1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/nodemask.h> 79 #include <linux/cpuset.h> 80 #include <linux/slab.h> 81 #include <linux/string.h> 82 #include <linux/export.h> 83 #include <linux/nsproxy.h> 84 #include <linux/interrupt.h> 85 #include <linux/init.h> 86 #include <linux/compat.h> 87 #include <linux/swap.h> 88 #include <linux/seq_file.h> 89 #include <linux/proc_fs.h> 90 #include <linux/migrate.h> 91 #include <linux/ksm.h> 92 #include <linux/rmap.h> 93 #include <linux/security.h> 94 #include <linux/syscalls.h> 95 #include <linux/ctype.h> 96 #include <linux/mm_inline.h> 97 #include <linux/mmu_notifier.h> 98 #include <linux/printk.h> 99 100 #include <asm/tlbflush.h> 101 #include <linux/uaccess.h> 102 103 #include "internal.h" 104 105 /* Internal flags */ 106 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 107 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 108 109 static struct kmem_cache *policy_cache; 110 static struct kmem_cache *sn_cache; 111 112 /* Highest zone. An specific allocation for a zone below that is not 113 policied. */ 114 enum zone_type policy_zone = 0; 115 116 /* 117 * run-time system-wide default policy => local allocation 118 */ 119 static struct mempolicy default_policy = { 120 .refcnt = ATOMIC_INIT(1), /* never free it */ 121 .mode = MPOL_PREFERRED, 122 .flags = MPOL_F_LOCAL, 123 }; 124 125 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 126 127 struct mempolicy *get_task_policy(struct task_struct *p) 128 { 129 struct mempolicy *pol = p->mempolicy; 130 int node; 131 132 if (pol) 133 return pol; 134 135 node = numa_node_id(); 136 if (node != NUMA_NO_NODE) { 137 pol = &preferred_node_policy[node]; 138 /* preferred_node_policy is not initialised early in boot */ 139 if (pol->mode) 140 return pol; 141 } 142 143 return &default_policy; 144 } 145 146 static const struct mempolicy_operations { 147 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 148 /* 149 * If read-side task has no lock to protect task->mempolicy, write-side 150 * task will rebind the task->mempolicy by two step. The first step is 151 * setting all the newly nodes, and the second step is cleaning all the 152 * disallowed nodes. In this way, we can avoid finding no node to alloc 153 * page. 154 * If we have a lock to protect task->mempolicy in read-side, we do 155 * rebind directly. 156 * 157 * step: 158 * MPOL_REBIND_ONCE - do rebind work at once 159 * MPOL_REBIND_STEP1 - set all the newly nodes 160 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 161 */ 162 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 163 enum mpol_rebind_step step); 164 } mpol_ops[MPOL_MAX]; 165 166 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 167 { 168 return pol->flags & MPOL_MODE_FLAGS; 169 } 170 171 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 172 const nodemask_t *rel) 173 { 174 nodemask_t tmp; 175 nodes_fold(tmp, *orig, nodes_weight(*rel)); 176 nodes_onto(*ret, tmp, *rel); 177 } 178 179 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 180 { 181 if (nodes_empty(*nodes)) 182 return -EINVAL; 183 pol->v.nodes = *nodes; 184 return 0; 185 } 186 187 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 188 { 189 if (!nodes) 190 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 191 else if (nodes_empty(*nodes)) 192 return -EINVAL; /* no allowed nodes */ 193 else 194 pol->v.preferred_node = first_node(*nodes); 195 return 0; 196 } 197 198 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->v.nodes = *nodes; 203 return 0; 204 } 205 206 /* 207 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 208 * any, for the new policy. mpol_new() has already validated the nodes 209 * parameter with respect to the policy mode and flags. But, we need to 210 * handle an empty nodemask with MPOL_PREFERRED here. 211 * 212 * Must be called holding task's alloc_lock to protect task's mems_allowed 213 * and mempolicy. May also be called holding the mmap_semaphore for write. 214 */ 215 static int mpol_set_nodemask(struct mempolicy *pol, 216 const nodemask_t *nodes, struct nodemask_scratch *nsc) 217 { 218 int ret; 219 220 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 221 if (pol == NULL) 222 return 0; 223 /* Check N_MEMORY */ 224 nodes_and(nsc->mask1, 225 cpuset_current_mems_allowed, node_states[N_MEMORY]); 226 227 VM_BUG_ON(!nodes); 228 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 229 nodes = NULL; /* explicit local allocation */ 230 else { 231 if (pol->flags & MPOL_F_RELATIVE_NODES) 232 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 233 else 234 nodes_and(nsc->mask2, *nodes, nsc->mask1); 235 236 if (mpol_store_user_nodemask(pol)) 237 pol->w.user_nodemask = *nodes; 238 else 239 pol->w.cpuset_mems_allowed = 240 cpuset_current_mems_allowed; 241 } 242 243 if (nodes) 244 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 245 else 246 ret = mpol_ops[pol->mode].create(pol, NULL); 247 return ret; 248 } 249 250 /* 251 * This function just creates a new policy, does some check and simple 252 * initialization. You must invoke mpol_set_nodemask() to set nodes. 253 */ 254 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 255 nodemask_t *nodes) 256 { 257 struct mempolicy *policy; 258 259 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 260 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 261 262 if (mode == MPOL_DEFAULT) { 263 if (nodes && !nodes_empty(*nodes)) 264 return ERR_PTR(-EINVAL); 265 return NULL; 266 } 267 VM_BUG_ON(!nodes); 268 269 /* 270 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 271 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 272 * All other modes require a valid pointer to a non-empty nodemask. 273 */ 274 if (mode == MPOL_PREFERRED) { 275 if (nodes_empty(*nodes)) { 276 if (((flags & MPOL_F_STATIC_NODES) || 277 (flags & MPOL_F_RELATIVE_NODES))) 278 return ERR_PTR(-EINVAL); 279 } 280 } else if (mode == MPOL_LOCAL) { 281 if (!nodes_empty(*nodes) || 282 (flags & MPOL_F_STATIC_NODES) || 283 (flags & MPOL_F_RELATIVE_NODES)) 284 return ERR_PTR(-EINVAL); 285 mode = MPOL_PREFERRED; 286 } else if (nodes_empty(*nodes)) 287 return ERR_PTR(-EINVAL); 288 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 289 if (!policy) 290 return ERR_PTR(-ENOMEM); 291 atomic_set(&policy->refcnt, 1); 292 policy->mode = mode; 293 policy->flags = flags; 294 295 return policy; 296 } 297 298 /* Slow path of a mpol destructor. */ 299 void __mpol_put(struct mempolicy *p) 300 { 301 if (!atomic_dec_and_test(&p->refcnt)) 302 return; 303 kmem_cache_free(policy_cache, p); 304 } 305 306 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 307 enum mpol_rebind_step step) 308 { 309 } 310 311 /* 312 * step: 313 * MPOL_REBIND_ONCE - do rebind work at once 314 * MPOL_REBIND_STEP1 - set all the newly nodes 315 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 316 */ 317 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 318 enum mpol_rebind_step step) 319 { 320 nodemask_t tmp; 321 322 if (pol->flags & MPOL_F_STATIC_NODES) 323 nodes_and(tmp, pol->w.user_nodemask, *nodes); 324 else if (pol->flags & MPOL_F_RELATIVE_NODES) 325 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 326 else { 327 /* 328 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 329 * result 330 */ 331 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 332 nodes_remap(tmp, pol->v.nodes, 333 pol->w.cpuset_mems_allowed, *nodes); 334 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 335 } else if (step == MPOL_REBIND_STEP2) { 336 tmp = pol->w.cpuset_mems_allowed; 337 pol->w.cpuset_mems_allowed = *nodes; 338 } else 339 BUG(); 340 } 341 342 if (nodes_empty(tmp)) 343 tmp = *nodes; 344 345 if (step == MPOL_REBIND_STEP1) 346 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 347 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 348 pol->v.nodes = tmp; 349 else 350 BUG(); 351 352 if (!node_isset(current->il_next, tmp)) { 353 current->il_next = next_node_in(current->il_next, tmp); 354 if (current->il_next >= MAX_NUMNODES) 355 current->il_next = numa_node_id(); 356 } 357 } 358 359 static void mpol_rebind_preferred(struct mempolicy *pol, 360 const nodemask_t *nodes, 361 enum mpol_rebind_step step) 362 { 363 nodemask_t tmp; 364 365 if (pol->flags & MPOL_F_STATIC_NODES) { 366 int node = first_node(pol->w.user_nodemask); 367 368 if (node_isset(node, *nodes)) { 369 pol->v.preferred_node = node; 370 pol->flags &= ~MPOL_F_LOCAL; 371 } else 372 pol->flags |= MPOL_F_LOCAL; 373 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 374 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 375 pol->v.preferred_node = first_node(tmp); 376 } else if (!(pol->flags & MPOL_F_LOCAL)) { 377 pol->v.preferred_node = node_remap(pol->v.preferred_node, 378 pol->w.cpuset_mems_allowed, 379 *nodes); 380 pol->w.cpuset_mems_allowed = *nodes; 381 } 382 } 383 384 /* 385 * mpol_rebind_policy - Migrate a policy to a different set of nodes 386 * 387 * If read-side task has no lock to protect task->mempolicy, write-side 388 * task will rebind the task->mempolicy by two step. The first step is 389 * setting all the newly nodes, and the second step is cleaning all the 390 * disallowed nodes. In this way, we can avoid finding no node to alloc 391 * page. 392 * If we have a lock to protect task->mempolicy in read-side, we do 393 * rebind directly. 