1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the folio's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_folio_required(struct folio *folio, 436 struct queue_pages *qp) 437 { 438 int nid = folio_nid(folio); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_folios_pmd() has three possible return values: 446 * 0 - folios are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing folio was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct folio *folio; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 folio = pfn_folio(pmd_pfn(*pmd)); 468 if (is_huge_zero_page(&folio->page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_folio_required(folio, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to folio migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_folio_add(folio, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_folios_pte_range() has three possible return values: 495 * 0 - folios are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct folio *folio; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_folios_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 folio = vm_normal_folio(vma, addr, *pte); 525 if (!folio || folio_is_zone_device(folio)) 526 continue; 527 /* 528 * vm_normal_folio() filters out zero pages, but there might 529 * still be reserved folios to skip, perhaps in a VDSO. 530 */ 531 if (folio_test_reserved(folio)) 532 continue; 533 if (!queue_folio_required(folio, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_folio_add(folio, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct folio *folio; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 folio = pfn_folio(pte_pfn(entry)); 578 if (!queue_folio_required(folio, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced folio and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced folio but allow migrating folios which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* 602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 603 * is shared it is likely not worth migrating. 604 * 605 * To check if the folio is shared, ideally we want to make sure 606 * every page is mapped to the same process. Doing that is very 607 * expensive, so check the estimated mapcount of the folio instead. 608 */ 609 if (flags & (MPOL_MF_MOVE_ALL) || 610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 611 !hugetlb_pmd_shared(pte))) { 612 if (!isolate_hugetlb(folio, qp->pagelist) && 613 (flags & MPOL_MF_STRICT)) 614 /* 615 * Failed to isolate folio but allow migrating pages 616 * which have been queued. 617 */ 618 ret = 1; 619 } 620 unlock: 621 spin_unlock(ptl); 622 #else 623 BUG(); 624 #endif 625 return ret; 626 } 627 628 #ifdef CONFIG_NUMA_BALANCING 629 /* 630 * This is used to mark a range of virtual addresses to be inaccessible. 631 * These are later cleared by a NUMA hinting fault. Depending on these 632 * faults, pages may be migrated for better NUMA placement. 633 * 634 * This is assuming that NUMA faults are handled using PROT_NONE. If 635 * an architecture makes a different choice, it will need further 636 * changes to the core. 637 */ 638 unsigned long change_prot_numa(struct vm_area_struct *vma, 639 unsigned long addr, unsigned long end) 640 { 641 struct mmu_gather tlb; 642 long nr_updated; 643 644 tlb_gather_mmu(&tlb, vma->vm_mm); 645 646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 647 if (nr_updated > 0) 648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 649 650 tlb_finish_mmu(&tlb); 651 652 return nr_updated; 653 } 654 #else 655 static unsigned long change_prot_numa(struct vm_area_struct *vma, 656 unsigned long addr, unsigned long end) 657 { 658 return 0; 659 } 660 #endif /* CONFIG_NUMA_BALANCING */ 661 662 static int queue_pages_test_walk(unsigned long start, unsigned long end, 663 struct mm_walk *walk) 664 { 665 struct vm_area_struct *next, *vma = walk->vma; 666 struct queue_pages *qp = walk->private; 667 unsigned long endvma = vma->vm_end; 668 unsigned long flags = qp->flags; 669 670 /* range check first */ 671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 672 673 if (!qp->first) { 674 qp->first = vma; 675 if (!(flags & MPOL_MF_DISCONTIG_OK) && 676 (qp->start < vma->vm_start)) 677 /* hole at head side of range */ 678 return -EFAULT; 679 } 680 next = find_vma(vma->vm_mm, vma->vm_end); 681 if (!(flags & MPOL_MF_DISCONTIG_OK) && 682 ((vma->vm_end < qp->end) && 683 (!next || vma->vm_end < next->vm_start))) 684 /* hole at middle or tail of range */ 685 return -EFAULT; 686 687 /* 688 * Need check MPOL_MF_STRICT to return -EIO if possible 689 * regardless of vma_migratable 690 */ 691 if (!vma_migratable(vma) && 692 !(flags & MPOL_MF_STRICT)) 693 return 1; 694 695 if (endvma > end) 696 endvma = end; 697 698 if (flags & MPOL_MF_LAZY) { 699 /* Similar to task_numa_work, skip inaccessible VMAs */ 700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 701 !(vma->vm_flags & VM_MIXEDMAP)) 702 change_prot_numa(vma, start, endvma); 703 return 1; 704 } 705 706 /* queue pages from current vma */ 707 if (flags & MPOL_MF_VALID) 708 return 0; 709 return 1; 710 } 711 712 static const struct mm_walk_ops queue_pages_walk_ops = { 713 .hugetlb_entry = queue_folios_hugetlb, 714 .pmd_entry = queue_folios_pte_range, 715 .test_walk = queue_pages_test_walk, 716 }; 717 718 /* 719 * Walk through page tables and collect pages to be migrated. 720 * 721 * If pages found in a given range are on a set of nodes (determined by 722 * @nodes and @flags,) it's isolated and queued to the pagelist which is 723 * passed via @private. 724 * 725 * queue_pages_range() has three possible return values: 726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 727 * specified. 728 * 0 - queue pages successfully or no misplaced page. 729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 730 * memory range specified by nodemask and maxnode points outside 731 * your accessible address space (-EFAULT) 732 */ 733 static int 734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 735 nodemask_t *nodes, unsigned long flags, 736 struct list_head *pagelist) 737 { 738 int err; 739 struct queue_pages qp = { 740 .pagelist = pagelist, 741 .flags = flags, 742 .nmask = nodes, 743 .start = start, 744 .end = end, 745 .first = NULL, 746 }; 747 748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 749 750 if (!qp.first) 751 /* whole range in hole */ 752 err = -EFAULT; 753 754 return err; 755 } 756 757 /* 758 * Apply policy to a single VMA 759 * This must be called with the mmap_lock held for writing. 760 */ 761 static int vma_replace_policy(struct vm_area_struct *vma, 762 struct mempolicy *pol) 763 { 764 int err; 765 struct mempolicy *old; 766 struct mempolicy *new; 767 768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 769 vma->vm_start, vma->vm_end, vma->vm_pgoff, 770 vma->vm_ops, vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 772 773 new = mpol_dup(pol); 774 if (IS_ERR(new)) 775 return PTR_ERR(new); 776 777 if (vma->vm_ops && vma->vm_ops->set_policy) { 778 err = vma->vm_ops->set_policy(vma, new); 779 if (err) 780 goto err_out; 781 } 782 783 old = vma->vm_policy; 784 vma->vm_policy = new; /* protected by mmap_lock */ 785 mpol_put(old); 786 787 return 0; 788 err_out: 789 mpol_put(new); 790 return err; 791 } 792 793 /* Split or merge the VMA (if required) and apply the new policy */ 794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 795 struct vm_area_struct **prev, unsigned long start, 796 unsigned long end, struct mempolicy *new_pol) 797 { 798 struct vm_area_struct *merged; 799 unsigned long vmstart, vmend; 800 pgoff_t pgoff; 801 int err; 802 803 vmend = min(end, vma->vm_end); 804 if (start > vma->vm_start) { 805 *prev = vma; 806 vmstart = start; 807 } else { 808 vmstart = vma->vm_start; 809 } 810 811 if (mpol_equal(vma_policy(vma), new_pol)) { 812 *prev = vma; 813 return 0; 814 } 815 816 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 817 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 818 vma->anon_vma, vma->vm_file, pgoff, new_pol, 819 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 820 if (merged) { 821 *prev = merged; 822 return vma_replace_policy(merged, new_pol); 823 } 824 825 if (vma->vm_start != vmstart) { 826 err = split_vma(vmi, vma, vmstart, 1); 827 if (err) 828 return err; 829 } 830 831 if (vma->vm_end != vmend) { 832 err = split_vma(vmi, vma, vmend, 0); 833 if (err) 834 return err; 835 } 836 837 *prev = vma; 838 return vma_replace_policy(vma, new_pol); 839 } 840 841 /* Set the process memory policy */ 842 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 843 nodemask_t *nodes) 844 { 845 struct mempolicy *new, *old; 846 NODEMASK_SCRATCH(scratch); 847 int ret; 848 849 if (!scratch) 850 return -ENOMEM; 851 852 new = mpol_new(mode, flags, nodes); 853 if (IS_ERR(new)) { 854 ret = PTR_ERR(new); 855 goto out; 856 } 857 858 task_lock(current); 859 ret = mpol_set_nodemask(new, nodes, scratch); 860 if (ret) { 861 task_unlock(current); 862 mpol_put(new); 863 goto out; 864 } 865 866 old = current->mempolicy; 