xref: /openbmc/linux/mm/mempolicy.c (revision 135210b3)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95 
96 #include "internal.h"
97 
98 /* Internal flags */
99 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
100 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
101 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
102 
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
105 
106 /* Highest zone. An specific allocation for a zone below that is not
107    policied. */
108 enum zone_type policy_zone = 0;
109 
110 /*
111  * run-time system-wide default policy => local allocation
112  */
113 struct mempolicy default_policy = {
114 	.refcnt = ATOMIC_INIT(1), /* never free it */
115 	.mode = MPOL_PREFERRED,
116 	.flags = MPOL_F_LOCAL,
117 };
118 
119 static const struct mempolicy_operations {
120 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
121 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
122 } mpol_ops[MPOL_MAX];
123 
124 /* Check that the nodemask contains at least one populated zone */
125 static int is_valid_nodemask(const nodemask_t *nodemask)
126 {
127 	int nd, k;
128 
129 	/* Check that there is something useful in this mask */
130 	k = policy_zone;
131 
132 	for_each_node_mask(nd, *nodemask) {
133 		struct zone *z;
134 
135 		for (k = 0; k <= policy_zone; k++) {
136 			z = &NODE_DATA(nd)->node_zones[k];
137 			if (z->present_pages > 0)
138 				return 1;
139 		}
140 	}
141 
142 	return 0;
143 }
144 
145 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
146 {
147 	return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
148 }
149 
150 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
151 				   const nodemask_t *rel)
152 {
153 	nodemask_t tmp;
154 	nodes_fold(tmp, *orig, nodes_weight(*rel));
155 	nodes_onto(*ret, tmp, *rel);
156 }
157 
158 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
159 {
160 	if (nodes_empty(*nodes))
161 		return -EINVAL;
162 	pol->v.nodes = *nodes;
163 	return 0;
164 }
165 
166 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 	if (!nodes)
169 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
170 	else if (nodes_empty(*nodes))
171 		return -EINVAL;			/*  no allowed nodes */
172 	else
173 		pol->v.preferred_node = first_node(*nodes);
174 	return 0;
175 }
176 
177 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 	if (!is_valid_nodemask(nodes))
180 		return -EINVAL;
181 	pol->v.nodes = *nodes;
182 	return 0;
183 }
184 
185 /* Create a new policy */
186 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
187 				  nodemask_t *nodes)
188 {
189 	struct mempolicy *policy;
190 	nodemask_t cpuset_context_nmask;
191 	int ret;
192 
193 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
194 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
195 
196 	if (mode == MPOL_DEFAULT) {
197 		if (nodes && !nodes_empty(*nodes))
198 			return ERR_PTR(-EINVAL);
199 		return NULL;	/* simply delete any existing policy */
200 	}
201 	VM_BUG_ON(!nodes);
202 
203 	/*
204 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
205 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
206 	 * All other modes require a valid pointer to a non-empty nodemask.
207 	 */
208 	if (mode == MPOL_PREFERRED) {
209 		if (nodes_empty(*nodes)) {
210 			if (((flags & MPOL_F_STATIC_NODES) ||
211 			     (flags & MPOL_F_RELATIVE_NODES)))
212 				return ERR_PTR(-EINVAL);
213 			nodes = NULL;	/* flag local alloc */
214 		}
215 	} else if (nodes_empty(*nodes))
216 		return ERR_PTR(-EINVAL);
217 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
218 	if (!policy)
219 		return ERR_PTR(-ENOMEM);
220 	atomic_set(&policy->refcnt, 1);
221 	policy->mode = mode;
222 	policy->flags = flags;
223 
224 	if (nodes) {
225 		/*
226 		 * cpuset related setup doesn't apply to local allocation
227 		 */
228 		cpuset_update_task_memory_state();
229 		if (flags & MPOL_F_RELATIVE_NODES)
230 			mpol_relative_nodemask(&cpuset_context_nmask, nodes,
231 					       &cpuset_current_mems_allowed);
232 		else
233 			nodes_and(cpuset_context_nmask, *nodes,
234 				  cpuset_current_mems_allowed);
235 		if (mpol_store_user_nodemask(policy))
236 			policy->w.user_nodemask = *nodes;
237 		else
238 			policy->w.cpuset_mems_allowed =
239 						cpuset_mems_allowed(current);
240 	}
241 
242 	ret = mpol_ops[mode].create(policy,
243 				nodes ? &cpuset_context_nmask : NULL);
244 	if (ret < 0) {
245 		kmem_cache_free(policy_cache, policy);
246 		return ERR_PTR(ret);
247 	}
248 	return policy;
249 }
250 
251 /* Slow path of a mpol destructor. */
252 void __mpol_put(struct mempolicy *p)
253 {
254 	if (!atomic_dec_and_test(&p->refcnt))
255 		return;
256 	kmem_cache_free(policy_cache, p);
257 }
258 
259 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
260 {
261 }
262 
263 static void mpol_rebind_nodemask(struct mempolicy *pol,
264 				 const nodemask_t *nodes)
265 {
266 	nodemask_t tmp;
267 
268 	if (pol->flags & MPOL_F_STATIC_NODES)
269 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
270 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
271 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
272 	else {
273 		nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
274 			    *nodes);
275 		pol->w.cpuset_mems_allowed = *nodes;
276 	}
277 
278 	pol->v.nodes = tmp;
279 	if (!node_isset(current->il_next, tmp)) {
280 		current->il_next = next_node(current->il_next, tmp);
281 		if (current->il_next >= MAX_NUMNODES)
282 			current->il_next = first_node(tmp);
283 		if (current->il_next >= MAX_NUMNODES)
284 			current->il_next = numa_node_id();
285 	}
286 }
287 
288 static void mpol_rebind_preferred(struct mempolicy *pol,
289 				  const nodemask_t *nodes)
290 {
291 	nodemask_t tmp;
292 
293 	if (pol->flags & MPOL_F_STATIC_NODES) {
294 		int node = first_node(pol->w.user_nodemask);
295 
296 		if (node_isset(node, *nodes)) {
297 			pol->v.preferred_node = node;
298 			pol->flags &= ~MPOL_F_LOCAL;
299 		} else
300 			pol->flags |= MPOL_F_LOCAL;
301 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
302 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
303 		pol->v.preferred_node = first_node(tmp);
304 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
305 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
306 						   pol->w.cpuset_mems_allowed,
307 						   *nodes);
308 		pol->w.cpuset_mems_allowed = *nodes;
309 	}
310 }
311 
312 /* Migrate a policy to a different set of nodes */
313 static void mpol_rebind_policy(struct mempolicy *pol,
314 			       const nodemask_t *newmask)
315 {
316 	if (!pol)
317 		return;
318 	if (!mpol_store_user_nodemask(pol) &&
319 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
320 		return;
321 	mpol_ops[pol->mode].rebind(pol, newmask);
322 }
323 
324 /*
325  * Wrapper for mpol_rebind_policy() that just requires task
326  * pointer, and updates task mempolicy.
327  */
328 
329 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
330 {
331 	mpol_rebind_policy(tsk->mempolicy, new);
332 }
333 
334 /*
335  * Rebind each vma in mm to new nodemask.
336  *
337  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
338  */
339 
340 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
341 {
342 	struct vm_area_struct *vma;
343 
344 	down_write(&mm->mmap_sem);
345 	for (vma = mm->mmap; vma; vma = vma->vm_next)
346 		mpol_rebind_policy(vma->vm_policy, new);
347 	up_write(&mm->mmap_sem);
348 }
349 
350 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
351 	[MPOL_DEFAULT] = {
352 		.rebind = mpol_rebind_default,
353 	},
354 	[MPOL_INTERLEAVE] = {
355 		.create = mpol_new_interleave,
356 		.rebind = mpol_rebind_nodemask,
357 	},
358 	[MPOL_PREFERRED] = {
359 		.create = mpol_new_preferred,
360 		.rebind = mpol_rebind_preferred,
361 	},
362 	[MPOL_BIND] = {
363 		.create = mpol_new_bind,
364 		.rebind = mpol_rebind_nodemask,
365 	},
366 };
367 
368 static void gather_stats(struct page *, void *, int pte_dirty);
369 static void migrate_page_add(struct page *page, struct list_head *pagelist,
370 				unsigned long flags);
371 
372 /* Scan through pages checking if pages follow certain conditions. */
373 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
374 		unsigned long addr, unsigned long end,
375 		const nodemask_t *nodes, unsigned long flags,
376 		void *private)
377 {
378 	pte_t *orig_pte;
379 	pte_t *pte;
380 	spinlock_t *ptl;
381 
382 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 	do {
384 		struct page *page;
385 		int nid;
386 
387 		if (!pte_present(*pte))
388 			continue;
389 		page = vm_normal_page(vma, addr, *pte);
390 		if (!page)
391 			continue;
392 		/*
393 		 * The check for PageReserved here is important to avoid
394 		 * handling zero pages and other pages that may have been
395 		 * marked special by the system.