394 * 395 * step: 396 * MPOL_REBIND_ONCE - do rebind work at once 397 * MPOL_REBIND_STEP1 - set all the newly nodes 398 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 399 */ 400 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 401 enum mpol_rebind_step step) 402 { 403 if (!pol) 404 return; 405 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 406 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 407 return; 408 409 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 410 return; 411 412 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 413 BUG(); 414 415 if (step == MPOL_REBIND_STEP1) 416 pol->flags |= MPOL_F_REBINDING; 417 else if (step == MPOL_REBIND_STEP2) 418 pol->flags &= ~MPOL_F_REBINDING; 419 else if (step >= MPOL_REBIND_NSTEP) 420 BUG(); 421 422 mpol_ops[pol->mode].rebind(pol, newmask, step); 423 } 424 425 /* 426 * Wrapper for mpol_rebind_policy() that just requires task 427 * pointer, and updates task mempolicy. 428 * 429 * Called with task's alloc_lock held. 430 */ 431 432 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 433 enum mpol_rebind_step step) 434 { 435 mpol_rebind_policy(tsk->mempolicy, new, step); 436 } 437 438 /* 439 * Rebind each vma in mm to new nodemask. 440 * 441 * Call holding a reference to mm. Takes mm->mmap_sem during call. 442 */ 443 444 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 445 { 446 struct vm_area_struct *vma; 447 448 down_write(&mm->mmap_sem); 449 for (vma = mm->mmap; vma; vma = vma->vm_next) 450 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 451 up_write(&mm->mmap_sem); 452 } 453 454 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 455 [MPOL_DEFAULT] = { 456 .rebind = mpol_rebind_default, 457 }, 458 [MPOL_INTERLEAVE] = { 459 .create = mpol_new_interleave, 460 .rebind = mpol_rebind_nodemask, 461 }, 462 [MPOL_PREFERRED] = { 463 .create = mpol_new_preferred, 464 .rebind = mpol_rebind_preferred, 465 }, 466 [MPOL_BIND] = { 467 .create = mpol_new_bind, 468 .rebind = mpol_rebind_nodemask, 469 }, 470 }; 471 472 static void migrate_page_add(struct page *page, struct list_head *pagelist, 473 unsigned long flags); 474 475 struct queue_pages { 476 struct list_head *pagelist; 477 unsigned long flags; 478 nodemask_t *nmask; 479 struct vm_area_struct *prev; 480 }; 481 482 /* 483 * Scan through pages checking if pages follow certain conditions, 484 * and move them to the pagelist if they do. 485 */ 486 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 487 unsigned long end, struct mm_walk *walk) 488 { 489 struct vm_area_struct *vma = walk->vma; 490 struct page *page; 491 struct queue_pages *qp = walk->private; 492 unsigned long flags = qp->flags; 493 int nid, ret; 494 pte_t *pte; 495 spinlock_t *ptl; 496 497 if (pmd_trans_huge(*pmd)) { 498 ptl = pmd_lock(walk->mm, pmd); 499 if (pmd_trans_huge(*pmd)) { 500 page = pmd_page(*pmd); 501 if (is_huge_zero_page(page)) { 502 spin_unlock(ptl); 503 __split_huge_pmd(vma, pmd, addr, false, NULL); 504 } else { 505 get_page(page); 506 spin_unlock(ptl); 507 lock_page(page); 508 ret = split_huge_page(page); 509 unlock_page(page); 510 put_page(page); 511 if (ret) 512 return 0; 513 } 514 } else { 515 spin_unlock(ptl); 516 } 517 } 518 519 if (pmd_trans_unstable(pmd)) 520 return 0; 521 retry: 522 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 523 for (; addr != end; pte++, addr += PAGE_SIZE) { 524 if (!pte_present(*pte)) 525 continue; 526 page = vm_normal_page(vma, addr, *pte); 527 if (!page) 528 continue; 529 /* 530 * vm_normal_page() filters out zero pages, but there might 531 * still be PageReserved pages to skip, perhaps in a VDSO. 532 */ 533 if (PageReserved(page)) 534 continue; 535 nid = page_to_nid(page); 536 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 537 continue; 538 if (PageTransCompound(page)) { 539 get_page(page); 540 pte_unmap_unlock(pte, ptl); 541 lock_page(page); 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 /* Failed to split -- skip. */ 546 if (ret) { 547 pte = pte_offset_map_lock(walk->mm, pmd, 548 addr, &ptl); 549 continue; 550 } 551 goto retry; 552 } 553 554 migrate_page_add(page, qp->pagelist, flags); 555 } 556 pte_unmap_unlock(pte - 1, ptl); 557 cond_resched(); 558 return 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 #ifdef CONFIG_HUGETLB_PAGE 566 struct queue_pages *qp = walk->private; 567 unsigned long flags = qp->flags; 568 int nid; 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 nid = page_to_nid(page); 579 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 580 goto unlock; 581 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 582 if (flags & (MPOL_MF_MOVE_ALL) || 583 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 584 isolate_huge_page(page, qp->pagelist); 585 unlock: 586 spin_unlock(ptl); 587 #else 588 BUG(); 589 #endif 590 return 0; 591 } 592 593 #ifdef CONFIG_NUMA_BALANCING 594 /* 595 * This is used to mark a range of virtual addresses to be inaccessible. 596 * These are later cleared by a NUMA hinting fault. Depending on these 597 * faults, pages may be migrated for better NUMA placement. 598 * 599 * This is assuming that NUMA faults are handled using PROT_NONE. If 600 * an architecture makes a different choice, it will need further 601 * changes to the core. 602 */ 603 unsigned long change_prot_numa(struct vm_area_struct *vma, 604 unsigned long addr, unsigned long end) 605 { 606 int nr_updated; 607 608 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 609 if (nr_updated) 610 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 611 612 return nr_updated; 613 } 614 #else 615 static unsigned long change_prot_numa(struct vm_area_struct *vma, 616 unsigned long addr, unsigned long end) 617 { 618 return 0; 619 } 620 #endif /* CONFIG_NUMA_BALANCING */ 621 622 static int queue_pages_test_walk(unsigned long start, unsigned long end, 623 struct mm_walk *walk) 624 { 625 struct vm_area_struct *vma = walk->vma; 626 struct queue_pages *qp = walk->private; 627 unsigned long endvma = vma->vm_end; 628 unsigned long flags = qp->flags; 629 630 if (!vma_migratable(vma)) 631 return 1; 632 633 if (endvma > end) 634 endvma = end; 635 if (vma->vm_start > start) 636 start = vma->vm_start; 637 638 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 639 if (!vma->vm_next && vma->vm_end < end) 640 return -EFAULT; 641 if (qp->prev && qp->prev->vm_end < vma->vm_start) 642 return -EFAULT; 643 } 644 645 qp->prev = vma; 646 647 if (flags & MPOL_MF_LAZY) { 648 /* Similar to task_numa_work, skip inaccessible VMAs */ 649 if (!is_vm_hugetlb_page(vma) && 650 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 651 !(vma->vm_flags & VM_MIXEDMAP)) 652 change_prot_numa(vma, start, endvma); 653 return 1; 654 } 655 656 /* queue pages from current vma */ 657 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 658 return 0; 659 return 1; 660 } 661 662 /* 663 * Walk through page tables and collect pages to be migrated. 664 * 665 * If pages found in a given range are on a set of nodes (determined by 666 * @nodes and @flags,) it's isolated and queued to the pagelist which is 667 * passed via @private.) 668 */ 669 static int 670 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 671 nodemask_t *nodes, unsigned long flags, 672 struct list_head *pagelist) 673 { 674 struct queue_pages qp = { 675 .pagelist = pagelist, 676 .flags = flags, 677 .nmask = nodes, 678 .prev = NULL, 679 }; 680 struct mm_walk queue_pages_walk = { 681 .hugetlb_entry = queue_pages_hugetlb, 682 .pmd_entry = queue_pages_pte_range, 683 .test_walk = queue_pages_test_walk, 684 .mm = mm, 685 .private = &qp, 686 }; 687 688 return walk_page_range(start, end, &queue_pages_walk); 689 } 690 691 /* 692 * Apply policy to a single VMA 693 * This must be called with the mmap_sem held for writing. 694 */ 695 static int vma_replace_policy(struct vm_area_struct *vma, 696 struct mempolicy *pol) 697 { 698 int err; 699 struct mempolicy *old; 700 struct mempolicy *new; 701 702 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 703 vma->vm_start, vma->vm_end, vma->vm_pgoff, 704 vma->vm_ops, vma->vm_file, 705 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 706 707 new = mpol_dup(pol); 708 if (IS_ERR(new)) 709 return PTR_ERR(new); 710 711 if (vma->vm_ops && vma->vm_ops->set_policy) { 712 err = vma->vm_ops->set_policy(vma, new); 713 if (err) 714 goto err_out; 715 } 716 717 old = vma->vm_policy; 718 vma->vm_policy = new; /* protected by mmap_sem */ 719 mpol_put(old); 720 721 return 0; 722 err_out: 723 mpol_put(new); 724 return err; 725 } 726 727 /* Step 2: apply policy to a range and do splits. */ 728 static int mbind_range(struct mm_struct *mm, unsigned long start, 729 unsigned long end, struct mempolicy *new_pol) 730 { 731 struct vm_area_struct *next; 732 struct vm_area_struct *prev; 733 struct vm_area_struct *vma; 734 int err = 0; 735 pgoff_t pgoff; 736 unsigned long vmstart; 737 unsigned long vmend; 738 739 vma = find_vma(mm, start); 740 if (!vma || vma->vm_start > start) 741 return -EFAULT; 742 743 prev = vma->vm_prev; 744 if (start > vma->vm_start) 745 prev = vma; 746 747 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 748 next = vma->vm_next; 749 vmstart = max(start, vma->vm_start); 750 vmend = min(end, vma->vm_end); 751 752 if (mpol_equal(vma_policy(vma), new_pol)) 753 continue; 754 755 pgoff = vma->vm_pgoff + 756 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 757 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 758 vma->anon_vma, vma->vm_file, pgoff, 759 new_pol, vma->vm_userfaultfd_ctx); 760 if (prev) { 761 vma = prev; 762 next = vma->vm_next; 763 if (mpol_equal(vma_policy(vma), new_pol)) 764 continue; 765 /* vma_merge() joined vma && vma->next, case 8 */ 766 goto replace; 767 } 768 if (vma->vm_start != vmstart) { 769 err = split_vma(vma->vm_mm, vma, vmstart, 