xref: /openbmc/linux/mm/mempolicy.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(pte - 1, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	task_lock(current);
879 	ret = mpol_set_nodemask(new, nodes, scratch);
880 	if (ret) {
881 		task_unlock(current);
882 		mpol_put(new);
883 		goto out;
884 	}
885 	old = current->mempolicy;
886 	current->mempolicy = new;
887 	if (new && new->mode == MPOL_INTERLEAVE)
888 		current->il_prev = MAX_NUMNODES-1;
889 	task_unlock(current);
890 	mpol_put(old);
891 	ret = 0;
892 out:
893 	NODEMASK_SCRATCH_FREE(scratch);
894 	return ret;
895 }
896 
897 /*
898  * Return nodemask for policy for get_mempolicy() query
899  *
900  * Called with task's alloc_lock held
901  */
902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
903 {
904 	nodes_clear(*nodes);
905 	if (p == &default_policy)
906 		return;
907 
908 	switch (p->mode) {
909 	case MPOL_BIND:
910 	case MPOL_INTERLEAVE:
911 		*nodes = p->v.nodes;
912 		break;
913 	case MPOL_PREFERRED:
914 		if (!(p->flags & MPOL_F_LOCAL))
915 			node_set(p->v.preferred_node, *nodes);
916 		/* else return empty node mask for local allocation */
917 		break;
918 	default:
919 		BUG();
920 	}
921 }
922 
923 static int lookup_node(struct mm_struct *mm, unsigned long addr)
924 {
925 	struct page *p = NULL;
926 	int err;
927 
928 	int locked = 1;
929 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
930 	if (err > 0) {
931 		err = page_to_nid(p);
932 		put_page(p);
933 	}
934 	if (locked)
935 		mmap_read_unlock(mm);
936 	return err;
937 }
938 
939 /* Retrieve NUMA policy */
940 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
941 			     unsigned long addr, unsigned long flags)
942 {
943 	int err;
944 	struct mm_struct *mm = current->mm;
945 	struct vm_area_struct *vma = NULL;
946 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
947 
948 	if (flags &
949 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
950 		return -EINVAL;
951 
952 	if (flags & MPOL_F_MEMS_ALLOWED) {
953 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
954 			return -EINVAL;
955 		*policy = 0;	/* just so it's initialized */
956 		task_lock(current);
957 		*nmask  = cpuset_current_mems_allowed;
958 		task_unlock(current);
959 		return 0;
960 	}
961 
962 	if (flags & MPOL_F_ADDR) {
963 		/*
964 		 * Do NOT fall back to task policy if the
965 		 * vma/shared policy at addr is NULL.  We
966 		 * want to return MPOL_DEFAULT in this case.
967 		 */
968 		mmap_read_lock(mm);
969 		vma = find_vma_intersection(mm, addr, addr+1);
970 		if (!vma) {
971 			mmap_read_unlock(mm);
972 			return -EFAULT;
973 		}
974 		if (vma->vm_ops && vma->vm_ops->get_policy)
975 			pol = vma->vm_ops->get_policy(vma, addr);
976 		else
977 			pol = vma->vm_policy;
978 	} else if (addr)
979 		return -EINVAL;
980 
981 	if (!pol)
982 		pol = &default_policy;	/* indicates default behavior */
983 
984 	if (flags & MPOL_F_NODE) {
985 		if (flags & MPOL_F_ADDR) {
986 			/*
987 			 * Take a refcount on the mpol, lookup_node()
988 			 * wil drop the mmap_lock, so after calling
989 			 * lookup_node() only "pol" remains valid, "vma"
990 			 * is stale.
991 			 */
992 			pol_refcount = pol;
993 			vma = NULL;
994 			mpol_get(pol);
995 			err = lookup_node(mm, addr);
996 			if (err < 0)
997 				goto out;
998 			*policy = err;
999 		} else if (pol == current->mempolicy &&
1000 				pol->mode == MPOL_INTERLEAVE) {
1001 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1002 		} else {
1003 			err = -EINVAL;
1004 			goto out;
1005 		}
1006 	} else {
1007 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1008 						pol->mode;
1009 		/*
1010 		 * Internal mempolicy flags must be masked off before exposing
1011 		 * the policy to userspace.
1012 		 */
1013 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1014 	}
1015 
1016 	err = 0;
1017 	if (nmask) {
1018 		if (mpol_store_user_nodemask(pol)) {
1019 			*nmask = pol->w.user_nodemask;
1020 		} else {
1021 			task_lock(current);
1022 			get_policy_nodemask(pol, nmask);
1023 			task_unlock(current);
1024 		}
1025 	}
1026 
1027  out:
1028 	mpol_cond_put(pol);
1029 	if (vma)
1030 		mmap_read_unlock(mm);
1031 	if (pol_refcount)
1032 		mpol_put(pol_refcount);
1033 	return err;
1034 }
1035 
1036 #ifdef CONFIG_MIGRATION
1037 /*
1038  * page migration, thp tail pages can be passed.
1039  */
1040 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1041 				unsigned long flags)
1042 {
1043 	struct page *head = compound_head(page);
1044 	/*
1045 	 * Avoid migrating a page that is shared with others.
1046 	 */
1047 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1048 		if (!isolate_lru_page(head)) {
1049 			list_add_tail(&head->lru, pagelist);
1050 			mod_node_page_state(page_pgdat(head),
1051 				NR_ISOLATED_ANON + page_is_file_lru(head),
1052 				thp_nr_pages(head));
1053 		} else if (flags & MPOL_MF_STRICT) {
1054 			/*
1055 			 * Non-movable page may reach here.  And, there may be
1056 			 * temporary off LRU pages or non-LRU movable pages.
1057 			 * Treat them as unmovable pages since they can't be
1058 			 * isolated, so they can't be moved at the moment.  It
1059 			 * should return -EIO for this case too.
1060 			 */
1061 			return -EIO;
1062 		}
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /*
1069  * Migrate pages from one node to a target node.
1070  * Returns error or the number of pages not migrated.
1071  */
1072 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1073 			   int flags)
1074 {
1075 	nodemask_t nmask;
1076 	LIST_HEAD(pagelist);
1077 	int err = 0;
1078 	struct migration_target_control mtc = {
1079 		.nid = dest,
1080 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1081 	};
1082 
1083 	nodes_clear(nmask);
1084 	node_set(source, nmask);
1085 
1086 	/*
1087 	 * This does not "check" the range but isolates all pages that
1088 	 * need migration.  Between passing in the full user address
1089 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1090 	 */
1091 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1092 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1093 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1094 
1095 	if (!list_empty(&pagelist)) {
1096 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1097 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1098 		if (err)
1099 			putback_movable_pages(&pagelist);
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 /*
1106  * Move pages between the two nodesets so as to preserve the physical
1107  * layout as much as possible.
1108  *
1109  * Returns the number of page that could not be moved.
1110  */
1111 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1112 		     const nodemask_t *to, int flags)
1113 {
1114 	int busy = 0;
1115 	int err;
1116 	nodemask_t tmp;
1117 
1118 	err = migrate_prep();
1119 	if (err)
1120 		return err;
1121 
1122 	mmap_read_lock(mm);
1123 
1124 	/*
1125 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1126 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1127 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1128 	 * The pair of nodemasks 'to' and 'from' define the map.
1129 	 *
1130 	 * If no pair of bits is found that way, fallback to picking some
1131 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1132 	 * 'source' and 'dest' bits are the same, this represents a node
1133 	 * that will be migrating to itself, so no pages need move.
1134 	 *
1135 	 * If no bits are left in 'tmp', or if all remaining bits left
1136 	 * in 'tmp' correspond to the same bit in 'to', return false
1137 	 * (nothing left to migrate).
1138 	 *
1139 	 * This lets us pick a pair of nodes to migrate between, such that
1140 	 * if possible the dest node is not already occupied by some other
1141 	 * source node, minimizing the risk of overloading the memory on a
1142 	 * node that would happen if we migrated incoming memory to a node
1143 	 * before migrating outgoing memory source that same node.
1144 	 *
1145 	 * A single scan of tmp is sufficient.  As we go, we remember the
1146 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1147 	 * that not only moved, but what's better, moved to an empty slot
1148 	 * (d is not set in tmp), then we break out then, with that pair.