396 		 *
397 		 * If the PageReserved would not be checked here then f.e.
398 		 * the location of the zero page could have an influence
399 		 * on MPOL_MF_STRICT, zero pages would be counted for
400 		 * the per node stats, and there would be useless attempts
401 		 * to put zero pages on the migration list.
402 		 */
403 		if (PageReserved(page))
404 			continue;
405 		nid = page_to_nid(page);
406 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
407 			continue;
408 
409 		if (flags & MPOL_MF_STATS)
410 			gather_stats(page, private, pte_dirty(*pte));
411 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
412 			migrate_page_add(page, private, flags);
413 		else
414 			break;
415 	} while (pte++, addr += PAGE_SIZE, addr != end);
416 	pte_unmap_unlock(orig_pte, ptl);
417 	return addr != end;
418 }
419 
420 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
421 		unsigned long addr, unsigned long end,
422 		const nodemask_t *nodes, unsigned long flags,
423 		void *private)
424 {
425 	pmd_t *pmd;
426 	unsigned long next;
427 
428 	pmd = pmd_offset(pud, addr);
429 	do {
430 		next = pmd_addr_end(addr, end);
431 		if (pmd_none_or_clear_bad(pmd))
432 			continue;
433 		if (check_pte_range(vma, pmd, addr, next, nodes,
434 				    flags, private))
435 			return -EIO;
436 	} while (pmd++, addr = next, addr != end);
437 	return 0;
438 }
439 
440 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
441 		unsigned long addr, unsigned long end,
442 		const nodemask_t *nodes, unsigned long flags,
443 		void *private)
444 {
445 	pud_t *pud;
446 	unsigned long next;
447 
448 	pud = pud_offset(pgd, addr);
449 	do {
450 		next = pud_addr_end(addr, end);
451 		if (pud_none_or_clear_bad(pud))
452 			continue;
453 		if (check_pmd_range(vma, pud, addr, next, nodes,
454 				    flags, private))
455 			return -EIO;
456 	} while (pud++, addr = next, addr != end);
457 	return 0;
458 }
459 
460 static inline int check_pgd_range(struct vm_area_struct *vma,
461 		unsigned long addr, unsigned long end,
462 		const nodemask_t *nodes, unsigned long flags,
463 		void *private)
464 {
465 	pgd_t *pgd;
466 	unsigned long next;
467 
468 	pgd = pgd_offset(vma->vm_mm, addr);
469 	do {
470 		next = pgd_addr_end(addr, end);
471 		if (pgd_none_or_clear_bad(pgd))
472 			continue;
473 		if (check_pud_range(vma, pgd, addr, next, nodes,
474 				    flags, private))
475 			return -EIO;
476 	} while (pgd++, addr = next, addr != end);
477 	return 0;
478 }
479 
480 /*
481  * Check if all pages in a range are on a set of nodes.
482  * If pagelist != NULL then isolate pages from the LRU and
483  * put them on the pagelist.
484  */
485 static struct vm_area_struct *
486 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
487 		const nodemask_t *nodes, unsigned long flags, void *private)
488 {
489 	int err;
490 	struct vm_area_struct *first, *vma, *prev;
491 
492 
493 	first = find_vma(mm, start);
494 	if (!first)
495 		return ERR_PTR(-EFAULT);
496 	prev = NULL;
497 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
498 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
499 			if (!vma->vm_next && vma->vm_end < end)
500 				return ERR_PTR(-EFAULT);
501 			if (prev && prev->vm_end < vma->vm_start)
502 				return ERR_PTR(-EFAULT);
503 		}
504 		if (!is_vm_hugetlb_page(vma) &&
505 		    ((flags & MPOL_MF_STRICT) ||
506 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
507 				vma_migratable(vma)))) {
508 			unsigned long endvma = vma->vm_end;
509 
510 			if (endvma > end)
511 				endvma = end;
512 			if (vma->vm_start > start)
513 				start = vma->vm_start;
514 			err = check_pgd_range(vma, start, endvma, nodes,
515 						flags, private);
516 			if (err) {
517 				first = ERR_PTR(err);
518 				break;
519 			}
520 		}
521 		prev = vma;
522 	}
523 	return first;
524 }
525 
526 /* Apply policy to a single VMA */
527 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
528 {
529 	int err = 0;
530 	struct mempolicy *old = vma->vm_policy;
531 
532 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
533 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
534 		 vma->vm_ops, vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
536 
537 	if (vma->vm_ops && vma->vm_ops->set_policy)
538 		err = vma->vm_ops->set_policy(vma, new);
539 	if (!err) {
540 		mpol_get(new);
541 		vma->vm_policy = new;
542 		mpol_put(old);
543 	}
544 	return err;
545 }
546 
547 /* Step 2: apply policy to a range and do splits. */
548 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
549 		       unsigned long end, struct mempolicy *new)
550 {
551 	struct vm_area_struct *next;
552 	int err;
553 
554 	err = 0;
555 	for (; vma && vma->vm_start < end; vma = next) {
556 		next = vma->vm_next;
557 		if (vma->vm_start < start)
558 			err = split_vma(vma->vm_mm, vma, start, 1);
559 		if (!err && vma->vm_end > end)
560 			err = split_vma(vma->vm_mm, vma, end, 0);
561 		if (!err)
562 			err = policy_vma(vma, new);
563 		if (err)
564 			break;
565 	}
566 	return err;
567 }
568 
569 /*
570  * Update task->flags PF_MEMPOLICY bit: set iff non-default
571  * mempolicy.  Allows more rapid checking of this (combined perhaps
572  * with other PF_* flag bits) on memory allocation hot code paths.
573  *
574  * If called from outside this file, the task 'p' should -only- be
575  * a newly forked child not yet visible on the task list, because
576  * manipulating the task flags of a visible task is not safe.
577  *
578  * The above limitation is why this routine has the funny name
579  * mpol_fix_fork_child_flag().
580  *
581  * It is also safe to call this with a task pointer of current,
582  * which the static wrapper mpol_set_task_struct_flag() does,
583  * for use within this file.
584  */
585 
586 void mpol_fix_fork_child_flag(struct task_struct *p)
587 {
588 	if (p->mempolicy)
589 		p->flags |= PF_MEMPOLICY;
590 	else
591 		p->flags &= ~PF_MEMPOLICY;
592 }
593 
594 static void mpol_set_task_struct_flag(void)
595 {
596 	mpol_fix_fork_child_flag(current);
597 }
598 
599 /* Set the process memory policy */
600 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
601 			     nodemask_t *nodes)
602 {
603 	struct mempolicy *new;
604 	struct mm_struct *mm = current->mm;
605 
606 	new = mpol_new(mode, flags, nodes);
607 	if (IS_ERR(new))
608 		return PTR_ERR(new);
609 
610 	/*
611 	 * prevent changing our mempolicy while show_numa_maps()
612 	 * is using it.
613 	 * Note:  do_set_mempolicy() can be called at init time
614 	 * with no 'mm'.
615 	 */
616 	if (mm)
617 		down_write(&mm->mmap_sem);
618 	mpol_put(current->mempolicy);
619 	current->mempolicy = new;
620 	mpol_set_task_struct_flag();
621 	if (new && new->mode == MPOL_INTERLEAVE &&
622 	    nodes_weight(new->v.nodes))
623 		current->il_next = first_node(new->v.nodes);
624 	if (mm)
625 		up_write(&mm->mmap_sem);
626 
627 	return 0;
628 }
629 
630 /*
631  * Return nodemask for policy for get_mempolicy() query
632  */
633 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
634 {
635 	nodes_clear(*nodes);
636 	if (p == &default_policy)
637 		return;
638 
639 	switch (p->mode) {
640 	case MPOL_BIND:
641 		/* Fall through */
642 	case MPOL_INTERLEAVE:
643 		*nodes = p->v.nodes;
644 		break;
645 	case MPOL_PREFERRED:
646 		if (!(p->flags & MPOL_F_LOCAL))
647 			node_set(p->v.preferred_node, *nodes);
648 		/* else return empty node mask for local allocation */
649 		break;
650 	default:
651 		BUG();
652 	}
653 }
654 
655 static int lookup_node(struct mm_struct *mm, unsigned long addr)
656 {
657 	struct page *p;
658 	int err;
659 
660 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
661 	if (err >= 0) {
662 		err = page_to_nid(p);
663 		put_page(p);
664 	}
665 	return err;
666 }
667 
668 /* Retrieve NUMA policy */
669 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
670 			     unsigned long addr, unsigned long flags)
671 {
672 	int err;
673 	struct mm_struct *mm = current->mm;
674 	struct vm_area_struct *vma = NULL;
675 	struct mempolicy *pol = current->mempolicy;
676 
677 	cpuset_update_task_memory_state();
678 	if (flags &
679 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
680 		return -EINVAL;
681 
682 	if (flags & MPOL_F_MEMS_ALLOWED) {
683 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
684 			return -EINVAL;
685 		*policy = 0;	/* just so it's initialized */
686 		*nmask  = cpuset_current_mems_allowed;
687 		return 0;
688 	}
689 
690 	if (flags & MPOL_F_ADDR) {
691 		/*
692 		 * Do NOT fall back to task policy if the
693 		 * vma/shared policy at addr is NULL.  We
694 		 * want to return MPOL_DEFAULT in this case.