1); 770 if (err) 771 goto out; 772 } 773 if (vma->vm_end != vmend) { 774 err = split_vma(vma->vm_mm, vma, vmend, 0); 775 if (err) 776 goto out; 777 } 778 replace: 779 err = vma_replace_policy(vma, new_pol); 780 if (err) 781 goto out; 782 } 783 784 out: 785 return err; 786 } 787 788 /* Set the process memory policy */ 789 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 790 nodemask_t *nodes) 791 { 792 struct mempolicy *new, *old; 793 NODEMASK_SCRATCH(scratch); 794 int ret; 795 796 if (!scratch) 797 return -ENOMEM; 798 799 new = mpol_new(mode, flags, nodes); 800 if (IS_ERR(new)) { 801 ret = PTR_ERR(new); 802 goto out; 803 } 804 805 task_lock(current); 806 ret = mpol_set_nodemask(new, nodes, scratch); 807 if (ret) { 808 task_unlock(current); 809 mpol_put(new); 810 goto out; 811 } 812 old = current->mempolicy; 813 current->mempolicy = new; 814 if (new && new->mode == MPOL_INTERLEAVE && 815 nodes_weight(new->v.nodes)) 816 current->il_next = first_node(new->v.nodes); 817 task_unlock(current); 818 mpol_put(old); 819 ret = 0; 820 out: 821 NODEMASK_SCRATCH_FREE(scratch); 822 return ret; 823 } 824 825 /* 826 * Return nodemask for policy for get_mempolicy() query 827 * 828 * Called with task's alloc_lock held 829 */ 830 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 831 { 832 nodes_clear(*nodes); 833 if (p == &default_policy) 834 return; 835 836 switch (p->mode) { 837 case MPOL_BIND: 838 /* Fall through */ 839 case MPOL_INTERLEAVE: 840 *nodes = p->v.nodes; 841 break; 842 case MPOL_PREFERRED: 843 if (!(p->flags & MPOL_F_LOCAL)) 844 node_set(p->v.preferred_node, *nodes); 845 /* else return empty node mask for local allocation */ 846 break; 847 default: 848 BUG(); 849 } 850 } 851 852 static int lookup_node(unsigned long addr) 853 { 854 struct page *p; 855 int err; 856 857 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL); 858 if (err >= 0) { 859 err = page_to_nid(p); 860 put_page(p); 861 } 862 return err; 863 } 864 865 /* Retrieve NUMA policy */ 866 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 867 unsigned long addr, unsigned long flags) 868 { 869 int err; 870 struct mm_struct *mm = current->mm; 871 struct vm_area_struct *vma = NULL; 872 struct mempolicy *pol = current->mempolicy; 873 874 if (flags & 875 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 876 return -EINVAL; 877 878 if (flags & MPOL_F_MEMS_ALLOWED) { 879 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 880 return -EINVAL; 881 *policy = 0; /* just so it's initialized */ 882 task_lock(current); 883 *nmask = cpuset_current_mems_allowed; 884 task_unlock(current); 885 return 0; 886 } 887 888 if (flags & MPOL_F_ADDR) { 889 /* 890 * Do NOT fall back to task policy if the 891 * vma/shared policy at addr is NULL. We 892 * want to return MPOL_DEFAULT in this case. 893 */ 894 down_read(&mm->mmap_sem); 895 vma = find_vma_intersection(mm, addr, addr+1); 896 if (!vma) { 897 up_read(&mm->mmap_sem); 898 return -EFAULT; 899 } 900 if (vma->vm_ops && vma->vm_ops->get_policy) 901 pol = vma->vm_ops->get_policy(vma, addr); 902 else 903 pol = vma->vm_policy; 904 } else if (addr) 905 return -EINVAL; 906 907 if (!pol) 908 pol = &default_policy; /* indicates default behavior */ 909 910 if (flags & MPOL_F_NODE) { 911 if (flags & MPOL_F_ADDR) { 912 err = lookup_node(addr); 913 if (err < 0) 914 goto out; 915 *policy = err; 916 } else if (pol == current->mempolicy && 917 pol->mode == MPOL_INTERLEAVE) { 918 *policy = current->il_next; 919 } else { 920 err = -EINVAL; 921 goto out; 922 } 923 } else { 924 *policy = pol == &default_policy ? MPOL_DEFAULT : 925 pol->mode; 926 /* 927 * Internal mempolicy flags must be masked off before exposing 928 * the policy to userspace. 929 */ 930 *policy |= (pol->flags & MPOL_MODE_FLAGS); 931 } 932 933 if (vma) { 934 up_read(¤t->mm->mmap_sem); 935 vma = NULL; 936 } 937 938 err = 0; 939 if (nmask) { 940 if (mpol_store_user_nodemask(pol)) { 941 *nmask = pol->w.user_nodemask; 942 } else { 943 task_lock(current); 944 get_policy_nodemask(pol, nmask); 945 task_unlock(current); 946 } 947 } 948 949 out: 950 mpol_cond_put(pol); 951 if (vma) 952 up_read(¤t->mm->mmap_sem); 953 return err; 954 } 955 956 #ifdef CONFIG_MIGRATION 957 /* 958 * page migration 959 */ 960 static void migrate_page_add(struct page *page, struct list_head *pagelist, 961 unsigned long flags) 962 { 963 /* 964 * Avoid migrating a page that is shared with others. 965 */ 966 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 967 if (!isolate_lru_page(page)) { 968 list_add_tail(&page->lru, pagelist); 969 inc_node_page_state(page, NR_ISOLATED_ANON + 970 page_is_file_cache(page)); 971 } 972 } 973 } 974 975 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 976 { 977 if (PageHuge(page)) 978 return alloc_huge_page_node(page_hstate(compound_head(page)), 979 node); 980 else 981 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 982 __GFP_THISNODE, 0); 983 } 984 985 /* 986 * Migrate pages from one node to a target node. 987 * Returns error or the number of pages not migrated. 988 */ 989 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 990 int flags) 991 { 992 nodemask_t nmask; 993 LIST_HEAD(pagelist); 994 int err = 0; 995 996 nodes_clear(nmask); 997 node_set(source, nmask); 998 999 /* 1000 * This does not "check" the range but isolates all pages that 1001 * need migration. Between passing in the full user address 1002 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1003 */ 1004 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1005 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1006 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1007 1008 if (!list_empty(&pagelist)) { 1009 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 1010 MIGRATE_SYNC, MR_SYSCALL); 1011 if (err) 1012 putback_movable_pages(&pagelist); 1013 } 1014 1015 return err; 1016 } 1017 1018 /* 1019 * Move pages between the two nodesets so as to preserve the physical 1020 * layout as much as possible. 1021 * 1022 * Returns the number of page that could not be moved. 1023 */ 1024 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1025 const nodemask_t *to, int flags) 1026 { 1027 int busy = 0; 1028 int err; 1029 nodemask_t tmp; 1030 1031 err = migrate_prep(); 1032 if (err) 1033 return err; 1034 1035 down_read(&mm->mmap_sem); 1036 1037 /* 1038 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1039 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1040 * bit in 'tmp', and return that <source, dest> pair for migration. 1041 * The pair of nodemasks 'to' and 'from' define the map. 1042 * 1043 * If no pair of bits is found that way, fallback to picking some 1044 * pair of 'source' and 'dest' bits that are not the same. If the 1045 * 'source' and 'dest' bits are the same, this represents a node 1046 * that will be migrating to itself, so no pages need move. 1047 * 1048 * If no bits are left in 'tmp', or if all remaining bits left 1049 * in 'tmp' correspond to the same bit in 'to', return false 1050 * (nothing left to migrate). 1051 * 1052 * This lets us pick a pair of nodes to migrate between, such that 1053 * if possible the dest node is not already occupied by some other 1054 * source node, minimizing the risk of overloading the memory on a 1055 * node that would happen if we migrated incoming memory to a node 1056 * before migrating outgoing memory source that same node. 1057 * 1058 * A single scan of tmp is sufficient. As we go, we remember the 1059 * most recent <s, d> pair that moved (s != d). If we find a pair 1060 * that not only moved, but what's better, moved to an empty slot 1061 * (d is not set in tmp), then we break out then, with that pair. 1062 * Otherwise when we finish scanning from_tmp, we at least have the 1063 * most recent <s, d> pair that moved. If we get all the way through 1064 * the scan of tmp without finding any node that moved, much less 1065 * moved to an empty node, then there is nothing left worth migrating. 1066 */ 1067 1068 tmp = *from; 1069 while (!nodes_empty(tmp)) { 1070 int s,d; 1071 int source = NUMA_NO_NODE; 1072 int dest = 0; 1073 1074 for_each_node_mask(s, tmp) { 1075 1076 /* 1077 * do_migrate_pages() tries to maintain the relative 1078 * node relationship of the pages established between 1079 * threads and memory areas. 1080 * 1081 * However if the number of source nodes is not equal to 1082 * the number of destination nodes we can not preserve 1083 * this node relative relationship. In that case, skip 1084 * copying memory from a node that is in the destination 1085 * mask. 1086 * 1087 * Example: [2,3,4] -> [3,4,5] moves everything. 1088 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1089 */ 1090 1091 if ((nodes_weight(*from) != nodes_weight(*to)) && 1092 (node_isset(s, *to))) 1093 continue; 1094 1095 d = node_remap(s, *from, *to); 1096 if (s == d) 1097 continue; 1098 1099 source = s; /* Node moved. Memorize */ 1100 dest = d; 1101 1102 /* dest not in remaining from nodes? */ 1103 if (!node_isset(dest, tmp)) 1104 break; 1105 } 1106 if (source == NUMA_NO_NODE) 1107 break; 1108 1109 node_clear(source, tmp); 1110 err = migrate_to_node(mm, source, dest, flags); 1111 if (err > 0) 1112 busy += err; 1113 if (err < 0) 1114 break; 1115 } 1116 up_read(&mm->mmap_sem); 1117 if (err < 0) 1118 return err; 1119 return busy; 1120 1121 } 1122 1123 /* 1124 * Allocate a new page for page migration based on vma policy. 1125 * Start by assuming the page is mapped by the same vma as contains @start. 