867 current->mempolicy = new; 868 if (new && new->mode == MPOL_INTERLEAVE) 869 current->il_prev = MAX_NUMNODES-1; 870 task_unlock(current); 871 mpol_put(old); 872 ret = 0; 873 out: 874 NODEMASK_SCRATCH_FREE(scratch); 875 return ret; 876 } 877 878 /* 879 * Return nodemask for policy for get_mempolicy() query 880 * 881 * Called with task's alloc_lock held 882 */ 883 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 884 { 885 nodes_clear(*nodes); 886 if (p == &default_policy) 887 return; 888 889 switch (p->mode) { 890 case MPOL_BIND: 891 case MPOL_INTERLEAVE: 892 case MPOL_PREFERRED: 893 case MPOL_PREFERRED_MANY: 894 *nodes = p->nodes; 895 break; 896 case MPOL_LOCAL: 897 /* return empty node mask for local allocation */ 898 break; 899 default: 900 BUG(); 901 } 902 } 903 904 static int lookup_node(struct mm_struct *mm, unsigned long addr) 905 { 906 struct page *p = NULL; 907 int ret; 908 909 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 910 if (ret > 0) { 911 ret = page_to_nid(p); 912 put_page(p); 913 } 914 return ret; 915 } 916 917 /* Retrieve NUMA policy */ 918 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 919 unsigned long addr, unsigned long flags) 920 { 921 int err; 922 struct mm_struct *mm = current->mm; 923 struct vm_area_struct *vma = NULL; 924 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 925 926 if (flags & 927 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 928 return -EINVAL; 929 930 if (flags & MPOL_F_MEMS_ALLOWED) { 931 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 932 return -EINVAL; 933 *policy = 0; /* just so it's initialized */ 934 task_lock(current); 935 *nmask = cpuset_current_mems_allowed; 936 task_unlock(current); 937 return 0; 938 } 939 940 if (flags & MPOL_F_ADDR) { 941 /* 942 * Do NOT fall back to task policy if the 943 * vma/shared policy at addr is NULL. We 944 * want to return MPOL_DEFAULT in this case. 945 */ 946 mmap_read_lock(mm); 947 vma = vma_lookup(mm, addr); 948 if (!vma) { 949 mmap_read_unlock(mm); 950 return -EFAULT; 951 } 952 if (vma->vm_ops && vma->vm_ops->get_policy) 953 pol = vma->vm_ops->get_policy(vma, addr); 954 else 955 pol = vma->vm_policy; 956 } else if (addr) 957 return -EINVAL; 958 959 if (!pol) 960 pol = &default_policy; /* indicates default behavior */ 961 962 if (flags & MPOL_F_NODE) { 963 if (flags & MPOL_F_ADDR) { 964 /* 965 * Take a refcount on the mpol, because we are about to 966 * drop the mmap_lock, after which only "pol" remains 967 * valid, "vma" is stale. 968 */ 969 pol_refcount = pol; 970 vma = NULL; 971 mpol_get(pol); 972 mmap_read_unlock(mm); 973 err = lookup_node(mm, addr); 974 if (err < 0) 975 goto out; 976 *policy = err; 977 } else if (pol == current->mempolicy && 978 pol->mode == MPOL_INTERLEAVE) { 979 *policy = next_node_in(current->il_prev, pol->nodes); 980 } else { 981 err = -EINVAL; 982 goto out; 983 } 984 } else { 985 *policy = pol == &default_policy ? MPOL_DEFAULT : 986 pol->mode; 987 /* 988 * Internal mempolicy flags must be masked off before exposing 989 * the policy to userspace. 990 */ 991 *policy |= (pol->flags & MPOL_MODE_FLAGS); 992 } 993 994 err = 0; 995 if (nmask) { 996 if (mpol_store_user_nodemask(pol)) { 997 *nmask = pol->w.user_nodemask; 998 } else { 999 task_lock(current); 1000 get_policy_nodemask(pol, nmask); 1001 task_unlock(current); 1002 } 1003 } 1004 1005 out: 1006 mpol_cond_put(pol); 1007 if (vma) 1008 mmap_read_unlock(mm); 1009 if (pol_refcount) 1010 mpol_put(pol_refcount); 1011 return err; 1012 } 1013 1014 #ifdef CONFIG_MIGRATION 1015 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1016 unsigned long flags) 1017 { 1018 /* 1019 * We try to migrate only unshared folios. If it is shared it 1020 * is likely not worth migrating. 1021 * 1022 * To check if the folio is shared, ideally we want to make sure 1023 * every page is mapped to the same process. Doing that is very 1024 * expensive, so check the estimated mapcount of the folio instead. 1025 */ 1026 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1027 if (folio_isolate_lru(folio)) { 1028 list_add_tail(&folio->lru, foliolist); 1029 node_stat_mod_folio(folio, 1030 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1031 folio_nr_pages(folio)); 1032 } else if (flags & MPOL_MF_STRICT) { 1033 /* 1034 * Non-movable folio may reach here. And, there may be 1035 * temporary off LRU folios or non-LRU movable folios. 1036 * Treat them as unmovable folios since they can't be 1037 * isolated, so they can't be moved at the moment. It 1038 * should return -EIO for this case too. 1039 */ 1040 return -EIO; 1041 } 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * Migrate pages from one node to a target node. 1049 * Returns error or the number of pages not migrated. 1050 */ 1051 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1052 int flags) 1053 { 1054 nodemask_t nmask; 1055 struct vm_area_struct *vma; 1056 LIST_HEAD(pagelist); 1057 int err = 0; 1058 struct migration_target_control mtc = { 1059 .nid = dest, 1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1061 }; 1062 1063 nodes_clear(nmask); 1064 node_set(source, nmask); 1065 1066 /* 1067 * This does not "check" the range but isolates all pages that 1068 * need migration. Between passing in the full user address 1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1070 */ 1071 vma = find_vma(mm, 0); 1072 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1073 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1074 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1075 1076 if (!list_empty(&pagelist)) { 1077 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1078 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1079 if (err) 1080 putback_movable_pages(&pagelist); 1081 } 1082 1083 return err; 1084 } 1085 1086 /* 1087 * Move pages between the two nodesets so as to preserve the physical 1088 * layout as much as possible. 1089 * 1090 * Returns the number of page that could not be moved. 1091 */ 1092 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1093 const nodemask_t *to, int flags) 1094 { 1095 int busy = 0; 1096 int err = 0; 1097 nodemask_t tmp; 1098 1099 lru_cache_disable(); 1100 1101 mmap_read_lock(mm); 1102 1103 /* 1104 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1105 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1106 * bit in 'tmp', and return that <source, dest> pair for migration. 1107 * The pair of nodemasks 'to' and 'from' define the map. 1108 * 1109 * If no pair of bits is found that way, fallback to picking some 1110 * pair of 'source' and 'dest' bits that are not the same. If the 1111 * 'source' and 'dest' bits are the same, this represents a node 1112 * that will be migrating to itself, so no pages need move. 1113 * 1114 * If no bits are left in 'tmp', or if all remaining bits left 1115 * in 'tmp' correspond to the same bit in 'to', return false 1116 * (nothing left to migrate). 1117 * 1118 * This lets us pick a pair of nodes to migrate between, such that 1119 * if possible the dest node is not already occupied by some other 1120 * source node, minimizing the risk of overloading the memory on a 1121 * node that would happen if we migrated incoming memory to a node 1122 * before migrating outgoing memory source that same node. 1123 * 1124 * A single scan of tmp is sufficient. As we go, we remember the 1125 * most recent <s, d> pair that moved (s != d). If we find a pair 1126 * that not only moved, but what's better, moved to an empty slot 1127 * (d is not set in tmp), then we break out then, with that pair. 1128 * Otherwise when we finish scanning from_tmp, we at least have the 1129 * most recent <s, d> pair that moved. If we get all the way through 1130 * the scan of tmp without finding any node that moved, much less 1131 * moved to an empty node, then there is nothing left worth migrating. 1132 */ 1133 1134 tmp = *from; 1135 while (!nodes_empty(tmp)) { 1136 int s, d; 1137 int source = NUMA_NO_NODE; 1138 int dest = 0; 1139 1140 for_each_node_mask(s, tmp) { 1141 1142 /* 1143 * do_migrate_pages() tries to maintain the relative 1144 * node relationship of the pages established between 1145 * threads and memory areas. 1146 * 1147 * However if the number of source nodes is not equal to 1148 * the number of destination nodes we can not preserve 1149 * this node relative relationship. In that case, skip 1150 * copying memory from a node that is in the destination 1151 * mask. 1152 * 1153 * Example: [2,3,4] -> [3,4,5] moves everything. 1154 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1155 */ 1156 1157 if ((nodes_weight(*from) != nodes_weight(*to)) && 1158 (node_isset(s, *to))) 1159 continue; 1160 1161 d = node_remap(s, *from, *to); 1162 if (s == d) 1163 continue; 1164 1165 source = s; /* Node moved. Memorize */ 1166 dest = d; 1167 1168 /* dest not in remaining from nodes? */ 1169 if (!node_isset(dest, tmp)) 1170 break; 1171 } 1172 if (source == NUMA_NO_NODE) 1173 break; 1174 1175 node_clear(source, tmp); 1176 err = migrate_to_node(mm, source, dest, flags); 1177 if (err > 0) 1178 busy += err; 1179 if (err < 0) 1180 break; 1181 } 1182 mmap_read_unlock(mm); 1183 1184 lru_cache_enable(); 1185 if (err < 0) 1186 return err; 1187 return busy; 1188 1189 } 1190 1191 /* 1192 * Allocate a new page for page migration based on vma policy. 