695 		 */
696 		down_read(&mm->mmap_sem);
697 		vma = find_vma_intersection(mm, addr, addr+1);
698 		if (!vma) {
699 			up_read(&mm->mmap_sem);
700 			return -EFAULT;
701 		}
702 		if (vma->vm_ops && vma->vm_ops->get_policy)
703 			pol = vma->vm_ops->get_policy(vma, addr);
704 		else
705 			pol = vma->vm_policy;
706 	} else if (addr)
707 		return -EINVAL;
708 
709 	if (!pol)
710 		pol = &default_policy;	/* indicates default behavior */
711 
712 	if (flags & MPOL_F_NODE) {
713 		if (flags & MPOL_F_ADDR) {
714 			err = lookup_node(mm, addr);
715 			if (err < 0)
716 				goto out;
717 			*policy = err;
718 		} else if (pol == current->mempolicy &&
719 				pol->mode == MPOL_INTERLEAVE) {
720 			*policy = current->il_next;
721 		} else {
722 			err = -EINVAL;
723 			goto out;
724 		}
725 	} else {
726 		*policy = pol == &default_policy ? MPOL_DEFAULT :
727 						pol->mode;
728 		/*
729 		 * Internal mempolicy flags must be masked off before exposing
730 		 * the policy to userspace.
731 		 */
732 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
733 	}
734 
735 	if (vma) {
736 		up_read(&current->mm->mmap_sem);
737 		vma = NULL;
738 	}
739 
740 	err = 0;
741 	if (nmask)
742 		get_policy_nodemask(pol, nmask);
743 
744  out:
745 	mpol_cond_put(pol);
746 	if (vma)
747 		up_read(&current->mm->mmap_sem);
748 	return err;
749 }
750 
751 #ifdef CONFIG_MIGRATION
752 /*
753  * page migration
754  */
755 static void migrate_page_add(struct page *page, struct list_head *pagelist,
756 				unsigned long flags)
757 {
758 	/*
759 	 * Avoid migrating a page that is shared with others.
760 	 */
761 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
762 		if (!isolate_lru_page(page)) {
763 			list_add_tail(&page->lru, pagelist);
764 		}
765 	}
766 }
767 
768 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
769 {
770 	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
771 }
772 
773 /*
774  * Migrate pages from one node to a target node.
775  * Returns error or the number of pages not migrated.
776  */
777 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
778 			   int flags)
779 {
780 	nodemask_t nmask;
781 	LIST_HEAD(pagelist);
782 	int err = 0;
783 
784 	nodes_clear(nmask);
785 	node_set(source, nmask);
786 
787 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
788 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
789 
790 	if (!list_empty(&pagelist))
791 		err = migrate_pages(&pagelist, new_node_page, dest);
792 
793 	return err;
794 }
795 
796 /*
797  * Move pages between the two nodesets so as to preserve the physical
798  * layout as much as possible.
799  *
800  * Returns the number of page that could not be moved.
801  */
802 int do_migrate_pages(struct mm_struct *mm,
803 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
804 {
805 	int busy = 0;
806 	int err;
807 	nodemask_t tmp;
808 
809 	err = migrate_prep();
810 	if (err)
811 		return err;
812 
813 	down_read(&mm->mmap_sem);
814 
815 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
816 	if (err)
817 		goto out;
818 
819 /*
820  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
821  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
822  * bit in 'tmp', and return that <source, dest> pair for migration.
823  * The pair of nodemasks 'to' and 'from' define the map.
824  *
825  * If no pair of bits is found that way, fallback to picking some
826  * pair of 'source' and 'dest' bits that are not the same.  If the
827  * 'source' and 'dest' bits are the same, this represents a node
828  * that will be migrating to itself, so no pages need move.
829  *
830  * If no bits are left in 'tmp', or if all remaining bits left
831  * in 'tmp' correspond to the same bit in 'to', return false
832  * (nothing left to migrate).
833  *
834  * This lets us pick a pair of nodes to migrate between, such that
835  * if possible the dest node is not already occupied by some other
836  * source node, minimizing the risk of overloading the memory on a
837  * node that would happen if we migrated incoming memory to a node
838  * before migrating outgoing memory source that same node.
839  *
840  * A single scan of tmp is sufficient.  As we go, we remember the
841  * most recent <s, d> pair that moved (s != d).  If we find a pair
842  * that not only moved, but what's better, moved to an empty slot
843  * (d is not set in tmp), then we break out then, with that pair.
844  * Otherwise when we finish scannng from_tmp, we at least have the
845  * most recent <s, d> pair that moved.  If we get all the way through
846  * the scan of tmp without finding any node that moved, much less
847  * moved to an empty node, then there is nothing left worth migrating.
848  */
849 
850 	tmp = *from_nodes;
851 	while (!nodes_empty(tmp)) {
852 		int s,d;
853 		int source = -1;
854 		int dest = 0;
855 
856 		for_each_node_mask(s, tmp) {
857 			d = node_remap(s, *from_nodes, *to_nodes);
858 			if (s == d)
859 				continue;
860 
861 			source = s;	/* Node moved. Memorize */
862 			dest = d;
863 
864 			/* dest not in remaining from nodes? */
865 			if (!node_isset(dest, tmp))
866 				break;
867 		}
868 		if (source == -1)
869 			break;
870 
871 		node_clear(source, tmp);
872 		err = migrate_to_node(mm, source, dest, flags);
873 		if (err > 0)
874 			busy += err;
875 		if (err < 0)
876 			break;
877 	}
878 out:
879 	up_read(&mm->mmap_sem);
880 	if (err < 0)
881 		return err;
882 	return busy;
883 
884 }
885 
886 /*
887  * Allocate a new page for page migration based on vma policy.
888  * Start assuming that page is mapped by vma pointed to by @private.
889  * Search forward from there, if not.  N.B., this assumes that the
890  * list of pages handed to migrate_pages()--which is how we get here--
891  * is in virtual address order.
892  */
893 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
894 {
895 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
896 	unsigned long uninitialized_var(address);
897 
898 	while (vma) {
899 		address = page_address_in_vma(page, vma);
900 		if (address != -EFAULT)
901 			break;
902 		vma = vma->vm_next;
903 	}
904 
905 	/*
906 	 * if !vma, alloc_page_vma() will use task or system default policy
907 	 */
908 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
909 }
910 #else
911 
912 static void migrate_page_add(struct page *page, struct list_head *pagelist,
913 				unsigned long flags)
914 {
915 }
916 
917 int do_migrate_pages(struct mm_struct *mm,
918 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
919 {
920 	return -ENOSYS;
921 }
922 
923 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
924 {
925 	return NULL;
926 }
927 #endif
928 
929 static long do_mbind(unsigned long start, unsigned long len,
930 		     unsigned short mode, unsigned short mode_flags,
931 		     nodemask_t *nmask, unsigned long flags)
932 {
933 	struct vm_area_struct *vma;
934 	struct mm_struct *mm = current->mm;
935 	struct mempolicy *new;
936 	unsigned long end;
937 	int err;
938 	LIST_HEAD(pagelist);
939 
940 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
941 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
942 		return -EINVAL;
943 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
944 		return -EPERM;
945 
946 	if (start & ~PAGE_MASK)
947 		return -EINVAL;
948 
949 	if (mode == MPOL_DEFAULT)
950 		flags &= ~MPOL_MF_STRICT;
951 
952 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
953 	end = start + len;
954 
955 	if (end < start)
956 		return -EINVAL;
957 	if (end == start)
958 		return 0;
959 
960 	new = mpol_new(mode, mode_flags, nmask);
961 	if (IS_ERR(new))
962 		return PTR_ERR(new);
963 
964 	/*
965 	 * If we are using the default policy then operation
966 	 * on discontinuous address spaces is okay after all
967 	 */
968 	if (!new)
969 		flags |= MPOL_MF_DISCONTIG_OK;
970 
971 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
972 		 start, start + len, mode, mode_flags,
973 		 nmask ? nodes_addr(*nmask)[0] : -1);
974 
975 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
976 
977 		err = migrate_prep();
978 		if (err)
979 			return err;
980 	}
981 	down_write(&mm->mmap_sem);
982 	vma = check_range(mm, start, end, nmask,
983 			  flags | MPOL_MF_INVERT, &pagelist);
984 
985 	err = PTR_ERR(vma);
986 	if (!IS_ERR(vma)) {
987 		int nr_failed = 0;
988 
989 		err = mbind_range(vma, start, end, new);
990 
991 		if (!list_empty(&pagelist))
992 			nr_failed = migrate_pages(&pagelist, new_vma_page,
993 						(unsigned long)vma);
994 
995 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
996 			err = -EIO;
997 	}
998 
999 	up_write(&mm->mmap_sem);
1000 	mpol_put(new);
1001 	return err;
1002 }
1003 
1004 /*
1005  * User space interface with variable sized bitmaps for nodelists.