1149 	 * Otherwise when we finish scanning from_tmp, we at least have the
1150 	 * most recent <s, d> pair that moved.  If we get all the way through
1151 	 * the scan of tmp without finding any node that moved, much less
1152 	 * moved to an empty node, then there is nothing left worth migrating.
1153 	 */
1154 
1155 	tmp = *from;
1156 	while (!nodes_empty(tmp)) {
1157 		int s,d;
1158 		int source = NUMA_NO_NODE;
1159 		int dest = 0;
1160 
1161 		for_each_node_mask(s, tmp) {
1162 
1163 			/*
1164 			 * do_migrate_pages() tries to maintain the relative
1165 			 * node relationship of the pages established between
1166 			 * threads and memory areas.
1167                          *
1168 			 * However if the number of source nodes is not equal to
1169 			 * the number of destination nodes we can not preserve
1170 			 * this node relative relationship.  In that case, skip
1171 			 * copying memory from a node that is in the destination
1172 			 * mask.
1173 			 *
1174 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1175 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1176 			 */
1177 
1178 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1179 						(node_isset(s, *to)))
1180 				continue;
1181 
1182 			d = node_remap(s, *from, *to);
1183 			if (s == d)
1184 				continue;
1185 
1186 			source = s;	/* Node moved. Memorize */
1187 			dest = d;
1188 
1189 			/* dest not in remaining from nodes? */
1190 			if (!node_isset(dest, tmp))
1191 				break;
1192 		}
1193 		if (source == NUMA_NO_NODE)
1194 			break;
1195 
1196 		node_clear(source, tmp);
1197 		err = migrate_to_node(mm, source, dest, flags);
1198 		if (err > 0)
1199 			busy += err;
1200 		if (err < 0)
1201 			break;
1202 	}
1203 	mmap_read_unlock(mm);
1204 	if (err < 0)
1205 		return err;
1206 	return busy;
1207 
1208 }
1209 
1210 /*
1211  * Allocate a new page for page migration based on vma policy.
1212  * Start by assuming the page is mapped by the same vma as contains @start.
1213  * Search forward from there, if not.  N.B., this assumes that the
1214  * list of pages handed to migrate_pages()--which is how we get here--
1215  * is in virtual address order.
1216  */
1217 static struct page *new_page(struct page *page, unsigned long start)
1218 {
1219 	struct vm_area_struct *vma;
1220 	unsigned long address;
1221 
1222 	vma = find_vma(current->mm, start);
1223 	while (vma) {
1224 		address = page_address_in_vma(page, vma);
1225 		if (address != -EFAULT)
1226 			break;
1227 		vma = vma->vm_next;
1228 	}
1229 
1230 	if (PageHuge(page)) {
1231 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1232 				vma, address);
1233 	} else if (PageTransHuge(page)) {
1234 		struct page *thp;
1235 
1236 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1237 					 HPAGE_PMD_ORDER);
1238 		if (!thp)
1239 			return NULL;
1240 		prep_transhuge_page(thp);
1241 		return thp;
1242 	}
1243 	/*
1244 	 * if !vma, alloc_page_vma() will use task or system default policy
1245 	 */
1246 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1247 			vma, address);
1248 }
1249 #else
1250 
1251 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1252 				unsigned long flags)
1253 {
1254 	return -EIO;
1255 }
1256 
1257 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1258 		     const nodemask_t *to, int flags)
1259 {
1260 	return -ENOSYS;
1261 }
1262 
1263 static struct page *new_page(struct page *page, unsigned long start)
1264 {
1265 	return NULL;
1266 }
1267 #endif
1268 
1269 static long do_mbind(unsigned long start, unsigned long len,
1270 		     unsigned short mode, unsigned short mode_flags,
1271 		     nodemask_t *nmask, unsigned long flags)
1272 {
1273 	struct mm_struct *mm = current->mm;
1274 	struct mempolicy *new;
1275 	unsigned long end;
1276 	int err;
1277 	int ret;
1278 	LIST_HEAD(pagelist);
1279 
1280 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1281 		return -EINVAL;
1282 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 		return -EPERM;
1284 
1285 	if (start & ~PAGE_MASK)
1286 		return -EINVAL;
1287 
1288 	if (mode == MPOL_DEFAULT)
1289 		flags &= ~MPOL_MF_STRICT;
1290 
1291 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1292 	end = start + len;
1293 
1294 	if (end < start)
1295 		return -EINVAL;
1296 	if (end == start)
1297 		return 0;
1298 
1299 	new = mpol_new(mode, mode_flags, nmask);
1300 	if (IS_ERR(new))
1301 		return PTR_ERR(new);
1302 
1303 	if (flags & MPOL_MF_LAZY)
1304 		new->flags |= MPOL_F_MOF;
1305 
1306 	/*
1307 	 * If we are using the default policy then operation
1308 	 * on discontinuous address spaces is okay after all
1309 	 */
1310 	if (!new)
1311 		flags |= MPOL_MF_DISCONTIG_OK;
1312 
1313 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1314 		 start, start + len, mode, mode_flags,
1315 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1316 
1317 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1318 
1319 		err = migrate_prep();
1320 		if (err)
1321 			goto mpol_out;
1322 	}
1323 	{
1324 		NODEMASK_SCRATCH(scratch);
1325 		if (scratch) {
1326 			mmap_write_lock(mm);
1327 			task_lock(current);
1328 			err = mpol_set_nodemask(new, nmask, scratch);
1329 			task_unlock(current);
1330 			if (err)
1331 				mmap_write_unlock(mm);
1332 		} else
1333 			err = -ENOMEM;
1334 		NODEMASK_SCRATCH_FREE(scratch);
1335 	}
1336 	if (err)
1337 		goto mpol_out;
1338 
1339 	ret = queue_pages_range(mm, start, end, nmask,
1340 			  flags | MPOL_MF_INVERT, &pagelist);
1341 
1342 	if (ret < 0) {
1343 		err = ret;
1344 		goto up_out;
1345 	}
1346 
1347 	err = mbind_range(mm, start, end, new);
1348 
1349 	if (!err) {
1350 		int nr_failed = 0;
1351 
1352 		if (!list_empty(&pagelist)) {
1353 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1355 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1356 			if (nr_failed)
1357 				putback_movable_pages(&pagelist);
1358 		}
1359 
1360 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1361 			err = -EIO;
1362 	} else {
1363 up_out:
1364 		if (!list_empty(&pagelist))
1365 			putback_movable_pages(&pagelist);
1366 	}
1367 
1368 	mmap_write_unlock(mm);
1369 mpol_out:
1370 	mpol_put(new);
1371 	return err;
1372 }
1373 
1374 /*
1375  * User space interface with variable sized bitmaps for nodelists.
1376  */
1377 
1378 /* Copy a node mask from user space. */
1379 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1380 		     unsigned long maxnode)
1381 {
1382 	unsigned long k;
1383 	unsigned long t;
1384 	unsigned long nlongs;
1385 	unsigned long endmask;
1386 
1387 	--maxnode;
1388 	nodes_clear(*nodes);
1389 	if (maxnode == 0 || !nmask)
1390 		return 0;
1391 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1392 		return -EINVAL;
1393 
1394 	nlongs = BITS_TO_LONGS(maxnode);
1395 	if ((maxnode % BITS_PER_LONG) == 0)
1396 		endmask = ~0UL;
1397 	else
1398 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1399 
1400 	/*
1401 	 * When the user specified more nodes than supported just check
1402 	 * if the non supported part is all zero.