1126 * Search forward from there, if not. N.B., this assumes that the 1127 * list of pages handed to migrate_pages()--which is how we get here-- 1128 * is in virtual address order. 1129 */ 1130 static struct page *new_page(struct page *page, unsigned long start, int **x) 1131 { 1132 struct vm_area_struct *vma; 1133 unsigned long uninitialized_var(address); 1134 1135 vma = find_vma(current->mm, start); 1136 while (vma) { 1137 address = page_address_in_vma(page, vma); 1138 if (address != -EFAULT) 1139 break; 1140 vma = vma->vm_next; 1141 } 1142 1143 if (PageHuge(page)) { 1144 BUG_ON(!vma); 1145 return alloc_huge_page_noerr(vma, address, 1); 1146 } 1147 /* 1148 * if !vma, alloc_page_vma() will use task or system default policy 1149 */ 1150 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1151 } 1152 #else 1153 1154 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1155 unsigned long flags) 1156 { 1157 } 1158 1159 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1160 const nodemask_t *to, int flags) 1161 { 1162 return -ENOSYS; 1163 } 1164 1165 static struct page *new_page(struct page *page, unsigned long start, int **x) 1166 { 1167 return NULL; 1168 } 1169 #endif 1170 1171 static long do_mbind(unsigned long start, unsigned long len, 1172 unsigned short mode, unsigned short mode_flags, 1173 nodemask_t *nmask, unsigned long flags) 1174 { 1175 struct mm_struct *mm = current->mm; 1176 struct mempolicy *new; 1177 unsigned long end; 1178 int err; 1179 LIST_HEAD(pagelist); 1180 1181 if (flags & ~(unsigned long)MPOL_MF_VALID) 1182 return -EINVAL; 1183 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1184 return -EPERM; 1185 1186 if (start & ~PAGE_MASK) 1187 return -EINVAL; 1188 1189 if (mode == MPOL_DEFAULT) 1190 flags &= ~MPOL_MF_STRICT; 1191 1192 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1193 end = start + len; 1194 1195 if (end < start) 1196 return -EINVAL; 1197 if (end == start) 1198 return 0; 1199 1200 new = mpol_new(mode, mode_flags, nmask); 1201 if (IS_ERR(new)) 1202 return PTR_ERR(new); 1203 1204 if (flags & MPOL_MF_LAZY) 1205 new->flags |= MPOL_F_MOF; 1206 1207 /* 1208 * If we are using the default policy then operation 1209 * on discontinuous address spaces is okay after all 1210 */ 1211 if (!new) 1212 flags |= MPOL_MF_DISCONTIG_OK; 1213 1214 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1215 start, start + len, mode, mode_flags, 1216 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1217 1218 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1219 1220 err = migrate_prep(); 1221 if (err) 1222 goto mpol_out; 1223 } 1224 { 1225 NODEMASK_SCRATCH(scratch); 1226 if (scratch) { 1227 down_write(&mm->mmap_sem); 1228 task_lock(current); 1229 err = mpol_set_nodemask(new, nmask, scratch); 1230 task_unlock(current); 1231 if (err) 1232 up_write(&mm->mmap_sem); 1233 } else 1234 err = -ENOMEM; 1235 NODEMASK_SCRATCH_FREE(scratch); 1236 } 1237 if (err) 1238 goto mpol_out; 1239 1240 err = queue_pages_range(mm, start, end, nmask, 1241 flags | MPOL_MF_INVERT, &pagelist); 1242 if (!err) 1243 err = mbind_range(mm, start, end, new); 1244 1245 if (!err) { 1246 int nr_failed = 0; 1247 1248 if (!list_empty(&pagelist)) { 1249 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1250 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1251 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1252 if (nr_failed) 1253 putback_movable_pages(&pagelist); 1254 } 1255 1256 if (nr_failed && (flags & MPOL_MF_STRICT)) 1257 err = -EIO; 1258 } else 1259 putback_movable_pages(&pagelist); 1260 1261 up_write(&mm->mmap_sem); 1262 mpol_out: 1263 mpol_put(new); 1264 return err; 1265 } 1266 1267 /* 1268 * User space interface with variable sized bitmaps for nodelists. 1269 */ 1270 1271 /* Copy a node mask from user space. */ 1272 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1273 unsigned long maxnode) 1274 { 1275 unsigned long k; 1276 unsigned long nlongs; 1277 unsigned long endmask; 1278 1279 --maxnode; 1280 nodes_clear(*nodes); 1281 if (maxnode == 0 || !nmask) 1282 return 0; 1283 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1284 return -EINVAL; 1285 1286 nlongs = BITS_TO_LONGS(maxnode); 1287 if ((maxnode % BITS_PER_LONG) == 0) 1288 endmask = ~0UL; 1289 else 1290 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1291 1292 /* When the user specified more nodes than supported just check 1293 if the non supported part is all zero. */ 1294 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1295 if (nlongs > PAGE_SIZE/sizeof(long)) 1296 return -EINVAL; 1297 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1298 unsigned long t; 1299 if (get_user(t, nmask + k)) 1300 return -EFAULT; 1301 if (k == nlongs - 1) { 1302 if (t & endmask) 1303 return -EINVAL; 1304 } else if (t) 1305 return -EINVAL; 1306 } 1307 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1308 endmask = ~0UL; 1309 } 1310 1311 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1312 return -EFAULT; 1313 nodes_addr(*nodes)[nlongs-1] &= endmask; 1314 return 0; 1315 } 1316 1317 /* Copy a kernel node mask to user space */ 1318 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1319 nodemask_t *nodes) 1320 { 1321 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1322 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1323 1324 if (copy > nbytes) { 1325 if (copy > PAGE_SIZE) 1326 return -EINVAL; 1327 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1328 return -EFAULT; 1329 copy = nbytes; 1330 } 1331 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1332 } 1333 1334 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1335 unsigned long, mode, const unsigned long __user *, nmask, 1336 unsigned long, maxnode, unsigned, flags) 1337 { 1338 nodemask_t nodes; 1339 int err; 1340 unsigned short mode_flags; 1341 1342 mode_flags = mode & MPOL_MODE_FLAGS; 1343 mode &= ~MPOL_MODE_FLAGS; 1344 if (mode >= MPOL_MAX) 1345 return -EINVAL; 1346 if ((mode_flags & MPOL_F_STATIC_NODES) && 1347 (mode_flags & MPOL_F_RELATIVE_NODES)) 1348 return -EINVAL; 1349 err = get_nodes(&nodes, nmask, maxnode); 1350 if (err) 1351 return err; 1352 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1353 } 1354 1355 /* Set the process memory policy */ 1356 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1357 unsigned long, maxnode) 1358 { 1359 int err; 1360 nodemask_t nodes; 1361 unsigned short flags; 1362 1363 flags = mode & MPOL_MODE_FLAGS; 1364 mode &= ~MPOL_MODE_FLAGS; 1365 if ((unsigned int)mode >= MPOL_MAX) 1366 return -EINVAL; 1367 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1368 return -EINVAL; 1369 err = get_nodes(&nodes, nmask, maxnode); 1370 if (err) 1371 return err; 1372 return do_set_mempolicy(mode, flags, &nodes); 1373 } 1374 1375 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1376 const unsigned long __user *, old_nodes, 1377 const unsigned long __user *, new_nodes) 1378 { 1379 const struct cred *cred = current_cred(), *tcred; 1380 struct mm_struct *mm = NULL; 1381 struct task_struct *task; 1382 nodemask_t task_nodes; 1383 int err; 1384 nodemask_t *old; 1385 nodemask_t *new; 1386 NODEMASK_SCRATCH(scratch); 1387 1388 if (!scratch) 1389 return -ENOMEM; 1390 1391 old = &scratch->mask1; 1392 new = &scratch->mask2; 1393 1394 err = get_nodes(old, old_nodes, maxnode); 1395 if (err) 1396 goto out; 1397 1398 err = get_nodes(new, new_nodes, maxnode); 1399 if (err) 1400 goto out; 1401 1402 /* Find the mm_struct */ 1403 rcu_read_lock(); 1404 task = pid ? find_task_by_vpid(pid) : current; 1405 if (!task) { 1406 rcu_read_unlock(); 1407 err = -ESRCH; 1408 goto out; 1409 } 1410 get_task_struct(task); 1411 1412 err = -EINVAL; 1413 1414 /* 1415 * Check if this process has the right to modify the specified 1416 * process. The right exists if the process has administrative 1417 * capabilities, superuser privileges or the same 1418 * userid as the target process. 1419 */ 1420 tcred = __task_cred(task); 1421 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1422 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1423 !capable(CAP_SYS_NICE)) { 1424 rcu_read_unlock(); 1425 err = -EPERM; 1426 goto out_put; 1427 } 1428 rcu_read_unlock(); 1429 1430 task_nodes = cpuset_mems_allowed(task); 1431 /* Is the user allowed to access the target nodes? */ 1432 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1433 err = -EPERM; 1434 goto out_put; 1435 } 1436 1437 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1438 err = -EINVAL; 1439 goto out_put; 1440 } 1441 1442 err = security_task_movememory(task); 1443 if (err) 1444 goto out_put; 1445 1446 mm = get_task_mm(task); 1447 put_task_struct(task); 1448 1449 if (!mm) { 1450 err = -EINVAL; 1451 goto out; 1452 } 1453 1454 err = do_migrate_pages(mm, old, new, 1455 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1456 1457 mmput(mm); 1458 out: 1459 NODEMASK_SCRATCH_FREE(scratch); 1460 1461 return err; 1462 1463 out_put: 1464 put_task_struct(task); 1465 goto out; 1466 1467 } 1468 1469 1470 /* Retrieve NUMA policy */ 1471 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1472 unsigned long __user *, nmask, unsigned long, maxnode, 1473 unsigned long, addr, unsigned long, flags) 1474 { 1475 int err; 1476 int uninitialized_var(pval); 1477 nodemask_t nodes; 1478 1479 if (nmask != NULL && maxnode < MAX_NUMNODES) 1480 return -EINVAL; 1481 1482 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1483 1484 if (err) 1485 return err; 1486 1487 if (policy && put_user(pval, policy)) 1488 return -EFAULT; 1489 1490 if (nmask) 1491 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1492 1493 return err; 1494 } 1495 1496 #ifdef