1006  */
1007 
1008 /* Copy a node mask from user space. */
1009 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1010 		     unsigned long maxnode)
1011 {
1012 	unsigned long k;
1013 	unsigned long nlongs;
1014 	unsigned long endmask;
1015 
1016 	--maxnode;
1017 	nodes_clear(*nodes);
1018 	if (maxnode == 0 || !nmask)
1019 		return 0;
1020 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1021 		return -EINVAL;
1022 
1023 	nlongs = BITS_TO_LONGS(maxnode);
1024 	if ((maxnode % BITS_PER_LONG) == 0)
1025 		endmask = ~0UL;
1026 	else
1027 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1028 
1029 	/* When the user specified more nodes than supported just check
1030 	   if the non supported part is all zero. */
1031 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1032 		if (nlongs > PAGE_SIZE/sizeof(long))
1033 			return -EINVAL;
1034 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1035 			unsigned long t;
1036 			if (get_user(t, nmask + k))
1037 				return -EFAULT;
1038 			if (k == nlongs - 1) {
1039 				if (t & endmask)
1040 					return -EINVAL;
1041 			} else if (t)
1042 				return -EINVAL;
1043 		}
1044 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1045 		endmask = ~0UL;
1046 	}
1047 
1048 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1049 		return -EFAULT;
1050 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1051 	return 0;
1052 }
1053 
1054 /* Copy a kernel node mask to user space */
1055 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1056 			      nodemask_t *nodes)
1057 {
1058 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1059 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1060 
1061 	if (copy > nbytes) {
1062 		if (copy > PAGE_SIZE)
1063 			return -EINVAL;
1064 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1065 			return -EFAULT;
1066 		copy = nbytes;
1067 	}
1068 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1069 }
1070 
1071 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1072 			unsigned long mode,
1073 			unsigned long __user *nmask, unsigned long maxnode,
1074 			unsigned flags)
1075 {
1076 	nodemask_t nodes;
1077 	int err;
1078 	unsigned short mode_flags;
1079 
1080 	mode_flags = mode & MPOL_MODE_FLAGS;
1081 	mode &= ~MPOL_MODE_FLAGS;
1082 	if (mode >= MPOL_MAX)
1083 		return -EINVAL;
1084 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1085 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1086 		return -EINVAL;
1087 	err = get_nodes(&nodes, nmask, maxnode);
1088 	if (err)
1089 		return err;
1090 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1091 }
1092 
1093 /* Set the process memory policy */
1094 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1095 		unsigned long maxnode)
1096 {
1097 	int err;
1098 	nodemask_t nodes;
1099 	unsigned short flags;
1100 
1101 	flags = mode & MPOL_MODE_FLAGS;
1102 	mode &= ~MPOL_MODE_FLAGS;
1103 	if ((unsigned int)mode >= MPOL_MAX)
1104 		return -EINVAL;
1105 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1106 		return -EINVAL;
1107 	err = get_nodes(&nodes, nmask, maxnode);
1108 	if (err)
1109 		return err;
1110 	return do_set_mempolicy(mode, flags, &nodes);
1111 }
1112 
1113 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1114 		const unsigned long __user *old_nodes,
1115 		const unsigned long __user *new_nodes)
1116 {
1117 	struct mm_struct *mm;
1118 	struct task_struct *task;
1119 	nodemask_t old;
1120 	nodemask_t new;
1121 	nodemask_t task_nodes;
1122 	int err;
1123 
1124 	err = get_nodes(&old, old_nodes, maxnode);
1125 	if (err)
1126 		return err;
1127 
1128 	err = get_nodes(&new, new_nodes, maxnode);
1129 	if (err)
1130 		return err;
1131 
1132 	/* Find the mm_struct */
1133 	read_lock(&tasklist_lock);
1134 	task = pid ? find_task_by_vpid(pid) : current;
1135 	if (!task) {
1136 		read_unlock(&tasklist_lock);
1137 		return -ESRCH;
1138 	}
1139 	mm = get_task_mm(task);
1140 	read_unlock(&tasklist_lock);
1141 
1142 	if (!mm)
1143 		return -EINVAL;
1144 
1145 	/*
1146 	 * Check if this process has the right to modify the specified
1147 	 * process. The right exists if the process has administrative
1148 	 * capabilities, superuser privileges or the same
1149 	 * userid as the target process.
1150 	 */
1151 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1152 	    (current->uid != task->suid) && (current->uid != task->uid) &&
1153 	    !capable(CAP_SYS_NICE)) {
1154 		err = -EPERM;
1155 		goto out;
1156 	}
1157 
1158 	task_nodes = cpuset_mems_allowed(task);
1159 	/* Is the user allowed to access the target nodes? */
1160 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1161 		err = -EPERM;
1162 		goto out;
1163 	}
1164 
1165 	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1166 		err = -EINVAL;
1167 		goto out;
1168 	}
1169 
1170 	err = security_task_movememory(task);
1171 	if (err)
1172 		goto out;
1173 
1174 	err = do_migrate_pages(mm, &old, &new,
1175 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1176 out:
1177 	mmput(mm);
1178 	return err;
1179 }
1180 
1181 
1182 /* Retrieve NUMA policy */
1183 asmlinkage long sys_get_mempolicy(int __user *policy,
1184 				unsigned long __user *nmask,
1185 				unsigned long maxnode,
1186 				unsigned long addr, unsigned long flags)
1187 {
1188 	int err;
1189 	int uninitialized_var(pval);
1190 	nodemask_t nodes;
1191 
1192 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1193 		return -EINVAL;
1194 
1195 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1196 
1197 	if (err)
1198 		return err;
1199 
1200 	if (policy && put_user(pval, policy))
1201 		return -EFAULT;
1202 
1203 	if (nmask)
1204 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1205 
1206 	return err;
1207 }
1208 
1209 #ifdef CONFIG_COMPAT
1210 
1211 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1212 				     compat_ulong_t __user *nmask,
1213 				     compat_ulong_t maxnode,
1214 				     compat_ulong_t addr, compat_ulong_t flags)
1215 {
1216 	long err;
1217 	unsigned long __user *nm = NULL;
1218 	unsigned long nr_bits, alloc_size;
1219 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1220 
1221 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1222 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1223 
1224 	if (nmask)
1225 		nm = compat_alloc_user_space(alloc_size);
1226 
1227 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1228 
1229 	if (!err && nmask) {
1230 		err = copy_from_user(bm, nm, alloc_size);
1231 		/* ensure entire bitmap is zeroed */
1232 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1233 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1234 	}
1235 
1236 	return err;
1237 }
1238 
1239 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1240 				     compat_ulong_t maxnode)
1241 {
1242 	long err = 0;
1243 	unsigned long __user *nm = NULL;
1244 	unsigned long nr_bits, alloc_size;
1245 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1246 
1247 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1248 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1249 
1250 	if (nmask) {
1251 		err = compat_get_bitmap(bm, nmask, nr_bits);
1252 		nm = compat_alloc_user_space(alloc_size);
1253 		err |= copy_to_user(nm, bm, alloc_size);
1254 	}
1255 
1256 	if (err)
1257 		return -EFAULT;
1258 
1259 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1260 }
1261 
1262 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1263 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1264 			     compat_ulong_t maxnode, compat_ulong_t flags)
1265 {
1266 	long err = 0;
1267 	unsigned long __user *nm = NULL;
1268 	unsigned long nr_bits, alloc_size;
1269 	nodemask_t bm;
1270 
1271 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1272 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1273 
1274 	if (nmask) {
1275 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1276 		nm = compat_alloc_user_space(alloc_size);
1277 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1278 	}
1279 
1280 	if (err)
1281 		return -EFAULT;
1282 
1283 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1284 }
1285 
1286 #endif
1287 
1288 /*
1289  * get_vma_policy(@task, @vma, @addr)
1290  * @task - task for fallback if vma policy == default
1291  * @vma   - virtual memory area whose policy is sought
1292  * @addr  - address in @vma for shared policy lookup
1293  *
1294  * Returns effective policy for a VMA at specified address.
