1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/bootmem.h> 37 #include <linux/compaction.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 /* add this memory to iomem resource */ 100 static struct resource *register_memory_resource(u64 start, u64 size) 101 { 102 struct resource *res, *conflict; 103 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 104 if (!res) 105 return ERR_PTR(-ENOMEM); 106 107 res->name = "System RAM"; 108 res->start = start; 109 res->end = start + size - 1; 110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 111 conflict = request_resource_conflict(&iomem_resource, res); 112 if (conflict) { 113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 114 pr_debug("Device unaddressable memory block " 115 "memory hotplug at %#010llx !\n", 116 (unsigned long long)start); 117 } 118 pr_debug("System RAM resource %pR cannot be added\n", res); 119 kfree(res); 120 return ERR_PTR(-EEXIST); 121 } 122 return res; 123 } 124 125 static void release_memory_resource(struct resource *res) 126 { 127 if (!res) 128 return; 129 release_resource(res); 130 kfree(res); 131 return; 132 } 133 134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 135 void get_page_bootmem(unsigned long info, struct page *page, 136 unsigned long type) 137 { 138 page->freelist = (void *)type; 139 SetPagePrivate(page); 140 set_page_private(page, info); 141 page_ref_inc(page); 142 } 143 144 void put_page_bootmem(struct page *page) 145 { 146 unsigned long type; 147 148 type = (unsigned long) page->freelist; 149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 151 152 if (page_ref_dec_return(page) == 1) { 153 page->freelist = NULL; 154 ClearPagePrivate(page); 155 set_page_private(page, 0); 156 INIT_LIST_HEAD(&page->lru); 157 free_reserved_page(page); 158 } 159 } 160 161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 162 #ifndef CONFIG_SPARSEMEM_VMEMMAP 163 static void register_page_bootmem_info_section(unsigned long start_pfn) 164 { 165 unsigned long *usemap, mapsize, section_nr, i; 166 struct mem_section *ms; 167 struct page *page, *memmap; 168 169 section_nr = pfn_to_section_nr(start_pfn); 170 ms = __nr_to_section(section_nr); 171 172 /* Get section's memmap address */ 173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 174 175 /* 176 * Get page for the memmap's phys address 177 * XXX: need more consideration for sparse_vmemmap... 178 */ 179 page = virt_to_page(memmap); 180 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 182 183 /* remember memmap's page */ 184 for (i = 0; i < mapsize; i++, page++) 185 get_page_bootmem(section_nr, page, SECTION_INFO); 186 187 usemap = ms->pageblock_flags; 188 page = virt_to_page(usemap); 189 190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 191 192 for (i = 0; i < mapsize; i++, page++) 193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 194 195 } 196 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 197 static void register_page_bootmem_info_section(unsigned long start_pfn) 198 { 199 unsigned long *usemap, mapsize, section_nr, i; 200 struct mem_section *ms; 201 struct page *page, *memmap; 202 203 section_nr = pfn_to_section_nr(start_pfn); 204 ms = __nr_to_section(section_nr); 205 206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 207 208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 209 210 usemap = ms->pageblock_flags; 211 page = virt_to_page(usemap); 212 213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 214 215 for (i = 0; i < mapsize; i++, page++) 216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 217 } 218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 219 220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 221 { 222 unsigned long i, pfn, end_pfn, nr_pages; 223 int node = pgdat->node_id; 224 struct page *page; 225 226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 227 page = virt_to_page(pgdat); 228 229 for (i = 0; i < nr_pages; i++, page++) 230 get_page_bootmem(node, page, NODE_INFO); 231 232 pfn = pgdat->node_start_pfn; 233 end_pfn = pgdat_end_pfn(pgdat); 234 235 /* register section info */ 236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 237 /* 238 * Some platforms can assign the same pfn to multiple nodes - on 239 * node0 as well as nodeN. To avoid registering a pfn against 240 * multiple nodes we check that this pfn does not already 241 * reside in some other nodes. 