CONFIG_COMPAT 1497 1498 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1499 compat_ulong_t __user *, nmask, 1500 compat_ulong_t, maxnode, 1501 compat_ulong_t, addr, compat_ulong_t, flags) 1502 { 1503 long err; 1504 unsigned long __user *nm = NULL; 1505 unsigned long nr_bits, alloc_size; 1506 DECLARE_BITMAP(bm, MAX_NUMNODES); 1507 1508 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1509 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1510 1511 if (nmask) 1512 nm = compat_alloc_user_space(alloc_size); 1513 1514 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1515 1516 if (!err && nmask) { 1517 unsigned long copy_size; 1518 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1519 err = copy_from_user(bm, nm, copy_size); 1520 /* ensure entire bitmap is zeroed */ 1521 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1522 err |= compat_put_bitmap(nmask, bm, nr_bits); 1523 } 1524 1525 return err; 1526 } 1527 1528 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1529 compat_ulong_t, maxnode) 1530 { 1531 long err = 0; 1532 unsigned long __user *nm = NULL; 1533 unsigned long nr_bits, alloc_size; 1534 DECLARE_BITMAP(bm, MAX_NUMNODES); 1535 1536 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1537 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1538 1539 if (nmask) { 1540 err = compat_get_bitmap(bm, nmask, nr_bits); 1541 nm = compat_alloc_user_space(alloc_size); 1542 err |= copy_to_user(nm, bm, alloc_size); 1543 } 1544 1545 if (err) 1546 return -EFAULT; 1547 1548 return sys_set_mempolicy(mode, nm, nr_bits+1); 1549 } 1550 1551 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1552 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1553 compat_ulong_t, maxnode, compat_ulong_t, flags) 1554 { 1555 long err = 0; 1556 unsigned long __user *nm = NULL; 1557 unsigned long nr_bits, alloc_size; 1558 nodemask_t bm; 1559 1560 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1561 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1562 1563 if (nmask) { 1564 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1565 nm = compat_alloc_user_space(alloc_size); 1566 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1567 } 1568 1569 if (err) 1570 return -EFAULT; 1571 1572 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1573 } 1574 1575 #endif 1576 1577 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1578 unsigned long addr) 1579 { 1580 struct mempolicy *pol = NULL; 1581 1582 if (vma) { 1583 if (vma->vm_ops && vma->vm_ops->get_policy) { 1584 pol = vma->vm_ops->get_policy(vma, addr); 1585 } else if (vma->vm_policy) { 1586 pol = vma->vm_policy; 1587 1588 /* 1589 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1590 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1591 * count on these policies which will be dropped by 1592 * mpol_cond_put() later 1593 */ 1594 if (mpol_needs_cond_ref(pol)) 1595 mpol_get(pol); 1596 } 1597 } 1598 1599 return pol; 1600 } 1601 1602 /* 1603 * get_vma_policy(@vma, @addr) 1604 * @vma: virtual memory area whose policy is sought 1605 * @addr: address in @vma for shared policy lookup 1606 * 1607 * Returns effective policy for a VMA at specified address. 1608 * Falls back to current->mempolicy or system default policy, as necessary. 1609 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1610 * count--added by the get_policy() vm_op, as appropriate--to protect against 1611 * freeing by another task. It is the caller's responsibility to free the 1612 * extra reference for shared policies. 1613 */ 1614 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1615 unsigned long addr) 1616 { 1617 struct mempolicy *pol = __get_vma_policy(vma, addr); 1618 1619 if (!pol) 1620 pol = get_task_policy(current); 1621 1622 return pol; 1623 } 1624 1625 bool vma_policy_mof(struct vm_area_struct *vma) 1626 { 1627 struct mempolicy *pol; 1628 1629 if (vma->vm_ops && vma->vm_ops->get_policy) { 1630 bool ret = false; 1631 1632 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1633 if (pol && (pol->flags & MPOL_F_MOF)) 1634 ret = true; 1635 mpol_cond_put(pol); 1636 1637 return ret; 1638 } 1639 1640 pol = vma->vm_policy; 1641 if (!pol) 1642 pol = get_task_policy(current); 1643 1644 return pol->flags & MPOL_F_MOF; 1645 } 1646 1647 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1648 { 1649 enum zone_type dynamic_policy_zone = policy_zone; 1650 1651 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1652 1653 /* 1654 * if policy->v.nodes has movable memory only, 1655 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1656 * 1657 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1658 * so if the following test faile, it implies 1659 * policy->v.nodes has movable memory only. 1660 */ 1661 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1662 dynamic_policy_zone = ZONE_MOVABLE; 1663 1664 return zone >= dynamic_policy_zone; 1665 } 1666 1667 /* 1668 * Return a nodemask representing a mempolicy for filtering nodes for 1669 * page allocation 1670 */ 1671 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1672 { 1673 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1674 if (unlikely(policy->mode == MPOL_BIND) && 1675 apply_policy_zone(policy, gfp_zone(gfp)) && 1676 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1677 return &policy->v.nodes; 1678 1679 return NULL; 1680 } 1681 1682 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1683 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1684 int nd) 1685 { 1686 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1687 nd = policy->v.preferred_node; 1688 else { 1689 /* 1690 * __GFP_THISNODE shouldn't even be used with the bind policy 1691 * because we might easily break the expectation to stay on the 1692 * requested node and not break the policy. 1693 */ 1694 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1695 } 1696 1697 return node_zonelist(nd, gfp); 1698 } 1699 1700 /* Do dynamic interleaving for a process */ 1701 static unsigned interleave_nodes(struct mempolicy *policy) 1702 { 1703 unsigned nid, next; 1704 struct task_struct *me = current; 1705 1706 nid = me->il_next; 1707 next = next_node_in(nid, policy->v.nodes); 1708 if (next < MAX_NUMNODES) 1709 me->il_next = next; 1710 return nid; 1711 } 1712 1713 /* 1714 * Depending on the memory policy provide a node from which to allocate the 1715 * next slab entry. 1716 */ 1717 unsigned int mempolicy_slab_node(void) 1718 { 1719 struct mempolicy *policy; 1720 int node = numa_mem_id(); 1721 1722 if (in_interrupt()) 1723 return node; 1724 1725 policy = current->mempolicy; 1726 if (!policy || policy->flags & MPOL_F_LOCAL) 1727 return node; 1728 1729 switch (policy->mode) { 1730 case MPOL_PREFERRED: 1731 /* 1732 * handled MPOL_F_LOCAL above 1733 */ 1734 return policy->v.preferred_node; 1735 1736 case MPOL_INTERLEAVE: 1737 return interleave_nodes(policy); 1738 1739 case MPOL_BIND: { 1740 struct zoneref *z; 1741 1742 /* 1743 * Follow bind policy behavior and start allocation at the 1744 * first node. 1745 */ 1746 struct zonelist *zonelist; 1747 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1748 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1749 z = first_zones_zonelist(zonelist, highest_zoneidx, 1750 &policy->v.nodes); 1751 return z->zone ? z->zone->node : node; 1752 } 1753 1754 default: 1755 BUG(); 1756 } 1757 } 1758 1759 /* 1760 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1761 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1762 * number of present nodes. 1763 */ 1764 static unsigned offset_il_node(struct mempolicy *pol, 1765 struct vm_area_struct *vma, unsigned long n) 1766 { 1767 unsigned nnodes = nodes_weight(pol->v.nodes); 1768 unsigned target; 1769 int i; 1770 int nid; 1771 1772 if (!nnodes) 1773 return numa_node_id(); 1774 target = (unsigned int)n % nnodes; 1775 nid = first_node(pol->v.nodes); 1776 for (i = 0; i < target; i++) 1777 nid = next_node(nid, pol->v.nodes); 1778 return nid; 1779 } 1780 1781 /* Determine a node number for interleave */ 1782 static inline unsigned interleave_nid(struct mempolicy *pol, 1783 struct vm_area_struct *vma, unsigned long addr, int shift) 1784 { 1785 if (vma) { 1786 unsigned long off; 1787 1788 /* 1789 * for small pages, there is no difference between 1790 * shift and PAGE_SHIFT, so the bit-shift is safe. 1791 * for huge pages, since vm_pgoff is in units of small 1792 * pages, we need to shift off the always 0 bits to get 1793 * a useful offset. 1794 */ 1795 BUG_ON(shift < PAGE_SHIFT); 1796 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1797 off += (addr - vma->vm_start) >> shift; 1798 return offset_il_node(pol, vma, off); 1799 } else 1800 return interleave_nodes(pol); 1801 } 1802 1803 #ifdef CONFIG_HUGETLBFS 1804 /* 1805 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1806 * @vma: virtual memory area whose policy is sought 1807 * @addr: address in @vma for shared policy lookup and interleave policy 1808 * @gfp_flags: for requested zone 1809 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1810 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1811 * 1812 * Returns a zonelist suitable for a huge page allocation and a pointer 1813 * to the struct mempolicy for conditional unref after allocation. 1814 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1815 * @nodemask for filtering the zonelist. 