1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 /** 131 * numa_map_to_online_node - Find closest online node 132 * @node: Node id to start the search 133 * 134 * Lookup the next closest node by distance if @nid is not online. 135 */ 136 int numa_map_to_online_node(int node) 137 { 138 int min_dist = INT_MAX, dist, n, min_node; 139 140 if (node == NUMA_NO_NODE || node_online(node)) 141 return node; 142 143 min_node = node; 144 for_each_online_node(n) { 145 dist = node_distance(node, n); 146 if (dist < min_dist) { 147 min_dist = dist; 148 min_node = n; 149 } 150 } 151 152 return min_node; 153 } 154 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 155 156 struct mempolicy *get_task_policy(struct task_struct *p) 157 { 158 struct mempolicy *pol = p->mempolicy; 159 int node; 160 161 if (pol) 162 return pol; 163 164 node = numa_node_id(); 165 if (node != NUMA_NO_NODE) { 166 pol = &preferred_node_policy[node]; 167 /* preferred_node_policy is not initialised early in boot */ 168 if (pol->mode) 169 return pol; 170 } 171 172 return &default_policy; 173 } 174 175 static const struct mempolicy_operations { 176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 178 } mpol_ops[MPOL_MAX]; 179 180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 181 { 182 return pol->flags & MPOL_MODE_FLAGS; 183 } 184 185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 186 const nodemask_t *rel) 187 { 188 nodemask_t tmp; 189 nodes_fold(tmp, *orig, nodes_weight(*rel)); 190 nodes_onto(*ret, tmp, *rel); 191 } 192 193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 194 { 195 if (nodes_empty(*nodes)) 196 return -EINVAL; 197 pol->v.nodes = *nodes; 198 return 0; 199 } 200 201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 202 { 203 if (!nodes) 204 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 205 else if (nodes_empty(*nodes)) 206 return -EINVAL; /* no allowed nodes */ 207 else 208 pol->v.preferred_node = first_node(*nodes); 209 return 0; 210 } 211 212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 213 { 214 if (nodes_empty(*nodes)) 215 return -EINVAL; 216 pol->v.nodes = *nodes; 217 return 0; 218 } 219 220 /* 221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 222 * any, for the new policy. mpol_new() has already validated the nodes 223 * parameter with respect to the policy mode and flags. But, we need to 224 * handle an empty nodemask with MPOL_PREFERRED here. 225 * 226 * Must be called holding task's alloc_lock to protect task's mems_allowed 227 * and mempolicy. May also be called holding the mmap_lock for write. 228 */ 229 static int mpol_set_nodemask(struct mempolicy *pol, 230 const nodemask_t *nodes, struct nodemask_scratch *nsc) 231 { 232 int ret; 233 234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 235 if (pol == NULL) 236 return 0; 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 243 nodes = NULL; /* explicit local allocation */ 244 else { 245 if (pol->flags & MPOL_F_RELATIVE_NODES) 246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 247 else 248 nodes_and(nsc->mask2, *nodes, nsc->mask1); 249 250 if (mpol_store_user_nodemask(pol)) 251 pol->w.user_nodemask = *nodes; 252 else 253 pol->w.cpuset_mems_allowed = 254 cpuset_current_mems_allowed; 255 } 256 257 if (nodes) 258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 259 else 260 ret = mpol_ops[pol->mode].create(pol, NULL); 261 return ret; 262 } 263 264 /* 265 * This function just creates a new policy, does some check and simple 266 * initialization. You must invoke mpol_set_nodemask() to set nodes. 267 */ 268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 269 nodemask_t *nodes) 270 { 271 struct mempolicy *policy; 272 273 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 275 276 if (mode == MPOL_DEFAULT) { 277 if (nodes && !nodes_empty(*nodes)) 278 return ERR_PTR(-EINVAL); 279 return NULL; 280 } 281 VM_BUG_ON(!nodes); 282 283 /* 284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 286 * All other modes require a valid pointer to a non-empty nodemask. 287 */ 288 if (mode == MPOL_PREFERRED) { 289 if (nodes_empty(*nodes)) { 290 if (((flags & MPOL_F_STATIC_NODES) || 291 (flags & MPOL_F_RELATIVE_NODES))) 292 return ERR_PTR(-EINVAL); 293 } 294 } else if (mode == MPOL_LOCAL) { 295 if (!nodes_empty(*nodes) || 296 (flags & MPOL_F_STATIC_NODES) || 297 (flags & MPOL_F_RELATIVE_NODES)) 298 return ERR_PTR(-EINVAL); 299 mode = MPOL_PREFERRED; 300 } else if (nodes_empty(*nodes)) 301 return ERR_PTR(-EINVAL); 302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 303 if (!policy) 304 return ERR_PTR(-ENOMEM); 305 atomic_set(&policy->refcnt, 1); 306 policy->mode = mode; 307 policy->flags = flags; 308 309 return policy; 310 } 311 312 /* Slow path of a mpol destructor. */ 313 void __mpol_put(struct mempolicy *p) 314 { 315 if (!atomic_dec_and_test(&p->refcnt)) 316 return; 317 kmem_cache_free(policy_cache, p); 318 } 319 320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 321 { 322 } 323 324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 325 { 326 nodemask_t tmp; 327 328 if (pol->flags & MPOL_F_STATIC_NODES) 329 nodes_and(tmp, pol->w.user_nodemask, *nodes); 330 else if (pol->flags & MPOL_F_RELATIVE_NODES) 331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 332 else { 333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 334 *nodes); 335 pol->w.cpuset_mems_allowed = *nodes; 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 pol->v.nodes = tmp; 342 } 343 344 static void mpol_rebind_preferred(struct mempolicy *pol, 345 const nodemask_t *nodes) 346 { 347 nodemask_t tmp; 348 349 if (pol->flags & MPOL_F_STATIC_NODES) { 350 int node = first_node(pol->w.user_nodemask); 351 352 if (node_isset(node, *nodes)) { 353 pol->v.preferred_node = node; 354 pol->flags &= ~MPOL_F_LOCAL; 355 } else 356 pol->flags |= MPOL_F_LOCAL; 357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 359 pol->v.preferred_node = first_node(tmp); 360 } else if (!(pol->flags & MPOL_F_LOCAL)) { 361 pol->v.preferred_node = node_remap(pol->v.preferred_node, 362 pol->w.cpuset_mems_allowed, 363 *nodes); 364 pol->w.cpuset_mems_allowed = *nodes; 365 } 366 } 367 368 /* 369 * mpol_rebind_policy - Migrate a policy to a different set of nodes 370 * 371 * Per-vma policies are protected by mmap_lock. Allocations using per-task 372 * policies are protected by task->mems_allowed_seq to prevent a premature 373 * OOM/allocation failure due to parallel nodemask modification. 374 */ 375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 376 { 377 if (!pol) 378 return; 379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 381 return; 382 383 mpol_ops[pol->mode].rebind(pol, newmask); 384 } 385 386 /* 387 * Wrapper for mpol_rebind_policy() that just requires task 388 * pointer, and updates task mempolicy. 389 * 390 * Called with task's alloc_lock held. 391 */ 392 393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 394 { 395 mpol_rebind_policy(tsk->mempolicy, new); 396 } 397 398 /* 399 * Rebind each vma in mm to new nodemask. 400 * 401 * Call holding a reference to mm. Takes mm->mmap_lock during call. 402 */ 403 404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 405 { 406 struct vm_area_struct *vma; 407 408 mmap_write_lock(mm); 409 for (vma = mm->mmap; vma; vma = vma->vm_next) 410 mpol_rebind_policy(vma->vm_policy, new); 411 mmap_write_unlock(mm); 412 } 413 414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 415 [MPOL_DEFAULT] = { 416 .rebind = mpol_rebind_default, 417 }, 418 [MPOL_INTERLEAVE] = { 419 .create = mpol_new_interleave, 420 .rebind = mpol_rebind_nodemask, 421 }, 422 [MPOL_PREFERRED] = { 423 .create = mpol_new_preferred, 424 .rebind = mpol_rebind_preferred, 425 }, 426 [MPOL_BIND] = { 427 .create = mpol_new_bind, 428 .rebind = mpol_rebind_nodemask, 429 }, 430 }; 431 432 static int migrate_page_add(struct page *page, struct list_head *pagelist, 433 unsigned long flags); 434 435 struct queue_pages { 436 struct list_head *pagelist; 437 unsigned long flags; 438 nodemask_t *nmask; 439 unsigned long start; 440 unsigned long end; 441 struct vm_area_struct *first; 442 }; 443 444 /* 445 * Check if the page's nid is in qp->nmask. 446 * 447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 448 * in the invert of qp->nmask. 449 */ 450 static inline bool queue_pages_required(struct page *page, 451 struct queue_pages *qp) 452 { 453 int nid = page_to_nid(page); 454 unsigned long flags = qp->flags; 455 456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 457 } 458 459 /* 460 * queue_pages_pmd() has four possible return values: 461 * 0 - pages are placed on the right node or queued successfully. 462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 463 * specified. 464 * 2 - THP was split. 465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 466 * existing page was already on a node that does not follow the 467 * policy. 468 */ 469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 470 unsigned long end, struct mm_walk *walk) 471 __releases(ptl) 472 { 473 int ret = 0; 474 struct page *page; 475 struct queue_pages *qp = walk->private; 476 unsigned long flags; 477 478 if (unlikely(is_pmd_migration_entry(*pmd))) { 479 ret = -EIO; 480 goto unlock; 481 } 482 page = pmd_page(*pmd); 483 if (is_huge_zero_page(page)) { 484 spin_unlock(ptl); 485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 486 ret = 2; 487 goto out; 488 } 489 if (!queue_pages_required(page, qp)) 490 goto unlock; 491 492 flags = qp->flags; 493 /* go to thp migration */ 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 495 if (!vma_migratable(walk->vma) || 496 migrate_page_add(page, qp->pagelist, flags)) { 497 ret = 1; 498 goto unlock; 499 } 500 } else 501 ret = -EIO; 502 unlock: 503 spin_unlock(ptl); 504 out: 505 return ret; 506 } 507 508 /* 509 * Scan through pages checking if pages follow certain conditions, 510 * and move them to the pagelist if they do. 511 * 512 * queue_pages_pte_range() has three possible return values: 513 * 0 - pages are placed on the right node or queued successfully. 