1403 	 *
1404 	 * If maxnode have more longs than MAX_NUMNODES, check
1405 	 * the bits in that area first. And then go through to
1406 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1407 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1408 	 */
1409 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1410 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1411 			if (get_user(t, nmask + k))
1412 				return -EFAULT;
1413 			if (k == nlongs - 1) {
1414 				if (t & endmask)
1415 					return -EINVAL;
1416 			} else if (t)
1417 				return -EINVAL;
1418 		}
1419 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1420 		endmask = ~0UL;
1421 	}
1422 
1423 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1424 		unsigned long valid_mask = endmask;
1425 
1426 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1427 		if (get_user(t, nmask + nlongs - 1))
1428 			return -EFAULT;
1429 		if (t & valid_mask)
1430 			return -EINVAL;
1431 	}
1432 
1433 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1434 		return -EFAULT;
1435 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1436 	return 0;
1437 }
1438 
1439 /* Copy a kernel node mask to user space */
1440 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1441 			      nodemask_t *nodes)
1442 {
1443 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1444 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1445 
1446 	if (copy > nbytes) {
1447 		if (copy > PAGE_SIZE)
1448 			return -EINVAL;
1449 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1450 			return -EFAULT;
1451 		copy = nbytes;
1452 	}
1453 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1454 }
1455 
1456 static long kernel_mbind(unsigned long start, unsigned long len,
1457 			 unsigned long mode, const unsigned long __user *nmask,
1458 			 unsigned long maxnode, unsigned int flags)
1459 {
1460 	nodemask_t nodes;
1461 	int err;
1462 	unsigned short mode_flags;
1463 
1464 	start = untagged_addr(start);
1465 	mode_flags = mode & MPOL_MODE_FLAGS;
1466 	mode &= ~MPOL_MODE_FLAGS;
1467 	if (mode >= MPOL_MAX)
1468 		return -EINVAL;
1469 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1470 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1471 		return -EINVAL;
1472 	err = get_nodes(&nodes, nmask, maxnode);
1473 	if (err)
1474 		return err;
1475 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1476 }
1477 
1478 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1479 		unsigned long, mode, const unsigned long __user *, nmask,
1480 		unsigned long, maxnode, unsigned int, flags)
1481 {
1482 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1483 }
1484 
1485 /* Set the process memory policy */
1486 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1487 				 unsigned long maxnode)
1488 {
1489 	int err;
1490 	nodemask_t nodes;
1491 	unsigned short flags;
1492 
1493 	flags = mode & MPOL_MODE_FLAGS;
1494 	mode &= ~MPOL_MODE_FLAGS;
1495 	if ((unsigned int)mode >= MPOL_MAX)
1496 		return -EINVAL;
1497 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1498 		return -EINVAL;
1499 	err = get_nodes(&nodes, nmask, maxnode);
1500 	if (err)
1501 		return err;
1502 	return do_set_mempolicy(mode, flags, &nodes);
1503 }
1504 
1505 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1506 		unsigned long, maxnode)
1507 {
1508 	return kernel_set_mempolicy(mode, nmask, maxnode);
1509 }
1510 
1511 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1512 				const unsigned long __user *old_nodes,
1513 				const unsigned long __user *new_nodes)
1514 {
1515 	struct mm_struct *mm = NULL;
1516 	struct task_struct *task;
1517 	nodemask_t task_nodes;
1518 	int err;
1519 	nodemask_t *old;
1520 	nodemask_t *new;
1521 	NODEMASK_SCRATCH(scratch);
1522 
1523 	if (!scratch)
1524 		return -ENOMEM;
1525 
1526 	old = &scratch->mask1;
1527 	new = &scratch->mask2;
1528 
1529 	err = get_nodes(old, old_nodes, maxnode);
1530 	if (err)
1531 		goto out;
1532 
1533 	err = get_nodes(new, new_nodes, maxnode);
1534 	if (err)
1535 		goto out;
1536 
1537 	/* Find the mm_struct */
1538 	rcu_read_lock();
1539 	task = pid ? find_task_by_vpid(pid) : current;
1540 	if (!task) {
1541 		rcu_read_unlock();
1542 		err = -ESRCH;
1543 		goto out;
1544 	}
1545 	get_task_struct(task);
1546 
1547 	err = -EINVAL;
1548 
1549 	/*
1550 	 * Check if this process has the right to modify the specified process.
1551 	 * Use the regular "ptrace_may_access()" checks.
1552 	 */
1553 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1554 		rcu_read_unlock();
1555 		err = -EPERM;
1556 		goto out_put;
1557 	}
1558 	rcu_read_unlock();
1559 
1560 	task_nodes = cpuset_mems_allowed(task);
1561 	/* Is the user allowed to access the target nodes? */
1562 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1563 		err = -EPERM;
1564 		goto out_put;
1565 	}
1566 
1567 	task_nodes = cpuset_mems_allowed(current);
1568 	nodes_and(*new, *new, task_nodes);
1569 	if (nodes_empty(*new))
1570 		goto out_put;
1571 
1572 	err = security_task_movememory(task);
1573 	if (err)
1574 		goto out_put;
1575 
1576 	mm = get_task_mm(task);
1577 	put_task_struct(task);
1578 
1579 	if (!mm) {
1580 		err = -EINVAL;
1581 		goto out;
1582 	}
1583 
1584 	err = do_migrate_pages(mm, old, new,
1585 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1586 
1587 	mmput(mm);
1588 out:
1589 	NODEMASK_SCRATCH_FREE(scratch);
1590 
1591 	return err;
1592 
1593 out_put:
1594 	put_task_struct(task);
1595 	goto out;
1596 
1597 }
1598 
1599 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1600 		const unsigned long __user *, old_nodes,
1601 		const unsigned long __user *, new_nodes)
1602 {
1603 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1604 }
1605 
1606 
1607 /* Retrieve NUMA policy */
1608 static int kernel_get_mempolicy(int __user *policy,
1609 				unsigned long __user *nmask,
1610 				unsigned long maxnode,
1611 				unsigned long addr,
1612 				unsigned long flags)
1613 {
1614 	int err;
1615 	int pval;
1616 	nodemask_t nodes;
1617 
1618 	if (nmask != NULL && maxnode < nr_node_ids)
1619 		return -EINVAL;
1620 
1621 	addr = untagged_addr(addr);
1622 
1623 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1624 
1625 	if (err)
1626 		return err;
1627 
1628 	if (policy && put_user(pval, policy))
1629 		return -EFAULT;
1630 
1631 	if (nmask)
1632 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1633 
1634 	return err;
1635 }
1636 
1637 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1638 		unsigned long __user *, nmask, unsigned long, maxnode,
1639 		unsigned long, addr, unsigned long, flags)
1640 {
1641 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1642 }
1643 
1644 #ifdef CONFIG_COMPAT
1645 
1646 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1647 		       compat_ulong_t __user *, nmask,
1648 		       compat_ulong_t, maxnode,
1649 		       compat_ulong_t, addr, compat_ulong_t, flags)
1650 {
1651 	long err;
1652 	unsigned long __user *nm = NULL;
1653 	unsigned long nr_bits, alloc_size;
1654 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1655 
1656 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1657 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1658 
1659 	if (nmask)
1660 		nm = compat_alloc_user_space(alloc_size);
1661 
1662 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1663 
1664 	if (!err && nmask) {
1665 		unsigned long copy_size;
1666 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1667 		err = copy_from_user(bm, nm, copy_size);
1668 		/* ensure entire bitmap is zeroed */
1669 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1670 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1671 	}
1672 
1673 	return err;
1674 }
1675 
1676 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1677 		       compat_ulong_t, maxnode)
1678 {
1679 	unsigned long __user *nm = NULL;
1680 	unsigned long nr_bits, alloc_size;
1681 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1682 
1683 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1684 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1685 
1686 	if (nmask) {
1687 		if (compat_get_bitmap(bm, nmask, nr_bits))
1688 			return -EFAULT;
1689 		nm = compat_alloc_user_space(alloc_size);
1690 		if (copy_to_user(nm, bm, alloc_size))
1691 			return -EFAULT;
1692 	}
1693 
1694 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1695 }
1696 
1697 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1698 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1699 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1700 {
1701 	unsigned long __user *nm = NULL;
1702 	unsigned long nr_bits, alloc_size;
1703 	nodemask_t bm;
1704 
1705 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1706 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1707 
1708 	if (nmask) {
1709 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1710 			return -EFAULT;
1711 		nm = compat_alloc_user_space(alloc_size);
1712 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1713 			return -EFAULT;
1714 	}
1715 
1716 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1717 }
1718 
1719 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1720 		       compat_ulong_t, maxnode,
1721 		       const compat_ulong_t __user *, old_nodes,
1722 		       const compat_ulong_t __user *, new_nodes)
1723 {
1724 	unsigned long __user *old = NULL;
1725 	unsigned long __user *new = NULL;
1726 	nodemask_t tmp_mask;
1727 	unsigned long nr_bits;
1728 	unsigned long size;
1729 
1730 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1731 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1732 	if (old_nodes) {
1733 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1734 			return -EFAULT;
1735 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1736 		if (new_nodes)
1737 			new = old + size / sizeof(unsigned long);
1738 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1739 			return -EFAULT;
1740 	}
1741 	if (new_nodes) {
1742 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1743 			return -EFAULT;
1744 		if (new == NULL)
1745 			new = compat_alloc_user_space(size);
1746 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1747 			return -EFAULT;
1748 	}
1749 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1750 }
1751 
1752 #endif /* CONFIG_COMPAT */
1753 
1754 bool vma_migratable(struct vm_area_struct *vma)
1755 {
1756 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1757 		return false;
1758 
1759 	/*
1760 	 * DAX device mappings require predictable access latency, so avoid
1761 	 * incurring periodic faults.