1295  * Falls back to @task or system default policy, as necessary.
1296  * Current or other task's task mempolicy and non-shared vma policies
1297  * are protected by the task's mmap_sem, which must be held for read by
1298  * the caller.
1299  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1300  * count--added by the get_policy() vm_op, as appropriate--to protect against
1301  * freeing by another task.  It is the caller's responsibility to free the
1302  * extra reference for shared policies.
1303  */
1304 static struct mempolicy *get_vma_policy(struct task_struct *task,
1305 		struct vm_area_struct *vma, unsigned long addr)
1306 {
1307 	struct mempolicy *pol = task->mempolicy;
1308 
1309 	if (vma) {
1310 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1311 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1312 									addr);
1313 			if (vpol)
1314 				pol = vpol;
1315 		} else if (vma->vm_policy)
1316 			pol = vma->vm_policy;
1317 	}
1318 	if (!pol)
1319 		pol = &default_policy;
1320 	return pol;
1321 }
1322 
1323 /*
1324  * Return a nodemask representing a mempolicy for filtering nodes for
1325  * page allocation
1326  */
1327 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1328 {
1329 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1330 	if (unlikely(policy->mode == MPOL_BIND) &&
1331 			gfp_zone(gfp) >= policy_zone &&
1332 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1333 		return &policy->v.nodes;
1334 
1335 	return NULL;
1336 }
1337 
1338 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1339 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1340 {
1341 	int nd = numa_node_id();
1342 
1343 	switch (policy->mode) {
1344 	case MPOL_PREFERRED:
1345 		if (!(policy->flags & MPOL_F_LOCAL))
1346 			nd = policy->v.preferred_node;
1347 		break;
1348 	case MPOL_BIND:
1349 		/*
1350 		 * Normally, MPOL_BIND allocations are node-local within the
1351 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1352 		 * current node is part of the mask, we use the zonelist for
1353 		 * the first node in the mask instead.
1354 		 */
1355 		if (unlikely(gfp & __GFP_THISNODE) &&
1356 				unlikely(!node_isset(nd, policy->v.nodes)))
1357 			nd = first_node(policy->v.nodes);
1358 		break;
1359 	case MPOL_INTERLEAVE: /* should not happen */
1360 		break;
1361 	default:
1362 		BUG();
1363 	}
1364 	return node_zonelist(nd, gfp);
1365 }
1366 
1367 /* Do dynamic interleaving for a process */
1368 static unsigned interleave_nodes(struct mempolicy *policy)
1369 {
1370 	unsigned nid, next;
1371 	struct task_struct *me = current;
1372 
1373 	nid = me->il_next;
1374 	next = next_node(nid, policy->v.nodes);
1375 	if (next >= MAX_NUMNODES)
1376 		next = first_node(policy->v.nodes);
1377 	if (next < MAX_NUMNODES)
1378 		me->il_next = next;
1379 	return nid;
1380 }
1381 
1382 /*
1383  * Depending on the memory policy provide a node from which to allocate the
1384  * next slab entry.
1385  * @policy must be protected by freeing by the caller.  If @policy is
1386  * the current task's mempolicy, this protection is implicit, as only the
1387  * task can change it's policy.  The system default policy requires no
1388  * such protection.
1389  */
1390 unsigned slab_node(struct mempolicy *policy)
1391 {
1392 	if (!policy || policy->flags & MPOL_F_LOCAL)
1393 		return numa_node_id();
1394 
1395 	switch (policy->mode) {
1396 	case MPOL_PREFERRED:
1397 		/*
1398 		 * handled MPOL_F_LOCAL above
1399 		 */
1400 		return policy->v.preferred_node;
1401 
1402 	case MPOL_INTERLEAVE:
1403 		return interleave_nodes(policy);
1404 
1405 	case MPOL_BIND: {
1406 		/*
1407 		 * Follow bind policy behavior and start allocation at the
1408 		 * first node.
1409 		 */
1410 		struct zonelist *zonelist;
1411 		struct zone *zone;
1412 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1413 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1414 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1415 							&policy->v.nodes,
1416 							&zone);
1417 		return zone->node;
1418 	}
1419 
1420 	default:
1421 		BUG();
1422 	}
1423 }
1424 
1425 /* Do static interleaving for a VMA with known offset. */
1426 static unsigned offset_il_node(struct mempolicy *pol,
1427 		struct vm_area_struct *vma, unsigned long off)
1428 {
1429 	unsigned nnodes = nodes_weight(pol->v.nodes);
1430 	unsigned target;
1431 	int c;
1432 	int nid = -1;
1433 
1434 	if (!nnodes)
1435 		return numa_node_id();
1436 	target = (unsigned int)off % nnodes;
1437 	c = 0;
1438 	do {
1439 		nid = next_node(nid, pol->v.nodes);
1440 		c++;
1441 	} while (c <= target);
1442 	return nid;
1443 }
1444 
1445 /* Determine a node number for interleave */
1446 static inline unsigned interleave_nid(struct mempolicy *pol,
1447 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1448 {
1449 	if (vma) {
1450 		unsigned long off;
1451 
1452 		/*
1453 		 * for small pages, there is no difference between
1454 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1455 		 * for huge pages, since vm_pgoff is in units of small
1456 		 * pages, we need to shift off the always 0 bits to get
1457 		 * a useful offset.
1458 		 */
1459 		BUG_ON(shift < PAGE_SHIFT);
1460 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1461 		off += (addr - vma->vm_start) >> shift;
1462 		return offset_il_node(pol, vma, off);
1463 	} else
1464 		return interleave_nodes(pol);
1465 }
1466 
1467 #ifdef CONFIG_HUGETLBFS
1468 /*
1469  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1470  * @vma = virtual memory area whose policy is sought
1471  * @addr = address in @vma for shared policy lookup and interleave policy
1472  * @gfp_flags = for requested zone
1473  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1474  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1475  *
1476  * Returns a zonelist suitable for a huge page allocation and a pointer
1477  * to the struct mempolicy for conditional unref after allocation.
1478  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1479  * @nodemask for filtering the zonelist.
1480  */
1481 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1482 				gfp_t gfp_flags, struct mempolicy **mpol,
1483 				nodemask_t **nodemask)
1484 {
1485 	struct zonelist *zl;
1486 
1487 	*mpol = get_vma_policy(current, vma, addr);
1488 	*nodemask = NULL;	/* assume !MPOL_BIND */
1489 
1490 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1491 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1492 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1493 	} else {
1494 		zl = policy_zonelist(gfp_flags, *mpol);
1495 		if ((*mpol)->mode == MPOL_BIND)
1496 			*nodemask = &(*mpol)->v.nodes;
1497 	}
1498 	return zl;
1499 }
1500 #endif
1501 
1502 /* Allocate a page in interleaved policy.
1503    Own path because it needs to do special accounting. */
1504 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1505 					unsigned nid)
1506 {
1507 	struct zonelist *zl;
1508 	struct page *page;
1509 
1510 	zl = node_zonelist(nid, gfp);
1511 	page = __alloc_pages(gfp, order, zl);
1512 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1513 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1514 	return page;
1515 }
1516 
1517 /**
1518  * 	alloc_page_vma	- Allocate a page for a VMA.
1519  *
1520  * 	@gfp:
1521  *      %GFP_USER    user allocation.
1522  *      %GFP_KERNEL  kernel allocations,
1523  *      %GFP_HIGHMEM highmem/user allocations,
1524  *      %GFP_FS      allocation should not call back into a file system.
1525  *      %GFP_ATOMIC  don't sleep.
1526  *
1527  * 	@vma:  Pointer to VMA or NULL if not available.
1528  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1529  *
1530  * 	This function allocates a page from the kernel page pool and applies
1531  *	a NUMA policy associated with the VMA or the current process.