514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 515 * specified. 516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 517 * on a node that does not follow the policy. 518 */ 519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 520 unsigned long end, struct mm_walk *walk) 521 { 522 struct vm_area_struct *vma = walk->vma; 523 struct page *page; 524 struct queue_pages *qp = walk->private; 525 unsigned long flags = qp->flags; 526 int ret; 527 bool has_unmovable = false; 528 pte_t *pte; 529 spinlock_t *ptl; 530 531 ptl = pmd_trans_huge_lock(pmd, vma); 532 if (ptl) { 533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 534 if (ret != 2) 535 return ret; 536 } 537 /* THP was split, fall through to pte walk */ 538 539 if (pmd_trans_unstable(pmd)) 540 return 0; 541 542 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 543 for (; addr != end; pte++, addr += PAGE_SIZE) { 544 if (!pte_present(*pte)) 545 continue; 546 page = vm_normal_page(vma, addr, *pte); 547 if (!page) 548 continue; 549 /* 550 * vm_normal_page() filters out zero pages, but there might 551 * still be PageReserved pages to skip, perhaps in a VDSO. 552 */ 553 if (PageReserved(page)) 554 continue; 555 if (!queue_pages_required(page, qp)) 556 continue; 557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 558 /* MPOL_MF_STRICT must be specified if we get here */ 559 if (!vma_migratable(vma)) { 560 has_unmovable = true; 561 break; 562 } 563 564 /* 565 * Do not abort immediately since there may be 566 * temporary off LRU pages in the range. Still 567 * need migrate other LRU pages. 568 */ 569 if (migrate_page_add(page, qp->pagelist, flags)) 570 has_unmovable = true; 571 } else 572 break; 573 } 574 pte_unmap_unlock(pte - 1, ptl); 575 cond_resched(); 576 577 if (has_unmovable) 578 return 1; 579 580 return addr != end ? -EIO : 0; 581 } 582 583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 584 unsigned long addr, unsigned long end, 585 struct mm_walk *walk) 586 { 587 int ret = 0; 588 #ifdef CONFIG_HUGETLB_PAGE 589 struct queue_pages *qp = walk->private; 590 unsigned long flags = (qp->flags & MPOL_MF_VALID); 591 struct page *page; 592 spinlock_t *ptl; 593 pte_t entry; 594 595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 596 entry = huge_ptep_get(pte); 597 if (!pte_present(entry)) 598 goto unlock; 599 page = pte_page(entry); 600 if (!queue_pages_required(page, qp)) 601 goto unlock; 602 603 if (flags == MPOL_MF_STRICT) { 604 /* 605 * STRICT alone means only detecting misplaced page and no 606 * need to further check other vma. 607 */ 608 ret = -EIO; 609 goto unlock; 610 } 611 612 if (!vma_migratable(walk->vma)) { 613 /* 614 * Must be STRICT with MOVE*, otherwise .test_walk() have 615 * stopped walking current vma. 616 * Detecting misplaced page but allow migrating pages which 617 * have been queued. 618 */ 619 ret = 1; 620 goto unlock; 621 } 622 623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 624 if (flags & (MPOL_MF_MOVE_ALL) || 625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 626 if (!isolate_huge_page(page, qp->pagelist) && 627 (flags & MPOL_MF_STRICT)) 628 /* 629 * Failed to isolate page but allow migrating pages 630 * which have been queued. 631 */ 632 ret = 1; 633 } 634 unlock: 635 spin_unlock(ptl); 636 #else 637 BUG(); 638 #endif 639 return ret; 640 } 641 642 #ifdef CONFIG_NUMA_BALANCING 643 /* 644 * This is used to mark a range of virtual addresses to be inaccessible. 645 * These are later cleared by a NUMA hinting fault. Depending on these 646 * faults, pages may be migrated for better NUMA placement. 647 * 648 * This is assuming that NUMA faults are handled using PROT_NONE. If 649 * an architecture makes a different choice, it will need further 650 * changes to the core. 651 */ 652 unsigned long change_prot_numa(struct vm_area_struct *vma, 653 unsigned long addr, unsigned long end) 654 { 655 int nr_updated; 656 657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 658 if (nr_updated) 659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 660 661 return nr_updated; 662 } 663 #else 664 static unsigned long change_prot_numa(struct vm_area_struct *vma, 665 unsigned long addr, unsigned long end) 666 { 667 return 0; 668 } 669 #endif /* CONFIG_NUMA_BALANCING */ 670 671 static int queue_pages_test_walk(unsigned long start, unsigned long end, 672 struct mm_walk *walk) 673 { 674 struct vm_area_struct *vma = walk->vma; 675 struct queue_pages *qp = walk->private; 676 unsigned long endvma = vma->vm_end; 677 unsigned long flags = qp->flags; 678 679 /* range check first */ 680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); 681 682 if (!qp->first) { 683 qp->first = vma; 684 if (!(flags & MPOL_MF_DISCONTIG_OK) && 685 (qp->start < vma->vm_start)) 686 /* hole at head side of range */ 687 return -EFAULT; 688 } 689 if (!(flags & MPOL_MF_DISCONTIG_OK) && 690 ((vma->vm_end < qp->end) && 691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 692 /* hole at middle or tail of range */ 693 return -EFAULT; 694 695 /* 696 * Need check MPOL_MF_STRICT to return -EIO if possible 697 * regardless of vma_migratable 698 */ 699 if (!vma_migratable(vma) && 700 !(flags & MPOL_MF_STRICT)) 701 return 1; 702 703 if (endvma > end) 704 endvma = end; 705 706 if (flags & MPOL_MF_LAZY) { 707 /* Similar to task_numa_work, skip inaccessible VMAs */ 708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 709 !(vma->vm_flags & VM_MIXEDMAP)) 710 change_prot_numa(vma, start, endvma); 711 return 1; 712 } 713 714 /* queue pages from current vma */ 715 if (flags & MPOL_MF_VALID) 716 return 0; 717 return 1; 718 } 719 720 static const struct mm_walk_ops queue_pages_walk_ops = { 721 .hugetlb_entry = queue_pages_hugetlb, 722 .pmd_entry = queue_pages_pte_range, 723 .test_walk = queue_pages_test_walk, 724 }; 725 726 /* 727 * Walk through page tables and collect pages to be migrated. 728 * 729 * If pages found in a given range are on a set of nodes (determined by 730 * @nodes and @flags,) it's isolated and queued to the pagelist which is 731 * passed via @private. 732 * 733 * queue_pages_range() has three possible return values: 734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 735 * specified. 736 * 0 - queue pages successfully or no misplaced page. 737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 738 * memory range specified by nodemask and maxnode points outside 739 * your accessible address space (-EFAULT) 740 */ 741 static int 742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 743 nodemask_t *nodes, unsigned long flags, 744 struct list_head *pagelist) 745 { 746 int err; 747 struct queue_pages qp = { 748 .pagelist = pagelist, 749 .flags = flags, 750 .nmask = nodes, 751 .start = start, 752 .end = end, 753 .first = NULL, 754 }; 755 756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 757 758 if (!qp.first) 759 /* whole range in hole */ 760 err = -EFAULT; 761 762 return err; 763 } 764 765 /* 766 * Apply policy to a single VMA 767 * This must be called with the mmap_lock held for writing. 768 */ 769 static int vma_replace_policy(struct vm_area_struct *vma, 770 struct mempolicy *pol) 771 { 772 int err; 773 struct mempolicy *old; 774 struct mempolicy *new; 775 776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 777 vma->vm_start, vma->vm_end, vma->vm_pgoff, 778 vma->vm_ops, vma->vm_file, 779 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 780 781 new = mpol_dup(pol); 782 if (IS_ERR(new)) 783 return PTR_ERR(new); 784 785 if (vma->vm_ops && vma->vm_ops->set_policy) { 786 err = vma->vm_ops->set_policy(vma, new); 787 if (err) 788 goto err_out; 789 } 790 791 old = vma->vm_policy; 792 vma->vm_policy = new; /* protected by mmap_lock */ 793 mpol_put(old); 794 795 return 0; 796 err_out: 797 mpol_put(new); 798 return err; 799 } 800 801 /* Step 2: apply policy to a range and do splits. */ 802 static int mbind_range(struct mm_struct *mm, unsigned long start, 803 unsigned long end, struct mempolicy *new_pol) 804 { 805 struct vm_area_struct *next; 806 struct vm_area_struct *prev; 807 struct vm_area_struct *vma; 808 int err = 0; 809 pgoff_t pgoff; 810 unsigned long vmstart; 811 unsigned long vmend; 812 813 vma = find_vma(mm, start); 814 VM_BUG_ON(!vma); 815 816 prev = vma->vm_prev; 817 if (start > vma->vm_start) 818 prev = vma; 819 820 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 821 next = vma->vm_next; 822 vmstart = max(start, vma->vm_start); 823 vmend = min(end, vma->vm_end); 824 825 if (mpol_equal(vma_policy(vma), new_pol)) 826 continue; 827 828 pgoff = vma->vm_pgoff + 829 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 831 vma->anon_vma, vma->vm_file, pgoff, 832 new_pol, vma->vm_userfaultfd_ctx); 833 if (prev) { 834 vma = prev; 835 next = vma->vm_next; 836 if (mpol_equal(vma_policy(vma), new_pol)) 837 continue; 838 /* vma_merge() joined vma && vma->next, case 8 */ 839 goto replace; 840 } 841 if (vma->vm_start != vmstart) { 842 err = split_vma(vma->vm_mm, vma, vmstart, 1); 843 if (err) 844 goto out; 845 } 846 if (vma->vm_end != vmend) { 847 err = split_vma(vma->vm_mm, vma, vmend, 0); 848 if (err) 849 goto out; 850 } 851 replace: 852 err = vma_replace_policy(vma, new_pol); 853 if (err) 854 goto out; 855 } 856 857 out: 858 return err; 859 } 860 861 /* Set the process memory policy */ 862 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 863 nodemask_t *nodes) 864 { 865 struct mempolicy *new, *old; 866 NODEMASK_SCRATCH(scratch); 867 int ret; 868 869 if (!scratch) 870 return -ENOMEM; 871 872 new = mpol_new(mode, flags, nodes); 873 if (IS_ERR(new)) { 874 ret = PTR_ERR(new); 875 goto out; 876 } 877 878 task_lock(current); 879 ret = mpol_set_nodemask(new, nodes, scratch); 880 if (ret) { 881 task_unlock(current); 882 mpol_put(new); 883 goto out; 884 } 885 old = current->mempolicy; 886 current->mempolicy = new; 887 if (new && new->mode == MPOL_INTERLEAVE) 888 current->il_prev = MAX_NUMNODES-1; 889 task_unlock(current); 890 mpol_put(old); 891 ret = 0; 892 out: 893 NODEMASK_SCRATCH_FREE(scratch); 894 return ret; 895 } 896 897 /* 898 * Return nodemask for policy for get_mempolicy() query 899 * 900 * Called with task's alloc_lock held 901 */ 902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 903 { 904 nodes_clear(*nodes); 905 if (p == &default_policy) 906 return; 907 908 switch (p->mode) { 909 case MPOL_BIND: 910 case MPOL_INTERLEAVE: 911 *nodes = p->v.nodes; 912 break; 913 case MPOL_PREFERRED: 914 if (!