1193 * Start by assuming the page is mapped by the same vma as contains @start. 1194 * Search forward from there, if not. N.B., this assumes that the 1195 * list of pages handed to migrate_pages()--which is how we get here-- 1196 * is in virtual address order. 1197 */ 1198 static struct page *new_page(struct page *page, unsigned long start) 1199 { 1200 struct folio *dst, *src = page_folio(page); 1201 struct vm_area_struct *vma; 1202 unsigned long address; 1203 VMA_ITERATOR(vmi, current->mm, start); 1204 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1205 1206 for_each_vma(vmi, vma) { 1207 address = page_address_in_vma(page, vma); 1208 if (address != -EFAULT) 1209 break; 1210 } 1211 1212 if (folio_test_hugetlb(src)) { 1213 dst = alloc_hugetlb_folio_vma(folio_hstate(src), 1214 vma, address); 1215 return &dst->page; 1216 } 1217 1218 if (folio_test_large(src)) 1219 gfp = GFP_TRANSHUGE; 1220 1221 /* 1222 * if !vma, vma_alloc_folio() will use task or system default policy 1223 */ 1224 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1225 folio_test_large(src)); 1226 return &dst->page; 1227 } 1228 #else 1229 1230 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1231 unsigned long flags) 1232 { 1233 return -EIO; 1234 } 1235 1236 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1237 const nodemask_t *to, int flags) 1238 { 1239 return -ENOSYS; 1240 } 1241 1242 static struct page *new_page(struct page *page, unsigned long start) 1243 { 1244 return NULL; 1245 } 1246 #endif 1247 1248 static long do_mbind(unsigned long start, unsigned long len, 1249 unsigned short mode, unsigned short mode_flags, 1250 nodemask_t *nmask, unsigned long flags) 1251 { 1252 struct mm_struct *mm = current->mm; 1253 struct vm_area_struct *vma, *prev; 1254 struct vma_iterator vmi; 1255 struct mempolicy *new; 1256 unsigned long end; 1257 int err; 1258 int ret; 1259 LIST_HEAD(pagelist); 1260 1261 if (flags & ~(unsigned long)MPOL_MF_VALID) 1262 return -EINVAL; 1263 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1264 return -EPERM; 1265 1266 if (start & ~PAGE_MASK) 1267 return -EINVAL; 1268 1269 if (mode == MPOL_DEFAULT) 1270 flags &= ~MPOL_MF_STRICT; 1271 1272 len = PAGE_ALIGN(len); 1273 end = start + len; 1274 1275 if (end < start) 1276 return -EINVAL; 1277 if (end == start) 1278 return 0; 1279 1280 new = mpol_new(mode, mode_flags, nmask); 1281 if (IS_ERR(new)) 1282 return PTR_ERR(new); 1283 1284 if (flags & MPOL_MF_LAZY) 1285 new->flags |= MPOL_F_MOF; 1286 1287 /* 1288 * If we are using the default policy then operation 1289 * on discontinuous address spaces is okay after all 1290 */ 1291 if (!new) 1292 flags |= MPOL_MF_DISCONTIG_OK; 1293 1294 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1295 start, start + len, mode, mode_flags, 1296 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1297 1298 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1299 1300 lru_cache_disable(); 1301 } 1302 { 1303 NODEMASK_SCRATCH(scratch); 1304 if (scratch) { 1305 mmap_write_lock(mm); 1306 err = mpol_set_nodemask(new, nmask, scratch); 1307 if (err) 1308 mmap_write_unlock(mm); 1309 } else 1310 err = -ENOMEM; 1311 NODEMASK_SCRATCH_FREE(scratch); 1312 } 1313 if (err) 1314 goto mpol_out; 1315 1316 ret = queue_pages_range(mm, start, end, nmask, 1317 flags | MPOL_MF_INVERT, &pagelist); 1318 1319 if (ret < 0) { 1320 err = ret; 1321 goto up_out; 1322 } 1323 1324 vma_iter_init(&vmi, mm, start); 1325 prev = vma_prev(&vmi); 1326 for_each_vma_range(vmi, vma, end) { 1327 err = mbind_range(&vmi, vma, &prev, start, end, new); 1328 if (err) 1329 break; 1330 } 1331 1332 if (!err) { 1333 int nr_failed = 0; 1334 1335 if (!list_empty(&pagelist)) { 1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1337 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1339 if (nr_failed) 1340 putback_movable_pages(&pagelist); 1341 } 1342 1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1344 err = -EIO; 1345 } else { 1346 up_out: 1347 if (!list_empty(&pagelist)) 1348 putback_movable_pages(&pagelist); 1349 } 1350 1351 mmap_write_unlock(mm); 1352 mpol_out: 1353 mpol_put(new); 1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1355 lru_cache_enable(); 1356 return err; 1357 } 1358 1359 /* 1360 * User space interface with variable sized bitmaps for nodelists. 1361 */ 1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1363 unsigned long maxnode) 1364 { 1365 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1366 int ret; 1367 1368 if (in_compat_syscall()) 1369 ret = compat_get_bitmap(mask, 1370 (const compat_ulong_t __user *)nmask, 1371 maxnode); 1372 else 1373 ret = copy_from_user(mask, nmask, 1374 nlongs * sizeof(unsigned long)); 1375 1376 if (ret) 1377 return -EFAULT; 1378 1379 if (maxnode % BITS_PER_LONG) 1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1381 1382 return 0; 1383 } 1384 1385 /* Copy a node mask from user space. */ 1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1387 unsigned long maxnode) 1388 { 1389 --maxnode; 1390 nodes_clear(*nodes); 1391 if (maxnode == 0 || !nmask) 1392 return 0; 1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1394 return -EINVAL; 1395 1396 /* 1397 * When the user specified more nodes than supported just check 1398 * if the non supported part is all zero, one word at a time, 1399 * starting at the end. 1400 */ 1401 while (maxnode > MAX_NUMNODES) { 1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1403 unsigned long t; 1404 1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1406 return -EFAULT; 1407 1408 if (maxnode - bits >= MAX_NUMNODES) { 1409 maxnode -= bits; 1410 } else { 1411 maxnode = MAX_NUMNODES; 1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1413 } 1414 if (t) 1415 return -EINVAL; 1416 } 1417 1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1419 } 1420 1421 /* Copy a kernel node mask to user space */ 1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1423 nodemask_t *nodes) 1424 { 1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1427 bool compat = in_compat_syscall(); 1428 1429 if (compat) 1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1431 1432 if (copy > nbytes) { 1433 if (copy > PAGE_SIZE) 1434 return -EINVAL; 1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1436 return -EFAULT; 1437 copy = nbytes; 1438 maxnode = nr_node_ids; 1439 } 1440 1441 if (compat) 1442 return compat_put_bitmap((compat_ulong_t __user *)mask, 1443 nodes_addr(*nodes), maxnode); 1444 1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1446 } 1447 1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1450 { 1451 *flags = *mode & MPOL_MODE_FLAGS; 1452 *mode &= ~MPOL_MODE_FLAGS; 1453 1454 if ((unsigned int)(*mode) >= MPOL_MAX) 1455 return -EINVAL; 1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1457 return -EINVAL; 1458 if (*flags & MPOL_F_NUMA_BALANCING) { 1459 if (*mode != MPOL_BIND) 1460 return -EINVAL; 1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1462 } 1463 return 0; 1464 } 1465 1466 static long kernel_mbind(unsigned long start, unsigned long len, 1467 unsigned long mode, const unsigned long __user *nmask, 1468 unsigned long maxnode, unsigned int flags) 1469 { 1470 unsigned short mode_flags; 1471 nodemask_t nodes; 1472 int lmode = mode; 1473 int err; 1474 1475 start = untagged_addr(start); 1476 err = sanitize_mpol_flags(&lmode, &mode_flags); 1477 if (err) 1478 return err; 1479 1480 err = get_nodes(&nodes, nmask, maxnode); 1481 if (err) 1482 return err; 1483 1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1485 } 1486 1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1488 unsigned long, home_node, unsigned long, flags) 1489 { 1490 struct mm_struct *mm = current->mm; 1491 struct vm_area_struct *vma, *prev; 1492 struct mempolicy *new, *old; 1493 unsigned long end; 1494 int err = -ENOENT; 1495 VMA_ITERATOR(vmi, mm, start); 1496 1497 start = untagged_addr(start); 1498 if (start & ~PAGE_MASK) 1499 return -EINVAL; 1500 /* 1501 * flags is used for future extension if any. 1502 */ 1503 if (flags != 0) 1504 return -EINVAL; 1505 1506 /* 1507 * Check home_node is online to avoid accessing uninitialized 1508 * NODE_DATA. 1509 */ 1510 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1511 return -EINVAL; 1512 1513 len = PAGE_ALIGN(len); 1514 end = start + len; 1515 1516 if (end < start) 1517 return -EINVAL; 1518 if (end == start) 1519 return 0; 1520 mmap_write_lock(mm); 1521 prev = vma_prev(&vmi); 1522 for_each_vma_range(vmi, vma, end) { 1523 /* 1524 * If any vma in the range got policy other than MPOL_BIND 1525 * or MPOL_PREFERRED_MANY we return error. We don't reset 1526 * the home node for vmas we already updated before. 