1532  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1533  *	mm_struct of the VMA to prevent it from going away. Should be used for
1534  *	all allocations for pages that will be mapped into
1535  * 	user space. Returns NULL when no page can be allocated.
1536  *
1537  *	Should be called with the mm_sem of the vma hold.
1538  */
1539 struct page *
1540 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1541 {
1542 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1543 	struct zonelist *zl;
1544 
1545 	cpuset_update_task_memory_state();
1546 
1547 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1548 		unsigned nid;
1549 
1550 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1551 		mpol_cond_put(pol);
1552 		return alloc_page_interleave(gfp, 0, nid);
1553 	}
1554 	zl = policy_zonelist(gfp, pol);
1555 	if (unlikely(mpol_needs_cond_ref(pol))) {
1556 		/*
1557 		 * slow path: ref counted shared policy
1558 		 */
1559 		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1560 						zl, policy_nodemask(gfp, pol));
1561 		__mpol_put(pol);
1562 		return page;
1563 	}
1564 	/*
1565 	 * fast path:  default or task policy
1566 	 */
1567 	return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1568 }
1569 
1570 /**
1571  * 	alloc_pages_current - Allocate pages.
1572  *
1573  *	@gfp:
1574  *		%GFP_USER   user allocation,
1575  *      	%GFP_KERNEL kernel allocation,
1576  *      	%GFP_HIGHMEM highmem allocation,
1577  *      	%GFP_FS     don't call back into a file system.
1578  *      	%GFP_ATOMIC don't sleep.
1579  *	@order: Power of two of allocation size in pages. 0 is a single page.
1580  *
1581  *	Allocate a page from the kernel page pool.  When not in
1582  *	interrupt context and apply the current process NUMA policy.
1583  *	Returns NULL when no page can be allocated.
1584  *
1585  *	Don't call cpuset_update_task_memory_state() unless
1586  *	1) it's ok to take cpuset_sem (can WAIT), and
1587  *	2) allocating for current task (not interrupt).
1588  */
1589 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1590 {
1591 	struct mempolicy *pol = current->mempolicy;
1592 
1593 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1594 		cpuset_update_task_memory_state();
1595 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1596 		pol = &default_policy;
1597 
1598 	/*
1599 	 * No reference counting needed for current->mempolicy
1600 	 * nor system default_policy
1601 	 */
1602 	if (pol->mode == MPOL_INTERLEAVE)
1603 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1604 	return __alloc_pages_nodemask(gfp, order,
1605 			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1606 }
1607 EXPORT_SYMBOL(alloc_pages_current);
1608 
1609 /*
1610  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1611  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1612  * with the mems_allowed returned by cpuset_mems_allowed().  This
1613  * keeps mempolicies cpuset relative after its cpuset moves.  See
1614  * further kernel/cpuset.c update_nodemask().
1615  */
1616 
1617 /* Slow path of a mempolicy duplicate */
1618 struct mempolicy *__mpol_dup(struct mempolicy *old)
1619 {
1620 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1621 
1622 	if (!new)
1623 		return ERR_PTR(-ENOMEM);
1624 	if (current_cpuset_is_being_rebound()) {
1625 		nodemask_t mems = cpuset_mems_allowed(current);
1626 		mpol_rebind_policy(old, &mems);
1627 	}
1628 	*new = *old;
1629 	atomic_set(&new->refcnt, 1);
1630 	return new;
1631 }
1632 
1633 /*
1634  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1635  * eliminate the * MPOL_F_* flags that require conditional ref and
1636  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1637  * after return.  Use the returned value.
1638  *
1639  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1640  * policy lookup, even if the policy needs/has extra ref on lookup.
1641  * shmem_readahead needs this.
1642  */
1643 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1644 						struct mempolicy *frompol)
1645 {
1646 	if (!mpol_needs_cond_ref(frompol))
1647 		return frompol;
1648 
1649 	*tompol = *frompol;
1650 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1651 	__mpol_put(frompol);
1652 	return tompol;
1653 }
1654 
1655 static int mpol_match_intent(const struct mempolicy *a,
1656 			     const struct mempolicy *b)
1657 {
1658 	if (a->flags != b->flags)
1659 		return 0;
1660 	if (!mpol_store_user_nodemask(a))
1661 		return 1;
1662 	return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1663 }
1664 
1665 /* Slow path of a mempolicy comparison */
1666 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1667 {
1668 	if (!a || !b)
1669 		return 0;
1670 	if (a->mode != b->mode)
1671 		return 0;
1672 	if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1673 		return 0;
1674 	switch (a->mode) {
1675 	case MPOL_BIND:
1676 		/* Fall through */
1677 	case MPOL_INTERLEAVE:
1678 		return nodes_equal(a->v.nodes, b->v.nodes);
1679 	case MPOL_PREFERRED:
1680 		return a->v.preferred_node == b->v.preferred_node &&
1681 			a->flags == b->flags;
1682 	default:
1683 		BUG();
1684 		return 0;
1685 	}
1686 }
1687 
1688 /*
1689  * Shared memory backing store policy support.
1690  *
1691  * Remember policies even when nobody has shared memory mapped.
1692  * The policies are kept in Red-Black tree linked from the inode.
1693  * They are protected by the sp->lock spinlock, which should be held
1694  * for any accesses to the tree.
1695  */
1696 
1697 /* lookup first element intersecting start-end */
1698 /* Caller holds sp->lock */
1699 static struct sp_node *
1700 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1701 {
1702 	struct rb_node *n = sp->root.rb_node;
1703 
1704 	while (n) {
1705 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1706 
1707 		if (start >= p->end)
1708 			n = n->rb_right;
1709 		else if (end <= p->start)
1710 			n = n->rb_left;
1711 		else
1712 			break;
1713 	}
1714 	if (!n)
1715 		return NULL;
1716 	for (;;) {
1717 		struct sp_node *w = NULL;
1718 		struct rb_node *prev = rb_prev(n);
1719 		if (!prev)
1720 			break;
1721 		w = rb_entry(prev, struct sp_node, nd);
1722 		if (w->end <= start)
1723 			break;
1724 		n = prev;
1725 	}
1726 	return rb_entry(n, struct sp_node, nd);
1727 }
1728 
1729 /* Insert a new shared policy into the list. */
1730 /* Caller holds sp->lock */
1731 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1732 {
1733 	struct rb_node **p = &sp->root.rb_node;
1734 	struct rb_node *parent = NULL;
1735 	struct sp_node *nd;
1736 
1737 	while (*p) {
1738 		parent = *p;
1739 		nd = rb_entry(parent, struct sp_node, nd);
1740 		if (new->start < nd->start)
1741 			p = &(*p)->rb_left;
1742 		else if (new->end > nd->end)
1743 			p = &(*p)->rb_right;
1744 		else
1745 			BUG();
1746 	}
1747 	rb_link_node(&new->nd, parent, p);
1748 	rb_insert_color(&new->nd, &sp->root);
1749 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1750 		 new->policy ? new->policy->mode : 0);
1751 }
1752 
1753 /* Find shared policy intersecting idx */
1754 struct mempolicy *
1755 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1756 {
1757 	struct mempolicy *pol = NULL;
1758 	struct sp_node *sn;
1759 
1760 	if (!sp->root.rb_node)
1761 		return NULL;
1762 	spin_lock(&sp->lock);
1763 	sn = sp_lookup(sp, idx, idx+1);
1764 	if (sn) {
1765 		mpol_get(sn->policy);
1766 		pol = sn->policy;
1767 	}
1768 	spin_unlock(&sp->lock);
1769 	return pol;
1770 }
1771 
1772 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1773 {
1774 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1775 	rb_erase(&n->nd, &sp->root);
1776 	mpol_put(n->policy);
1777 	kmem_cache_free(sn_cache, n);
1778 }
1779 
1780 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1781 				struct mempolicy *pol)
1782 {
1783 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1784 
1785 	if (!n)
1786 		return NULL;
1787 	n->start = start;
1788 	n->end = end;
1789 	mpol_get(pol);
1790 	pol->flags |= MPOL_F_SHARED;	/* for unref */
1791 	n->policy = pol;
1792 	return n;
1793 }
1794 
1795 /* Replace a policy range. */
1796 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1797 				 unsigned long end, struct sp_node *new)
1798 {
1799 	struct sp_node *n, *new2 = NULL;
1800 
1801 restart:
1802 	spin_lock(&sp->lock);
1803 	n = sp_lookup(sp, start, end);
1804 	/* Take care of old policies in the same range. */
1805 	while (n && n->start < end) {
1806 		struct rb_node *next = rb_next(&n->nd);
1807 		if (n->start >= start) {
1808 			if (n->end <= end)
1809 				sp_delete(sp, n);
1810 			else
1811 				n->start = end;
1812 		} else {
1813 			/* Old policy spanning whole new range. */
1814 			if (n->end > end) {
1815 				if (!new2) {
1816 					spin_unlock(&sp->lock);
1817 					new2 = sp_alloc(end, n->end, n->policy);
1818 					if (!new2)
1819 						return -ENOMEM;
1820 					goto restart;
1821 				}
1822 				n->end = start;
1823 				sp_insert(sp, new2);
1824 				new2 = NULL;
1825 				break;
1826 			} else
1827 				n->end = start;
1828 		}
1829 		if (!next)
1830 			break;
1831 		n = rb_entry(next, struct sp_node, nd);
1832 	}
1833 	if (new)
1834 		sp_insert(sp, new);
1835 	spin_unlock(&sp->lock);
1836 	if (new2) {
1837 		mpol_put(new2->policy);
1838 		kmem_cache_free(sn_cache, new2);
1839 	}
1840 	return 0;
1841 }
1842 
1843 /**
1844  * mpol_shared_policy_init - initialize shared policy for inode
1845  * @sp: pointer to inode shared policy
1846  * @mpol:  struct mempolicy to install
1847  *
1848  * Install non-NULL @mpol in inode's shared policy rb-tree.