(p->flags & MPOL_F_LOCAL)) 915 node_set(p->v.preferred_node, *nodes); 916 /* else return empty node mask for local allocation */ 917 break; 918 default: 919 BUG(); 920 } 921 } 922 923 static int lookup_node(struct mm_struct *mm, unsigned long addr) 924 { 925 struct page *p = NULL; 926 int err; 927 928 int locked = 1; 929 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 930 if (err > 0) { 931 err = page_to_nid(p); 932 put_page(p); 933 } 934 if (locked) 935 mmap_read_unlock(mm); 936 return err; 937 } 938 939 /* Retrieve NUMA policy */ 940 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 941 unsigned long addr, unsigned long flags) 942 { 943 int err; 944 struct mm_struct *mm = current->mm; 945 struct vm_area_struct *vma = NULL; 946 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 947 948 if (flags & 949 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 950 return -EINVAL; 951 952 if (flags & MPOL_F_MEMS_ALLOWED) { 953 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 954 return -EINVAL; 955 *policy = 0; /* just so it's initialized */ 956 task_lock(current); 957 *nmask = cpuset_current_mems_allowed; 958 task_unlock(current); 959 return 0; 960 } 961 962 if (flags & MPOL_F_ADDR) { 963 /* 964 * Do NOT fall back to task policy if the 965 * vma/shared policy at addr is NULL. We 966 * want to return MPOL_DEFAULT in this case. 967 */ 968 mmap_read_lock(mm); 969 vma = find_vma_intersection(mm, addr, addr+1); 970 if (!vma) { 971 mmap_read_unlock(mm); 972 return -EFAULT; 973 } 974 if (vma->vm_ops && vma->vm_ops->get_policy) 975 pol = vma->vm_ops->get_policy(vma, addr); 976 else 977 pol = vma->vm_policy; 978 } else if (addr) 979 return -EINVAL; 980 981 if (!pol) 982 pol = &default_policy; /* indicates default behavior */ 983 984 if (flags & MPOL_F_NODE) { 985 if (flags & MPOL_F_ADDR) { 986 /* 987 * Take a refcount on the mpol, lookup_node() 988 * wil drop the mmap_lock, so after calling 989 * lookup_node() only "pol" remains valid, "vma" 990 * is stale. 991 */ 992 pol_refcount = pol; 993 vma = NULL; 994 mpol_get(pol); 995 err = lookup_node(mm, addr); 996 if (err < 0) 997 goto out; 998 *policy = err; 999 } else if (pol == current->mempolicy && 1000 pol->mode == MPOL_INTERLEAVE) { 1001 *policy = next_node_in(current->il_prev, pol->v.nodes); 1002 } else { 1003 err = -EINVAL; 1004 goto out; 1005 } 1006 } else { 1007 *policy = pol == &default_policy ? MPOL_DEFAULT : 1008 pol->mode; 1009 /* 1010 * Internal mempolicy flags must be masked off before exposing 1011 * the policy to userspace. 1012 */ 1013 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1014 } 1015 1016 err = 0; 1017 if (nmask) { 1018 if (mpol_store_user_nodemask(pol)) { 1019 *nmask = pol->w.user_nodemask; 1020 } else { 1021 task_lock(current); 1022 get_policy_nodemask(pol, nmask); 1023 task_unlock(current); 1024 } 1025 } 1026 1027 out: 1028 mpol_cond_put(pol); 1029 if (vma) 1030 mmap_read_unlock(mm); 1031 if (pol_refcount) 1032 mpol_put(pol_refcount); 1033 return err; 1034 } 1035 1036 #ifdef CONFIG_MIGRATION 1037 /* 1038 * page migration, thp tail pages can be passed. 1039 */ 1040 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1041 unsigned long flags) 1042 { 1043 struct page *head = compound_head(page); 1044 /* 1045 * Avoid migrating a page that is shared with others. 1046 */ 1047 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1048 if (!isolate_lru_page(head)) { 1049 list_add_tail(&head->lru, pagelist); 1050 mod_node_page_state(page_pgdat(head), 1051 NR_ISOLATED_ANON + page_is_file_lru(head), 1052 thp_nr_pages(head)); 1053 } else if (flags & MPOL_MF_STRICT) { 1054 /* 1055 * Non-movable page may reach here. And, there may be 1056 * temporary off LRU pages or non-LRU movable pages. 1057 * Treat them as unmovable pages since they can't be 1058 * isolated, so they can't be moved at the moment. It 1059 * should return -EIO for this case too. 1060 */ 1061 return -EIO; 1062 } 1063 } 1064 1065 return 0; 1066 } 1067 1068 /* 1069 * Migrate pages from one node to a target node. 1070 * Returns error or the number of pages not migrated. 1071 */ 1072 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1073 int flags) 1074 { 1075 nodemask_t nmask; 1076 LIST_HEAD(pagelist); 1077 int err = 0; 1078 struct migration_target_control mtc = { 1079 .nid = dest, 1080 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1081 }; 1082 1083 nodes_clear(nmask); 1084 node_set(source, nmask); 1085 1086 /* 1087 * This does not "check" the range but isolates all pages that 1088 * need migration. Between passing in the full user address 1089 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1090 */ 1091 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1092 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1093 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1094 1095 if (!list_empty(&pagelist)) { 1096 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1097 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1098 if (err) 1099 putback_movable_pages(&pagelist); 1100 } 1101 1102 return err; 1103 } 1104 1105 /* 1106 * Move pages between the two nodesets so as to preserve the physical 1107 * layout as much as possible. 1108 * 1109 * Returns the number of page that could not be moved. 1110 */ 1111 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1112 const nodemask_t *to, int flags) 1113 { 1114 int busy = 0; 1115 int err; 1116 nodemask_t tmp; 1117 1118 err = migrate_prep(); 1119 if (err) 1120 return err; 1121 1122 mmap_read_lock(mm); 1123 1124 /* 1125 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1126 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1127 * bit in 'tmp', and return that <source, dest> pair for migration. 1128 * The pair of nodemasks 'to' and 'from' define the map. 1129 * 1130 * If no pair of bits is found that way, fallback to picking some 1131 * pair of 'source' and 'dest' bits that are not the same. If the 1132 * 'source' and 'dest' bits are the same, this represents a node 1133 * that will be migrating to itself, so no pages need move. 1134 * 1135 * If no bits are left in 'tmp', or if all remaining bits left 1136 * in 'tmp' correspond to the same bit in 'to', return false 1137 * (nothing left to migrate). 1138 * 1139 * This lets us pick a pair of nodes to migrate between, such that 1140 * if possible the dest node is not already occupied by some other 1141 * source node, minimizing the risk of overloading the memory on a 1142 * node that would happen if we migrated incoming memory to a node 1143 * before migrating outgoing memory source that same node. 1144 * 1145 * A single scan of tmp is sufficient. As we go, we remember the 1146 * most recent <s, d> pair that moved (s != d). If we find a pair 1147 * that not only moved, but what's better, moved to an empty slot 1148 * (d is not set in tmp), then we break out then, with that pair. 1149 * Otherwise when we finish scanning from_tmp, we at least have the 1150 * most recent <s, d> pair that moved. If we get all the way through 1151 * the scan of tmp without finding any node that moved, much less 1152 * moved to an empty node, then there is nothing left worth migrating. 1153 */ 1154 1155 tmp = *from; 1156 while (!nodes_empty(tmp)) { 1157 int s,d; 1158 int source = NUMA_NO_NODE; 1159 int dest = 0; 1160 1161 for_each_node_mask(s, tmp) { 1162 1163 /* 1164 * do_migrate_pages() tries to maintain the relative 1165 * node relationship of the pages established between 1166 * threads and memory areas. 1167 * 1168 * However if the number of source nodes is not equal to 1169 * the number of destination nodes we can not preserve 1170 * this node relative relationship. In that case, skip 1171 * copying memory from a node that is in the destination 1172 * mask. 1173 * 1174 * Example: [2,3,4] -> [3,4,5] moves everything. 1175 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1176 */ 1177 1178 if ((nodes_weight(*from) != nodes_weight(*to)) && 1179 (node_isset(s, *to))) 1180 continue; 1181 1182 d = node_remap(s, *from, *to); 1183 if (s == d) 1184 continue; 1185 1186 source = s; /* Node moved. Memorize */ 1187 dest = d; 1188 1189 /* dest not in remaining from nodes? */ 1190 if (!node_isset(dest, tmp)) 1191 break; 1192 } 1193 if (source == NUMA_NO_NODE) 1194 break; 1195 1196 node_clear(source, tmp); 1197 err = migrate_to_node(mm, source, dest, flags); 1198 if (err > 0) 1199 busy += err; 1200 if (err < 0) 1201 break; 1202 } 1203 mmap_read_unlock(mm); 1204 if (err < 0) 1205 return err; 1206 return busy; 1207 1208 } 1209 1210 /* 1211 * Allocate a new page for page migration based on vma policy. 1212 * Start by assuming the page is mapped by the same vma as contains @start. 1213 * Search forward from there, if not. N.B., this assumes that the 1214 * list of pages handed to migrate_pages()--which is how we get here-- 1215 * is in virtual address order. 