242 */ 243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 244 register_page_bootmem_info_section(pfn); 245 } 246 } 247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 248 249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 250 struct vmem_altmap *altmap, bool want_memblock) 251 { 252 int ret; 253 254 if (pfn_valid(phys_start_pfn)) 255 return -EEXIST; 256 257 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap); 258 if (ret < 0) 259 return ret; 260 261 if (!want_memblock) 262 return 0; 263 264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 265 } 266 267 /* 268 * Reasonably generic function for adding memory. It is 269 * expected that archs that support memory hotplug will 270 * call this function after deciding the zone to which to 271 * add the new pages. 272 */ 273 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 274 unsigned long nr_pages, struct vmem_altmap *altmap, 275 bool want_memblock) 276 { 277 unsigned long i; 278 int err = 0; 279 int start_sec, end_sec; 280 281 /* during initialize mem_map, align hot-added range to section */ 282 start_sec = pfn_to_section_nr(phys_start_pfn); 283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 284 285 if (altmap) { 286 /* 287 * Validate altmap is within bounds of the total request 288 */ 289 if (altmap->base_pfn != phys_start_pfn 290 || vmem_altmap_offset(altmap) > nr_pages) { 291 pr_warn_once("memory add fail, invalid altmap\n"); 292 err = -EINVAL; 293 goto out; 294 } 295 altmap->alloc = 0; 296 } 297 298 for (i = start_sec; i <= end_sec; i++) { 299 err = __add_section(nid, section_nr_to_pfn(i), altmap, 300 want_memblock); 301 302 /* 303 * EEXIST is finally dealt with by ioresource collision 304 * check. see add_memory() => register_memory_resource() 305 * Warning will be printed if there is collision. 306 */ 307 if (err && (err != -EEXIST)) 308 break; 309 err = 0; 310 cond_resched(); 311 } 312 vmemmap_populate_print_last(); 313 out: 314 return err; 315 } 316 317 #ifdef CONFIG_MEMORY_HOTREMOVE 318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 320 unsigned long start_pfn, 321 unsigned long end_pfn) 322 { 323 struct mem_section *ms; 324 325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 326 ms = __pfn_to_section(start_pfn); 327 328 if (unlikely(!valid_section(ms))) 329 continue; 330 331 if (unlikely(pfn_to_nid(start_pfn) != nid)) 332 continue; 333 334 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 335 continue; 336 337 return start_pfn; 338 } 339 340 return 0; 341 } 342 343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 345 unsigned long start_pfn, 346 unsigned long end_pfn) 347 { 348 struct mem_section *ms; 349 unsigned long pfn; 350 351 /* pfn is the end pfn of a memory section. */ 352 pfn = end_pfn - 1; 353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 354 ms = __pfn_to_section(pfn); 355 356 if (unlikely(!valid_section(ms))) 357 continue; 358 359 if (unlikely(pfn_to_nid(pfn) != nid)) 360 continue; 361 362 if (zone && zone != page_zone(pfn_to_page(pfn))) 363 continue; 364 365 return pfn; 366 } 367 368 return 0; 369 } 370 371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 372 unsigned long end_pfn) 373 { 374 unsigned long zone_start_pfn = zone->zone_start_pfn; 375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 376 unsigned long zone_end_pfn = z; 377 unsigned long pfn; 378 struct mem_section *ms; 379 int nid = zone_to_nid(zone); 380 381 zone_span_writelock(zone); 382 if (zone_start_pfn == start_pfn) { 383 /* 384 * If the section is smallest section in the zone, it need 385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 386 * In this case, we find second smallest valid mem_section 387 * for shrinking zone. 388 */ 389 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 390 zone_end_pfn); 391 if (pfn) { 392 zone->zone_start_pfn = pfn; 393 zone->spanned_pages = zone_end_pfn - pfn; 394 } 395 } else if (zone_end_pfn == end_pfn) { 396 /* 397 * If the section is biggest section in the zone, it need 398 * shrink zone->spanned_pages. 399 * In this case, we find second biggest valid mem_section for 400 * shrinking zone. 401 */ 402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 403 start_pfn); 404 if (pfn) 405 zone->spanned_pages = pfn - zone_start_pfn + 1; 406 } 407 408 /* 409 * The section is not biggest or smallest mem_section in the zone, it 410 * only creates a hole in the zone. So in this case, we need not 411 * change the zone. But perhaps, the zone has only hole data. Thus 412 * it check the zone has only hole or not. 413 */ 414 pfn = zone_start_pfn; 415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 416 ms = __pfn_to_section(pfn); 417 418 if (unlikely(!valid_section(ms))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* If the section is current section, it continues the loop */ 425 if (start_pfn == pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void shrink_pgdat_span(struct pglist_data *pgdat, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 444 unsigned long pgdat_end_pfn = p; 445 unsigned long pfn; 446 struct mem_section *ms; 447 int nid = pgdat->node_id; 448 449 if (pgdat_start_pfn == start_pfn) { 450 /* 451 * If the section is smallest section in the pgdat, it need 452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 453 * In this case, we find second smallest valid mem_section 454 * for shrinking zone. 455 */ 456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 457 pgdat_end_pfn); 458 if (pfn) { 459 pgdat->node_start_pfn = pfn; 460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 461 } 462 } else if (pgdat_end_pfn == end_pfn) { 463 /* 464 * If the section is biggest section in the pgdat, it need 465 * shrink pgdat->node_spanned_pages. 466 * In this case, we find second biggest valid mem_section for 467 * shrinking zone. 468 */ 469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 470 start_pfn); 471 if (pfn) 472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 473 } 474 475 /* 476 * If the section is not biggest or smallest mem_section in the pgdat, 477 * it only creates a hole in the pgdat. So in this case, we need not 478 * change the pgdat. 479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 480 * has only hole or not. 481 */ 482 pfn = pgdat_start_pfn; 483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 484 ms = __pfn_to_section(pfn); 485 486 if (unlikely(!valid_section(ms))) 487 continue; 488 489 if (pfn_to_nid(pfn) != nid) 490 continue; 491 492 /* If the section is current section, it continues the loop */ 493 if (start_pfn == pfn) 494 continue; 495 496 /* If we find valid section, we have nothing to do */ 497 return; 498 } 499 500 /* The pgdat has no valid section */ 501 pgdat->node_start_pfn = 0; 502 pgdat->node_spanned_pages = 0; 503 } 504 505 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 506 { 507 struct pglist_data *pgdat = zone->zone_pgdat; 508 int nr_pages = PAGES_PER_SECTION; 509 unsigned long flags; 510 511 pgdat_resize_lock(zone->zone_pgdat, &flags); 512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 514 pgdat_resize_unlock(zone->zone_pgdat, &flags); 515 } 516 517 static int __remove_section(struct zone *zone, struct mem_section *ms, 518 unsigned long map_offset, struct vmem_altmap *altmap) 519 { 520 unsigned long start_pfn; 521 int scn_nr; 522 int ret = -EINVAL; 523 524 if (!valid_section(ms)) 525 return ret; 526 527 ret = unregister_memory_section(ms); 528 if (ret) 529 return ret; 530 531 scn_nr = __section_nr(ms); 532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 533 __remove_zone(zone, start_pfn); 534 535 sparse_remove_one_section(zone, ms, map_offset, altmap); 536 return 0; 537 } 538 539 /** 540 * __remove_pages() - remove sections of pages from a zone 541 * @zone: zone from which pages need to be removed 542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 543 * @nr_pages: number of pages to remove (must be multiple of section size) 544 * @altmap: alternative device page map or %NULL if default memmap is used 545 * 546 * Generic helper function to remove section mappings and sysfs entries 547 * for the section of the memory we are removing. Caller needs to make 548 * sure that pages are marked reserved and zones are adjust properly by 549 * calling offline_pages(). 550 */ 551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 552 unsigned long nr_pages, struct vmem_altmap *altmap) 553 { 554 unsigned long i; 555 unsigned long map_offset = 0; 556 int sections_to_remove, ret = 0; 557 558 /* In the ZONE_DEVICE case device driver owns the memory region */ 559 if (is_dev_zone(zone)) { 560 if (altmap) 561 map_offset = vmem_altmap_offset(altmap); 562 } else { 563 resource_size_t start, size; 564 565 start = phys_start_pfn << PAGE_SHIFT; 566 size = nr_pages * PAGE_SIZE; 567 568 ret = release_mem_region_adjustable(&iomem_resource, start, 569 size); 570 if (ret) { 571 resource_size_t endres = start + size - 1; 572 573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 574 &start, &endres, ret); 575 } 576 } 577 578 clear_zone_contiguous(zone); 579 580 /* 581 * We can only remove entire sections 582 */ 583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 584 BUG_ON(nr_pages % PAGES_PER_SECTION); 585 586 sections_to_remove = nr_pages / PAGES_PER_SECTION; 587 for (i = 0; i < sections_to_remove; i++) { 588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 589 590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 