1816 * 1817 * Must be protected by read_mems_allowed_begin() 1818 */ 1819 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1820 gfp_t gfp_flags, struct mempolicy **mpol, 1821 nodemask_t **nodemask) 1822 { 1823 struct zonelist *zl; 1824 1825 *mpol = get_vma_policy(vma, addr); 1826 *nodemask = NULL; /* assume !MPOL_BIND */ 1827 1828 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1829 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1830 huge_page_shift(hstate_vma(vma))), gfp_flags); 1831 } else { 1832 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1833 if ((*mpol)->mode == MPOL_BIND) 1834 *nodemask = &(*mpol)->v.nodes; 1835 } 1836 return zl; 1837 } 1838 1839 /* 1840 * init_nodemask_of_mempolicy 1841 * 1842 * If the current task's mempolicy is "default" [NULL], return 'false' 1843 * to indicate default policy. Otherwise, extract the policy nodemask 1844 * for 'bind' or 'interleave' policy into the argument nodemask, or 1845 * initialize the argument nodemask to contain the single node for 1846 * 'preferred' or 'local' policy and return 'true' to indicate presence 1847 * of non-default mempolicy. 1848 * 1849 * We don't bother with reference counting the mempolicy [mpol_get/put] 1850 * because the current task is examining it's own mempolicy and a task's 1851 * mempolicy is only ever changed by the task itself. 1852 * 1853 * N.B., it is the caller's responsibility to free a returned nodemask. 1854 */ 1855 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1856 { 1857 struct mempolicy *mempolicy; 1858 int nid; 1859 1860 if (!(mask && current->mempolicy)) 1861 return false; 1862 1863 task_lock(current); 1864 mempolicy = current->mempolicy; 1865 switch (mempolicy->mode) { 1866 case MPOL_PREFERRED: 1867 if (mempolicy->flags & MPOL_F_LOCAL) 1868 nid = numa_node_id(); 1869 else 1870 nid = mempolicy->v.preferred_node; 1871 init_nodemask_of_node(mask, nid); 1872 break; 1873 1874 case MPOL_BIND: 1875 /* Fall through */ 1876 case MPOL_INTERLEAVE: 1877 *mask = mempolicy->v.nodes; 1878 break; 1879 1880 default: 1881 BUG(); 1882 } 1883 task_unlock(current); 1884 1885 return true; 1886 } 1887 #endif 1888 1889 /* 1890 * mempolicy_nodemask_intersects 1891 * 1892 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1893 * policy. Otherwise, check for intersection between mask and the policy 1894 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1895 * policy, always return true since it may allocate elsewhere on fallback. 1896 * 1897 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1898 */ 1899 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1900 const nodemask_t *mask) 1901 { 1902 struct mempolicy *mempolicy; 1903 bool ret = true; 1904 1905 if (!mask) 1906 return ret; 1907 task_lock(tsk); 1908 mempolicy = tsk->mempolicy; 1909 if (!mempolicy) 1910 goto out; 1911 1912 switch (mempolicy->mode) { 1913 case MPOL_PREFERRED: 1914 /* 1915 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1916 * allocate from, they may fallback to other nodes when oom. 1917 * Thus, it's possible for tsk to have allocated memory from 1918 * nodes in mask. 1919 */ 1920 break; 1921 case MPOL_BIND: 1922 case MPOL_INTERLEAVE: 1923 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1924 break; 1925 default: 1926 BUG(); 1927 } 1928 out: 1929 task_unlock(tsk); 1930 return ret; 1931 } 1932 1933 /* Allocate a page in interleaved policy. 1934 Own path because it needs to do special accounting. */ 1935 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1936 unsigned nid) 1937 { 1938 struct zonelist *zl; 1939 struct page *page; 1940 1941 zl = node_zonelist(nid, gfp); 1942 page = __alloc_pages(gfp, order, zl); 1943 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1944 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1945 return page; 1946 } 1947 1948 /** 1949 * alloc_pages_vma - Allocate a page for a VMA. 1950 * 1951 * @gfp: 1952 * %GFP_USER user allocation. 1953 * %GFP_KERNEL kernel allocations, 1954 * %GFP_HIGHMEM highmem/user allocations, 1955 * %GFP_FS allocation should not call back into a file system. 1956 * %GFP_ATOMIC don't sleep. 1957 * 1958 * @order:Order of the GFP allocation. 1959 * @vma: Pointer to VMA or NULL if not available. 1960 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1961 * @node: Which node to prefer for allocation (modulo policy). 1962 * @hugepage: for hugepages try only the preferred node if possible 1963 * 1964 * This function allocates a page from the kernel page pool and applies 1965 * a NUMA policy associated with the VMA or the current process. 1966 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1967 * mm_struct of the VMA to prevent it from going away. Should be used for 1968 * all allocations for pages that will be mapped into user space. Returns 1969 * NULL when no page can be allocated. 1970 */ 1971 struct page * 1972 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1973 unsigned long addr, int node, bool hugepage) 1974 { 1975 struct mempolicy *pol; 1976 struct page *page; 1977 unsigned int cpuset_mems_cookie; 1978 struct zonelist *zl; 1979 nodemask_t *nmask; 1980 1981 retry_cpuset: 1982 pol = get_vma_policy(vma, addr); 1983 cpuset_mems_cookie = read_mems_allowed_begin(); 1984 1985 if (pol->mode == MPOL_INTERLEAVE) { 1986 unsigned nid; 1987 1988 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1989 mpol_cond_put(pol); 1990 page = alloc_page_interleave(gfp, order, nid); 1991 goto out; 1992 } 1993 1994 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 1995 int hpage_node = node; 1996 1997 /* 1998 * For hugepage allocation and non-interleave policy which 1999 * allows the current node (or other explicitly preferred 2000 * node) we only try to allocate from the current/preferred 2001 * node and don't fall back to other nodes, as the cost of 2002 * remote accesses would likely offset THP benefits. 2003 * 2004 * If the policy is interleave, or does not allow the current 2005 * node in its nodemask, we allocate the standard way. 2006 */ 2007 if (pol->mode == MPOL_PREFERRED && 2008 !(pol->flags & MPOL_F_LOCAL)) 2009 hpage_node = pol->v.preferred_node; 2010 2011 nmask = policy_nodemask(gfp, pol); 2012 if (!nmask || node_isset(hpage_node, *nmask)) { 2013 mpol_cond_put(pol); 2014 page = __alloc_pages_node(hpage_node, 2015 gfp | __GFP_THISNODE, order); 2016 goto out; 2017 } 2018 } 2019 2020 nmask = policy_nodemask(gfp, pol); 2021 zl = policy_zonelist(gfp, pol, node); 2022 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2023 mpol_cond_put(pol); 2024 out: 2025 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2026 goto retry_cpuset; 2027 return page; 2028 } 2029 2030 /** 2031 * alloc_pages_current - Allocate pages. 2032 * 2033 * @gfp: 2034 * %GFP_USER user allocation, 2035 * %GFP_KERNEL kernel allocation, 2036 * %GFP_HIGHMEM highmem allocation, 2037 * %GFP_FS don't call back into a file system. 2038 * %GFP_ATOMIC don't sleep. 2039 * @order: Power of two of allocation size in pages. 0 is a single page. 2040 * 2041 * Allocate a page from the kernel page pool. When not in 2042 * interrupt context and apply the current process NUMA policy. 2043 * Returns NULL when no page can be allocated. 2044 * 2045 * Don't call cpuset_update_task_memory_state() unless 2046 * 1) it's ok to take cpuset_sem (can WAIT), and 2047 * 2) allocating for current task (not interrupt). 2048 */ 2049 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2050 { 2051 struct mempolicy *pol = &default_policy; 2052 struct page *page; 2053 unsigned int cpuset_mems_cookie; 2054 2055 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2056 pol = get_task_policy(current); 2057 2058 retry_cpuset: 2059 cpuset_mems_cookie = read_mems_allowed_begin(); 2060 2061 /* 2062 * No reference counting needed for current->mempolicy 2063 * nor system default_policy 2064 */ 2065 if (pol->mode == MPOL_INTERLEAVE) 2066 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2067 else 2068 page = __alloc_pages_nodemask(gfp, order, 2069 policy_zonelist(gfp, pol, numa_node_id()), 2070 policy_nodemask(gfp, pol)); 2071 2072 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2073 goto retry_cpuset; 2074 2075 return page; 2076 } 2077 EXPORT_SYMBOL(alloc_pages_current); 2078 2079 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2080 { 2081 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2082 2083 if (IS_ERR(pol)) 2084 return PTR_ERR(pol); 2085 dst->vm_policy = pol; 2086 return 0; 2087 } 2088 2089 /* 2090 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2091 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2092 * with the mems_allowed returned by cpuset_mems_allowed(). This 2093 * keeps mempolicies cpuset relative after its cpuset moves. See 2094 * further kernel/cpuset.c update_nodemask(). 2095 * 2096 * current's mempolicy may be rebinded by the other task(the task that changes 2097 * cpuset's mems), so we needn't do rebind work for current task. 2098 */ 2099 2100 /* Slow path of a mempolicy duplicate */ 2101 struct mempolicy *__mpol_dup(struct mempolicy *old) 2102 { 2103 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2104 2105 if (!new) 2106 return ERR_PTR(-ENOMEM); 2107 2108 /* task's mempolicy is protected by alloc_lock */ 2109 if (old == current->mempolicy) { 2110 task_lock(current); 2111 *new = *old; 2112 task_unlock(current); 2113 } else 2114 *new = *old; 2115 2116 if (current_cpuset_is_being_rebound()) { 2117 nodemask_t mems = cpuset_mems_allowed(current); 2118 if (new->flags & MPOL_F_REBINDING) 2119 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2120 else 2121 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2122 } 2123 atomic_set(&new->refcnt, 1); 2124 return new; 2125 } 2126 2127 /* Slow path of a mempolicy comparison */ 2128 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2129 { 2130 if (!a || !b) 2131 return false; 2132 if (a->mode != b->mode) 2133 return false; 2134 if (a->flags != b->flags) 2135 return false; 2136 if (mpol_store_user_nodemask(a)) 2137 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2138 return false; 2139 2140 switch (a->mode) { 2141 case MPOL_BIND: 2142 /* Fall through */ 2143 case MPOL_INTERLEAVE: 2144 return !!nodes_equal(a->v.nodes, b->v.nodes); 2145 case MPOL_PREFERRED: 2146 return a->v.preferred_node == b->v.preferred_node; 2147 default: 2148 BUG(); 2149 return false; 2150 } 2151 } 2152 2153 /* 2154 * Shared memory backing store policy support. 