1216 */ 1217 static struct page *new_page(struct page *page, unsigned long start) 1218 { 1219 struct vm_area_struct *vma; 1220 unsigned long address; 1221 1222 vma = find_vma(current->mm, start); 1223 while (vma) { 1224 address = page_address_in_vma(page, vma); 1225 if (address != -EFAULT) 1226 break; 1227 vma = vma->vm_next; 1228 } 1229 1230 if (PageHuge(page)) { 1231 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1232 vma, address); 1233 } else if (PageTransHuge(page)) { 1234 struct page *thp; 1235 1236 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1237 HPAGE_PMD_ORDER); 1238 if (!thp) 1239 return NULL; 1240 prep_transhuge_page(thp); 1241 return thp; 1242 } 1243 /* 1244 * if !vma, alloc_page_vma() will use task or system default policy 1245 */ 1246 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1247 vma, address); 1248 } 1249 #else 1250 1251 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1252 unsigned long flags) 1253 { 1254 return -EIO; 1255 } 1256 1257 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1258 const nodemask_t *to, int flags) 1259 { 1260 return -ENOSYS; 1261 } 1262 1263 static struct page *new_page(struct page *page, unsigned long start) 1264 { 1265 return NULL; 1266 } 1267 #endif 1268 1269 static long do_mbind(unsigned long start, unsigned long len, 1270 unsigned short mode, unsigned short mode_flags, 1271 nodemask_t *nmask, unsigned long flags) 1272 { 1273 struct mm_struct *mm = current->mm; 1274 struct mempolicy *new; 1275 unsigned long end; 1276 int err; 1277 int ret; 1278 LIST_HEAD(pagelist); 1279 1280 if (flags & ~(unsigned long)MPOL_MF_VALID) 1281 return -EINVAL; 1282 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1283 return -EPERM; 1284 1285 if (start & ~PAGE_MASK) 1286 return -EINVAL; 1287 1288 if (mode == MPOL_DEFAULT) 1289 flags &= ~MPOL_MF_STRICT; 1290 1291 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1292 end = start + len; 1293 1294 if (end < start) 1295 return -EINVAL; 1296 if (end == start) 1297 return 0; 1298 1299 new = mpol_new(mode, mode_flags, nmask); 1300 if (IS_ERR(new)) 1301 return PTR_ERR(new); 1302 1303 if (flags & MPOL_MF_LAZY) 1304 new->flags |= MPOL_F_MOF; 1305 1306 /* 1307 * If we are using the default policy then operation 1308 * on discontinuous address spaces is okay after all 1309 */ 1310 if (!new) 1311 flags |= MPOL_MF_DISCONTIG_OK; 1312 1313 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1314 start, start + len, mode, mode_flags, 1315 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1316 1317 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1318 1319 err = migrate_prep(); 1320 if (err) 1321 goto mpol_out; 1322 } 1323 { 1324 NODEMASK_SCRATCH(scratch); 1325 if (scratch) { 1326 mmap_write_lock(mm); 1327 task_lock(current); 1328 err = mpol_set_nodemask(new, nmask, scratch); 1329 task_unlock(current); 1330 if (err) 1331 mmap_write_unlock(mm); 1332 } else 1333 err = -ENOMEM; 1334 NODEMASK_SCRATCH_FREE(scratch); 1335 } 1336 if (err) 1337 goto mpol_out; 1338 1339 ret = queue_pages_range(mm, start, end, nmask, 1340 flags | MPOL_MF_INVERT, &pagelist); 1341 1342 if (ret < 0) { 1343 err = ret; 1344 goto up_out; 1345 } 1346 1347 err = mbind_range(mm, start, end, new); 1348 1349 if (!err) { 1350 int nr_failed = 0; 1351 1352 if (!list_empty(&pagelist)) { 1353 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1354 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1355 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1356 if (nr_failed) 1357 putback_movable_pages(&pagelist); 1358 } 1359 1360 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1361 err = -EIO; 1362 } else { 1363 up_out: 1364 if (!list_empty(&pagelist)) 1365 putback_movable_pages(&pagelist); 1366 } 1367 1368 mmap_write_unlock(mm); 1369 mpol_out: 1370 mpol_put(new); 1371 return err; 1372 } 1373 1374 /* 1375 * User space interface with variable sized bitmaps for nodelists. 1376 */ 1377 1378 /* Copy a node mask from user space. */ 1379 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1380 unsigned long maxnode) 1381 { 1382 unsigned long k; 1383 unsigned long t; 1384 unsigned long nlongs; 1385 unsigned long endmask; 1386 1387 --maxnode; 1388 nodes_clear(*nodes); 1389 if (maxnode == 0 || !nmask) 1390 return 0; 1391 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1392 return -EINVAL; 1393 1394 nlongs = BITS_TO_LONGS(maxnode); 1395 if ((maxnode % BITS_PER_LONG) == 0) 1396 endmask = ~0UL; 1397 else 1398 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1399 1400 /* 1401 * When the user specified more nodes than supported just check 1402 * if the non supported part is all zero. 1403 * 1404 * If maxnode have more longs than MAX_NUMNODES, check 1405 * the bits in that area first. And then go through to 1406 * check the rest bits which equal or bigger than MAX_NUMNODES. 1407 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1408 */ 1409 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1410 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1411 if (get_user(t, nmask + k)) 1412 return -EFAULT; 1413 if (k == nlongs - 1) { 1414 if (t & endmask) 1415 return -EINVAL; 1416 } else if (t) 1417 return -EINVAL; 1418 } 1419 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1420 endmask = ~0UL; 1421 } 1422 1423 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1424 unsigned long valid_mask = endmask; 1425 1426 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1427 if (get_user(t, nmask + nlongs - 1)) 1428 return -EFAULT; 1429 if (t & valid_mask) 1430 return -EINVAL; 1431 } 1432 1433 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1434 return -EFAULT; 1435 nodes_addr(*nodes)[nlongs-1] &= endmask; 1436 return 0; 1437 } 1438 1439 /* Copy a kernel node mask to user space */ 1440 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1441 nodemask_t *nodes) 1442 { 1443 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1444 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1445 1446 if (copy > nbytes) { 1447 if (copy > PAGE_SIZE) 1448 return -EINVAL; 1449 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1450 return -EFAULT; 1451 copy = nbytes; 1452 } 1453 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1454 } 1455 1456 static long kernel_mbind(unsigned long start, unsigned long len, 1457 unsigned long mode, const unsigned long __user *nmask, 1458 unsigned long maxnode, unsigned int flags) 1459 { 1460 nodemask_t nodes; 1461 int err; 1462 unsigned short mode_flags; 1463 1464 start = untagged_addr(start); 1465 mode_flags = mode & MPOL_MODE_FLAGS; 1466 mode &= ~MPOL_MODE_FLAGS; 1467 if (mode >= MPOL_MAX) 1468 return -EINVAL; 1469 if ((mode_flags & MPOL_F_STATIC_NODES) && 1470 (mode_flags & MPOL_F_RELATIVE_NODES)) 1471 return -EINVAL; 1472 err = get_nodes(&nodes, nmask, maxnode); 1473 if (err) 1474 return err; 1475 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1476 } 1477 1478 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1479 unsigned long, mode, const unsigned long __user *, nmask, 1480 unsigned long, maxnode, unsigned int, flags) 1481 { 1482 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1483 } 1484 1485 /* Set the process memory policy */ 1486 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1487 unsigned long maxnode) 1488 { 1489 int err; 1490 nodemask_t nodes; 1491 unsigned short flags; 1492 1493 flags = mode & MPOL_MODE_FLAGS; 1494 mode &= ~MPOL_MODE_FLAGS; 1495 if ((unsigned int)mode >= MPOL_MAX) 1496 return -EINVAL; 1497 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1498 return -EINVAL; 1499 err = get_nodes(&nodes, nmask, maxnode); 1500 if (err) 1501 return err; 1502 return do_set_mempolicy(mode, flags, &nodes); 1503 } 1504 1505 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1506 unsigned long, maxnode) 1507 { 1508 return kernel_set_mempolicy(mode, nmask, maxnode); 1509 } 1510 1511 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1512 const unsigned long __user *old_nodes, 1513 const unsigned long __user *new_nodes) 1514 { 1515 struct mm_struct *mm = NULL; 1516 struct task_struct *task; 1517 nodemask_t task_nodes; 1518 int err; 1519 nodemask_t *old; 1520 nodemask_t *new; 1521 NODEMASK_SCRATCH(scratch); 1522 1523 if (!scratch) 1524 return -ENOMEM; 1525 1526 old = &scratch->mask1; 1527 new = &scratch->mask2; 1528 1529 err = get_nodes(old, old_nodes, maxnode); 1530 if (err) 1531 goto out; 1532 1533 err = get_nodes(new, new_nodes, maxnode); 1534 if (err) 1535 goto out; 1536 1537 /* Find the mm_struct */ 1538 rcu_read_lock(); 1539 task = pid ? find_task_by_vpid(pid) : current; 1540 if (!task) { 1541 rcu_read_unlock(); 1542 err = -ESRCH; 1543 goto out; 1544 } 1545 get_task_struct(task); 1546 1547 err = -EINVAL; 1548 1549 /* 1550 * Check if this process has the right to modify the specified process. 1551 * Use the regular "ptrace_may_access()" checks. 1552 */ 1553 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1554 rcu_read_unlock(); 1555 err = -EPERM; 1556 goto out_put; 1557 } 1558 rcu_read_unlock(); 1559 1560 task_nodes = cpuset_mems_allowed(task); 1561 /* Is the user allowed to access the target nodes? */ 1562 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1563 err = -EPERM; 1564 goto out_put; 1565 } 1566 1567 task_nodes = cpuset_mems_allowed(current); 1568 nodes_and(*new, *new, task_nodes); 1569 if (nodes_empty(*new)) 1570 goto out_put; 1571 1572 err = security_task_movememory(task); 1573 if (err) 1574 goto out_put; 1575 1576 mm = get_task_mm(task); 1577 put_task_struct(task); 1578 1579 if (!mm) { 1580 err = -EINVAL; 1581 goto out; 1582 } 1583 1584 err = do_migrate_pages(mm, old, new, 1585 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1586 1587 mmput(mm); 1588 out: 1589 NODEMASK_SCRATCH_FREE(scratch); 1590 1591 return err; 1592 1593 out_put: 1594 put_task_struct(task); 1595 goto out; 1596 1597 } 1598 1599 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1600 const unsigned long __user *, old_nodes, 1601 const unsigned long __user *, new_nodes) 1602 { 1603 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1604 } 1605 1606 1607 /* Retrieve NUMA policy */ 1608 static int kernel_get_mempolicy(int __user *policy, 1609 unsigned long __user *nmask, 1610 unsigned long maxnode, 1611 unsigned long addr, 1612 unsigned long flags) 1613 { 1614 int err; 1615 int pval; 1616 nodemask_t nodes; 1617 1618 if (nmask != NULL && maxnode < nr_node_ids) 1619 return -EINVAL; 1620 1621 addr = untagged_addr(addr); 1622 1623 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1624 1625 if (err) 1626 return err; 1627 1628 if (policy && put_user(pval, policy)) 1629 return -EFAULT; 1630 1631 if (nmask) 1632 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1633 1634 return err; 1635 } 1636 1637 