591 altmap); 592 map_offset = 0; 593 if (ret) 594 break; 595 } 596 597 set_zone_contiguous(zone); 598 599 return ret; 600 } 601 #endif /* CONFIG_MEMORY_HOTREMOVE */ 602 603 int set_online_page_callback(online_page_callback_t callback) 604 { 605 int rc = -EINVAL; 606 607 get_online_mems(); 608 mutex_lock(&online_page_callback_lock); 609 610 if (online_page_callback == generic_online_page) { 611 online_page_callback = callback; 612 rc = 0; 613 } 614 615 mutex_unlock(&online_page_callback_lock); 616 put_online_mems(); 617 618 return rc; 619 } 620 EXPORT_SYMBOL_GPL(set_online_page_callback); 621 622 int restore_online_page_callback(online_page_callback_t callback) 623 { 624 int rc = -EINVAL; 625 626 get_online_mems(); 627 mutex_lock(&online_page_callback_lock); 628 629 if (online_page_callback == callback) { 630 online_page_callback = generic_online_page; 631 rc = 0; 632 } 633 634 mutex_unlock(&online_page_callback_lock); 635 put_online_mems(); 636 637 return rc; 638 } 639 EXPORT_SYMBOL_GPL(restore_online_page_callback); 640 641 void __online_page_set_limits(struct page *page) 642 { 643 } 644 EXPORT_SYMBOL_GPL(__online_page_set_limits); 645 646 void __online_page_increment_counters(struct page *page) 647 { 648 adjust_managed_page_count(page, 1); 649 } 650 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 651 652 void __online_page_free(struct page *page) 653 { 654 __free_reserved_page(page); 655 } 656 EXPORT_SYMBOL_GPL(__online_page_free); 657 658 static void generic_online_page(struct page *page) 659 { 660 __online_page_set_limits(page); 661 __online_page_increment_counters(page); 662 __online_page_free(page); 663 } 664 665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 666 void *arg) 667 { 668 unsigned long i; 669 unsigned long onlined_pages = *(unsigned long *)arg; 670 struct page *page; 671 672 if (PageReserved(pfn_to_page(start_pfn))) 673 for (i = 0; i < nr_pages; i++) { 674 page = pfn_to_page(start_pfn + i); 675 (*online_page_callback)(page); 676 onlined_pages++; 677 } 678 679 online_mem_sections(start_pfn, start_pfn + nr_pages); 680 681 *(unsigned long *)arg = onlined_pages; 682 return 0; 683 } 684 685 /* check which state of node_states will be changed when online memory */ 686 static void node_states_check_changes_online(unsigned long nr_pages, 687 struct zone *zone, struct memory_notify *arg) 688 { 689 int nid = zone_to_nid(zone); 690 enum zone_type zone_last = ZONE_NORMAL; 691 692 /* 693 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 694 * contains nodes which have zones of 0...ZONE_NORMAL, 695 * set zone_last to ZONE_NORMAL. 696 * 697 * If we don't have HIGHMEM nor movable node, 698 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 699 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 700 */ 701 if (N_MEMORY == N_NORMAL_MEMORY) 702 zone_last = ZONE_MOVABLE; 703 704 /* 705 * if the memory to be online is in a zone of 0...zone_last, and 706 * the zones of 0...zone_last don't have memory before online, we will 707 * need to set the node to node_states[N_NORMAL_MEMORY] after 708 * the memory is online. 709 */ 710 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 711 arg->status_change_nid_normal = nid; 712 else 713 arg->status_change_nid_normal = -1; 714 715 #ifdef CONFIG_HIGHMEM 716 /* 717 * If we have movable node, node_states[N_HIGH_MEMORY] 718 * contains nodes which have zones of 0...ZONE_HIGHMEM, 719 * set zone_last to ZONE_HIGHMEM. 720 * 721 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 722 * contains nodes which have zones of 0...ZONE_MOVABLE, 723 * set zone_last to ZONE_MOVABLE. 724 */ 725 zone_last = ZONE_HIGHMEM; 726 if (N_MEMORY == N_HIGH_MEMORY) 727 zone_last = ZONE_MOVABLE; 728 729 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 730 arg->status_change_nid_high = nid; 731 else 732 arg->status_change_nid_high = -1; 733 #else 734 arg->status_change_nid_high = arg->status_change_nid_normal; 735 #endif 736 737 /* 738 * if the node don't have memory befor online, we will need to 739 * set the node to node_states[N_MEMORY] after the memory 740 * is online. 