1762 	 */
1763 	if (vma_is_dax(vma))
1764 		return false;
1765 
1766 	if (is_vm_hugetlb_page(vma) &&
1767 		!hugepage_migration_supported(hstate_vma(vma)))
1768 		return false;
1769 
1770 	/*
1771 	 * Migration allocates pages in the highest zone. If we cannot
1772 	 * do so then migration (at least from node to node) is not
1773 	 * possible.
1774 	 */
1775 	if (vma->vm_file &&
1776 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1777 			< policy_zone)
1778 		return false;
1779 	return true;
1780 }
1781 
1782 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1783 						unsigned long addr)
1784 {
1785 	struct mempolicy *pol = NULL;
1786 
1787 	if (vma) {
1788 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1789 			pol = vma->vm_ops->get_policy(vma, addr);
1790 		} else if (vma->vm_policy) {
1791 			pol = vma->vm_policy;
1792 
1793 			/*
1794 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1795 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1796 			 * count on these policies which will be dropped by
1797 			 * mpol_cond_put() later
1798 			 */
1799 			if (mpol_needs_cond_ref(pol))
1800 				mpol_get(pol);
1801 		}
1802 	}
1803 
1804 	return pol;
1805 }
1806 
1807 /*
1808  * get_vma_policy(@vma, @addr)
1809  * @vma: virtual memory area whose policy is sought
1810  * @addr: address in @vma for shared policy lookup
1811  *
1812  * Returns effective policy for a VMA at specified address.
1813  * Falls back to current->mempolicy or system default policy, as necessary.
1814  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1815  * count--added by the get_policy() vm_op, as appropriate--to protect against
1816  * freeing by another task.  It is the caller's responsibility to free the
1817  * extra reference for shared policies.
1818  */
1819 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1820 						unsigned long addr)
1821 {
1822 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1823 
1824 	if (!pol)
1825 		pol = get_task_policy(current);
1826 
1827 	return pol;
1828 }
1829 
1830 bool vma_policy_mof(struct vm_area_struct *vma)
1831 {
1832 	struct mempolicy *pol;
1833 
1834 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1835 		bool ret = false;
1836 
1837 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1838 		if (pol && (pol->flags & MPOL_F_MOF))
1839 			ret = true;
1840 		mpol_cond_put(pol);
1841 
1842 		return ret;
1843 	}
1844 
1845 	pol = vma->vm_policy;
1846 	if (!pol)
1847 		pol = get_task_policy(current);
1848 
1849 	return pol->flags & MPOL_F_MOF;
1850 }
1851 
1852 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1853 {
1854 	enum zone_type dynamic_policy_zone = policy_zone;
1855 
1856 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1857 
1858 	/*
1859 	 * if policy->v.nodes has movable memory only,
1860 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1861 	 *
1862 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1863 	 * so if the following test faile, it implies
1864 	 * policy->v.nodes has movable memory only.
1865 	 */
1866 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1867 		dynamic_policy_zone = ZONE_MOVABLE;
1868 
1869 	return zone >= dynamic_policy_zone;
1870 }
1871 
1872 /*
1873  * Return a nodemask representing a mempolicy for filtering nodes for
1874  * page allocation
1875  */
1876 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1877 {
1878 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1879 	if (unlikely(policy->mode == MPOL_BIND) &&
1880 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1881 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1882 		return &policy->v.nodes;
1883 
1884 	return NULL;
1885 }
1886 
1887 /* Return the node id preferred by the given mempolicy, or the given id */
1888 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1889 								int nd)
1890 {
1891 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1892 		nd = policy->v.preferred_node;
1893 	else {
1894 		/*
1895 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1896 		 * because we might easily break the expectation to stay on the
1897 		 * requested node and not break the policy.
1898 		 */
1899 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1900 	}
1901 
1902 	return nd;
1903 }
1904 
1905 /* Do dynamic interleaving for a process */
1906 static unsigned interleave_nodes(struct mempolicy *policy)
1907 {
1908 	unsigned next;
1909 	struct task_struct *me = current;
1910 
1911 	next = next_node_in(me->il_prev, policy->v.nodes);
1912 	if (next < MAX_NUMNODES)
1913 		me->il_prev = next;
1914 	return next;
1915 }
1916 
1917 /*
1918  * Depending on the memory policy provide a node from which to allocate the
1919  * next slab entry.
1920  */
1921 unsigned int mempolicy_slab_node(void)
1922 {
1923 	struct mempolicy *policy;
1924 	int node = numa_mem_id();
1925 
1926 	if (in_interrupt())
1927 		return node;
1928 
1929 	policy = current->mempolicy;
1930 	if (!policy || policy->flags & MPOL_F_LOCAL)
1931 		return node;
1932 
1933 	switch (policy->mode) {
1934 	case MPOL_PREFERRED:
1935 		/*
1936 		 * handled MPOL_F_LOCAL above
1937 		 */
1938 		return policy->v.preferred_node;
1939 
1940 	case MPOL_INTERLEAVE:
1941 		return interleave_nodes(policy);
1942 
1943 	case MPOL_BIND: {
1944 		struct zoneref *z;
1945 
1946 		/*
1947 		 * Follow bind policy behavior and start allocation at the
1948 		 * first node.
1949 		 */
1950 		struct zonelist *zonelist;
1951 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1952 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1953 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1954 							&policy->v.nodes);
1955 		return z->zone ? zone_to_nid(z->zone) : node;
1956 	}
1957 
1958 	default:
1959 		BUG();
1960 	}
1961 }
1962 
1963 /*
1964  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1965  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1966  * number of present nodes.
1967  */
1968 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1969 {
1970 	unsigned nnodes = nodes_weight(pol->v.nodes);
1971 	unsigned target;
1972 	int i;
1973 	int nid;
1974 
1975 	if (!nnodes)
1976 		return numa_node_id();
1977 	target = (unsigned int)n % nnodes;
1978 	nid = first_node(pol->v.nodes);
1979 	for (i = 0; i < target; i++)
1980 		nid = next_node(nid, pol->v.nodes);
1981 	return nid;
1982 }
1983 
1984 /* Determine a node number for interleave */
1985 static inline unsigned interleave_nid(struct mempolicy *pol,
1986 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1987 {
1988 	if (vma) {
1989 		unsigned long off;
1990 
1991 		/*
1992 		 * for small pages, there is no difference between
1993 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1994 		 * for huge pages, since vm_pgoff is in units of small
1995 		 * pages, we need to shift off the always 0 bits to get
1996 		 * a useful offset.
1997 		 */
1998 		BUG_ON(shift < PAGE_SHIFT);
1999 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2000 		off += (addr - vma->vm_start) >> shift;
2001 		return offset_il_node(pol, off);
2002 	} else
2003 		return interleave_nodes(pol);
2004 }
2005 
2006 #ifdef CONFIG_HUGETLBFS
2007 /*
2008  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2009  * @vma: virtual memory area whose policy is sought
2010  * @addr: address in @vma for shared policy lookup and interleave policy
2011  * @gfp_flags: for requested zone
2012  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2013  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2014  *
2015  * Returns a nid suitable for a huge page allocation and a pointer
2016  * to the struct mempolicy for conditional unref after allocation.
2017  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2018  * @nodemask for filtering the zonelist.