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1638 unsigned long __user *, nmask, unsigned long, maxnode, 1639 unsigned long, addr, unsigned long, flags) 1640 { 1641 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1642 } 1643 1644 #ifdef CONFIG_COMPAT 1645 1646 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1647 compat_ulong_t __user *, nmask, 1648 compat_ulong_t, maxnode, 1649 compat_ulong_t, addr, compat_ulong_t, flags) 1650 { 1651 long err; 1652 unsigned long __user *nm = NULL; 1653 unsigned long nr_bits, alloc_size; 1654 DECLARE_BITMAP(bm, MAX_NUMNODES); 1655 1656 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1657 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1658 1659 if (nmask) 1660 nm = compat_alloc_user_space(alloc_size); 1661 1662 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1663 1664 if (!err && nmask) { 1665 unsigned long copy_size; 1666 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1667 err = copy_from_user(bm, nm, copy_size); 1668 /* ensure entire bitmap is zeroed */ 1669 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1670 err |= compat_put_bitmap(nmask, bm, nr_bits); 1671 } 1672 1673 return err; 1674 } 1675 1676 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1677 compat_ulong_t, maxnode) 1678 { 1679 unsigned long __user *nm = NULL; 1680 unsigned long nr_bits, alloc_size; 1681 DECLARE_BITMAP(bm, MAX_NUMNODES); 1682 1683 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1684 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1685 1686 if (nmask) { 1687 if (compat_get_bitmap(bm, nmask, nr_bits)) 1688 return -EFAULT; 1689 nm = compat_alloc_user_space(alloc_size); 1690 if (copy_to_user(nm, bm, alloc_size)) 1691 return -EFAULT; 1692 } 1693 1694 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1695 } 1696 1697 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1698 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1699 compat_ulong_t, maxnode, compat_ulong_t, flags) 1700 { 1701 unsigned long __user *nm = NULL; 1702 unsigned long nr_bits, alloc_size; 1703 nodemask_t bm; 1704 1705 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1706 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1707 1708 if (nmask) { 1709 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1710 return -EFAULT; 1711 nm = compat_alloc_user_space(alloc_size); 1712 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1713 return -EFAULT; 1714 } 1715 1716 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1717 } 1718 1719 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1720 compat_ulong_t, maxnode, 1721 const compat_ulong_t __user *, old_nodes, 1722 const compat_ulong_t __user *, new_nodes) 1723 { 1724 unsigned long __user *old = NULL; 1725 unsigned long __user *new = NULL; 1726 nodemask_t tmp_mask; 1727 unsigned long nr_bits; 1728 unsigned long size; 1729 1730 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1731 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1732 if (old_nodes) { 1733 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1734 return -EFAULT; 1735 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1736 if (new_nodes) 1737 new = old + size / sizeof(unsigned long); 1738 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1739 return -EFAULT; 1740 } 1741 if (new_nodes) { 1742 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1743 return -EFAULT; 1744 if (new == NULL) 1745 new = compat_alloc_user_space(size); 1746 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1747 return -EFAULT; 1748 } 1749 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1750 } 1751 1752 #endif /* CONFIG_COMPAT */ 1753 1754 bool vma_migratable(struct vm_area_struct *vma) 1755 { 1756 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1757 return false; 1758 1759 /* 1760 * DAX device mappings require predictable access latency, so avoid 1761 * incurring periodic faults. 1762 */ 1763 if (vma_is_dax(vma)) 1764 return false; 1765 1766 if (is_vm_hugetlb_page(vma) && 1767 !hugepage_migration_supported(hstate_vma(vma))) 1768 return false; 1769 1770 /* 1771 * Migration allocates pages in the highest zone. If we cannot 1772 * do so then migration (at least from node to node) is not 1773 * possible. 1774 */ 1775 if (vma->vm_file && 1776 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1777 < policy_zone) 1778 return false; 1779 return true; 1780 } 1781 1782 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1783 unsigned long addr) 1784 { 1785 struct mempolicy *pol = NULL; 1786 1787 if (vma) { 1788 if (vma->vm_ops && vma->vm_ops->get_policy) { 1789 pol = vma->vm_ops->get_policy(vma, addr); 1790 } else if (vma->vm_policy) { 1791 pol = vma->vm_policy; 1792 1793 /* 1794 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1795 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1796 * count on these policies which will be dropped by 1797 * mpol_cond_put() later 1798 */ 1799 if (mpol_needs_cond_ref(pol)) 1800 mpol_get(pol); 1801 } 1802 } 1803 1804 return pol; 1805 } 1806 1807 /* 1808 * get_vma_policy(@vma, @addr) 1809 * @vma: virtual memory area whose policy is sought 1810 * @addr: address in @vma for shared policy lookup 1811 * 1812 * Returns effective policy for a VMA at specified address. 1813 * Falls back to current->mempolicy or system default policy, as necessary. 1814 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1815 * count--added by the get_policy() vm_op, as appropriate--to protect against 1816 * freeing by another task. It is the caller's responsibility to free the 1817 * extra reference for shared policies. 1818 */ 1819 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1820 unsigned long addr) 1821 { 1822 struct mempolicy *pol = __get_vma_policy(vma, addr); 1823 1824 if (!pol) 1825 pol = get_task_policy(current); 1826 1827 return pol; 1828 } 1829 1830 bool vma_policy_mof(struct vm_area_struct *vma) 1831 { 1832 struct mempolicy *pol; 1833 1834 if (vma->vm_ops && vma->vm_ops->get_policy) { 1835 bool ret = false; 1836 1837 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1838 if (pol && (pol->flags & MPOL_F_MOF)) 1839 ret = true; 1840 mpol_cond_put(pol); 1841 1842 return ret; 1843 } 1844 1845 pol = vma->vm_policy; 1846 if (!pol) 1847 pol = get_task_policy(current); 1848 1849 return pol->flags & MPOL_F_MOF; 1850 } 1851 1852 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1853 { 1854 enum zone_type dynamic_policy_zone = policy_zone; 1855 1856 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1857 1858 /* 1859 * if policy->v.nodes has movable memory only, 1860 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1861 * 1862 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1863 * so if the following test faile, it implies 1864 * policy->v.nodes has movable memory only. 1865 */ 1866 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1867 dynamic_policy_zone = ZONE_MOVABLE; 1868 1869 return zone >= dynamic_policy_zone; 1870 } 1871 1872 /* 1873 * Return a nodemask representing a mempolicy for filtering nodes for 1874 * page allocation 1875 */ 1876 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1877 { 1878 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1879 if (unlikely(policy->mode == MPOL_BIND) && 1880 apply_policy_zone(policy, gfp_zone(gfp)) && 1881 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1882 return &policy->v.nodes; 1883 1884 return NULL; 1885 } 1886 1887 /* Return the node id preferred by the given mempolicy, or the given id */ 1888 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1889 int nd) 1890 { 1891 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1892 nd = policy->v.preferred_node; 1893 else { 1894 /* 1895 * __GFP_THISNODE shouldn't even be used with the bind policy 1896 * because we might easily break the expectation to stay on the 1897 * requested node and not break the policy. 1898 */ 1899 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1900 } 1901 1902 return nd; 1903 } 1904 1905 /* Do dynamic interleaving for a process */ 1906 static unsigned interleave_nodes(struct mempolicy *policy) 1907 { 1908 unsigned next; 1909 struct task_struct *me = current; 1910 1911 next = next_node_in(me->il_prev, policy->v.nodes); 1912 if (next < MAX_NUMNODES) 1913 me->il_prev = next; 1914 return next; 1915 } 1916 1917 /* 1918 * Depending on the memory policy provide a node from which to allocate the 1919 * next slab entry. 1920 */ 1921 unsigned int mempolicy_slab_node(void) 1922 { 1923 struct mempolicy *policy; 1924 int node = numa_mem_id(); 1925 1926 if (in_interrupt()) 1927 return node; 1928 1929 policy = current->mempolicy; 1930 if (!policy || policy->flags & MPOL_F_LOCAL) 1931 return node; 1932 1933 switch (policy->mode) { 1934 case MPOL_PREFERRED: 1935 /* 1936 * handled MPOL_F_LOCAL above 1937 */ 1938 return policy->v.preferred_node; 1939 1940 case MPOL_INTERLEAVE: 1941 return interleave_nodes(policy); 1942 1943 case MPOL_BIND: { 1944 struct zoneref *z; 1945 1946 /* 1947 * Follow bind policy behavior and start allocation at the 1948 * first node. 1949 */ 1950 struct zonelist *zonelist; 1951 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1952 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1953 z = first_zones_zonelist(zonelist, highest_zoneidx, 1954 &policy->v.nodes); 1955 return z->zone ? zone_to_nid(z->zone) : node; 1956 } 1957 1958 default: 1959 BUG(); 1960 } 1961 } 1962 1963 /* 1964 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1965 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1966 * number of present nodes. 1967 */ 1968 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1969 { 1970 unsigned nnodes = nodes_weight(pol->v.nodes); 1971 unsigned target; 1972 int i; 1973 int nid; 1974 1975 if (!nnodes) 1976 return numa_node_id(); 1977 target = (unsigned int)n % nnodes; 1978 nid = first_node(pol->v.nodes); 1979 for (i = 0; i < target; i++) 1980 nid = next_node(nid, pol->v.nodes); 1981 return nid; 1982 } 1983 1984 /* Determine a node number for interleave */ 1985 static inline unsigned interleave_nid(struct mempolicy *pol, 1986 struct vm_area_struct *vma, unsigned long addr, int shift) 1987 { 1988 if (vma) { 1989 unsigned long off; 1990 1991 /* 1992 * for small pages, there is no difference between 1993 * shift and PAGE_SHIFT, so the bit-shift is safe. 1994 * for huge pages, since vm_pgoff is in units of small 1995 * pages, we need to shift off the always 0 bits to get 1996 * a useful offset. 