2155 * 2156 * Remember policies even when nobody has shared memory mapped. 2157 * The policies are kept in Red-Black tree linked from the inode. 2158 * They are protected by the sp->lock rwlock, which should be held 2159 * for any accesses to the tree. 2160 */ 2161 2162 /* 2163 * lookup first element intersecting start-end. Caller holds sp->lock for 2164 * reading or for writing 2165 */ 2166 static struct sp_node * 2167 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2168 { 2169 struct rb_node *n = sp->root.rb_node; 2170 2171 while (n) { 2172 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2173 2174 if (start >= p->end) 2175 n = n->rb_right; 2176 else if (end <= p->start) 2177 n = n->rb_left; 2178 else 2179 break; 2180 } 2181 if (!n) 2182 return NULL; 2183 for (;;) { 2184 struct sp_node *w = NULL; 2185 struct rb_node *prev = rb_prev(n); 2186 if (!prev) 2187 break; 2188 w = rb_entry(prev, struct sp_node, nd); 2189 if (w->end <= start) 2190 break; 2191 n = prev; 2192 } 2193 return rb_entry(n, struct sp_node, nd); 2194 } 2195 2196 /* 2197 * Insert a new shared policy into the list. Caller holds sp->lock for 2198 * writing. 2199 */ 2200 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2201 { 2202 struct rb_node **p = &sp->root.rb_node; 2203 struct rb_node *parent = NULL; 2204 struct sp_node *nd; 2205 2206 while (*p) { 2207 parent = *p; 2208 nd = rb_entry(parent, struct sp_node, nd); 2209 if (new->start < nd->start) 2210 p = &(*p)->rb_left; 2211 else if (new->end > nd->end) 2212 p = &(*p)->rb_right; 2213 else 2214 BUG(); 2215 } 2216 rb_link_node(&new->nd, parent, p); 2217 rb_insert_color(&new->nd, &sp->root); 2218 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2219 new->policy ? new->policy->mode : 0); 2220 } 2221 2222 /* Find shared policy intersecting idx */ 2223 struct mempolicy * 2224 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2225 { 2226 struct mempolicy *pol = NULL; 2227 struct sp_node *sn; 2228 2229 if (!sp->root.rb_node) 2230 return NULL; 2231 read_lock(&sp->lock); 2232 sn = sp_lookup(sp, idx, idx+1); 2233 if (sn) { 2234 mpol_get(sn->policy); 2235 pol = sn->policy; 2236 } 2237 read_unlock(&sp->lock); 2238 return pol; 2239 } 2240 2241 static void sp_free(struct sp_node *n) 2242 { 2243 mpol_put(n->policy); 2244 kmem_cache_free(sn_cache, n); 2245 } 2246 2247 /** 2248 * mpol_misplaced - check whether current page node is valid in policy 2249 * 2250 * @page: page to be checked 2251 * @vma: vm area where page mapped 2252 * @addr: virtual address where page mapped 2253 * 2254 * Lookup current policy node id for vma,addr and "compare to" page's 2255 * node id. 2256 * 2257 * Returns: 2258 * -1 - not misplaced, page is in the right node 2259 * node - node id where the page should be 2260 * 2261 * Policy determination "mimics" alloc_page_vma(). 2262 * Called from fault path where we know the vma and faulting address. 2263 */ 2264 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2265 { 2266 struct mempolicy *pol; 2267 struct zoneref *z; 2268 int curnid = page_to_nid(page); 2269 unsigned long pgoff; 2270 int thiscpu = raw_smp_processor_id(); 2271 int thisnid = cpu_to_node(thiscpu); 2272 int polnid = -1; 2273 int ret = -1; 2274 2275 BUG_ON(!vma); 2276 2277 pol = get_vma_policy(vma, addr); 2278 if (!(pol->flags & MPOL_F_MOF)) 2279 goto out; 2280 2281 switch (pol->mode) { 2282 case MPOL_INTERLEAVE: 2283 BUG_ON(addr >= vma->vm_end); 2284 BUG_ON(addr < vma->vm_start); 2285 2286 pgoff = vma->vm_pgoff; 2287 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2288 polnid = offset_il_node(pol, vma, pgoff); 2289 break; 2290 2291 case MPOL_PREFERRED: 2292 if (pol->flags & MPOL_F_LOCAL) 2293 polnid = numa_node_id(); 2294 else 2295 polnid = pol->v.preferred_node; 2296 break; 2297 2298 case MPOL_BIND: 2299 2300 /* 2301 * allows binding to multiple nodes. 2302 * use current page if in policy nodemask, 2303 * else select nearest allowed node, if any. 2304 * If no allowed nodes, use current [!misplaced]. 2305 */ 2306 if (node_isset(curnid, pol->v.nodes)) 2307 goto out; 2308 z = first_zones_zonelist( 2309 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2310 gfp_zone(GFP_HIGHUSER), 2311 &pol->v.nodes); 2312 polnid = z->zone->node; 2313 break; 2314 2315 default: 2316 BUG(); 2317 } 2318 2319 /* Migrate the page towards the node whose CPU is referencing it */ 2320 if (pol->flags & MPOL_F_MORON) { 2321 polnid = thisnid; 2322 2323 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2324 goto out; 2325 } 2326 2327 if (curnid != polnid) 2328 ret = polnid; 2329 out: 2330 mpol_cond_put(pol); 2331 2332 return ret; 2333 } 2334 2335 /* 2336 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2337 * dropped after task->mempolicy is set to NULL so that any allocation done as 2338 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2339 * policy. 2340 */ 2341 void mpol_put_task_policy(struct task_struct *task) 2342 { 2343 struct mempolicy *pol; 2344 2345 task_lock(task); 2346 pol = task->mempolicy; 2347 task->mempolicy = NULL; 2348 task_unlock(task); 2349 mpol_put(pol); 2350 } 2351 2352 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2353 { 2354 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2355 rb_erase(&n->nd, &sp->root); 2356 sp_free(n); 2357 } 2358 2359 static void sp_node_init(struct sp_node *node, unsigned long start, 2360 unsigned long end, struct mempolicy *pol) 2361 { 2362 node->start = start; 2363 node->end = end; 2364 node->policy = pol; 2365 } 2366 2367 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2368 struct mempolicy *pol) 2369 { 2370 struct sp_node *n; 2371 struct mempolicy *newpol; 2372 2373 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2374 if (!n) 2375 return NULL; 2376 2377 newpol = mpol_dup(pol); 2378 if (IS_ERR(newpol)) { 2379 kmem_cache_free(sn_cache, n); 2380 return NULL; 2381 } 2382 newpol->flags |= MPOL_F_SHARED; 2383 sp_node_init(n, start, end, newpol); 2384 2385 return n; 2386 } 2387 2388 /* Replace a policy range. */ 2389 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2390 unsigned long end, struct sp_node *new) 2391 { 2392 struct sp_node *n; 2393 struct sp_node *n_new = NULL; 2394 struct mempolicy *mpol_new = NULL; 2395 int ret = 0; 2396 2397 restart: 2398 write_lock(&sp->lock); 2399 n = sp_lookup(sp, start, end); 2400 /* Take care of old policies in the same range. */ 2401 while (n && n->start < end) { 2402 struct rb_node *next = rb_next(&n->nd); 2403 if (n->start >= start) { 2404 if (n->end <= end) 2405 sp_delete(sp, n); 2406 else 2407 n->start = end; 2408 } else { 2409 /* Old policy spanning whole new range. */ 2410 if (n->end > end) { 2411 if (!n_new) 2412 goto alloc_new; 2413 2414 *mpol_new = *n->policy; 2415 atomic_set(&mpol_new->refcnt, 1); 2416 sp_node_init(n_new, end, n->end, mpol_new); 2417 n->end = start; 2418 sp_insert(sp, n_new); 2419 n_new = NULL; 2420 mpol_new = NULL; 2421 break; 2422 } else 2423 n->end = start; 2424 } 2425 if (!next) 2426 break; 2427 n = rb_entry(next, struct sp_node, nd); 2428 } 2429 if (new) 2430 sp_insert(sp, new); 2431 write_unlock(&sp->lock); 2432 ret = 0; 2433 2434 err_out: 2435 if (mpol_new) 2436 mpol_put(mpol_new); 2437 if (n_new) 2438 kmem_cache_free(sn_cache, n_new); 2439 2440 return ret; 2441 2442 alloc_new: 2443 write_unlock(&sp->lock); 2444 ret = -ENOMEM; 2445 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2446 if (!n_new) 2447 goto err_out; 2448 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2449 if (!mpol_new) 2450 goto err_out; 2451 goto restart; 2452 } 2453 2454 /** 2455 * mpol_shared_policy_init - initialize shared policy for inode 2456 * @sp: pointer to inode shared policy 2457 * @mpol: struct mempolicy to install 2458 * 2459 * Install non-NULL @mpol in inode's shared policy rb-tree. 2460 * On entry, the current task has a reference on a non-NULL @mpol. 2461 * This must be released on exit. 2462 * This is called at get_inode() calls and we can use GFP_KERNEL. 