1527 */ 1528 old = vma_policy(vma); 1529 if (!old) 1530 continue; 1531 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1532 err = -EOPNOTSUPP; 1533 break; 1534 } 1535 new = mpol_dup(old); 1536 if (IS_ERR(new)) { 1537 err = PTR_ERR(new); 1538 break; 1539 } 1540 1541 new->home_node = home_node; 1542 err = mbind_range(&vmi, vma, &prev, start, end, new); 1543 mpol_put(new); 1544 if (err) 1545 break; 1546 } 1547 mmap_write_unlock(mm); 1548 return err; 1549 } 1550 1551 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1552 unsigned long, mode, const unsigned long __user *, nmask, 1553 unsigned long, maxnode, unsigned int, flags) 1554 { 1555 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1556 } 1557 1558 /* Set the process memory policy */ 1559 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1560 unsigned long maxnode) 1561 { 1562 unsigned short mode_flags; 1563 nodemask_t nodes; 1564 int lmode = mode; 1565 int err; 1566 1567 err = sanitize_mpol_flags(&lmode, &mode_flags); 1568 if (err) 1569 return err; 1570 1571 err = get_nodes(&nodes, nmask, maxnode); 1572 if (err) 1573 return err; 1574 1575 return do_set_mempolicy(lmode, mode_flags, &nodes); 1576 } 1577 1578 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1579 unsigned long, maxnode) 1580 { 1581 return kernel_set_mempolicy(mode, nmask, maxnode); 1582 } 1583 1584 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1585 const unsigned long __user *old_nodes, 1586 const unsigned long __user *new_nodes) 1587 { 1588 struct mm_struct *mm = NULL; 1589 struct task_struct *task; 1590 nodemask_t task_nodes; 1591 int err; 1592 nodemask_t *old; 1593 nodemask_t *new; 1594 NODEMASK_SCRATCH(scratch); 1595 1596 if (!scratch) 1597 return -ENOMEM; 1598 1599 old = &scratch->mask1; 1600 new = &scratch->mask2; 1601 1602 err = get_nodes(old, old_nodes, maxnode); 1603 if (err) 1604 goto out; 1605 1606 err = get_nodes(new, new_nodes, maxnode); 1607 if (err) 1608 goto out; 1609 1610 /* Find the mm_struct */ 1611 rcu_read_lock(); 1612 task = pid ? find_task_by_vpid(pid) : current; 1613 if (!task) { 1614 rcu_read_unlock(); 1615 err = -ESRCH; 1616 goto out; 1617 } 1618 get_task_struct(task); 1619 1620 err = -EINVAL; 1621 1622 /* 1623 * Check if this process has the right to modify the specified process. 1624 * Use the regular "ptrace_may_access()" checks. 1625 */ 1626 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1627 rcu_read_unlock(); 1628 err = -EPERM; 1629 goto out_put; 1630 } 1631 rcu_read_unlock(); 1632 1633 task_nodes = cpuset_mems_allowed(task); 1634 /* Is the user allowed to access the target nodes? */ 1635 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1636 err = -EPERM; 1637 goto out_put; 1638 } 1639 1640 task_nodes = cpuset_mems_allowed(current); 1641 nodes_and(*new, *new, task_nodes); 1642 if (nodes_empty(*new)) 1643 goto out_put; 1644 1645 err = security_task_movememory(task); 1646 if (err) 1647 goto out_put; 1648 1649 mm = get_task_mm(task); 1650 put_task_struct(task); 1651 1652 if (!mm) { 1653 err = -EINVAL; 1654 goto out; 1655 } 1656 1657 err = do_migrate_pages(mm, old, new, 1658 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1659 1660 mmput(mm); 1661 out: 1662 NODEMASK_SCRATCH_FREE(scratch); 1663 1664 return err; 1665 1666 out_put: 1667 put_task_struct(task); 1668 goto out; 1669 1670 } 1671 1672 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1673 const unsigned long __user *, old_nodes, 1674 const unsigned long __user *, new_nodes) 1675 { 1676 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1677 } 1678 1679 1680 /* Retrieve NUMA policy */ 1681 static int kernel_get_mempolicy(int __user *policy, 1682 unsigned long __user *nmask, 1683 unsigned long maxnode, 1684 unsigned long addr, 1685 unsigned long flags) 1686 { 1687 int err; 1688 int pval; 1689 nodemask_t nodes; 1690 1691 if (nmask != NULL && maxnode < nr_node_ids) 1692 return -EINVAL; 1693 1694 addr = untagged_addr(addr); 1695 1696 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1697 1698 if (err) 1699 return err; 1700 1701 if (policy && put_user(pval, policy)) 1702 return -EFAULT; 1703 1704 if (nmask) 1705 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1706 1707 return err; 1708 } 1709 1710 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1711 unsigned long __user *, nmask, unsigned long, maxnode, 1712 unsigned long, addr, unsigned long, flags) 1713 { 1714 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1715 } 1716 1717 bool vma_migratable(struct vm_area_struct *vma) 1718 { 1719 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1720 return false; 1721 1722 /* 1723 * DAX device mappings require predictable access latency, so avoid 1724 * incurring periodic faults. 1725 */ 1726 if (vma_is_dax(vma)) 1727 return false; 1728 1729 if (is_vm_hugetlb_page(vma) && 1730 !hugepage_migration_supported(hstate_vma(vma))) 1731 return false; 1732 1733 /* 1734 * Migration allocates pages in the highest zone. If we cannot 1735 * do so then migration (at least from node to node) is not 1736 * possible. 1737 */ 1738 if (vma->vm_file && 1739 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1740 < policy_zone) 1741 return false; 1742 return true; 1743 } 1744 1745 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1746 unsigned long addr) 1747 { 1748 struct mempolicy *pol = NULL; 1749 1750 if (vma) { 1751 if (vma->vm_ops && vma->vm_ops->get_policy) { 1752 pol = vma->vm_ops->get_policy(vma, addr); 1753 } else if (vma->vm_policy) { 1754 pol = vma->vm_policy; 1755 1756 /* 1757 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1758 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1759 * count on these policies which will be dropped by 1760 * mpol_cond_put() later 1761 */ 1762 if (mpol_needs_cond_ref(pol)) 1763 mpol_get(pol); 1764 } 1765 } 1766 1767 return pol; 1768 } 1769 1770 /* 1771 * get_vma_policy(@vma, @addr) 1772 * @vma: virtual memory area whose policy is sought 1773 * @addr: address in @vma for shared policy lookup 1774 * 1775 * Returns effective policy for a VMA at specified address. 1776 * Falls back to current->mempolicy or system default policy, as necessary. 1777 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1778 * count--added by the get_policy() vm_op, as appropriate--to protect against 1779 * freeing by another task. It is the caller's responsibility to free the 1780 * extra reference for shared policies. 1781 */ 1782 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1783 unsigned long addr) 1784 { 1785 struct mempolicy *pol = __get_vma_policy(vma, addr); 1786 1787 if (!pol) 1788 pol = get_task_policy(current); 1789 1790 return pol; 1791 } 1792 1793 bool vma_policy_mof(struct vm_area_struct *vma) 1794 { 1795 struct mempolicy *pol; 1796 1797 if (vma->vm_ops && vma->vm_ops->get_policy) { 1798 bool ret = false; 1799 1800 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1801 if (pol && (pol->flags & MPOL_F_MOF)) 1802 ret = true; 1803 mpol_cond_put(pol); 1804 1805 return ret; 1806 } 1807 1808 pol = vma->vm_policy; 1809 if (!pol) 1810 pol = get_task_policy(current); 1811 1812 return pol->flags & MPOL_F_MOF; 1813 } 1814 1815 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1816 { 1817 enum zone_type dynamic_policy_zone = policy_zone; 1818 1819 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1820 1821 /* 1822 * if policy->nodes has movable memory only, 1823 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1824 * 1825 * policy->nodes is intersect with node_states[N_MEMORY]. 1826 * so if the following test fails, it implies 1827 * policy->nodes has movable memory only. 1828 */ 1829 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1830 dynamic_policy_zone = ZONE_MOVABLE; 1831 1832 return zone >= dynamic_policy_zone; 1833 } 1834 1835 /* 1836 * Return a nodemask representing a mempolicy for filtering nodes for 1837 * page allocation 1838 */ 1839 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1840 { 1841 int mode = policy->mode; 1842 1843 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1844 if (unlikely(mode == MPOL_BIND) && 1845 apply_policy_zone(policy, gfp_zone(gfp)) && 1846 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1847 return &policy->nodes; 1848 1849 if (mode == MPOL_PREFERRED_MANY) 1850 return &policy->nodes; 1851 1852 return NULL; 1853 } 1854 1855 /* 1856 * Return the preferred node id for 'prefer' mempolicy, and return 1857 * the given id for all other policies. 1858 * 1859 * policy_node() is always coupled with policy_nodemask(), which 1860 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1861 */ 1862 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1863 { 1864 if (policy->mode == MPOL_PREFERRED) { 1865 nd = first_node(policy->nodes); 1866 } else { 1867 /* 1868 * __GFP_THISNODE shouldn't even be used with the bind policy 1869 * because we might easily break the expectation to stay on the 1870 * requested node and not break the policy. 