741 */ 742 if (!node_state(nid, N_MEMORY)) 743 arg->status_change_nid = nid; 744 else 745 arg->status_change_nid = -1; 746 } 747 748 static void node_states_set_node(int node, struct memory_notify *arg) 749 { 750 if (arg->status_change_nid_normal >= 0) 751 node_set_state(node, N_NORMAL_MEMORY); 752 753 if (arg->status_change_nid_high >= 0) 754 node_set_state(node, N_HIGH_MEMORY); 755 756 node_set_state(node, N_MEMORY); 757 } 758 759 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 760 unsigned long nr_pages) 761 { 762 unsigned long old_end_pfn = zone_end_pfn(zone); 763 764 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 765 zone->zone_start_pfn = start_pfn; 766 767 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 768 } 769 770 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 771 unsigned long nr_pages) 772 { 773 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 774 775 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 776 pgdat->node_start_pfn = start_pfn; 777 778 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 779 } 780 781 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 782 unsigned long nr_pages, struct vmem_altmap *altmap) 783 { 784 struct pglist_data *pgdat = zone->zone_pgdat; 785 int nid = pgdat->node_id; 786 unsigned long flags; 787 788 if (zone_is_empty(zone)) 789 init_currently_empty_zone(zone, start_pfn, nr_pages); 790 791 clear_zone_contiguous(zone); 792 793 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 794 pgdat_resize_lock(pgdat, &flags); 795 zone_span_writelock(zone); 796 resize_zone_range(zone, start_pfn, nr_pages); 797 zone_span_writeunlock(zone); 798 resize_pgdat_range(pgdat, start_pfn, nr_pages); 799 pgdat_resize_unlock(pgdat, &flags); 800 801 /* 802 * TODO now we have a visible range of pages which are not associated 803 * with their zone properly. Not nice but set_pfnblock_flags_mask 804 * expects the zone spans the pfn range. All the pages in the range 805 * are reserved so nobody should be touching them so we should be safe 806 */ 807 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 808 MEMMAP_HOTPLUG, altmap); 809 810 set_zone_contiguous(zone); 811 } 812 813 /* 814 * Returns a default kernel memory zone for the given pfn range. 815 * If no kernel zone covers this pfn range it will automatically go 816 * to the ZONE_NORMAL. 817 */ 818 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 819 unsigned long nr_pages) 820 { 821 struct pglist_data *pgdat = NODE_DATA(nid); 822 int zid; 823 824 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 825 struct zone *zone = &pgdat->node_zones[zid]; 826 827 if (zone_intersects(zone, start_pfn, nr_pages)) 828 return zone; 829 } 830 831 return &pgdat->node_zones[ZONE_NORMAL]; 832 } 833 834 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 835 unsigned long nr_pages) 836 { 837 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 838 nr_pages); 839 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 840 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 841 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 842 843 /* 844 * We inherit the existing zone in a simple case where zones do not 845 * overlap in the given range 846 */ 847 if (in_kernel ^ in_movable) 848 return (in_kernel) ? kernel_zone : movable_zone; 849 850 /* 851 * If the range doesn't belong to any zone or two zones overlap in the 852 * given range then we use movable zone only if movable_node is 853 * enabled because we always online to a kernel zone by default. 854 */ 855 return movable_node_enabled ? movable_zone : kernel_zone; 856 } 857 858 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 859 unsigned long nr_pages) 860 { 861 if (online_type == MMOP_ONLINE_KERNEL) 862 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 863 864 if (online_type == MMOP_ONLINE_MOVABLE) 865 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 866 867 return default_zone_for_pfn(nid, start_pfn, nr_pages); 868 } 869 870 /* 871 * Associates the given pfn range with the given node and the zone appropriate 872 * for the given online type. 873 */ 874 static struct zone * __meminit move_pfn_range(int online_type, int nid, 875 unsigned long start_pfn, unsigned long nr_pages) 876 { 877 struct zone *zone; 878 879 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 880 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 881 return zone; 882 } 883 884 /* Must be protected by mem_hotplug_begin() or a device_lock */ 885 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 886 { 887 unsigned long flags; 888 unsigned long onlined_pages = 0; 889 struct zone *zone; 890 int need_zonelists_rebuild = 0; 891 int nid; 892 int ret; 893 struct memory_notify arg; 894 struct memory_block *mem; 895 896 /* 897 * We can't use pfn_to_nid() because nid might be stored in struct page 898 * which is not yet initialized. Instead, we find nid from memory block. 