1997 */ 1998 BUG_ON(shift < PAGE_SHIFT); 1999 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2000 off += (addr - vma->vm_start) >> shift; 2001 return offset_il_node(pol, off); 2002 } else 2003 return interleave_nodes(pol); 2004 } 2005 2006 #ifdef CONFIG_HUGETLBFS 2007 /* 2008 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2009 * @vma: virtual memory area whose policy is sought 2010 * @addr: address in @vma for shared policy lookup and interleave policy 2011 * @gfp_flags: for requested zone 2012 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2013 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 2014 * 2015 * Returns a nid suitable for a huge page allocation and a pointer 2016 * to the struct mempolicy for conditional unref after allocation. 2017 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 2018 * @nodemask for filtering the zonelist. 2019 * 2020 * Must be protected by read_mems_allowed_begin() 2021 */ 2022 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2023 struct mempolicy **mpol, nodemask_t **nodemask) 2024 { 2025 int nid; 2026 2027 *mpol = get_vma_policy(vma, addr); 2028 *nodemask = NULL; /* assume !MPOL_BIND */ 2029 2030 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 2031 nid = interleave_nid(*mpol, vma, addr, 2032 huge_page_shift(hstate_vma(vma))); 2033 } else { 2034 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2035 if ((*mpol)->mode == MPOL_BIND) 2036 *nodemask = &(*mpol)->v.nodes; 2037 } 2038 return nid; 2039 } 2040 2041 /* 2042 * init_nodemask_of_mempolicy 2043 * 2044 * If the current task's mempolicy is "default" [NULL], return 'false' 2045 * to indicate default policy. Otherwise, extract the policy nodemask 2046 * for 'bind' or 'interleave' policy into the argument nodemask, or 2047 * initialize the argument nodemask to contain the single node for 2048 * 'preferred' or 'local' policy and return 'true' to indicate presence 2049 * of non-default mempolicy. 2050 * 2051 * We don't bother with reference counting the mempolicy [mpol_get/put] 2052 * because the current task is examining it's own mempolicy and a task's 2053 * mempolicy is only ever changed by the task itself. 2054 * 2055 * N.B., it is the caller's responsibility to free a returned nodemask. 2056 */ 2057 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2058 { 2059 struct mempolicy *mempolicy; 2060 int nid; 2061 2062 if (!(mask && current->mempolicy)) 2063 return false; 2064 2065 task_lock(current); 2066 mempolicy = current->mempolicy; 2067 switch (mempolicy->mode) { 2068 case MPOL_PREFERRED: 2069 if (mempolicy->flags & MPOL_F_LOCAL) 2070 nid = numa_node_id(); 2071 else 2072 nid = mempolicy->v.preferred_node; 2073 init_nodemask_of_node(mask, nid); 2074 break; 2075 2076 case MPOL_BIND: 2077 case MPOL_INTERLEAVE: 2078 *mask = mempolicy->v.nodes; 2079 break; 2080 2081 default: 2082 BUG(); 2083 } 2084 task_unlock(current); 2085 2086 return true; 2087 } 2088 #endif 2089 2090 /* 2091 * mempolicy_nodemask_intersects 2092 * 2093 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2094 * policy. Otherwise, check for intersection between mask and the policy 2095 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2096 * policy, always return true since it may allocate elsewhere on fallback. 2097 * 2098 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2099 */ 2100 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2101 const nodemask_t *mask) 2102 { 2103 struct mempolicy *mempolicy; 2104 bool ret = true; 2105 2106 if (!mask) 2107 return ret; 2108 task_lock(tsk); 2109 mempolicy = tsk->mempolicy; 2110 if (!mempolicy) 2111 goto out; 2112 2113 switch (mempolicy->mode) { 2114 case MPOL_PREFERRED: 2115 /* 2116 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2117 * allocate from, they may fallback to other nodes when oom. 2118 * Thus, it's possible for tsk to have allocated memory from 2119 * nodes in mask. 2120 */ 2121 break; 2122 case MPOL_BIND: 2123 case MPOL_INTERLEAVE: 2124 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2125 break; 2126 default: 2127 BUG(); 2128 } 2129 out: 2130 task_unlock(tsk); 2131 return ret; 2132 } 2133 2134 /* Allocate a page in interleaved policy. 2135 Own path because it needs to do special accounting. */ 2136 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2137 unsigned nid) 2138 { 2139 struct page *page; 2140 2141 page = __alloc_pages(gfp, order, nid); 2142 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2143 if (!static_branch_likely(&vm_numa_stat_key)) 2144 return page; 2145 if (page && page_to_nid(page) == nid) { 2146 preempt_disable(); 2147 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2148 preempt_enable(); 2149 } 2150 return page; 2151 } 2152 2153 /** 2154 * alloc_pages_vma - Allocate a page for a VMA. 2155 * 2156 * @gfp: 2157 * %GFP_USER user allocation. 2158 * %GFP_KERNEL kernel allocations, 2159 * %GFP_HIGHMEM highmem/user allocations, 2160 * %GFP_FS allocation should not call back into a file system. 2161 * %GFP_ATOMIC don't sleep. 2162 * 2163 * @order:Order of the GFP allocation. 2164 * @vma: Pointer to VMA or NULL if not available. 2165 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2166 * @node: Which node to prefer for allocation (modulo policy). 2167 * @hugepage: for hugepages try only the preferred node if possible 2168 * 2169 * This function allocates a page from the kernel page pool and applies 2170 * a NUMA policy associated with the VMA or the current process. 2171 * When VMA is not NULL caller must read-lock the mmap_lock of the 2172 * mm_struct of the VMA to prevent it from going away. Should be used for 2173 * all allocations for pages that will be mapped into user space. Returns 2174 * NULL when no page can be allocated. 2175 */ 2176 struct page * 2177 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2178 unsigned long addr, int node, bool hugepage) 2179 { 2180 struct mempolicy *pol; 2181 struct page *page; 2182 int preferred_nid; 2183 nodemask_t *nmask; 2184 2185 pol = get_vma_policy(vma, addr); 2186 2187 if (pol->mode == MPOL_INTERLEAVE) { 2188 unsigned nid; 2189 2190 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2191 mpol_cond_put(pol); 2192 page = alloc_page_interleave(gfp, order, nid); 2193 goto out; 2194 } 2195 2196 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2197 int hpage_node = node; 2198 2199 /* 2200 * For hugepage allocation and non-interleave policy which 2201 * allows the current node (or other explicitly preferred 2202 * node) we only try to allocate from the current/preferred 2203 * node and don't fall back to other nodes, as the cost of 2204 * remote accesses would likely offset THP benefits. 2205 * 2206 * If the policy is interleave, or does not allow the current 2207 * node in its nodemask, we allocate the standard way. 2208 */ 2209 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2210 hpage_node = pol->v.preferred_node; 2211 2212 nmask = policy_nodemask(gfp, pol); 2213 if (!nmask || node_isset(hpage_node, *nmask)) { 2214 mpol_cond_put(pol); 2215 /* 2216 * First, try to allocate THP only on local node, but 2217 * don't reclaim unnecessarily, just compact. 2218 */ 2219 page = __alloc_pages_node(hpage_node, 2220 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2221 2222 /* 2223 * If hugepage allocations are configured to always 2224 * synchronous compact or the vma has been madvised 2225 * to prefer hugepage backing, retry allowing remote 2226 * memory with both reclaim and compact as well. 2227 */ 2228 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2229 page = __alloc_pages_node(hpage_node, 2230 gfp, order); 2231 2232 goto out; 2233 } 2234 } 2235 2236 nmask = policy_nodemask(gfp, pol); 2237 preferred_nid = policy_node(gfp, pol, node); 2238 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2239 mpol_cond_put(pol); 2240 out: 2241 return page; 2242 } 2243 EXPORT_SYMBOL(alloc_pages_vma); 2244 2245 /** 2246 * alloc_pages_current - Allocate pages. 2247 * 2248 * @gfp: 2249 * %GFP_USER user allocation, 2250 * %GFP_KERNEL kernel allocation, 2251 * %GFP_HIGHMEM highmem allocation, 2252 * %GFP_FS don't call back into a file system. 2253 * %GFP_ATOMIC don't sleep. 2254 * @order: Power of two of allocation size in pages. 0 is a single page. 2255 * 2256 * Allocate a page from the kernel page pool. When not in 2257 * interrupt context and apply the current process NUMA policy. 2258 * Returns NULL when no page can be allocated. 2259 */ 2260 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2261 { 2262 struct mempolicy *pol = &default_policy; 2263 struct page *page; 2264 2265 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2266 pol = get_task_policy(current); 2267 2268 /* 2269 * No reference counting needed for current->mempolicy 2270 * nor system default_policy 2271 */ 2272 if (pol->mode == MPOL_INTERLEAVE) 2273 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2274 else 2275 page = __alloc_pages_nodemask(gfp, order, 2276 policy_node(gfp, pol, numa_node_id()), 2277 policy_nodemask(gfp, pol)); 2278 2279 return page; 2280 } 2281 EXPORT_SYMBOL(alloc_pages_current); 2282 2283 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2284 { 2285 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2286 2287 if (IS_ERR(pol)) 2288 return PTR_ERR(pol); 2289 dst->vm_policy = pol; 2290 return 0; 2291 } 2292 2293 /* 2294 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2295 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2296 * with the mems_allowed returned by cpuset_mems_allowed(). This 2297 * keeps mempolicies cpuset relative after its cpuset moves. See 2298 * further kernel/cpuset.c update_nodemask(). 