1871 */ 1872 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1873 } 1874 1875 if ((policy->mode == MPOL_BIND || 1876 policy->mode == MPOL_PREFERRED_MANY) && 1877 policy->home_node != NUMA_NO_NODE) 1878 return policy->home_node; 1879 1880 return nd; 1881 } 1882 1883 /* Do dynamic interleaving for a process */ 1884 static unsigned interleave_nodes(struct mempolicy *policy) 1885 { 1886 unsigned next; 1887 struct task_struct *me = current; 1888 1889 next = next_node_in(me->il_prev, policy->nodes); 1890 if (next < MAX_NUMNODES) 1891 me->il_prev = next; 1892 return next; 1893 } 1894 1895 /* 1896 * Depending on the memory policy provide a node from which to allocate the 1897 * next slab entry. 1898 */ 1899 unsigned int mempolicy_slab_node(void) 1900 { 1901 struct mempolicy *policy; 1902 int node = numa_mem_id(); 1903 1904 if (!in_task()) 1905 return node; 1906 1907 policy = current->mempolicy; 1908 if (!policy) 1909 return node; 1910 1911 switch (policy->mode) { 1912 case MPOL_PREFERRED: 1913 return first_node(policy->nodes); 1914 1915 case MPOL_INTERLEAVE: 1916 return interleave_nodes(policy); 1917 1918 case MPOL_BIND: 1919 case MPOL_PREFERRED_MANY: 1920 { 1921 struct zoneref *z; 1922 1923 /* 1924 * Follow bind policy behavior and start allocation at the 1925 * first node. 1926 */ 1927 struct zonelist *zonelist; 1928 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1929 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1930 z = first_zones_zonelist(zonelist, highest_zoneidx, 1931 &policy->nodes); 1932 return z->zone ? zone_to_nid(z->zone) : node; 1933 } 1934 case MPOL_LOCAL: 1935 return node; 1936 1937 default: 1938 BUG(); 1939 } 1940 } 1941 1942 /* 1943 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1944 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1945 * number of present nodes. 1946 */ 1947 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1948 { 1949 nodemask_t nodemask = pol->nodes; 1950 unsigned int target, nnodes; 1951 int i; 1952 int nid; 1953 /* 1954 * The barrier will stabilize the nodemask in a register or on 1955 * the stack so that it will stop changing under the code. 1956 * 1957 * Between first_node() and next_node(), pol->nodes could be changed 1958 * by other threads. So we put pol->nodes in a local stack. 1959 */ 1960 barrier(); 1961 1962 nnodes = nodes_weight(nodemask); 1963 if (!nnodes) 1964 return numa_node_id(); 1965 target = (unsigned int)n % nnodes; 1966 nid = first_node(nodemask); 1967 for (i = 0; i < target; i++) 1968 nid = next_node(nid, nodemask); 1969 return nid; 1970 } 1971 1972 /* Determine a node number for interleave */ 1973 static inline unsigned interleave_nid(struct mempolicy *pol, 1974 struct vm_area_struct *vma, unsigned long addr, int shift) 1975 { 1976 if (vma) { 1977 unsigned long off; 1978 1979 /* 1980 * for small pages, there is no difference between 1981 * shift and PAGE_SHIFT, so the bit-shift is safe. 1982 * for huge pages, since vm_pgoff is in units of small 1983 * pages, we need to shift off the always 0 bits to get 1984 * a useful offset. 1985 */ 1986 BUG_ON(shift < PAGE_SHIFT); 1987 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1988 off += (addr - vma->vm_start) >> shift; 1989 return offset_il_node(pol, off); 1990 } else 1991 return interleave_nodes(pol); 1992 } 1993 1994 #ifdef CONFIG_HUGETLBFS 1995 /* 1996 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1997 * @vma: virtual memory area whose policy is sought 1998 * @addr: address in @vma for shared policy lookup and interleave policy 1999 * @gfp_flags: for requested zone 2000 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2001 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2002 * 2003 * Returns a nid suitable for a huge page allocation and a pointer 2004 * to the struct mempolicy for conditional unref after allocation. 2005 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2006 * to the mempolicy's @nodemask for filtering the zonelist. 2007 * 2008 * Must be protected by read_mems_allowed_begin() 2009 */ 2010 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2011 struct mempolicy **mpol, nodemask_t **nodemask) 2012 { 2013 int nid; 2014 int mode; 2015 2016 *mpol = get_vma_policy(vma, addr); 2017 *nodemask = NULL; 2018 mode = (*mpol)->mode; 2019 2020 if (unlikely(mode == MPOL_INTERLEAVE)) { 2021 nid = interleave_nid(*mpol, vma, addr, 2022 huge_page_shift(hstate_vma(vma))); 2023 } else { 2024 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2025 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2026 *nodemask = &(*mpol)->nodes; 2027 } 2028 return nid; 2029 } 2030 2031 /* 2032 * init_nodemask_of_mempolicy 2033 * 2034 * If the current task's mempolicy is "default" [NULL], return 'false' 2035 * to indicate default policy. Otherwise, extract the policy nodemask 2036 * for 'bind' or 'interleave' policy into the argument nodemask, or 2037 * initialize the argument nodemask to contain the single node for 2038 * 'preferred' or 'local' policy and return 'true' to indicate presence 2039 * of non-default mempolicy. 2040 * 2041 * We don't bother with reference counting the mempolicy [mpol_get/put] 2042 * because the current task is examining it's own mempolicy and a task's 2043 * mempolicy is only ever changed by the task itself. 2044 * 2045 * N.B., it is the caller's responsibility to free a returned nodemask. 2046 */ 2047 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2048 { 2049 struct mempolicy *mempolicy; 2050 2051 if (!(mask && current->mempolicy)) 2052 return false; 2053 2054 task_lock(current); 2055 mempolicy = current->mempolicy; 2056 switch (mempolicy->mode) { 2057 case MPOL_PREFERRED: 2058 case MPOL_PREFERRED_MANY: 2059 case MPOL_BIND: 2060 case MPOL_INTERLEAVE: 2061 *mask = mempolicy->nodes; 2062 break; 2063 2064 case MPOL_LOCAL: 2065 init_nodemask_of_node(mask, numa_node_id()); 2066 break; 2067 2068 default: 2069 BUG(); 2070 } 2071 task_unlock(current); 2072 2073 return true; 2074 } 2075 #endif 2076 2077 /* 2078 * mempolicy_in_oom_domain 2079 * 2080 * If tsk's mempolicy is "bind", check for intersection between mask and 2081 * the policy nodemask. Otherwise, return true for all other policies 2082 * including "interleave", as a tsk with "interleave" policy may have 2083 * memory allocated from all nodes in system. 2084 * 2085 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2086 */ 2087 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2088 const nodemask_t *mask) 2089 { 2090 struct mempolicy *mempolicy; 2091 bool ret = true; 2092 2093 if (!mask) 2094 return ret; 2095 2096 task_lock(tsk); 2097 mempolicy = tsk->mempolicy; 2098 if (mempolicy && mempolicy->mode == MPOL_BIND) 2099 ret = nodes_intersects(mempolicy->nodes, *mask); 2100 task_unlock(tsk); 2101 2102 return ret; 2103 } 2104 2105 /* Allocate a page in interleaved policy. 2106 Own path because it needs to do special accounting. */ 2107 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2108 unsigned nid) 2109 { 2110 struct page *page; 2111 2112 page = __alloc_pages(gfp, order, nid, NULL); 2113 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2114 if (!static_branch_likely(&vm_numa_stat_key)) 2115 return page; 2116 if (page && page_to_nid(page) == nid) { 2117 preempt_disable(); 2118 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2119 preempt_enable(); 2120 } 2121 return page; 2122 } 2123 2124 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2125 int nid, struct mempolicy *pol) 2126 { 2127 struct page *page; 2128 gfp_t preferred_gfp; 2129 2130 /* 2131 * This is a two pass approach. The first pass will only try the 2132 * preferred nodes but skip the direct reclaim and allow the 2133 * allocation to fail, while the second pass will try all the 2134 * nodes in system. 2135 */ 2136 preferred_gfp = gfp | __GFP_NOWARN; 2137 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2138 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2139 if (!page) 2140 page = __alloc_pages(gfp, order, nid, NULL); 2141 2142 return page; 2143 } 2144 2145 /** 2146 * vma_alloc_folio - Allocate a folio for a VMA. 2147 * @gfp: GFP flags. 2148 * @order: Order of the folio. 2149 * @vma: Pointer to VMA or NULL if not available. 2150 * @addr: Virtual address of the allocation. Must be inside @vma. 2151 * @hugepage: For hugepages try only the preferred node if possible. 2152 * 2153 * Allocate a folio for a specific address in @vma, using the appropriate 2154 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2155 * of the mm_struct of the VMA to prevent it from going away. Should be 2156 * used for all allocations for folios that will be mapped into user space. 2157 * 2158 * Return: The folio on success or NULL if allocation fails. 