1849  * On entry, the current task has a reference on a non-NULL @mpol.
1850  * This must be released on exit.
1851  */
1852 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1853 {
1854 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
1855 	spin_lock_init(&sp->lock);
1856 
1857 	if (mpol) {
1858 		struct vm_area_struct pvma;
1859 		struct mempolicy *new;
1860 
1861 		/* contextualize the tmpfs mount point mempolicy */
1862 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1863 		mpol_put(mpol);	/* drop our ref on sb mpol */
1864 		if (IS_ERR(new))
1865 			return;		/* no valid nodemask intersection */
1866 
1867 		/* Create pseudo-vma that contains just the policy */
1868 		memset(&pvma, 0, sizeof(struct vm_area_struct));
1869 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
1870 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1871 		mpol_put(new);			/* drop initial ref */
1872 	}
1873 }
1874 
1875 int mpol_set_shared_policy(struct shared_policy *info,
1876 			struct vm_area_struct *vma, struct mempolicy *npol)
1877 {
1878 	int err;
1879 	struct sp_node *new = NULL;
1880 	unsigned long sz = vma_pages(vma);
1881 
1882 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1883 		 vma->vm_pgoff,
1884 		 sz, npol ? npol->mode : -1,
1885 		 npol ? npol->flags : -1,
1886 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1887 
1888 	if (npol) {
1889 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1890 		if (!new)
1891 			return -ENOMEM;
1892 	}
1893 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1894 	if (err && new)
1895 		kmem_cache_free(sn_cache, new);
1896 	return err;
1897 }
1898 
1899 /* Free a backing policy store on inode delete. */
1900 void mpol_free_shared_policy(struct shared_policy *p)
1901 {
1902 	struct sp_node *n;
1903 	struct rb_node *next;
1904 
1905 	if (!p->root.rb_node)
1906 		return;
1907 	spin_lock(&p->lock);
1908 	next = rb_first(&p->root);
1909 	while (next) {
1910 		n = rb_entry(next, struct sp_node, nd);
1911 		next = rb_next(&n->nd);
1912 		rb_erase(&n->nd, &p->root);
1913 		mpol_put(n->policy);
1914 		kmem_cache_free(sn_cache, n);
1915 	}
1916 	spin_unlock(&p->lock);
1917 }
1918 
1919 /* assumes fs == KERNEL_DS */
1920 void __init numa_policy_init(void)
1921 {
1922 	nodemask_t interleave_nodes;
1923 	unsigned long largest = 0;
1924 	int nid, prefer = 0;
1925 
1926 	policy_cache = kmem_cache_create("numa_policy",
1927 					 sizeof(struct mempolicy),
1928 					 0, SLAB_PANIC, NULL);
1929 
1930 	sn_cache = kmem_cache_create("shared_policy_node",
1931 				     sizeof(struct sp_node),
1932 				     0, SLAB_PANIC, NULL);
1933 
1934 	/*
1935 	 * Set interleaving policy for system init. Interleaving is only
1936 	 * enabled across suitably sized nodes (default is >= 16MB), or
1937 	 * fall back to the largest node if they're all smaller.
1938 	 */
1939 	nodes_clear(interleave_nodes);
1940 	for_each_node_state(nid, N_HIGH_MEMORY) {
1941 		unsigned long total_pages = node_present_pages(nid);
1942 
1943 		/* Preserve the largest node */
1944 		if (largest < total_pages) {
1945 			largest = total_pages;
1946 			prefer = nid;
1947 		}
1948 
1949 		/* Interleave this node? */
1950 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1951 			node_set(nid, interleave_nodes);
1952 	}
1953 
1954 	/* All too small, use the largest */
1955 	if (unlikely(nodes_empty(interleave_nodes)))
1956 		node_set(prefer, interleave_nodes);
1957 
1958 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1959 		printk("numa_policy_init: interleaving failed\n");
1960 }
1961 
1962 /* Reset policy of current process to default */
1963 void numa_default_policy(void)
1964 {
1965 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1966 }
1967 
1968 /*
1969  * Parse and format mempolicy from/to strings
1970  */
1971 
1972 /*
1973  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
1974  * Used only for mpol_parse_str() and mpol_to_str()
1975  */
1976 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1977 static const char * const policy_types[] =
1978 	{ "default", "prefer", "bind", "interleave", "local" };
1979 
1980 
1981 #ifdef CONFIG_TMPFS
1982 /**
1983  * mpol_parse_str - parse string to mempolicy
1984  * @str:  string containing mempolicy to parse
1985  * @mpol:  pointer to struct mempolicy pointer, returned on success.
1986  * @no_context:  flag whether to "contextualize" the mempolicy
1987  *
1988  * Format of input:
1989  *	<mode>[=<flags>][:<nodelist>]
1990  *
1991  * if @no_context is true, save the input nodemask in w.user_nodemask in
1992  * the returned mempolicy.  This will be used to "clone" the mempolicy in
1993  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
1994  * mount option.  Note that if 'static' or 'relative' mode flags were
1995  * specified, the input nodemask will already have been saved.  Saving
1996  * it again is redundant, but safe.
1997  *
1998  * On success, returns 0, else 1
1999  */
2000 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2001 {
2002 	struct mempolicy *new = NULL;
2003 	unsigned short uninitialized_var(mode);
2004 	unsigned short uninitialized_var(mode_flags);
2005 	nodemask_t nodes;
2006 	char *nodelist = strchr(str, ':');
2007 	char *flags = strchr(str, '=');
2008 	int i;
2009 	int err = 1;
2010 
2011 	if (nodelist) {
2012 		/* NUL-terminate mode or flags string */
2013 		*nodelist++ = '\0';
2014 		if (nodelist_parse(nodelist, nodes))
2015 			goto out;
2016 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2017 			goto out;
2018 	} else
2019 		nodes_clear(nodes);
2020 
2021 	if (flags)
2022 		*flags++ = '\0';	/* terminate mode string */
2023 
2024 	for (i = 0; i <= MPOL_LOCAL; i++) {
2025 		if (!strcmp(str, policy_types[i])) {
2026 			mode = i;
2027 			break;
2028 		}
2029 	}
2030 	if (i > MPOL_LOCAL)
2031 		goto out;
2032 
2033 	switch (mode) {
2034 	case MPOL_PREFERRED:
2035 		/*
2036 		 * Insist on a nodelist of one node only
2037 		 */
2038 		if (nodelist) {
2039 			char *rest = nodelist;
2040 			while (isdigit(*rest))
2041 				rest++;
2042 			if (!*rest)
2043 				err = 0;
2044 		}
2045 		break;
2046 	case MPOL_INTERLEAVE:
2047 		/*
2048 		 * Default to online nodes with memory if no nodelist
2049 		 */
2050 		if (!nodelist)
2051 			nodes = node_states[N_HIGH_MEMORY];
2052 		err = 0;
2053 		break;
2054 	case MPOL_LOCAL:
2055 		/*
2056 		 * Don't allow a nodelist;  mpol_new() checks flags
2057 		 */
2058 		if (nodelist)
2059 			goto out;
2060 		mode = MPOL_PREFERRED;
2061 		break;
2062 
2063 	/*
2064 	 * case MPOL_BIND:    mpol_new() enforces non-empty nodemask.