2019  *
2020  * Must be protected by read_mems_allowed_begin()
2021  */
2022 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2023 				struct mempolicy **mpol, nodemask_t **nodemask)
2024 {
2025 	int nid;
2026 
2027 	*mpol = get_vma_policy(vma, addr);
2028 	*nodemask = NULL;	/* assume !MPOL_BIND */
2029 
2030 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2031 		nid = interleave_nid(*mpol, vma, addr,
2032 					huge_page_shift(hstate_vma(vma)));
2033 	} else {
2034 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2035 		if ((*mpol)->mode == MPOL_BIND)
2036 			*nodemask = &(*mpol)->v.nodes;
2037 	}
2038 	return nid;
2039 }
2040 
2041 /*
2042  * init_nodemask_of_mempolicy
2043  *
2044  * If the current task's mempolicy is "default" [NULL], return 'false'
2045  * to indicate default policy.  Otherwise, extract the policy nodemask
2046  * for 'bind' or 'interleave' policy into the argument nodemask, or
2047  * initialize the argument nodemask to contain the single node for
2048  * 'preferred' or 'local' policy and return 'true' to indicate presence
2049  * of non-default mempolicy.
2050  *
2051  * We don't bother with reference counting the mempolicy [mpol_get/put]
2052  * because the current task is examining it's own mempolicy and a task's
2053  * mempolicy is only ever changed by the task itself.
2054  *
2055  * N.B., it is the caller's responsibility to free a returned nodemask.
2056  */
2057 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2058 {
2059 	struct mempolicy *mempolicy;
2060 	int nid;
2061 
2062 	if (!(mask && current->mempolicy))
2063 		return false;
2064 
2065 	task_lock(current);
2066 	mempolicy = current->mempolicy;
2067 	switch (mempolicy->mode) {
2068 	case MPOL_PREFERRED:
2069 		if (mempolicy->flags & MPOL_F_LOCAL)
2070 			nid = numa_node_id();
2071 		else
2072 			nid = mempolicy->v.preferred_node;
2073 		init_nodemask_of_node(mask, nid);
2074 		break;
2075 
2076 	case MPOL_BIND:
2077 	case MPOL_INTERLEAVE:
2078 		*mask =  mempolicy->v.nodes;
2079 		break;
2080 
2081 	default:
2082 		BUG();
2083 	}
2084 	task_unlock(current);
2085 
2086 	return true;
2087 }
2088 #endif
2089 
2090 /*
2091  * mempolicy_nodemask_intersects
2092  *
2093  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2094  * policy.  Otherwise, check for intersection between mask and the policy
2095  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2096  * policy, always return true since it may allocate elsewhere on fallback.
2097  *
2098  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2099  */
2100 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2101 					const nodemask_t *mask)
2102 {
2103 	struct mempolicy *mempolicy;
2104 	bool ret = true;
2105 
2106 	if (!mask)
2107 		return ret;
2108 	task_lock(tsk);
2109 	mempolicy = tsk->mempolicy;
2110 	if (!mempolicy)
2111 		goto out;
2112 
2113 	switch (mempolicy->mode) {
2114 	case MPOL_PREFERRED:
2115 		/*
2116 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2117 		 * allocate from, they may fallback to other nodes when oom.
2118 		 * Thus, it's possible for tsk to have allocated memory from
2119 		 * nodes in mask.
2120 		 */
2121 		break;
2122 	case MPOL_BIND:
2123 	case MPOL_INTERLEAVE:
2124 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2125 		break;
2126 	default:
2127 		BUG();
2128 	}
2129 out:
2130 	task_unlock(tsk);
2131 	return ret;
2132 }
2133 
2134 /* Allocate a page in interleaved policy.
2135    Own path because it needs to do special accounting. */
2136 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2137 					unsigned nid)
2138 {
2139 	struct page *page;
2140 
2141 	page = __alloc_pages(gfp, order, nid);
2142 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2143 	if (!static_branch_likely(&vm_numa_stat_key))
2144 		return page;
2145 	if (page && page_to_nid(page) == nid) {
2146 		preempt_disable();
2147 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2148 		preempt_enable();
2149 	}
2150 	return page;
2151 }
2152 
2153 /**
2154  * 	alloc_pages_vma	- Allocate a page for a VMA.
2155  *
2156  * 	@gfp:
2157  *      %GFP_USER    user allocation.
2158  *      %GFP_KERNEL  kernel allocations,
2159  *      %GFP_HIGHMEM highmem/user allocations,
2160  *      %GFP_FS      allocation should not call back into a file system.
2161  *      %GFP_ATOMIC  don't sleep.
2162  *
2163  *	@order:Order of the GFP allocation.
2164  * 	@vma:  Pointer to VMA or NULL if not available.
2165  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2166  *	@node: Which node to prefer for allocation (modulo policy).
2167  *	@hugepage: for hugepages try only the preferred node if possible
2168  *
2169  * 	This function allocates a page from the kernel page pool and applies
2170  *	a NUMA policy associated with the VMA or the current process.
2171  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2172  *	mm_struct of the VMA to prevent it from going away. Should be used for
2173  *	all allocations for pages that will be mapped into user space. Returns
2174  *	NULL when no page can be allocated.
2175  */
2176 struct page *
2177 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2178 		unsigned long addr, int node, bool hugepage)
2179 {
2180 	struct mempolicy *pol;
2181 	struct page *page;
2182 	int preferred_nid;
2183 	nodemask_t *nmask;
2184 
2185 	pol = get_vma_policy(vma, addr);
2186 
2187 	if (pol->mode == MPOL_INTERLEAVE) {
2188 		unsigned nid;
2189 
2190 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2191 		mpol_cond_put(pol);
2192 		page = alloc_page_interleave(gfp, order, nid);
2193 		goto out;
2194 	}
2195 
2196 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2197 		int hpage_node = node;
2198 
2199 		/*
2200 		 * For hugepage allocation and non-interleave policy which
2201 		 * allows the current node (or other explicitly preferred
2202 		 * node) we only try to allocate from the current/preferred
2203 		 * node and don't fall back to other nodes, as the cost of
2204 		 * remote accesses would likely offset THP benefits.
2205 		 *
2206 		 * If the policy is interleave, or does not allow the current
2207 		 * node in its nodemask, we allocate the standard way.
2208 		 */
2209 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2210 			hpage_node = pol->v.preferred_node;
2211 
2212 		nmask = policy_nodemask(gfp, pol);
2213 		if (!nmask || node_isset(hpage_node, *nmask)) {
2214 			mpol_cond_put(pol);
2215 			/*
2216 			 * First, try to allocate THP only on local node, but
2217 			 * don't reclaim unnecessarily, just compact.
2218 			 */
2219 			page = __alloc_pages_node(hpage_node,
2220 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2221 
2222 			/*
2223 			 * If hugepage allocations are configured to always
2224 			 * synchronous compact or the vma has been madvised
2225 			 * to prefer hugepage backing, retry allowing remote
2226 			 * memory with both reclaim and compact as well.
2227 			 */
2228 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2229 				page = __alloc_pages_node(hpage_node,
2230 								gfp, order);
2231 
2232 			goto out;
2233 		}
2234 	}
2235 
2236 	nmask = policy_nodemask(gfp, pol);
2237 	preferred_nid = policy_node(gfp, pol, node);
2238 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2239 	mpol_cond_put(pol);
2240 out:
2241 	return page;
2242 }
2243 EXPORT_SYMBOL(alloc_pages_vma);
2244 
2245 /**
2246  * 	alloc_pages_current - Allocate pages.
2247  *
2248  *	@gfp:
2249  *		%GFP_USER   user allocation,
2250  *      	%GFP_KERNEL kernel allocation,
2251  *      	%GFP_HIGHMEM highmem allocation,
2252  *      	%GFP_FS     don't call back into a file system.
2253  *      	%GFP_ATOMIC don't sleep.
2254  *	@order: Power of two of allocation size in pages. 0 is a single page.
2255  *
2256  *	Allocate a page from the kernel page pool.  When not in
2257  *	interrupt context and apply the current process NUMA policy.
2258  *	Returns NULL when no page can be allocated.