2159 */ 2160 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2161 unsigned long addr, bool hugepage) 2162 { 2163 struct mempolicy *pol; 2164 int node = numa_node_id(); 2165 struct folio *folio; 2166 int preferred_nid; 2167 nodemask_t *nmask; 2168 2169 pol = get_vma_policy(vma, addr); 2170 2171 if (pol->mode == MPOL_INTERLEAVE) { 2172 struct page *page; 2173 unsigned nid; 2174 2175 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2176 mpol_cond_put(pol); 2177 gfp |= __GFP_COMP; 2178 page = alloc_page_interleave(gfp, order, nid); 2179 if (page && order > 1) 2180 prep_transhuge_page(page); 2181 folio = (struct folio *)page; 2182 goto out; 2183 } 2184 2185 if (pol->mode == MPOL_PREFERRED_MANY) { 2186 struct page *page; 2187 2188 node = policy_node(gfp, pol, node); 2189 gfp |= __GFP_COMP; 2190 page = alloc_pages_preferred_many(gfp, order, node, pol); 2191 mpol_cond_put(pol); 2192 if (page && order > 1) 2193 prep_transhuge_page(page); 2194 folio = (struct folio *)page; 2195 goto out; 2196 } 2197 2198 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2199 int hpage_node = node; 2200 2201 /* 2202 * For hugepage allocation and non-interleave policy which 2203 * allows the current node (or other explicitly preferred 2204 * node) we only try to allocate from the current/preferred 2205 * node and don't fall back to other nodes, as the cost of 2206 * remote accesses would likely offset THP benefits. 2207 * 2208 * If the policy is interleave or does not allow the current 2209 * node in its nodemask, we allocate the standard way. 2210 */ 2211 if (pol->mode == MPOL_PREFERRED) 2212 hpage_node = first_node(pol->nodes); 2213 2214 nmask = policy_nodemask(gfp, pol); 2215 if (!nmask || node_isset(hpage_node, *nmask)) { 2216 mpol_cond_put(pol); 2217 /* 2218 * First, try to allocate THP only on local node, but 2219 * don't reclaim unnecessarily, just compact. 2220 */ 2221 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2222 __GFP_NORETRY, order, hpage_node); 2223 2224 /* 2225 * If hugepage allocations are configured to always 2226 * synchronous compact or the vma has been madvised 2227 * to prefer hugepage backing, retry allowing remote 2228 * memory with both reclaim and compact as well. 2229 */ 2230 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2231 folio = __folio_alloc(gfp, order, hpage_node, 2232 nmask); 2233 2234 goto out; 2235 } 2236 } 2237 2238 nmask = policy_nodemask(gfp, pol); 2239 preferred_nid = policy_node(gfp, pol, node); 2240 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2241 mpol_cond_put(pol); 2242 out: 2243 return folio; 2244 } 2245 EXPORT_SYMBOL(vma_alloc_folio); 2246 2247 /** 2248 * alloc_pages - Allocate pages. 2249 * @gfp: GFP flags. 2250 * @order: Power of two of number of pages to allocate. 2251 * 2252 * Allocate 1 << @order contiguous pages. The physical address of the 2253 * first page is naturally aligned (eg an order-3 allocation will be aligned 2254 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2255 * process is honoured when in process context. 2256 * 2257 * Context: Can be called from any context, providing the appropriate GFP 2258 * flags are used. 2259 * Return: The page on success or NULL if allocation fails. 2260 */ 2261 struct page *alloc_pages(gfp_t gfp, unsigned order) 2262 { 2263 struct mempolicy *pol = &default_policy; 2264 struct page *page; 2265 2266 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2267 pol = get_task_policy(current); 2268 2269 /* 2270 * No reference counting needed for current->mempolicy 2271 * nor system default_policy 2272 */ 2273 if (pol->mode == MPOL_INTERLEAVE) 2274 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2275 else if (pol->mode == MPOL_PREFERRED_MANY) 2276 page = alloc_pages_preferred_many(gfp, order, 2277 policy_node(gfp, pol, numa_node_id()), pol); 2278 else 2279 page = __alloc_pages(gfp, order, 2280 policy_node(gfp, pol, numa_node_id()), 2281 policy_nodemask(gfp, pol)); 2282 2283 return page; 2284 } 2285 EXPORT_SYMBOL(alloc_pages); 2286 2287 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2288 { 2289 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2290 2291 if (page && order > 1) 2292 prep_transhuge_page(page); 2293 return (struct folio *)page; 2294 } 2295 EXPORT_SYMBOL(folio_alloc); 2296 2297 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2298 struct mempolicy *pol, unsigned long nr_pages, 2299 struct page **page_array) 2300 { 2301 int nodes; 2302 unsigned long nr_pages_per_node; 2303 int delta; 2304 int i; 2305 unsigned long nr_allocated; 2306 unsigned long total_allocated = 0; 2307 2308 nodes = nodes_weight(pol->nodes); 2309 nr_pages_per_node = nr_pages / nodes; 2310 delta = nr_pages - nodes * nr_pages_per_node; 2311 2312 for (i = 0; i < nodes; i++) { 2313 if (delta) { 2314 nr_allocated = __alloc_pages_bulk(gfp, 2315 interleave_nodes(pol), NULL, 2316 nr_pages_per_node + 1, NULL, 2317 page_array); 2318 delta--; 2319 } else { 2320 nr_allocated = __alloc_pages_bulk(gfp, 2321 interleave_nodes(pol), NULL, 2322 nr_pages_per_node, NULL, page_array); 2323 } 2324 2325 page_array += nr_allocated; 2326 total_allocated += nr_allocated; 2327 } 2328 2329 return total_allocated; 2330 } 2331 2332 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2333 struct mempolicy *pol, unsigned long nr_pages, 2334 struct page **page_array) 2335 { 2336 gfp_t preferred_gfp; 2337 unsigned long nr_allocated = 0; 2338 2339 preferred_gfp = gfp | __GFP_NOWARN; 2340 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2341 2342 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2343 nr_pages, NULL, page_array); 2344 2345 if (nr_allocated < nr_pages) 2346 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2347 nr_pages - nr_allocated, NULL, 2348 page_array + nr_allocated); 2349 return nr_allocated; 2350 } 2351 2352 /* alloc pages bulk and mempolicy should be considered at the 2353 * same time in some situation such as vmalloc. 2354 * 2355 * It can accelerate memory allocation especially interleaving 2356 * allocate memory. 2357 */ 2358 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2359 unsigned long nr_pages, struct page **page_array) 2360 { 2361 struct mempolicy *pol = &default_policy; 2362 2363 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2364 pol = get_task_policy(current); 2365 2366 if (pol->mode == MPOL_INTERLEAVE) 2367 return alloc_pages_bulk_array_interleave(gfp, pol, 2368 nr_pages, page_array); 2369 2370 if (pol->mode == MPOL_PREFERRED_MANY) 2371 return alloc_pages_bulk_array_preferred_many(gfp, 2372 numa_node_id(), pol, nr_pages, page_array); 2373 2374 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2375 policy_nodemask(gfp, pol), nr_pages, NULL, 2376 page_array); 2377 } 2378 2379 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2380 { 2381 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2382 2383 if (IS_ERR(pol)) 2384 return PTR_ERR(pol); 2385 dst->vm_policy = pol; 2386 return 0; 2387 } 2388 2389 /* 2390 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2391 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2392 * with the mems_allowed returned by cpuset_mems_allowed(). This 2393 * keeps mempolicies cpuset relative after its cpuset moves. See 2394 * further kernel/cpuset.c update_nodemask(). 2395 * 2396 * current's mempolicy may be rebinded by the other task(the task that changes 2397 * cpuset's mems), so we needn't do rebind work for current task. 2398 */ 2399 2400 /* Slow path of a mempolicy duplicate */ 2401 struct mempolicy *__mpol_dup(struct mempolicy *old) 2402 { 2403 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2404 2405 if (!new) 2406 return ERR_PTR(-ENOMEM); 2407 2408 /* task's mempolicy is protected by alloc_lock */ 2409 if (old == current->mempolicy) { 2410 task_lock(current); 2411 *new = *old; 2412 task_unlock(current); 2413 } else 2414 *new = *old; 2415 2416 if (current_cpuset_is_being_rebound()) { 2417 nodemask_t mems = cpuset_mems_allowed(current); 2418 mpol_rebind_policy(new, &mems); 2419 } 2420 atomic_set(&new->refcnt, 1); 2421 return new; 2422 } 2423 2424 /* Slow path of a mempolicy comparison */ 2425 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2426 { 2427 if (!a || !b) 2428 return false; 2429 if (a->mode != b->mode) 2430 return false; 2431 if (a->flags != b->flags) 2432 return false; 2433 if (a->home_node != b->home_node) 2434 return false; 2435 if (mpol_store_user_nodemask(a)) 2436 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2437 return false; 2438 2439 switch (a->mode) { 2440 case MPOL_BIND: 2441 case MPOL_INTERLEAVE: 2442 case MPOL_PREFERRED: 2443 case MPOL_PREFERRED_MANY: 2444 return !!nodes_equal(a->nodes, b->nodes); 2445 case MPOL_LOCAL: 2446 return true; 2447 default: 2448 BUG(); 2449 return false; 2450 } 2451 } 2452 2453 /* 2454 * Shared memory backing store policy support. 2455 * 2456 * Remember policies even when nobody has shared memory mapped. 2457 * The policies are kept in Red-Black tree linked from the inode. 