2065 	 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2066 	 */
2067 	}
2068 
2069 	mode_flags = 0;
2070 	if (flags) {
2071 		/*
2072 		 * Currently, we only support two mutually exclusive
2073 		 * mode flags.
2074 		 */
2075 		if (!strcmp(flags, "static"))
2076 			mode_flags |= MPOL_F_STATIC_NODES;
2077 		else if (!strcmp(flags, "relative"))
2078 			mode_flags |= MPOL_F_RELATIVE_NODES;
2079 		else
2080 			err = 1;
2081 	}
2082 
2083 	new = mpol_new(mode, mode_flags, &nodes);
2084 	if (IS_ERR(new))
2085 		err = 1;
2086 	else if (no_context)
2087 		new->w.user_nodemask = nodes;	/* save for contextualization */
2088 
2089 out:
2090 	/* Restore string for error message */
2091 	if (nodelist)
2092 		*--nodelist = ':';
2093 	if (flags)
2094 		*--flags = '=';
2095 	if (!err)
2096 		*mpol = new;
2097 	return err;
2098 }
2099 #endif /* CONFIG_TMPFS */
2100 
2101 /**
2102  * mpol_to_str - format a mempolicy structure for printing
2103  * @buffer:  to contain formatted mempolicy string
2104  * @maxlen:  length of @buffer
2105  * @pol:  pointer to mempolicy to be formatted
2106  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2107  *
2108  * Convert a mempolicy into a string.
2109  * Returns the number of characters in buffer (if positive)
2110  * or an error (negative)
2111  */
2112 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2113 {
2114 	char *p = buffer;
2115 	int l;
2116 	nodemask_t nodes;
2117 	unsigned short mode;
2118 	unsigned short flags = pol ? pol->flags : 0;
2119 
2120 	/*
2121 	 * Sanity check:  room for longest mode, flag and some nodes
2122 	 */
2123 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2124 
2125 	if (!pol || pol == &default_policy)
2126 		mode = MPOL_DEFAULT;
2127 	else
2128 		mode = pol->mode;
2129 
2130 	switch (mode) {
2131 	case MPOL_DEFAULT:
2132 		nodes_clear(nodes);
2133 		break;
2134 
2135 	case MPOL_PREFERRED:
2136 		nodes_clear(nodes);
2137 		if (flags & MPOL_F_LOCAL)
2138 			mode = MPOL_LOCAL;	/* pseudo-policy */
2139 		else
2140 			node_set(pol->v.preferred_node, nodes);
2141 		break;
2142 
2143 	case MPOL_BIND:
2144 		/* Fall through */
2145 	case MPOL_INTERLEAVE:
2146 		if (no_context)
2147 			nodes = pol->w.user_nodemask;
2148 		else
2149 			nodes = pol->v.nodes;
2150 		break;
2151 
2152 	default:
2153 		BUG();
2154 	}
2155 
2156 	l = strlen(policy_types[mode]);
2157 	if (buffer + maxlen < p + l + 1)
2158 		return -ENOSPC;
2159 
2160 	strcpy(p, policy_types[mode]);
2161 	p += l;
2162 
2163 	if (flags & MPOL_MODE_FLAGS) {
2164 		if (buffer + maxlen < p + 2)
2165 			return -ENOSPC;
2166 		*p++ = '=';
2167 
2168 		/*
2169 		 * Currently, the only defined flags are mutually exclusive
2170 		 */
2171 		if (flags & MPOL_F_STATIC_NODES)
2172 			p += snprintf(p, buffer + maxlen - p, "static");
2173 		else if (flags & MPOL_F_RELATIVE_NODES)
2174 			p += snprintf(p, buffer + maxlen - p, "relative");
2175 	}
2176 
2177 	if (!nodes_empty(nodes)) {
2178 		if (buffer + maxlen < p + 2)
2179 			return -ENOSPC;
2180 		*p++ = ':';
2181 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2182 	}
2183 	return p - buffer;
2184 }
2185 
2186 struct numa_maps {
2187 	unsigned long pages;
2188 	unsigned long anon;
2189 	unsigned long active;
2190 	unsigned long writeback;
2191 	unsigned long mapcount_max;
2192 	unsigned long dirty;
2193 	unsigned long swapcache;
2194 	unsigned long node[MAX_NUMNODES];
2195 };
2196 
2197 static void gather_stats(struct page *page, void *private, int pte_dirty)
2198 {
2199 	struct numa_maps *md = private;
2200 	int count = page_mapcount(page);
2201 
2202 	md->pages++;
2203 	if (pte_dirty || PageDirty(page))
2204 		md->dirty++;
2205 
2206 	if (PageSwapCache(page))
2207 		md->swapcache++;
2208 
2209 	if (PageActive(page) || PageUnevictable(page))
2210 		md->active++;
2211 
2212 	if (PageWriteback(page))
2213 		md->writeback++;
2214 
2215 	if (PageAnon(page))
2216 		md->anon++;
2217 
2218 	if (count > md->mapcount_max)
2219 		md->mapcount_max = count;
2220 
2221 	md->node[page_to_nid(page)]++;
2222 }
2223 
2224 #ifdef CONFIG_HUGETLB_PAGE
2225 static void check_huge_range(struct vm_area_struct *vma,
2226 		unsigned long start, unsigned long end,
2227 		struct numa_maps *md)
2228 {
2229 	unsigned long addr;
2230 	struct page *page;
2231 	struct hstate *h = hstate_vma(vma);
2232 	unsigned long sz = huge_page_size(h);
2233 
2234 	for (addr = start; addr < end; addr += sz) {
2235 		pte_t *ptep = huge_pte_offset(vma->vm_mm,
2236 						addr & huge_page_mask(h));
2237 		pte_t pte;
2238 
2239 		if (!ptep)
2240 			continue;
2241 
2242 		pte = *ptep;
2243 		if (pte_none(pte))
2244 			continue;
2245 
2246 		page = pte_page(pte);
2247 		if (!page)
2248 			continue;
2249 
2250 		gather_stats(page, md, pte_dirty(*ptep));
2251 	}
2252 }
2253 #else
2254 static inline void check_huge_range(struct vm_area_struct *vma,
2255 		unsigned long start, unsigned long end,
2256 		struct numa_maps *md)
2257 {
2258 }
2259 #endif
2260 
2261 /*
2262  * Display pages allocated per node and memory policy via /proc.
2263  */
2264 int show_numa_map(struct seq_file *m, void *v)
2265 {
2266 	struct proc_maps_private *priv = m->private;
2267 	struct vm_area_struct *vma = v;
2268 	struct numa_maps *md;
2269 	struct file *file = vma->vm_file;
2270 	struct mm_struct *mm = vma->vm_mm;
2271 	struct mempolicy *pol;
2272 	int n;
2273 	char buffer[50];
2274 
2275 	if (!mm)
2276 		return 0;
2277 
2278 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2279 	if (!md)
2280 		return 0;
2281 
2282 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2283 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2284 	mpol_cond_put(pol);
2285 
2286 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2287 
2288 	if (file) {
2289 		seq_printf(m, " file=");
2290 		seq_path(m, &file->f_path, "\n\t= ");
2291 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2292 		seq_printf(m, " heap");
2293 	} else if (vma->vm_start <= mm->start_stack &&
2294 			vma->vm_end >= mm->start_stack) {
2295 		seq_printf(m, " stack");
2296 	}
2297 
2298 	if (is_vm_hugetlb_page(vma)) {
2299 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2300 		seq_printf(m, " huge");
2301 	} else {
2302 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2303 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2304 	}
2305 
2306 	if (!md->pages)
2307 		goto out;
2308 
2309 	if (md->anon)
2310 		seq_printf(m," anon=%lu",md->anon);
2311 
2312 	if (md->dirty)
2313 		seq_printf(m," dirty=%lu",md->dirty);
2314 
2315 	if (md->pages != md->anon && md->pages != md->dirty)
2316 		seq_printf(m, " mapped=%lu", md->pages);
2317 
2318 	if (md->mapcount_max > 1)
2319 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2320 
2321 	if (md->swapcache)
2322 		seq_printf(m," swapcache=%lu", md->swapcache);
2323 
2324 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2325 		seq_printf(m," active=%lu", md->active);
2326 
2327 	if (md->writeback)
2328 		seq_printf(m," writeback=%lu", md->writeback);
2329 
2330 	for_each_node_state(n, N_HIGH_MEMORY)
2331 		if (md->node[n])
2332 			seq_printf(m, " N%d=%lu", n, md->node[n]);
2333 out:
2334 	seq_putc(m, '\n');
2335 	kfree(md);
2336 
2337 	if (m->count < m->size)
2338 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2339 	return 0;
2340 }
2341