2259  */
2260 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2261 {
2262 	struct mempolicy *pol = &default_policy;
2263 	struct page *page;
2264 
2265 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2266 		pol = get_task_policy(current);
2267 
2268 	/*
2269 	 * No reference counting needed for current->mempolicy
2270 	 * nor system default_policy
2271 	 */
2272 	if (pol->mode == MPOL_INTERLEAVE)
2273 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2274 	else
2275 		page = __alloc_pages_nodemask(gfp, order,
2276 				policy_node(gfp, pol, numa_node_id()),
2277 				policy_nodemask(gfp, pol));
2278 
2279 	return page;
2280 }
2281 EXPORT_SYMBOL(alloc_pages_current);
2282 
2283 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2284 {
2285 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2286 
2287 	if (IS_ERR(pol))
2288 		return PTR_ERR(pol);
2289 	dst->vm_policy = pol;
2290 	return 0;
2291 }
2292 
2293 /*
2294  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2295  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2296  * with the mems_allowed returned by cpuset_mems_allowed().  This
2297  * keeps mempolicies cpuset relative after its cpuset moves.  See
2298  * further kernel/cpuset.c update_nodemask().
2299  *
2300  * current's mempolicy may be rebinded by the other task(the task that changes
2301  * cpuset's mems), so we needn't do rebind work for current task.
2302  */
2303 
2304 /* Slow path of a mempolicy duplicate */
2305 struct mempolicy *__mpol_dup(struct mempolicy *old)
2306 {
2307 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2308 
2309 	if (!new)
2310 		return ERR_PTR(-ENOMEM);
2311 
2312 	/* task's mempolicy is protected by alloc_lock */
2313 	if (old == current->mempolicy) {
2314 		task_lock(current);
2315 		*new = *old;
2316 		task_unlock(current);
2317 	} else
2318 		*new = *old;
2319 
2320 	if (current_cpuset_is_being_rebound()) {
2321 		nodemask_t mems = cpuset_mems_allowed(current);
2322 		mpol_rebind_policy(new, &mems);
2323 	}
2324 	atomic_set(&new->refcnt, 1);
2325 	return new;
2326 }
2327 
2328 /* Slow path of a mempolicy comparison */
2329 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2330 {
2331 	if (!a || !b)
2332 		return false;
2333 	if (a->mode != b->mode)
2334 		return false;
2335 	if (a->flags != b->flags)
2336 		return false;
2337 	if (mpol_store_user_nodemask(a))
2338 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2339 			return false;
2340 
2341 	switch (a->mode) {
2342 	case MPOL_BIND:
2343 	case MPOL_INTERLEAVE:
2344 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2345 	case MPOL_PREFERRED:
2346 		/* a's ->flags is the same as b's */
2347 		if (a->flags & MPOL_F_LOCAL)
2348 			return true;
2349 		return a->v.preferred_node == b->v.preferred_node;
2350 	default:
2351 		BUG();
2352 		return false;
2353 	}
2354 }
2355 
2356 /*
2357  * Shared memory backing store policy support.
2358  *
2359  * Remember policies even when nobody has shared memory mapped.
2360  * The policies are kept in Red-Black tree linked from the inode.
2361  * They are protected by the sp->lock rwlock, which should be held
2362  * for any accesses to the tree.
2363  */
2364 
2365 /*
2366  * lookup first element intersecting start-end.  Caller holds sp->lock for
2367  * reading or for writing
2368  */
2369 static struct sp_node *
2370 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2371 {
2372 	struct rb_node *n = sp->root.rb_node;
2373 
2374 	while (n) {
2375 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2376 
2377 		if (start >= p->end)
2378 			n = n->rb_right;
2379 		else if (end <= p->start)
2380 			n = n->rb_left;
2381 		else
2382 			break;
2383 	}
2384 	if (!n)
2385 		return NULL;
2386 	for (;;) {
2387 		struct sp_node *w = NULL;
2388 		struct rb_node *prev = rb_prev(n);
2389 		if (!prev)
2390 			break;
2391 		w = rb_entry(prev, struct sp_node, nd);
2392 		if (w->end <= start)
2393 			break;
2394 		n = prev;
2395 	}
2396 	return rb_entry(n, struct sp_node, nd);
2397 }
2398 
2399 /*
2400  * Insert a new shared policy into the list.  Caller holds sp->lock for
2401  * writing.
2402  */
2403 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2404 {
2405 	struct rb_node **p = &sp->root.rb_node;
2406 	struct rb_node *parent = NULL;
2407 	struct sp_node *nd;
2408 
2409 	while (*p) {
2410 		parent = *p;
2411 		nd = rb_entry(parent, struct sp_node, nd);
2412 		if (new->start < nd->start)
2413 			p = &(*p)->rb_left;
2414 		else if (new->end > nd->end)
2415 			p = &(*p)->rb_right;
2416 		else
2417 			BUG();
2418 	}
2419 	rb_link_node(&new->nd, parent, p);
2420 	rb_insert_color(&new->nd, &sp->root);
2421 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2422 		 new->policy ? new->policy->mode : 0);
2423 }
2424 
2425 /* Find shared policy intersecting idx */
2426 struct mempolicy *
2427 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2428 {
2429 	struct mempolicy *pol = NULL;
2430 	struct sp_node *sn;
2431 
2432 	if (!sp->root.rb_node)
2433 		return NULL;
2434 	read_lock(&sp->lock);
2435 	sn = sp_lookup(sp, idx, idx+1);
2436 	if (sn) {
2437 		mpol_get(sn->policy);
2438 		pol = sn->policy;
2439 	}
2440 	read_unlock(&sp->lock);
2441 	return pol;
2442 }
2443 
2444 static void sp_free(struct sp_node *n)
2445 {
2446 	mpol_put(n->policy);
2447 	kmem_cache_free(sn_cache, n);
2448 }
2449 
2450 /**
2451  * mpol_misplaced - check whether current page node is valid in policy
2452  *
2453  * @page: page to be checked
2454  * @vma: vm area where page mapped
2455  * @addr: virtual address where page mapped
2456  *
2457  * Lookup current policy node id for vma,addr and "compare to" page's
2458  * node id.
2459  *
2460  * Returns:
2461  *	-1	- not misplaced, page is in the right node
2462  *	node	- node id where the page should be
2463  *
2464  * Policy determination "mimics" alloc_page_vma().
2465  * Called from fault path where we know the vma and faulting address.
2466  */
2467 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2468 {
2469 	struct mempolicy *pol;
2470 	struct zoneref *z;
2471 	int curnid = page_to_nid(page);
2472 	unsigned long pgoff;
2473 	int thiscpu = raw_smp_processor_id();
2474 	int thisnid = cpu_to_node(thiscpu);
2475 	int polnid = NUMA_NO_NODE;
2476 	int ret = -1;
2477 
2478 	pol = get_vma_policy(vma, addr);
2479 	if (!(pol->flags & MPOL_F_MOF))
2480 		goto out;
2481 
2482 	switch (pol->mode) {
2483 	case MPOL_INTERLEAVE:
2484 		pgoff = vma->vm_pgoff;
2485 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2486 		polnid = offset_il_node(pol, pgoff);
2487 		break;
2488 
2489 	case MPOL_PREFERRED:
2490 		if (pol->flags & MPOL_F_LOCAL)
2491 			polnid = numa_node_id();
2492 		else
2493 			polnid = pol->v.preferred_node;
2494 		break;
2495 
2496 	case MPOL_BIND:
2497 
2498 		/*
2499 		 * allows binding to multiple nodes.
2500 		 * use current page if in policy nodemask,
2501 		 * else select nearest allowed node, if any.
2502 		 * If no allowed nodes, use current [!misplaced].
2503 		 */
2504 		if (node_isset(curnid, pol->v.nodes))
2505 			goto out;
2506 		z = first_zones_zonelist(
2507 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2508 				gfp_zone(GFP_HIGHUSER),
2509 				&pol->v.nodes);
2510 		polnid = zone_to_nid(z->zone);
2511 		break;
2512 
2513 	default:
2514 		BUG();
2515 	}
2516 
2517 	/* Migrate the page towards the node whose CPU is referencing it */
2518 	if (pol->flags & MPOL_F_MORON) {
2519 		polnid = thisnid;
2520 
2521 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2522 			goto out;
2523 	}
2524 
2525 	if (curnid != polnid)
2526 		ret = polnid;
2527 out:
2528 	mpol_cond_put(pol);
2529 
2530 	return ret;
2531 }
2532 
2533 /*
2534  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2535  * dropped after task->mempolicy is set to NULL so that any allocation done as
2536  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2537  * policy.