2458 * They are protected by the sp->lock rwlock, which should be held 2459 * for any accesses to the tree. 2460 */ 2461 2462 /* 2463 * lookup first element intersecting start-end. Caller holds sp->lock for 2464 * reading or for writing 2465 */ 2466 static struct sp_node * 2467 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2468 { 2469 struct rb_node *n = sp->root.rb_node; 2470 2471 while (n) { 2472 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2473 2474 if (start >= p->end) 2475 n = n->rb_right; 2476 else if (end <= p->start) 2477 n = n->rb_left; 2478 else 2479 break; 2480 } 2481 if (!n) 2482 return NULL; 2483 for (;;) { 2484 struct sp_node *w = NULL; 2485 struct rb_node *prev = rb_prev(n); 2486 if (!prev) 2487 break; 2488 w = rb_entry(prev, struct sp_node, nd); 2489 if (w->end <= start) 2490 break; 2491 n = prev; 2492 } 2493 return rb_entry(n, struct sp_node, nd); 2494 } 2495 2496 /* 2497 * Insert a new shared policy into the list. Caller holds sp->lock for 2498 * writing. 2499 */ 2500 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2501 { 2502 struct rb_node **p = &sp->root.rb_node; 2503 struct rb_node *parent = NULL; 2504 struct sp_node *nd; 2505 2506 while (*p) { 2507 parent = *p; 2508 nd = rb_entry(parent, struct sp_node, nd); 2509 if (new->start < nd->start) 2510 p = &(*p)->rb_left; 2511 else if (new->end > nd->end) 2512 p = &(*p)->rb_right; 2513 else 2514 BUG(); 2515 } 2516 rb_link_node(&new->nd, parent, p); 2517 rb_insert_color(&new->nd, &sp->root); 2518 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2519 new->policy ? new->policy->mode : 0); 2520 } 2521 2522 /* Find shared policy intersecting idx */ 2523 struct mempolicy * 2524 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2525 { 2526 struct mempolicy *pol = NULL; 2527 struct sp_node *sn; 2528 2529 if (!sp->root.rb_node) 2530 return NULL; 2531 read_lock(&sp->lock); 2532 sn = sp_lookup(sp, idx, idx+1); 2533 if (sn) { 2534 mpol_get(sn->policy); 2535 pol = sn->policy; 2536 } 2537 read_unlock(&sp->lock); 2538 return pol; 2539 } 2540 2541 static void sp_free(struct sp_node *n) 2542 { 2543 mpol_put(n->policy); 2544 kmem_cache_free(sn_cache, n); 2545 } 2546 2547 /** 2548 * mpol_misplaced - check whether current page node is valid in policy 2549 * 2550 * @page: page to be checked 2551 * @vma: vm area where page mapped 2552 * @addr: virtual address where page mapped 2553 * 2554 * Lookup current policy node id for vma,addr and "compare to" page's 2555 * node id. Policy determination "mimics" alloc_page_vma(). 2556 * Called from fault path where we know the vma and faulting address. 2557 * 2558 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2559 * policy, or a suitable node ID to allocate a replacement page from. 2560 */ 2561 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2562 { 2563 struct mempolicy *pol; 2564 struct zoneref *z; 2565 int curnid = page_to_nid(page); 2566 unsigned long pgoff; 2567 int thiscpu = raw_smp_processor_id(); 2568 int thisnid = cpu_to_node(thiscpu); 2569 int polnid = NUMA_NO_NODE; 2570 int ret = NUMA_NO_NODE; 2571 2572 pol = get_vma_policy(vma, addr); 2573 if (!(pol->flags & MPOL_F_MOF)) 2574 goto out; 2575 2576 switch (pol->mode) { 2577 case MPOL_INTERLEAVE: 2578 pgoff = vma->vm_pgoff; 2579 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2580 polnid = offset_il_node(pol, pgoff); 2581 break; 2582 2583 case MPOL_PREFERRED: 2584 if (node_isset(curnid, pol->nodes)) 2585 goto out; 2586 polnid = first_node(pol->nodes); 2587 break; 2588 2589 case MPOL_LOCAL: 2590 polnid = numa_node_id(); 2591 break; 2592 2593 case MPOL_BIND: 2594 /* Optimize placement among multiple nodes via NUMA balancing */ 2595 if (pol->flags & MPOL_F_MORON) { 2596 if (node_isset(thisnid, pol->nodes)) 2597 break; 2598 goto out; 2599 } 2600 fallthrough; 2601 2602 case MPOL_PREFERRED_MANY: 2603 /* 2604 * use current page if in policy nodemask, 2605 * else select nearest allowed node, if any. 2606 * If no allowed nodes, use current [!misplaced]. 2607 */ 2608 if (node_isset(curnid, pol->nodes)) 2609 goto out; 2610 z = first_zones_zonelist( 2611 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2612 gfp_zone(GFP_HIGHUSER), 2613 &pol->nodes); 2614 polnid = zone_to_nid(z->zone); 2615 break; 2616 2617 default: 2618 BUG(); 2619 } 2620 2621 /* Migrate the page towards the node whose CPU is referencing it */ 2622 if (pol->flags & MPOL_F_MORON) { 2623 polnid = thisnid; 2624 2625 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2626 goto out; 2627 } 2628 2629 if (curnid != polnid) 2630 ret = polnid; 2631 out: 2632 mpol_cond_put(pol); 2633 2634 return ret; 2635 } 2636 2637 /* 2638 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2639 * dropped after task->mempolicy is set to NULL so that any allocation done as 2640 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2641 * policy. 2642 */ 2643 void mpol_put_task_policy(struct task_struct *task) 2644 { 2645 struct mempolicy *pol; 2646 2647 task_lock(task); 2648 pol = task->mempolicy; 2649 task->mempolicy = NULL; 2650 task_unlock(task); 2651 mpol_put(pol); 2652 } 2653 2654 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2655 { 2656 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2657 rb_erase(&n->nd, &sp->root); 2658 sp_free(n); 2659 } 2660 2661 static void sp_node_init(struct sp_node *node, unsigned long start, 2662 unsigned long end, struct mempolicy *pol) 2663 { 2664 node->start = start; 2665 node->end = end; 2666 node->policy = pol; 2667 } 2668 2669 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2670 struct mempolicy *pol) 2671 { 2672 struct sp_node *n; 2673 struct mempolicy *newpol; 2674 2675 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2676 if (!n) 2677 return NULL; 2678 2679 newpol = mpol_dup(pol); 2680 if (IS_ERR(newpol)) { 2681 kmem_cache_free(sn_cache, n); 2682 return NULL; 2683 } 2684 newpol->flags |= MPOL_F_SHARED; 2685 sp_node_init(n, start, end, newpol); 2686 2687 return n; 2688 } 2689 2690 /* Replace a policy range. */ 2691 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2692 unsigned long end, struct sp_node *new) 2693 { 2694 struct sp_node *n; 2695 struct sp_node *n_new = NULL; 2696 struct mempolicy *mpol_new = NULL; 2697 int ret = 0; 2698 2699 restart: 2700 write_lock(&sp->lock); 2701 n = sp_lookup(sp, start, end); 2702 /* Take care of old policies in the same range. */ 2703 while (n && n->start < end) { 2704 struct rb_node *next = rb_next(&n->nd); 2705 if (n->start >= start) { 2706 if (n->end <= end) 2707 sp_delete(sp, n); 2708 else 2709 n->start = end; 2710 } else { 2711 /* Old policy spanning whole new range. */ 2712 if (n->end > end) { 2713 if (!n_new) 2714 goto alloc_new; 2715 2716 *mpol_new = *n->policy; 2717 atomic_set(&mpol_new->refcnt, 1); 2718 sp_node_init(n_new, end, n->end, mpol_new); 2719 n->end = start; 2720 sp_insert(sp, n_new); 2721 n_new = NULL; 2722 mpol_new = NULL; 2723 break; 2724 } else 2725 n->end = start; 2726 } 2727 if (!next) 2728 break; 2729 n = rb_entry(next, struct sp_node, nd); 2730 } 2731 if (new) 2732 sp_insert(sp, new); 2733 write_unlock(&sp->lock); 2734 ret = 0; 2735 2736 err_out: 2737 if (mpol_new) 2738 mpol_put(mpol_new); 2739 if (n_new) 2740 kmem_cache_free(sn_cache, n_new); 2741 2742 return ret; 2743 2744 alloc_new: 2745 write_unlock(&sp->lock); 2746 ret = -ENOMEM; 2747 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2748 if (!n_new) 2749 goto err_out; 2750 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2751 if (!mpol_new) 2752 goto err_out; 2753 atomic_set(&mpol_new->refcnt, 1); 2754 goto restart; 2755 } 2756 2757 /** 2758 * mpol_shared_policy_init - initialize shared policy for inode 2759 * @sp: pointer to inode shared policy 2760 * @mpol: struct mempolicy to install 2761 * 2762 * Install non-NULL @mpol in inode's shared policy rb-tree. 2763 * On entry, the current task has a reference on a non-NULL @mpol. 2764 * This must be released on exit. 2765 * This is called at get_inode() calls and we can use GFP_KERNEL. 2766 */ 2767 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2768 { 2769 int ret; 2770 2771 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2772 rwlock_init(&sp->lock); 2773 2774 if (mpol) { 2775 struct vm_area_struct pvma; 2776 struct mempolicy *new; 2777 NODEMASK_SCRATCH(scratch); 2778 2779 if (!scratch) 2780 goto put_mpol; 2781 /* contextualize the tmpfs mount point mempolicy */ 2782 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2783 if (IS_ERR(new)) 2784 goto free_scratch; /* no valid nodemask intersection */ 2785 2786 task_lock(current); 2787 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2788 task_unlock(current); 2789 if (ret) 2790 goto put_new; 2791 2792 /* Create pseudo-vma that contains just the policy */ 2793 vma_init(&pvma, NULL); 2794 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2795 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2796 2797 put_new: 2798 mpol_put(new); /* drop initial ref */ 2799 free_scratch: 2800 NODEMASK_SCRATCH_FREE(scratch); 2801 put_mpol: 2802 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2803 } 2804 } 2805 2806 int mpol_set_shared_policy(struct shared_policy *info, 2807 struct vm_area_struct *vma, struct mempolicy *npol) 2808 { 2809 int err; 2810 struct sp_node *new = NULL; 2811 unsigned long sz = vma_pages(vma); 2812 2813 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2814 vma->vm_pgoff, 2815 sz, npol ? npol->mode : -1, 2816 npol ? npol->flags : -1, 2817 