2299 * 2300 * current's mempolicy may be rebinded by the other task(the task that changes 2301 * cpuset's mems), so we needn't do rebind work for current task. 2302 */ 2303 2304 /* Slow path of a mempolicy duplicate */ 2305 struct mempolicy *__mpol_dup(struct mempolicy *old) 2306 { 2307 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2308 2309 if (!new) 2310 return ERR_PTR(-ENOMEM); 2311 2312 /* task's mempolicy is protected by alloc_lock */ 2313 if (old == current->mempolicy) { 2314 task_lock(current); 2315 *new = *old; 2316 task_unlock(current); 2317 } else 2318 *new = *old; 2319 2320 if (current_cpuset_is_being_rebound()) { 2321 nodemask_t mems = cpuset_mems_allowed(current); 2322 mpol_rebind_policy(new, &mems); 2323 } 2324 atomic_set(&new->refcnt, 1); 2325 return new; 2326 } 2327 2328 /* Slow path of a mempolicy comparison */ 2329 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2330 { 2331 if (!a || !b) 2332 return false; 2333 if (a->mode != b->mode) 2334 return false; 2335 if (a->flags != b->flags) 2336 return false; 2337 if (mpol_store_user_nodemask(a)) 2338 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2339 return false; 2340 2341 switch (a->mode) { 2342 case MPOL_BIND: 2343 case MPOL_INTERLEAVE: 2344 return !!nodes_equal(a->v.nodes, b->v.nodes); 2345 case MPOL_PREFERRED: 2346 /* a's ->flags is the same as b's */ 2347 if (a->flags & MPOL_F_LOCAL) 2348 return true; 2349 return a->v.preferred_node == b->v.preferred_node; 2350 default: 2351 BUG(); 2352 return false; 2353 } 2354 } 2355 2356 /* 2357 * Shared memory backing store policy support. 2358 * 2359 * Remember policies even when nobody has shared memory mapped. 2360 * The policies are kept in Red-Black tree linked from the inode. 2361 * They are protected by the sp->lock rwlock, which should be held 2362 * for any accesses to the tree. 2363 */ 2364 2365 /* 2366 * lookup first element intersecting start-end. Caller holds sp->lock for 2367 * reading or for writing 2368 */ 2369 static struct sp_node * 2370 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2371 { 2372 struct rb_node *n = sp->root.rb_node; 2373 2374 while (n) { 2375 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2376 2377 if (start >= p->end) 2378 n = n->rb_right; 2379 else if (end <= p->start) 2380 n = n->rb_left; 2381 else 2382 break; 2383 } 2384 if (!n) 2385 return NULL; 2386 for (;;) { 2387 struct sp_node *w = NULL; 2388 struct rb_node *prev = rb_prev(n); 2389 if (!prev) 2390 break; 2391 w = rb_entry(prev, struct sp_node, nd); 2392 if (w->end <= start) 2393 break; 2394 n = prev; 2395 } 2396 return rb_entry(n, struct sp_node, nd); 2397 } 2398 2399 /* 2400 * Insert a new shared policy into the list. Caller holds sp->lock for 2401 * writing. 2402 */ 2403 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2404 { 2405 struct rb_node **p = &sp->root.rb_node; 2406 struct rb_node *parent = NULL; 2407 struct sp_node *nd; 2408 2409 while (*p) { 2410 parent = *p; 2411 nd = rb_entry(parent, struct sp_node, nd); 2412 if (new->start < nd->start) 2413 p = &(*p)->rb_left; 2414 else if (new->end > nd->end) 2415 p = &(*p)->rb_right; 2416 else 2417 BUG(); 2418 } 2419 rb_link_node(&new->nd, parent, p); 2420 rb_insert_color(&new->nd, &sp->root); 2421 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2422 new->policy ? new->policy->mode : 0); 2423 } 2424 2425 /* Find shared policy intersecting idx */ 2426 struct mempolicy * 2427 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2428 { 2429 struct mempolicy *pol = NULL; 2430 struct sp_node *sn; 2431 2432 if (!sp->root.rb_node) 2433 return NULL; 2434 read_lock(&sp->lock); 2435 sn = sp_lookup(sp, idx, idx+1); 2436 if (sn) { 2437 mpol_get(sn->policy); 2438 pol = sn->policy; 2439 } 2440 read_unlock(&sp->lock); 2441 return pol; 2442 } 2443 2444 static void sp_free(struct sp_node *n) 2445 { 2446 mpol_put(n->policy); 2447 kmem_cache_free(sn_cache, n); 2448 } 2449 2450 /** 2451 * mpol_misplaced - check whether current page node is valid in policy 2452 * 2453 * @page: page to be checked 2454 * @vma: vm area where page mapped 2455 * @addr: virtual address where page mapped 2456 * 2457 * Lookup current policy node id for vma,addr and "compare to" page's 2458 * node id. 2459 * 2460 * Returns: 2461 * -1 - not misplaced, page is in the right node 2462 * node - node id where the page should be 2463 * 2464 * Policy determination "mimics" alloc_page_vma(). 2465 * Called from fault path where we know the vma and faulting address. 2466 */ 2467 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2468 { 2469 struct mempolicy *pol; 2470 struct zoneref *z; 2471 int curnid = page_to_nid(page); 2472 unsigned long pgoff; 2473 int thiscpu = raw_smp_processor_id(); 2474 int thisnid = cpu_to_node(thiscpu); 2475 int polnid = NUMA_NO_NODE; 2476 int ret = -1; 2477 2478 pol = get_vma_policy(vma, addr); 2479 if (!(pol->flags & MPOL_F_MOF)) 2480 goto out; 2481 2482 switch (pol->mode) { 2483 case MPOL_INTERLEAVE: 2484 pgoff = vma->vm_pgoff; 2485 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2486 polnid = offset_il_node(pol, pgoff); 2487 break; 2488 2489 case MPOL_PREFERRED: 2490 if (pol->flags & MPOL_F_LOCAL) 2491 polnid = numa_node_id(); 2492 else 2493 polnid = pol->v.preferred_node; 2494 break; 2495 2496 case MPOL_BIND: 2497 2498 /* 2499 * allows binding to multiple nodes. 2500 * use current page if in policy nodemask, 2501 * else select nearest allowed node, if any. 2502 * If no allowed nodes, use current [!misplaced]. 2503 */ 2504 if (node_isset(curnid, pol->v.nodes)) 2505 goto out; 2506 z = first_zones_zonelist( 2507 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2508 gfp_zone(GFP_HIGHUSER), 2509 &pol->v.nodes); 2510 polnid = zone_to_nid(z->zone); 2511 break; 2512 2513 default: 2514 BUG(); 2515 } 2516 2517 /* Migrate the page towards the node whose CPU is referencing it */ 2518 if (pol->flags & MPOL_F_MORON) { 2519 polnid = thisnid; 2520 2521 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2522 goto out; 2523 } 2524 2525 if (curnid != polnid) 2526 ret = polnid; 2527 out: 2528 mpol_cond_put(pol); 2529 2530 return ret; 2531 } 2532 2533 /* 2534 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2535 * dropped after task->mempolicy is set to NULL so that any allocation done as 2536 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2537 * policy. 2538 */ 2539 void mpol_put_task_policy(struct task_struct *task) 2540 { 2541 struct mempolicy *pol; 2542 2543 task_lock(task); 2544 pol = task->mempolicy; 2545 task->mempolicy = NULL; 2546 task_unlock(task); 2547 mpol_put(pol); 2548 } 2549 2550 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2551 { 2552 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2553 rb_erase(&n->nd, &sp->root); 2554 sp_free(n); 2555 } 2556 2557 static void sp_node_init(struct sp_node *node, unsigned long start, 2558 unsigned long end, struct mempolicy *pol) 2559 { 2560 node->start = start; 2561 node->end = end; 2562 node->policy = pol; 2563 } 2564 2565 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2566 struct mempolicy *pol) 2567 { 2568 struct sp_node *n; 2569 struct mempolicy *newpol; 2570 2571 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2572 if (!n) 2573 return NULL; 2574 2575 newpol = mpol_dup(pol); 2576 if (IS_ERR(newpol)) { 2577 kmem_cache_free(sn_cache, n); 2578 return NULL; 2579 } 2580 newpol->flags |= MPOL_F_SHARED; 2581 sp_node_init(n, start, end, newpol); 2582 2583 return n; 2584 } 2585 2586 /* Replace a policy range. */ 2587 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2588 unsigned long end, struct sp_node *new) 2589 { 2590 struct sp_node *n; 2591 struct sp_node *n_new = NULL; 2592 struct mempolicy *mpol_new = NULL; 2593 int ret = 0; 2594 2595 restart: 2596 write_lock(&sp->lock); 2597 n = sp_lookup(sp, start, end); 2598 /* Take care of old policies in the same range. */ 2599 while (n && n->start < end) { 2600 struct rb_node *next = rb_next(&n->nd); 2601 if (n->start >= start) { 2602 if (n->end <= end) 2603 sp_delete(sp, n); 2604 else 2605 n->start = end; 2606 } else { 2607 /* Old policy spanning whole new range. */ 2608 if (n->end > end) { 2609 if (!n_new) 2610 goto alloc_new; 2611 2612 *mpol_new = *n->policy; 2613 atomic_set(&mpol_new->refcnt, 1); 2614 sp_node_init(n_new, end, n->end, mpol_new); 2615 n->end = start; 2616 sp_insert(sp, n_new); 2617 n_new = NULL; 2618 mpol_new = NULL; 2619 break; 2620 } else 2621 n->end = start; 2622 } 2623 if (!next) 2624 break; 2625 n = rb_entry(next, struct sp_node, nd); 2626 } 2627 if (new) 2628 sp_insert(sp, new); 2629 write_unlock(&sp->lock); 2630 ret = 0; 2631 2632 err_out: 2633 if (mpol_new) 2634 mpol_put(mpol_new); 2635 if (n_new) 2636 kmem_cache_free(sn_cache, n_new); 2637 2638 return ret; 2639 2640 alloc_new: 2641 write_unlock(&sp->lock); 2642 ret = -ENOMEM; 2643 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2644 if (!n_new) 2645 goto err_out; 2646 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2647 if (!mpol_new) 2648 goto err_out; 2649 goto restart; 2650 } 2651 2652 /** 2653 * mpol_shared_policy_init - initialize shared policy for inode 2654 * @sp: pointer to inode shared policy 2655 * @mpol: struct mempolicy to install 2656 * 2657 * Install non-NULL @mpol in inode's shared policy rb-tree. 2658 * On entry, the current task has a reference on a non-NULL @mpol. 2659 * This must be released on exit. 2660 * This is called at get_inode() calls and we can use GFP_KERNEL. 