2538  */
2539 void mpol_put_task_policy(struct task_struct *task)
2540 {
2541 	struct mempolicy *pol;
2542 
2543 	task_lock(task);
2544 	pol = task->mempolicy;
2545 	task->mempolicy = NULL;
2546 	task_unlock(task);
2547 	mpol_put(pol);
2548 }
2549 
2550 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2551 {
2552 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2553 	rb_erase(&n->nd, &sp->root);
2554 	sp_free(n);
2555 }
2556 
2557 static void sp_node_init(struct sp_node *node, unsigned long start,
2558 			unsigned long end, struct mempolicy *pol)
2559 {
2560 	node->start = start;
2561 	node->end = end;
2562 	node->policy = pol;
2563 }
2564 
2565 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2566 				struct mempolicy *pol)
2567 {
2568 	struct sp_node *n;
2569 	struct mempolicy *newpol;
2570 
2571 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2572 	if (!n)
2573 		return NULL;
2574 
2575 	newpol = mpol_dup(pol);
2576 	if (IS_ERR(newpol)) {
2577 		kmem_cache_free(sn_cache, n);
2578 		return NULL;
2579 	}
2580 	newpol->flags |= MPOL_F_SHARED;
2581 	sp_node_init(n, start, end, newpol);
2582 
2583 	return n;
2584 }
2585 
2586 /* Replace a policy range. */
2587 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2588 				 unsigned long end, struct sp_node *new)
2589 {
2590 	struct sp_node *n;
2591 	struct sp_node *n_new = NULL;
2592 	struct mempolicy *mpol_new = NULL;
2593 	int ret = 0;
2594 
2595 restart:
2596 	write_lock(&sp->lock);
2597 	n = sp_lookup(sp, start, end);
2598 	/* Take care of old policies in the same range. */
2599 	while (n && n->start < end) {
2600 		struct rb_node *next = rb_next(&n->nd);
2601 		if (n->start >= start) {
2602 			if (n->end <= end)
2603 				sp_delete(sp, n);
2604 			else
2605 				n->start = end;
2606 		} else {
2607 			/* Old policy spanning whole new range. */
2608 			if (n->end > end) {
2609 				if (!n_new)
2610 					goto alloc_new;
2611 
2612 				*mpol_new = *n->policy;
2613 				atomic_set(&mpol_new->refcnt, 1);
2614 				sp_node_init(n_new, end, n->end, mpol_new);
2615 				n->end = start;
2616 				sp_insert(sp, n_new);
2617 				n_new = NULL;
2618 				mpol_new = NULL;
2619 				break;
2620 			} else
2621 				n->end = start;
2622 		}
2623 		if (!next)
2624 			break;
2625 		n = rb_entry(next, struct sp_node, nd);
2626 	}
2627 	if (new)
2628 		sp_insert(sp, new);
2629 	write_unlock(&sp->lock);
2630 	ret = 0;
2631 
2632 err_out:
2633 	if (mpol_new)
2634 		mpol_put(mpol_new);
2635 	if (n_new)
2636 		kmem_cache_free(sn_cache, n_new);
2637 
2638 	return ret;
2639 
2640 alloc_new:
2641 	write_unlock(&sp->lock);
2642 	ret = -ENOMEM;
2643 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2644 	if (!n_new)
2645 		goto err_out;
2646 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2647 	if (!mpol_new)
2648 		goto err_out;
2649 	goto restart;
2650 }
2651 
2652 /**
2653  * mpol_shared_policy_init - initialize shared policy for inode
2654  * @sp: pointer to inode shared policy
2655  * @mpol:  struct mempolicy to install
2656  *
2657  * Install non-NULL @mpol in inode's shared policy rb-tree.
2658  * On entry, the current task has a reference on a non-NULL @mpol.
2659  * This must be released on exit.
2660  * This is called at get_inode() calls and we can use GFP_KERNEL.
2661  */
2662 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2663 {
2664 	int ret;
2665 
2666 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2667 	rwlock_init(&sp->lock);
2668 
2669 	if (mpol) {
2670 		struct vm_area_struct pvma;
2671 		struct mempolicy *new;
2672 		NODEMASK_SCRATCH(scratch);
2673 
2674 		if (!scratch)
2675 			goto put_mpol;
2676 		/* contextualize the tmpfs mount point mempolicy */
2677 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2678 		if (IS_ERR(new))
2679 			goto free_scratch; /* no valid nodemask intersection */
2680 
2681 		task_lock(current);
2682 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2683 		task_unlock(current);
2684 		if (ret)
2685 			goto put_new;
2686 
2687 		/* Create pseudo-vma that contains just the policy */
2688 		vma_init(&pvma, NULL);
2689 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2690 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2691 
2692 put_new:
2693 		mpol_put(new);			/* drop initial ref */
2694 free_scratch:
2695 		NODEMASK_SCRATCH_FREE(scratch);
2696 put_mpol:
2697 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2698 	}
2699 }
2700 
2701 int mpol_set_shared_policy(struct shared_policy *info,
2702 			struct vm_area_struct *vma, struct mempolicy *npol)
2703 {
2704 	int err;
2705 	struct sp_node *new = NULL;
2706 	unsigned long sz = vma_pages(vma);
2707 
2708 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2709 		 vma->vm_pgoff,
2710 		 sz, npol ? npol->mode : -1,
2711 		 npol ? npol->flags : -1,
2712 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2713 
2714 	if (npol) {
2715 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2716 		if (!new)
2717 			return -ENOMEM;
2718 	}
2719 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2720 	if (err && new)
2721 		sp_free(new);
2722 	return err;
2723 }
2724 
2725 /* Free a backing policy store on inode delete. */
2726 void mpol_free_shared_policy(struct shared_policy *p)
2727 {
2728 	struct sp_node *n;
2729 	struct rb_node *next;
2730 
2731 	if (!p->root.rb_node)
2732 		return;
2733 	write_lock(&p->lock);
2734 	next = rb_first(&p->root);
2735 	while (next) {
2736 		n = rb_entry(next, struct sp_node, nd);
2737 		next = rb_next(&n->nd);
2738 		sp_delete(p, n);
2739 	}
2740 	write_unlock(&p->lock);
2741 }
2742 
2743 #ifdef CONFIG_NUMA_BALANCING
2744 static int __initdata numabalancing_override;
2745 
2746 static void __init check_numabalancing_enable(void)
2747 {
2748 	bool numabalancing_default = false;
2749 
2750 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2751 		numabalancing_default = true;
2752 
2753 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2754 	if (numabalancing_override)
2755 		set_numabalancing_state(numabalancing_override == 1);
2756 
2757 	if (num_online_nodes() > 1 && !numabalancing_override) {
2758 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2759 			numabalancing_default ? "Enabling" : "Disabling");
2760 		set_numabalancing_state(numabalancing_default);
2761 	}
2762 }
2763 
2764 static int __init setup_numabalancing(char *str)
2765 {
2766 	int ret = 0;
2767 	if (!str)
2768 		goto out;
2769 
2770 	if (!strcmp(str, "enable")) {
2771 		numabalancing_override = 1;
2772 		ret = 1;
2773 	} else if (!strcmp(str, "disable")) {
2774 		numabalancing_override = -1;
2775 		ret = 1;
2776 	}
2777 out:
2778 	if (!ret)
2779 		pr_warn("Unable to parse numa_balancing=\n");
2780 
2781 	return ret;
2782 }
2783 __setup("numa_balancing=", setup_numabalancing);
2784 #else
2785 static inline void __init check_numabalancing_enable(void)
2786 {
2787 }
2788 #endif /* CONFIG_NUMA_BALANCING */
2789 
2790 /* assumes fs == KERNEL_DS */
2791 void __init numa_policy_init(void)
2792 {
2793 	nodemask_t interleave_nodes;
2794 	unsigned long largest = 0;
2795 	int nid, prefer = 0;
2796 
2797 	policy_cache = kmem_cache_create("numa_policy",
2798 					 sizeof(struct mempolicy),
2799 					 0, SLAB_PANIC, NULL);
2800 
2801 	sn_cache = kmem_cache_create("shared_policy_node",
2802 				     sizeof(struct sp_node),
2803 				     0, SLAB_PANIC, NULL);
2804 
2805 	for_each_node(nid) {
2806 		preferred_node_policy[nid] = (struct mempolicy) {
2807 			.refcnt = ATOMIC_INIT(1),
2808 			.mode = MPOL_PREFERRED,
2809 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2810 			.v = { .preferred_node = nid, },
2811 		};
2812 	}
2813 
2814 	/*
2815 	 * Set interleaving policy for system init. Interleaving is only
2816 	 * enabled across suitably sized nodes (default is >= 16MB), or
2817 	 * fall back to the largest node if they're all smaller.