2463 */ 2464 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2465 { 2466 int ret; 2467 2468 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2469 rwlock_init(&sp->lock); 2470 2471 if (mpol) { 2472 struct vm_area_struct pvma; 2473 struct mempolicy *new; 2474 NODEMASK_SCRATCH(scratch); 2475 2476 if (!scratch) 2477 goto put_mpol; 2478 /* contextualize the tmpfs mount point mempolicy */ 2479 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2480 if (IS_ERR(new)) 2481 goto free_scratch; /* no valid nodemask intersection */ 2482 2483 task_lock(current); 2484 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2485 task_unlock(current); 2486 if (ret) 2487 goto put_new; 2488 2489 /* Create pseudo-vma that contains just the policy */ 2490 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2491 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2492 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2493 2494 put_new: 2495 mpol_put(new); /* drop initial ref */ 2496 free_scratch: 2497 NODEMASK_SCRATCH_FREE(scratch); 2498 put_mpol: 2499 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2500 } 2501 } 2502 2503 int mpol_set_shared_policy(struct shared_policy *info, 2504 struct vm_area_struct *vma, struct mempolicy *npol) 2505 { 2506 int err; 2507 struct sp_node *new = NULL; 2508 unsigned long sz = vma_pages(vma); 2509 2510 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2511 vma->vm_pgoff, 2512 sz, npol ? npol->mode : -1, 2513 npol ? npol->flags : -1, 2514 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2515 2516 if (npol) { 2517 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2518 if (!new) 2519 return -ENOMEM; 2520 } 2521 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2522 if (err && new) 2523 sp_free(new); 2524 return err; 2525 } 2526 2527 /* Free a backing policy store on inode delete. */ 2528 void mpol_free_shared_policy(struct shared_policy *p) 2529 { 2530 struct sp_node *n; 2531 struct rb_node *next; 2532 2533 if (!p->root.rb_node) 2534 return; 2535 write_lock(&p->lock); 2536 next = rb_first(&p->root); 2537 while (next) { 2538 n = rb_entry(next, struct sp_node, nd); 2539 next = rb_next(&n->nd); 2540 sp_delete(p, n); 2541 } 2542 write_unlock(&p->lock); 2543 } 2544 2545 #ifdef CONFIG_NUMA_BALANCING 2546 static int __initdata numabalancing_override; 2547 2548 static void __init check_numabalancing_enable(void) 2549 { 2550 bool numabalancing_default = false; 2551 2552 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2553 numabalancing_default = true; 2554 2555 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2556 if (numabalancing_override) 2557 set_numabalancing_state(numabalancing_override == 1); 2558 2559 if (num_online_nodes() > 1 && !numabalancing_override) { 2560 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2561 numabalancing_default ? "Enabling" : "Disabling"); 2562 set_numabalancing_state(numabalancing_default); 2563 } 2564 } 2565 2566 static int __init setup_numabalancing(char *str) 2567 { 2568 int ret = 0; 2569 if (!str) 2570 goto out; 2571 2572 if (!strcmp(str, "enable")) { 2573 numabalancing_override = 1; 2574 ret = 1; 2575 } else if (!strcmp(str, "disable")) { 2576 numabalancing_override = -1; 2577 ret = 1; 2578 } 2579 out: 2580 if (!ret) 2581 pr_warn("Unable to parse numa_balancing=\n"); 2582 2583 return ret; 2584 } 2585 __setup("numa_balancing=", setup_numabalancing); 2586 #else 2587 static inline void __init check_numabalancing_enable(void) 2588 { 2589 } 2590 #endif /* CONFIG_NUMA_BALANCING */ 2591 2592 /* assumes fs == KERNEL_DS */ 2593 void __init numa_policy_init(void) 2594 { 2595 nodemask_t interleave_nodes; 2596 unsigned long largest = 0; 2597 int nid, prefer = 0; 2598 2599 policy_cache = kmem_cache_create("numa_policy", 2600 sizeof(struct mempolicy), 2601 0, SLAB_PANIC, NULL); 2602 2603 sn_cache = kmem_cache_create("shared_policy_node", 2604 sizeof(struct sp_node), 2605 0, SLAB_PANIC, NULL); 2606 2607 for_each_node(nid) { 2608 preferred_node_policy[nid] = (struct mempolicy) { 2609 .refcnt = ATOMIC_INIT(1), 2610 .mode = MPOL_PREFERRED, 2611 .flags = MPOL_F_MOF | MPOL_F_MORON, 2612 .v = { .preferred_node = nid, }, 2613 }; 2614 } 2615 2616 /* 2617 * Set interleaving policy for system init. Interleaving is only 2618 * enabled across suitably sized nodes (default is >= 16MB), or 2619 * fall back to the largest node if they're all smaller. 2620 */ 2621 nodes_clear(interleave_nodes); 2622 for_each_node_state(nid, N_MEMORY) { 2623 unsigned long total_pages = node_present_pages(nid); 2624 2625 /* Preserve the largest node */ 2626 if (largest < total_pages) { 2627 largest = total_pages; 2628 prefer = nid; 2629 } 2630 2631 /* Interleave this node? */ 2632 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2633 node_set(nid, interleave_nodes); 2634 } 2635 2636 /* All too small, use the largest */ 2637 if (unlikely(nodes_empty(interleave_nodes))) 2638 node_set(prefer, interleave_nodes); 2639 2640 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2641 pr_err("%s: interleaving failed\n", __func__); 2642 2643 check_numabalancing_enable(); 2644 } 2645 2646 /* Reset policy of current process to default */ 2647 void numa_default_policy(void) 2648 { 2649 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2650 } 2651 2652 /* 2653 * Parse and format mempolicy from/to strings 2654 */ 2655 2656 /* 2657 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2658 */ 2659 static const char * const policy_modes[] = 2660 { 2661 [MPOL_DEFAULT] = "default", 2662 [MPOL_PREFERRED] = "prefer", 2663 [MPOL_BIND] = "bind", 2664 [MPOL_INTERLEAVE] = "interleave", 2665 [MPOL_LOCAL] = "local", 2666 }; 2667 2668 2669 #ifdef CONFIG_TMPFS 2670 /** 2671 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2672 * @str: string containing mempolicy to parse 2673 * @mpol: pointer to struct mempolicy pointer, returned on success. 2674 * 2675 * Format of input: 2676 * <mode>[=<flags>][:<nodelist>] 2677 * 2678 * On success, returns 0, else 1 2679 */ 2680 int mpol_parse_str(char *str, struct mempolicy **mpol) 2681 { 2682 struct mempolicy *new = NULL; 2683 unsigned short mode; 2684 unsigned short mode_flags; 2685 nodemask_t nodes; 2686 char *nodelist = strchr(str, ':'); 2687 char *flags = strchr(str, '='); 2688 int err = 1; 2689 2690 if (nodelist) { 2691 /* NUL-terminate mode or flags string */ 2692 *nodelist++ = '\0'; 2693 if (nodelist_parse(nodelist, nodes)) 2694 goto out; 2695 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2696 goto out; 2697 } else 2698 nodes_clear(nodes); 2699 2700 if (flags) 2701 *flags++ = '\0'; /* terminate mode string */ 2702 2703 for (mode = 0; mode < MPOL_MAX; mode++) { 2704 if (!strcmp(str, policy_modes[mode])) { 2705 break; 2706 } 2707 } 2708 if (mode >= MPOL_MAX) 2709 goto out; 2710 2711 switch (mode) { 2712 case MPOL_PREFERRED: 2713 /* 2714 * Insist on a nodelist of one node only 2715 */ 2716 if (nodelist) { 2717 char *rest = nodelist; 2718 while (isdigit(*rest)) 2719 rest++; 2720 if (*rest) 2721 goto out; 2722 } 2723 break; 2724 case MPOL_INTERLEAVE: 2725 /* 2726 * Default to online nodes with memory if no nodelist 2727 */ 2728 if (!nodelist) 2729 nodes = node_states[N_MEMORY]; 2730 break; 2731 case MPOL_LOCAL: 2732 /* 2733 * Don't allow a nodelist; mpol_new() checks flags 2734 */ 2735 if (nodelist) 2736 goto out; 2737 mode = MPOL_PREFERRED; 2738 break; 2739 case MPOL_DEFAULT: 2740 /* 2741 * Insist on a empty nodelist 2742 */ 2743 if (!nodelist) 2744 err = 0; 2745 goto out; 2746 case MPOL_BIND: 2747 /* 2748 * Insist on a nodelist 2749 */ 2750 if (!nodelist) 2751 goto out; 2752 } 2753 2754 mode_flags = 0; 2755 if (flags) { 2756 /* 2757 * Currently, we only support two mutually exclusive 2758 * mode flags. 2759 */ 2760 if (!strcmp(flags, "static")) 2761 mode_flags |= MPOL_F_STATIC_NODES; 2762 else if (!strcmp(flags, "relative")) 2763 mode_flags |= MPOL_F_RELATIVE_NODES; 2764 else 2765 goto out; 2766 } 2767 2768 new = mpol_new(mode, mode_flags, &nodes); 2769 if (IS_ERR(new)) 2770 goto out; 2771 2772 /* 2773 * Save nodes for mpol_to_str() to show the tmpfs mount options 2774 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2775 */ 2776 if (mode != MPOL_PREFERRED) 2777 new->v.nodes = nodes; 2778 else if (nodelist) 2779 new->v.preferred_node = first_node(nodes); 2780 else 2781 new->flags |= MPOL_F_LOCAL; 2782 2783 /* 2784 * Save nodes for contextualization: this will be used to "clone" 2785 * the mempolicy in a specific context [cpuset] at a later time. 2786 */ 2787 new->w.user_nodemask = nodes; 2788 2789 err = 0; 2790 2791 out: 2792 /* Restore string for error message */ 2793 if (nodelist) 2794 *--nodelist = ':'; 2795 if (flags) 2796 *--flags = '='; 2797 if (!err) 2798 *mpol = new; 2799 return err; 2800 } 2801 #endif /* CONFIG_TMPFS */ 2802 2803 /** 2804 * mpol_to_str - format a mempolicy structure for printing 2805 * @buffer: to contain formatted mempolicy string 2806 * @maxlen: length of @buffer 2807 * @pol: pointer to mempolicy to be formatted 2808 * 2809 * Convert @pol into a string. If @buffer is too short, truncate the string. 2810 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2811 * longest flag, "relative", and to display at least a few node ids. 2812 */ 2813 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2814 { 2815 char *p = buffer; 2816 nodemask_t nodes = NODE_MASK_NONE; 2817 unsigned short mode = MPOL_DEFAULT; 2818 unsigned short flags = 0; 2819 2820 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2821 mode = pol->mode; 2822 flags = pol->flags; 2823 } 2824 2825 switch (mode) { 2826 case MPOL_DEFAULT: 2827 break; 2828 case MPOL_PREFERRED: 2829 if (flags & MPOL_F_LOCAL) 2830 mode = MPOL_LOCAL; 2831 else 2832 node_set(pol->v.preferred_node, nodes); 2833 break; 2834 case MPOL_BIND: 2835 case MPOL_INTERLEAVE: 2836 nodes = pol->v.nodes; 2837 break; 2838 default: 2839 WARN_ON_ONCE(1); 2840 snprintf(p, maxlen, "unknown"); 2841 return; 2842 } 2843 2844 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2845 2846 if (flags & MPOL_MODE_FLAGS) { 2847 p += snprintf(p, buffer + maxlen - p, "="); 2848 2849 /* 2850 * Currently, the only defined flags are mutually exclusive 2851 */ 2852 if (flags & MPOL_F_STATIC_NODES) 2853 p += snprintf(p, buffer + maxlen - p, "static"); 2854 else if (flags & MPOL_F_RELATIVE_NODES) 2855 p += snprintf(p, buffer + maxlen - p, "relative"); 2856 } 2857 2858 if (!nodes_empty(nodes)) 2859 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2860 nodemask_pr_args(&nodes)); 2861 } 2862