2661 */ 2662 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2663 { 2664 int ret; 2665 2666 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2667 rwlock_init(&sp->lock); 2668 2669 if (mpol) { 2670 struct vm_area_struct pvma; 2671 struct mempolicy *new; 2672 NODEMASK_SCRATCH(scratch); 2673 2674 if (!scratch) 2675 goto put_mpol; 2676 /* contextualize the tmpfs mount point mempolicy */ 2677 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2678 if (IS_ERR(new)) 2679 goto free_scratch; /* no valid nodemask intersection */ 2680 2681 task_lock(current); 2682 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2683 task_unlock(current); 2684 if (ret) 2685 goto put_new; 2686 2687 /* Create pseudo-vma that contains just the policy */ 2688 vma_init(&pvma, NULL); 2689 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2690 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2691 2692 put_new: 2693 mpol_put(new); /* drop initial ref */ 2694 free_scratch: 2695 NODEMASK_SCRATCH_FREE(scratch); 2696 put_mpol: 2697 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2698 } 2699 } 2700 2701 int mpol_set_shared_policy(struct shared_policy *info, 2702 struct vm_area_struct *vma, struct mempolicy *npol) 2703 { 2704 int err; 2705 struct sp_node *new = NULL; 2706 unsigned long sz = vma_pages(vma); 2707 2708 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2709 vma->vm_pgoff, 2710 sz, npol ? npol->mode : -1, 2711 npol ? npol->flags : -1, 2712 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2713 2714 if (npol) { 2715 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2716 if (!new) 2717 return -ENOMEM; 2718 } 2719 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2720 if (err && new) 2721 sp_free(new); 2722 return err; 2723 } 2724 2725 /* Free a backing policy store on inode delete. */ 2726 void mpol_free_shared_policy(struct shared_policy *p) 2727 { 2728 struct sp_node *n; 2729 struct rb_node *next; 2730 2731 if (!p->root.rb_node) 2732 return; 2733 write_lock(&p->lock); 2734 next = rb_first(&p->root); 2735 while (next) { 2736 n = rb_entry(next, struct sp_node, nd); 2737 next = rb_next(&n->nd); 2738 sp_delete(p, n); 2739 } 2740 write_unlock(&p->lock); 2741 } 2742 2743 #ifdef CONFIG_NUMA_BALANCING 2744 static int __initdata numabalancing_override; 2745 2746 static void __init check_numabalancing_enable(void) 2747 { 2748 bool numabalancing_default = false; 2749 2750 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2751 numabalancing_default = true; 2752 2753 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2754 if (numabalancing_override) 2755 set_numabalancing_state(numabalancing_override == 1); 2756 2757 if (num_online_nodes() > 1 && !numabalancing_override) { 2758 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2759 numabalancing_default ? "Enabling" : "Disabling"); 2760 set_numabalancing_state(numabalancing_default); 2761 } 2762 } 2763 2764 static int __init setup_numabalancing(char *str) 2765 { 2766 int ret = 0; 2767 if (!str) 2768 goto out; 2769 2770 if (!strcmp(str, "enable")) { 2771 numabalancing_override = 1; 2772 ret = 1; 2773 } else if (!strcmp(str, "disable")) { 2774 numabalancing_override = -1; 2775 ret = 1; 2776 } 2777 out: 2778 if (!ret) 2779 pr_warn("Unable to parse numa_balancing=\n"); 2780 2781 return ret; 2782 } 2783 __setup("numa_balancing=", setup_numabalancing); 2784 #else 2785 static inline void __init check_numabalancing_enable(void) 2786 { 2787 } 2788 #endif /* CONFIG_NUMA_BALANCING */ 2789 2790 /* assumes fs == KERNEL_DS */ 2791 void __init numa_policy_init(void) 2792 { 2793 nodemask_t interleave_nodes; 2794 unsigned long largest = 0; 2795 int nid, prefer = 0; 2796 2797 policy_cache = kmem_cache_create("numa_policy", 2798 sizeof(struct mempolicy), 2799 0, SLAB_PANIC, NULL); 2800 2801 sn_cache = kmem_cache_create("shared_policy_node", 2802 sizeof(struct sp_node), 2803 0, SLAB_PANIC, NULL); 2804 2805 for_each_node(nid) { 2806 preferred_node_policy[nid] = (struct mempolicy) { 2807 .refcnt = ATOMIC_INIT(1), 2808 .mode = MPOL_PREFERRED, 2809 .flags = MPOL_F_MOF | MPOL_F_MORON, 2810 .v = { .preferred_node = nid, }, 2811 }; 2812 } 2813 2814 /* 2815 * Set interleaving policy for system init. Interleaving is only 2816 * enabled across suitably sized nodes (default is >= 16MB), or 2817 * fall back to the largest node if they're all smaller. 2818 */ 2819 nodes_clear(interleave_nodes); 2820 for_each_node_state(nid, N_MEMORY) { 2821 unsigned long total_pages = node_present_pages(nid); 2822 2823 /* Preserve the largest node */ 2824 if (largest < total_pages) { 2825 largest = total_pages; 2826 prefer = nid; 2827 } 2828 2829 /* Interleave this node? */ 2830 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2831 node_set(nid, interleave_nodes); 2832 } 2833 2834 /* All too small, use the largest */ 2835 if (unlikely(nodes_empty(interleave_nodes))) 2836 node_set(prefer, interleave_nodes); 2837 2838 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2839 pr_err("%s: interleaving failed\n", __func__); 2840 2841 check_numabalancing_enable(); 2842 } 2843 2844 /* Reset policy of current process to default */ 2845 void numa_default_policy(void) 2846 { 2847 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2848 } 2849 2850 /* 2851 * Parse and format mempolicy from/to strings 2852 */ 2853 2854 /* 2855 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2856 */ 2857 static const char * const policy_modes[] = 2858 { 2859 [MPOL_DEFAULT] = "default", 2860 [MPOL_PREFERRED] = "prefer", 2861 [MPOL_BIND] = "bind", 2862 [MPOL_INTERLEAVE] = "interleave", 2863 [MPOL_LOCAL] = "local", 2864 }; 2865 2866 2867 #ifdef CONFIG_TMPFS 2868 /** 2869 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2870 * @str: string containing mempolicy to parse 2871 * @mpol: pointer to struct mempolicy pointer, returned on success. 2872 * 2873 * Format of input: 2874 * <mode>[=<flags>][:<nodelist>] 2875 * 2876 * On success, returns 0, else 1 2877 */ 2878 int mpol_parse_str(char *str, struct mempolicy **mpol) 2879 { 2880 struct mempolicy *new = NULL; 2881 unsigned short mode_flags; 2882 nodemask_t nodes; 2883 char *nodelist = strchr(str, ':'); 2884 char *flags = strchr(str, '='); 2885 int err = 1, mode; 2886 2887 if (flags) 2888 *flags++ = '\0'; /* terminate mode string */ 2889 2890 if (nodelist) { 2891 /* NUL-terminate mode or flags string */ 2892 *nodelist++ = '\0'; 2893 if (nodelist_parse(nodelist, nodes)) 2894 goto out; 2895 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2896 goto out; 2897 } else 2898 nodes_clear(nodes); 2899 2900 mode = match_string(policy_modes, MPOL_MAX, str); 2901 if (mode < 0) 2902 goto out; 2903 2904 switch (mode) { 2905 case MPOL_PREFERRED: 2906 /* 2907 * Insist on a nodelist of one node only, although later 2908 * we use first_node(nodes) to grab a single node, so here 2909 * nodelist (or nodes) cannot be empty. 2910 */ 2911 if (nodelist) { 2912 char *rest = nodelist; 2913 while (isdigit(*rest)) 2914 rest++; 2915 if (*rest) 2916 goto out; 2917 if (nodes_empty(nodes)) 2918 goto out; 2919 } 2920 break; 2921 case MPOL_INTERLEAVE: 2922 /* 2923 * Default to online nodes with memory if no nodelist 2924 */ 2925 if (!nodelist) 2926 nodes = node_states[N_MEMORY]; 2927 break; 2928 case MPOL_LOCAL: 2929 /* 2930 * Don't allow a nodelist; mpol_new() checks flags 2931 */ 2932 if (nodelist) 2933 goto out; 2934 mode = MPOL_PREFERRED; 2935 break; 2936 case MPOL_DEFAULT: 2937 /* 2938 * Insist on a empty nodelist 2939 */ 2940 if (!nodelist) 2941 err = 0; 2942 goto out; 2943 case MPOL_BIND: 2944 /* 2945 * Insist on a nodelist 2946 */ 2947 if (!nodelist) 2948 goto out; 2949 } 2950 2951 mode_flags = 0; 2952 if (flags) { 2953 /* 2954 * Currently, we only support two mutually exclusive 2955 * mode flags. 2956 */ 2957 if (!strcmp(flags, "static")) 2958 mode_flags |= MPOL_F_STATIC_NODES; 2959 else if (!strcmp(flags, "relative")) 2960 mode_flags |= MPOL_F_RELATIVE_NODES; 2961 else 2962 goto out; 2963 } 2964 2965 new = mpol_new(mode, mode_flags, &nodes); 2966 if (IS_ERR(new)) 2967 goto out; 2968 2969 /* 2970 * Save nodes for mpol_to_str() to show the tmpfs mount options 2971 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2972 */ 2973 if (mode != MPOL_PREFERRED) 2974 new->v.nodes = nodes; 2975 else if (nodelist) 2976 new->v.preferred_node = first_node(nodes); 2977 else 2978 new->flags |= MPOL_F_LOCAL; 2979 2980 /* 2981 * Save nodes for contextualization: this will be used to "clone" 2982 * the mempolicy in a specific context [cpuset] at a later time. 2983 */ 2984 new->w.user_nodemask = nodes; 2985 2986 err = 0; 2987 2988 out: 2989 /* Restore string for error message */ 2990 if (nodelist) 2991 *--nodelist = ':'; 2992 if (flags) 2993 *--flags = '='; 2994 if (!err) 2995 *mpol = new; 2996 return err; 2997 } 2998 #endif /* CONFIG_TMPFS */ 2999 3000 /** 3001 * mpol_to_str - format a mempolicy structure for printing 3002 * @buffer: to contain formatted mempolicy string 3003 * @maxlen: length of @buffer 3004 * @pol: pointer to mempolicy to be formatted 3005 * 3006 * Convert @pol into a string. If @buffer is too short, truncate the string. 3007 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3008 * longest flag, "relative", and to display at least a few node ids. 3009 */ 3010 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3011 { 3012 char *p = buffer; 3013 nodemask_t nodes = NODE_MASK_NONE; 3014 unsigned short mode = MPOL_DEFAULT; 3015 unsigned short flags = 0; 3016 3017 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3018 mode = pol->mode; 3019 flags = pol->flags; 3020 } 3021 3022 switch (mode) { 3023 case MPOL_DEFAULT: 3024 break; 3025 case MPOL_PREFERRED: 3026 if (flags & MPOL_F_LOCAL) 3027 mode = MPOL_LOCAL; 3028 else 3029 node_set(pol->v.preferred_node, nodes); 3030 break; 3031 case MPOL_BIND: 3032 case MPOL_INTERLEAVE: 3033 nodes = pol->v.nodes; 3034 break; 3035 default: 3036 WARN_ON_ONCE(1); 3037 snprintf(p, maxlen, "unknown"); 3038 return; 3039 } 3040 3041 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3042 3043 if (flags & MPOL_MODE_FLAGS) { 3044 p += snprintf(p, buffer + maxlen - p, "="); 3045 3046 /* 3047 * Currently, the only defined flags are mutually exclusive 3048 */ 3049 if (flags & MPOL_F_STATIC_NODES) 3050 p += snprintf(p, buffer + maxlen - p, "static"); 3051 else if (flags & MPOL_F_RELATIVE_NODES) 3052 p += snprintf(p, buffer + maxlen - p, "relative"); 3053 } 3054 3055 if (!nodes_empty(nodes)) 3056 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3057 nodemask_pr_args(&nodes)); 3058 } 3059