anon)
2295 		seq_printf(m," anon=%lu",md->anon);
2296 
2297 	if (md->dirty)
2298 		seq_printf(m," dirty=%lu",md->dirty);
2299 
2300 	if (md->pages != md->anon && md->pages != md->dirty)
2301 		seq_printf(m, " mapped=%lu", md->pages);
2302 
2303 	if (md->mapcount_max > 1)
2304 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2305 
2306 	if (md->swapcache)
2307 		seq_printf(m," swapcache=%lu", md->swapcache);
2308 
2309 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2310 		seq_printf(m," active=%lu", md->active);
2311 
2312 	if (md->writeback)
2313 		seq_printf(m," writeback=%lu", md->writeback);
2314 
2315 	for_each_node_state(n, N_HIGH_MEMORY)
2316 		if (md->node[n])
2317 			seq_printf(m, " N%d=%lu", n, md->node[n]);
2318 out:
2319 	seq_putc(m, '\n');
2320 	kfree(md);
2321 
2322 	if (m->count < m->size)
2323 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2324 	return 0;
2325 }
2326