899 */ 900 mem = find_memory_block(__pfn_to_section(pfn)); 901 nid = mem->nid; 902 903 /* associate pfn range with the zone */ 904 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 905 906 arg.start_pfn = pfn; 907 arg.nr_pages = nr_pages; 908 node_states_check_changes_online(nr_pages, zone, &arg); 909 910 ret = memory_notify(MEM_GOING_ONLINE, &arg); 911 ret = notifier_to_errno(ret); 912 if (ret) 913 goto failed_addition; 914 915 /* 916 * If this zone is not populated, then it is not in zonelist. 917 * This means the page allocator ignores this zone. 918 * So, zonelist must be updated after online. 919 */ 920 if (!populated_zone(zone)) { 921 need_zonelists_rebuild = 1; 922 setup_zone_pageset(zone); 923 } 924 925 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 926 online_pages_range); 927 if (ret) { 928 if (need_zonelists_rebuild) 929 zone_pcp_reset(zone); 930 goto failed_addition; 931 } 932 933 zone->present_pages += onlined_pages; 934 935 pgdat_resize_lock(zone->zone_pgdat, &flags); 936 zone->zone_pgdat->node_present_pages += onlined_pages; 937 pgdat_resize_unlock(zone->zone_pgdat, &flags); 938 939 if (onlined_pages) { 940 node_states_set_node(nid, &arg); 941 if (need_zonelists_rebuild) 942 build_all_zonelists(NULL); 943 else 944 zone_pcp_update(zone); 945 } 946 947 init_per_zone_wmark_min(); 948 949 if (onlined_pages) { 950 kswapd_run(nid); 951 kcompactd_run(nid); 952 } 953 954 vm_total_pages = nr_free_pagecache_pages(); 955 956 writeback_set_ratelimit(); 957 958 if (onlined_pages) 959 memory_notify(MEM_ONLINE, &arg); 960 return 0; 961 962 failed_addition: 963 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 964 (unsigned long long) pfn << PAGE_SHIFT, 965 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 966 memory_notify(MEM_CANCEL_ONLINE, &arg); 967 return ret; 968 } 969 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 970 971 static void reset_node_present_pages(pg_data_t *pgdat) 972 { 973 struct zone *z; 974 975 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 976 z->present_pages = 0; 977 978 pgdat->node_present_pages = 0; 979 } 980 981 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 982 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 983 { 984 struct pglist_data *pgdat; 985 unsigned long zones_size[MAX_NR_ZONES] = {0}; 986 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 987 unsigned long start_pfn = PFN_DOWN(start); 988 989 pgdat = NODE_DATA(nid); 990 if (!pgdat) { 991 pgdat = arch_alloc_nodedata(nid); 992 if (!pgdat) 993 return NULL; 994 995 arch_refresh_nodedata(nid, pgdat); 996 } else { 997 /* 998 * Reset the nr_zones, order and classzone_idx before reuse. 999 * Note that kswapd will init kswapd_classzone_idx properly 1000 * when it starts in the near future. 1001 */ 1002 pgdat->nr_zones = 0; 1003 pgdat->kswapd_order = 0; 1004 pgdat->kswapd_classzone_idx = 0; 1005 } 1006 1007 /* we can use NODE_DATA(nid) from here */ 1008 1009 /* init node's zones as empty zones, we don't have any present pages.*/ 1010 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1011 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1012 1013 /* 1014 * The node we allocated has no zone fallback lists. For avoiding 1015 * to access not-initialized zonelist, build here. 1016 */ 1017 build_all_zonelists(pgdat); 1018 1019 /* 1020 * zone->managed_pages is set to an approximate value in 1021 * free_area_init_core(), which will cause 1022 * /sys/device/system/node/nodeX/meminfo has wrong data. 1023 * So reset it to 0 before any memory is onlined. 1024 */ 1025 reset_node_managed_pages(pgdat); 1026 1027 /* 1028 * When memory is hot-added, all the memory is in offline state. So 1029 * clear all zones' present_pages because they will be updated in 1030 * online_pages() and offline_pages(). 1031 */ 1032 reset_node_present_pages(pgdat); 1033 1034 return pgdat; 1035 } 1036 1037 static void rollback_node_hotadd(int nid) 1038 { 1039 pg_data_t *pgdat = NODE_DATA(nid); 1040 1041 arch_refresh_nodedata(nid, NULL); 1042 free_percpu(pgdat->per_cpu_nodestats); 1043 arch_free_nodedata(pgdat); 1044 return; 1045 } 1046 1047 1048 /** 1049 * try_online_node - online a node if offlined 1050 * @nid: the node ID 1051 * @start: start addr of the node 1052 * @set_node_online: Whether we want to online the node 1053 * called by cpu_up() to online a node without onlined memory. 