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2818 2819 if (npol) { 2820 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2821 if (!new) 2822 return -ENOMEM; 2823 } 2824 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2825 if (err && new) 2826 sp_free(new); 2827 return err; 2828 } 2829 2830 /* Free a backing policy store on inode delete. */ 2831 void mpol_free_shared_policy(struct shared_policy *p) 2832 { 2833 struct sp_node *n; 2834 struct rb_node *next; 2835 2836 if (!p->root.rb_node) 2837 return; 2838 write_lock(&p->lock); 2839 next = rb_first(&p->root); 2840 while (next) { 2841 n = rb_entry(next, struct sp_node, nd); 2842 next = rb_next(&n->nd); 2843 sp_delete(p, n); 2844 } 2845 write_unlock(&p->lock); 2846 } 2847 2848 #ifdef CONFIG_NUMA_BALANCING 2849 static int __initdata numabalancing_override; 2850 2851 static void __init check_numabalancing_enable(void) 2852 { 2853 bool numabalancing_default = false; 2854 2855 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2856 numabalancing_default = true; 2857 2858 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2859 if (numabalancing_override) 2860 set_numabalancing_state(numabalancing_override == 1); 2861 2862 if (num_online_nodes() > 1 && !numabalancing_override) { 2863 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2864 numabalancing_default ? "Enabling" : "Disabling"); 2865 set_numabalancing_state(numabalancing_default); 2866 } 2867 } 2868 2869 static int __init setup_numabalancing(char *str) 2870 { 2871 int ret = 0; 2872 if (!str) 2873 goto out; 2874 2875 if (!strcmp(str, "enable")) { 2876 numabalancing_override = 1; 2877 ret = 1; 2878 } else if (!strcmp(str, "disable")) { 2879 numabalancing_override = -1; 2880 ret = 1; 2881 } 2882 out: 2883 if (!ret) 2884 pr_warn("Unable to parse numa_balancing=\n"); 2885 2886 return ret; 2887 } 2888 __setup("numa_balancing=", setup_numabalancing); 2889 #else 2890 static inline void __init check_numabalancing_enable(void) 2891 { 2892 } 2893 #endif /* CONFIG_NUMA_BALANCING */ 2894 2895 /* assumes fs == KERNEL_DS */ 2896 void __init numa_policy_init(void) 2897 { 2898 nodemask_t interleave_nodes; 2899 unsigned long largest = 0; 2900 int nid, prefer = 0; 2901 2902 policy_cache = kmem_cache_create("numa_policy", 2903 sizeof(struct mempolicy), 2904 0, SLAB_PANIC, NULL); 2905 2906 sn_cache = kmem_cache_create("shared_policy_node", 2907 sizeof(struct sp_node), 2908 0, SLAB_PANIC, NULL); 2909 2910 for_each_node(nid) { 2911 preferred_node_policy[nid] = (struct mempolicy) { 2912 .refcnt = ATOMIC_INIT(1), 2913 .mode = MPOL_PREFERRED, 2914 .flags = MPOL_F_MOF | MPOL_F_MORON, 2915 .nodes = nodemask_of_node(nid), 2916 }; 2917 } 2918 2919 /* 2920 * Set interleaving policy for system init. Interleaving is only 2921 * enabled across suitably sized nodes (default is >= 16MB), or 2922 * fall back to the largest node if they're all smaller. 2923 */ 2924 nodes_clear(interleave_nodes); 2925 for_each_node_state(nid, N_MEMORY) { 2926 unsigned long total_pages = node_present_pages(nid); 2927 2928 /* Preserve the largest node */ 2929 if (largest < total_pages) { 2930 largest = total_pages; 2931 prefer = nid; 2932 } 2933 2934 /* Interleave this node? */ 2935 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2936 node_set(nid, interleave_nodes); 2937 } 2938 2939 /* All too small, use the largest */ 2940 if (unlikely(nodes_empty(interleave_nodes))) 2941 node_set(prefer, interleave_nodes); 2942 2943 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2944 pr_err("%s: interleaving failed\n", __func__); 2945 2946 check_numabalancing_enable(); 2947 } 2948 2949 /* Reset policy of current process to default */ 2950 void numa_default_policy(void) 2951 { 2952 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2953 } 2954 2955 /* 2956 * Parse and format mempolicy from/to strings 2957 */ 2958 2959 static const char * const policy_modes[] = 2960 { 2961 [MPOL_DEFAULT] = "default", 2962 [MPOL_PREFERRED] = "prefer", 2963 [MPOL_BIND] = "bind", 2964 [MPOL_INTERLEAVE] = "interleave", 2965 [MPOL_LOCAL] = "local", 2966 [MPOL_PREFERRED_MANY] = "prefer (many)", 2967 }; 2968 2969 2970 #ifdef CONFIG_TMPFS 2971 /** 2972 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2973 * @str: string containing mempolicy to parse 2974 * @mpol: pointer to struct mempolicy pointer, returned on success. 2975 * 2976 * Format of input: 2977 * <mode>[=<flags>][:<nodelist>] 2978 * 2979 * Return: %0 on success, else %1 2980 */ 2981 int mpol_parse_str(char *str, struct mempolicy **mpol) 2982 { 2983 struct mempolicy *new = NULL; 2984 unsigned short mode_flags; 2985 nodemask_t nodes; 2986 char *nodelist = strchr(str, ':'); 2987 char *flags = strchr(str, '='); 2988 int err = 1, mode; 2989 2990 if (flags) 2991 *flags++ = '\0'; /* terminate mode string */ 2992 2993 if (nodelist) { 2994 /* NUL-terminate mode or flags string */ 2995 *nodelist++ = '\0'; 2996 if (nodelist_parse(nodelist, nodes)) 2997 goto out; 2998 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2999 goto out; 3000 } else 3001 nodes_clear(nodes); 3002 3003 mode = match_string(policy_modes, MPOL_MAX, str); 3004 if (mode < 0) 3005 goto out; 3006 3007 switch (mode) { 3008 case MPOL_PREFERRED: 3009 /* 3010 * Insist on a nodelist of one node only, although later 3011 * we use first_node(nodes) to grab a single node, so here 3012 * nodelist (or nodes) cannot be empty. 3013 */ 3014 if (nodelist) { 3015 char *rest = nodelist; 3016 while (isdigit(*rest)) 3017 rest++; 3018 if (*rest) 3019 goto out; 3020 if (nodes_empty(nodes)) 3021 goto out; 3022 } 3023 break; 3024 case MPOL_INTERLEAVE: 3025 /* 3026 * Default to online nodes with memory if no nodelist 3027 */ 3028 if (!nodelist) 3029 nodes = node_states[N_MEMORY]; 3030 break; 3031 case MPOL_LOCAL: 3032 /* 3033 * Don't allow a nodelist; mpol_new() checks flags 3034 */ 3035 if (nodelist) 3036 goto out; 3037 break; 3038 case MPOL_DEFAULT: 3039 /* 3040 * Insist on a empty nodelist 3041 */ 3042 if (!nodelist) 3043 err = 0; 3044 goto out; 3045 case MPOL_PREFERRED_MANY: 3046 case MPOL_BIND: 3047 /* 3048 * Insist on a nodelist 3049 */ 3050 if (!nodelist) 3051 goto out; 3052 } 3053 3054 mode_flags = 0; 3055 if (flags) { 3056 /* 3057 * Currently, we only support two mutually exclusive 3058 * mode flags. 3059 */ 3060 if (!strcmp(flags, "static")) 3061 mode_flags |= MPOL_F_STATIC_NODES; 3062 else if (!strcmp(flags, "relative")) 3063 mode_flags |= MPOL_F_RELATIVE_NODES; 3064 else 3065 goto out; 3066 } 3067 3068 new = mpol_new(mode, mode_flags, &nodes); 3069 if (IS_ERR(new)) 3070 goto out; 3071 3072 /* 3073 * Save nodes for mpol_to_str() to show the tmpfs mount options 3074 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3075 */ 3076 if (mode != MPOL_PREFERRED) { 3077 new->nodes = nodes; 3078 } else if (nodelist) { 3079 nodes_clear(new->nodes); 3080 node_set(first_node(nodes), new->nodes); 3081 } else { 3082 new->mode = MPOL_LOCAL; 3083 } 3084 3085 /* 3086 * Save nodes for contextualization: this will be used to "clone" 3087 * the mempolicy in a specific context [cpuset] at a later time. 3088 */ 3089 new->w.user_nodemask = nodes; 3090 3091 err = 0; 3092 3093 out: 3094 /* Restore string for error message */ 3095 if (nodelist) 3096 *--nodelist = ':'; 3097 if (flags) 3098 *--flags = '='; 3099 if (!err) 3100 *mpol = new; 3101 return err; 3102 } 3103 #endif /* CONFIG_TMPFS */ 3104 3105 /** 3106 * mpol_to_str - format a mempolicy structure for printing 3107 * @buffer: to contain formatted mempolicy string 3108 * @maxlen: length of @buffer 3109 * @pol: pointer to mempolicy to be formatted 3110 * 3111 * Convert @pol into a string. If @buffer is too short, truncate the string. 3112 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3113 * longest flag, "relative", and to display at least a few node ids. 3114 */ 3115 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3116 { 3117 char *p = buffer; 3118 nodemask_t nodes = NODE_MASK_NONE; 3119 unsigned short mode = MPOL_DEFAULT; 3120 unsigned short flags = 0; 3121 3122 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3123 mode = pol->mode; 3124 flags = pol->flags; 3125 } 3126 3127 switch (mode) { 3128 case MPOL_DEFAULT: 3129 case MPOL_LOCAL: 3130 break; 3131 case MPOL_PREFERRED: 3132 case MPOL_PREFERRED_MANY: 3133 case MPOL_BIND: 3134 case MPOL_INTERLEAVE: 3135 nodes = pol->nodes; 3136 break; 3137 default: 3138 WARN_ON_ONCE(1); 3139 snprintf(p, maxlen, "unknown"); 3140 return; 3141 } 3142 3143 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3144 3145 if (flags & MPOL_MODE_FLAGS) { 3146 p += snprintf(p, buffer + maxlen - p, "="); 3147 3148 /* 3149 * Currently, the only defined flags are mutually exclusive 3150 */ 3151 if (flags & MPOL_F_STATIC_NODES) 3152 p += snprintf(p, buffer + maxlen - p, "static"); 3153 else if (flags & MPOL_F_RELATIVE_NODES) 3154 p += snprintf(p, buffer + maxlen - p, "relative"); 3155 } 3156 3157 if (!nodes_empty(nodes)) 3158 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3159 nodemask_pr_args(&nodes)); 3160 } 3161