2818 	 */
2819 	nodes_clear(interleave_nodes);
2820 	for_each_node_state(nid, N_MEMORY) {
2821 		unsigned long total_pages = node_present_pages(nid);
2822 
2823 		/* Preserve the largest node */
2824 		if (largest < total_pages) {
2825 			largest = total_pages;
2826 			prefer = nid;
2827 		}
2828 
2829 		/* Interleave this node? */
2830 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2831 			node_set(nid, interleave_nodes);
2832 	}
2833 
2834 	/* All too small, use the largest */
2835 	if (unlikely(nodes_empty(interleave_nodes)))
2836 		node_set(prefer, interleave_nodes);
2837 
2838 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2839 		pr_err("%s: interleaving failed\n", __func__);
2840 
2841 	check_numabalancing_enable();
2842 }
2843 
2844 /* Reset policy of current process to default */
2845 void numa_default_policy(void)
2846 {
2847 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2848 }
2849 
2850 /*
2851  * Parse and format mempolicy from/to strings
2852  */
2853 
2854 /*
2855  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2856  */
2857 static const char * const policy_modes[] =
2858 {
2859 	[MPOL_DEFAULT]    = "default",
2860 	[MPOL_PREFERRED]  = "prefer",
2861 	[MPOL_BIND]       = "bind",
2862 	[MPOL_INTERLEAVE] = "interleave",
2863 	[MPOL_LOCAL]      = "local",
2864 };
2865 
2866 
2867 #ifdef CONFIG_TMPFS
2868 /**
2869  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2870  * @str:  string containing mempolicy to parse
2871  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2872  *
2873  * Format of input:
2874  *	<mode>[=<flags>][:<nodelist>]
2875  *
2876  * On success, returns 0, else 1
2877  */
2878 int mpol_parse_str(char *str, struct mempolicy **mpol)
2879 {
2880 	struct mempolicy *new = NULL;
2881 	unsigned short mode_flags;
2882 	nodemask_t nodes;
2883 	char *nodelist = strchr(str, ':');
2884 	char *flags = strchr(str, '=');
2885 	int err = 1, mode;
2886 
2887 	if (flags)
2888 		*flags++ = '\0';	/* terminate mode string */
2889 
2890 	if (nodelist) {
2891 		/* NUL-terminate mode or flags string */
2892 		*nodelist++ = '\0';
2893 		if (nodelist_parse(nodelist, nodes))
2894 			goto out;
2895 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2896 			goto out;
2897 	} else
2898 		nodes_clear(nodes);
2899 
2900 	mode = match_string(policy_modes, MPOL_MAX, str);
2901 	if (mode < 0)
2902 		goto out;
2903 
2904 	switch (mode) {
2905 	case MPOL_PREFERRED:
2906 		/*
2907 		 * Insist on a nodelist of one node only, although later
2908 		 * we use first_node(nodes) to grab a single node, so here
2909 		 * nodelist (or nodes) cannot be empty.
2910 		 */
2911 		if (nodelist) {
2912 			char *rest = nodelist;
2913 			while (isdigit(*rest))
2914 				rest++;
2915 			if (*rest)
2916 				goto out;
2917 			if (nodes_empty(nodes))
2918 				goto out;
2919 		}
2920 		break;
2921 	case MPOL_INTERLEAVE:
2922 		/*
2923 		 * Default to online nodes with memory if no nodelist
2924 		 */
2925 		if (!nodelist)
2926 			nodes = node_states[N_MEMORY];
2927 		break;
2928 	case MPOL_LOCAL:
2929 		/*
2930 		 * Don't allow a nodelist;  mpol_new() checks flags
2931 		 */
2932 		if (nodelist)
2933 			goto out;
2934 		mode = MPOL_PREFERRED;
2935 		break;
2936 	case MPOL_DEFAULT:
2937 		/*
2938 		 * Insist on a empty nodelist
2939 		 */
2940 		if (!nodelist)
2941 			err = 0;
2942 		goto out;
2943 	case MPOL_BIND:
2944 		/*
2945 		 * Insist on a nodelist
2946 		 */
2947 		if (!nodelist)
2948 			goto out;
2949 	}
2950 
2951 	mode_flags = 0;
2952 	if (flags) {
2953 		/*
2954 		 * Currently, we only support two mutually exclusive
2955 		 * mode flags.
2956 		 */
2957 		if (!strcmp(flags, "static"))
2958 			mode_flags |= MPOL_F_STATIC_NODES;
2959 		else if (!strcmp(flags, "relative"))
2960 			mode_flags |= MPOL_F_RELATIVE_NODES;
2961 		else
2962 			goto out;
2963 	}
2964 
2965 	new = mpol_new(mode, mode_flags, &nodes);
2966 	if (IS_ERR(new))
2967 		goto out;
2968 
2969 	/*
2970 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2971 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2972 	 */
2973 	if (mode != MPOL_PREFERRED)
2974 		new->v.nodes = nodes;
2975 	else if (nodelist)
2976 		new->v.preferred_node = first_node(nodes);
2977 	else
2978 		new->flags |= MPOL_F_LOCAL;
2979 
2980 	/*
2981 	 * Save nodes for contextualization: this will be used to "clone"
2982 	 * the mempolicy in a specific context [cpuset] at a later time.
2983 	 */
2984 	new->w.user_nodemask = nodes;
2985 
2986 	err = 0;
2987 
2988 out:
2989 	/* Restore string for error message */
2990 	if (nodelist)
2991 		*--nodelist = ':';
2992 	if (flags)
2993 		*--flags = '=';
2994 	if (!err)
2995 		*mpol = new;
2996 	return err;
2997 }
2998 #endif /* CONFIG_TMPFS */
2999 
3000 /**
3001  * mpol_to_str - format a mempolicy structure for printing
3002  * @buffer:  to contain formatted mempolicy string
3003  * @maxlen:  length of @buffer
3004  * @pol:  pointer to mempolicy to be formatted
3005  *
3006  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3007  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3008  * longest flag, "relative", and to display at least a few node ids.
3009  */
3010 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3011 {
3012 	char *p = buffer;
3013 	nodemask_t nodes = NODE_MASK_NONE;
3014 	unsigned short mode = MPOL_DEFAULT;
3015 	unsigned short flags = 0;
3016 
3017 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3018 		mode = pol->mode;
3019 		flags = pol->flags;
3020 	}
3021 
3022 	switch (mode) {
3023 	case MPOL_DEFAULT:
3024 		break;
3025 	case MPOL_PREFERRED:
3026 		if (flags & MPOL_F_LOCAL)
3027 			mode = MPOL_LOCAL;
3028 		else
3029 			node_set(pol->v.preferred_node, nodes);
3030 		break;
3031 	case MPOL_BIND:
3032 	case MPOL_INTERLEAVE:
3033 		nodes = pol->v.nodes;
3034 		break;
3035 	default:
3036 		WARN_ON_ONCE(1);
3037 		snprintf(p, maxlen, "unknown");
3038 		return;
3039 	}
3040 
3041 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3042 
3043 	if (flags & MPOL_MODE_FLAGS) {
3044 		p += snprintf(p, buffer + maxlen - p, "=");
3045 
3046 		/*
3047 		 * Currently, the only defined flags are mutually exclusive
3048 		 */
3049 		if (flags & MPOL_F_STATIC_NODES)
3050 			p += snprintf(p, buffer + maxlen - p, "static");
3051 		else if (flags & MPOL_F_RELATIVE_NODES)
3052 			p += snprintf(p, buffer + maxlen - p, "relative");
3053 	}
3054 
3055 	if (!nodes_empty(nodes))
3056 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3057 			       nodemask_pr_args(&nodes));
3058 }
3059