1054 * 1055 * Returns: 1056 * 1 -> a new node has been allocated 1057 * 0 -> the node is already online 1058 * -ENOMEM -> the node could not be allocated 1059 */ 1060 static int __try_online_node(int nid, u64 start, bool set_node_online) 1061 { 1062 pg_data_t *pgdat; 1063 int ret = 1; 1064 1065 if (node_online(nid)) 1066 return 0; 1067 1068 pgdat = hotadd_new_pgdat(nid, start); 1069 if (!pgdat) { 1070 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1071 ret = -ENOMEM; 1072 goto out; 1073 } 1074 1075 if (set_node_online) { 1076 node_set_online(nid); 1077 ret = register_one_node(nid); 1078 BUG_ON(ret); 1079 } 1080 out: 1081 return ret; 1082 } 1083 1084 /* 1085 * Users of this function always want to online/register the node 1086 */ 1087 int try_online_node(int nid) 1088 { 1089 int ret; 1090 1091 mem_hotplug_begin(); 1092 ret = __try_online_node(nid, 0, true); 1093 mem_hotplug_done(); 1094 return ret; 1095 } 1096 1097 static int check_hotplug_memory_range(u64 start, u64 size) 1098 { 1099 unsigned long block_sz = memory_block_size_bytes(); 1100 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1101 u64 nr_pages = size >> PAGE_SHIFT; 1102 u64 start_pfn = PFN_DOWN(start); 1103 1104 /* memory range must be block size aligned */ 1105 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1106 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1107 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1108 block_sz, start, size); 1109 return -EINVAL; 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int online_memory_block(struct memory_block *mem, void *arg) 1116 { 1117 return device_online(&mem->dev); 1118 } 1119 1120 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1121 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1122 { 1123 u64 start, size; 1124 bool new_node = false; 1125 int ret; 1126 1127 start = res->start; 1128 size = resource_size(res); 1129 1130 ret = check_hotplug_memory_range(start, size); 1131 if (ret) 1132 return ret; 1133 1134 mem_hotplug_begin(); 1135 1136 /* 1137 * Add new range to memblock so that when hotadd_new_pgdat() is called 1138 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1139 * this new range and calculate total pages correctly. The range will 1140 * be removed at hot-remove time. 1141 */ 1142 memblock_add_node(start, size, nid); 1143 1144 ret = __try_online_node(nid, start, false); 1145 if (ret < 0) 1146 goto error; 1147 new_node = ret; 1148 1149 /* call arch's memory hotadd */ 1150 ret = arch_add_memory(nid, start, size, NULL, true); 1151 if (ret < 0) 1152 goto error; 1153 1154 if (new_node) { 1155 /* If sysfs file of new node can't be created, cpu on the node 1156 * can't be hot-added. There is no rollback way now. 1157 * So, check by BUG_ON() to catch it reluctantly.. 1158 * We online node here. We can't roll back from here. 1159 */ 1160 node_set_online(nid); 1161 ret = __register_one_node(nid); 1162 BUG_ON(ret); 1163 } 1164 1165 /* link memory sections under this node.*/ 1166 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1167 BUG_ON(ret); 1168 1169 /* create new memmap entry */ 1170 firmware_map_add_hotplug(start, start + size, "System RAM"); 1171 1172 /* online pages if requested */ 1173 if (online) 1174 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1175 NULL, online_memory_block); 1176 1177 goto out; 1178 1179 error: 1180 /* rollback pgdat allocation and others */ 1181 if (new_node) 1182 rollback_node_hotadd(nid); 1183 memblock_remove(start, size); 1184 1185 out: 1186 mem_hotplug_done(); 1187 return ret; 1188 } 1189 EXPORT_SYMBOL_GPL(add_memory_resource); 1190 1191 int __ref add_memory(int nid, u64 start, u64 size) 1192 { 1193 struct resource *res; 1194 int ret; 1195 1196 res = register_memory_resource(start, size); 1197 if (IS_ERR(res)) 1198 return PTR_ERR(res); 1199 1200 ret = add_memory_resource(nid, res, memhp_auto_online); 1201 if (ret < 0) 1202 release_memory_resource(res); 1203 return ret; 1204 } 1205 EXPORT_SYMBOL_GPL(add_memory); 1206 1207 #ifdef CONFIG_MEMORY_HOTREMOVE 1208 /* 1209 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1210 * set and the size of the free page is given by page_order(). Using this, 1211 * the function determines if the pageblock contains only free pages. 1212 * Due to buddy contraints, a free page at least the size of a pageblock will 1213 * be located at the start of the pageblock 1214 */ 1215 static inline int pageblock_free(struct page *page) 1216 { 1217 return PageBuddy(page) && page_order(page) >= pageblock_order; 1218 } 1219 1220 /* Return the start of the next active pageblock after a given page */ 1221 static struct page *next_active_pageblock(struct page *page) 1222 { 1223 /* Ensure the starting page is pageblock-aligned */ 1224 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1225 1226 /* If the entire pageblock is free, move to the end of free page */ 1227 if (pageblock_free(page)) { 1228 int order; 1229 /* be careful. we don't have locks, page_order can be changed.*/ 1230 order = page_order(page); 1231 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1232 return page + (1 << order); 1233 } 1234 1235 return page + pageblock_nr_pages; 1236 } 1237 1238 static bool is_pageblock_removable_nolock(struct page *page) 1239 { 1240 struct zone *zone; 1241 unsigned long pfn; 1242 1243 /* 1244 * We have to be careful here because we are iterating over memory 1245 * sections which are not zone aware so we might end up outside of 1246 * the zone but still within the section. 1247 * We have to take care about the node as well. If the node is offline 1248 * its NODE_DATA will be NULL - see page_zone. 1249 */ 1250 if (!node_online(page_to_nid(page))) 1251 return false; 1252 1253 zone = page_zone(page); 1254 pfn = page_to_pfn(page); 1255 if (!zone_spans_pfn(zone, pfn)) 1256 return false; 1257 1258 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 1259 } 1260 1261 /* Checks if this range of memory is likely to be hot-removable. */ 1262 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1263 { 1264 struct page *page = pfn_to_page(start_pfn); 1265 struct page *end_page = page + nr_pages; 1266 1267 /* Check the starting page of each pageblock within the range */ 1268 for (; page < end_page; page = next_active_pageblock(page)) { 1269 if (!is_pageblock_removable_nolock(page)) 1270 return false; 1271 cond_resched(); 1272 } 1273 1274 /* All pageblocks in the memory block are likely to be hot-removable */ 1275 return true; 1276 } 1277 1278 /* 1279 * Confirm all pages in a range [start, end) belong to the same zone. 1280 * When true, return its valid [start, end). 1281 */ 1282 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1283 unsigned long *valid_start, unsigned long *valid_end) 1284 { 1285 unsigned long pfn, sec_end_pfn; 1286 unsigned long start, end; 1287 struct zone *zone = NULL; 1288 struct page *page; 1289 int i; 1290 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1291 pfn < end_pfn; 1292 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1293 /* Make sure the memory section is present first */ 1294 if (!present_section_nr(pfn_to_section_nr(pfn))) 1295 continue; 1296 for (; pfn < sec_end_pfn && pfn < end_pfn; 1297 pfn += MAX_ORDER_NR_PAGES) { 1298 i = 0; 1299 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1300 while ((i < MAX_ORDER_NR_PAGES) && 1301 !pfn_valid_within(pfn + i)) 1302 i++; 1303 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1304 continue; 1305 page = pfn_to_page(pfn + i); 1306 if (zone && page_zone(page) != zone) 1307 return 0; 1308 if (!zone) 1309 start = pfn + i; 1310 zone = page_zone(page); 1311 end = pfn + MAX_ORDER_NR_PAGES; 1312 } 1313 } 1314 1315 if (zone) { 1316 *valid_start = start; 1317 *valid_end = min(end, end_pfn); 1318 return 1; 1319 } else { 1320 return 0; 1321 } 1322 } 1323 1324 /* 1325 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1326 * non-lru movable pages and hugepages). We scan pfn because it's much 1327 * easier than scanning over linked list. This function returns the pfn 1328 * of the first found movable page if it's found, otherwise 0. 1329 */ 1330 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1331 { 1332 unsigned long pfn; 1333 struct page *page; 1334 for (pfn = start; pfn < end; pfn++) { 1335 if (pfn_valid(pfn)) { 1336 page = pfn_to_page(pfn); 1337 if (PageLRU(page)) 1338 return pfn; 1339 if (__PageMovable(page)) 1340 return pfn; 1341 if (PageHuge(page)) { 1342 if (page_huge_active(page)) 1343 return pfn; 1344 else 1345 pfn = round_up(pfn + 1, 1346 1 << compound_order(page)) - 1; 1347 } 1348 } 1349 } 1350 return 0; 1351 } 1352 1353 static struct page *new_node_page(struct page *page, unsigned long private) 1354 { 1355 int nid = page_to_nid(page); 1356 nodemask_t nmask = node_states[N_MEMORY]; 1357 1358 /* 1359 * try to allocate from a different node but reuse this node if there 1360 * are no other online nodes to be used (e.g. we are offlining a part 1361 * of the only existing node) 1362 */ 1363 node_clear(nid, nmask); 1364 if (nodes_empty(nmask)) 1365 node_set(nid, nmask); 1366 1367 return new_page_nodemask(page, nid, &nmask); 1368 } 1369 1370 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1371 static int 1372 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1373 { 1374 unsigned long pfn; 1375 struct page *page; 1376 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1377 int not_managed = 0; 1378 int ret = 0; 1379 LIST_HEAD(source); 1380 1381 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1382 if (!pfn_valid(pfn)) 1383 continue; 1384 page = pfn_to_page(pfn); 1385 1386 if (PageHuge(page)) { 1387 struct page *head = compound_head(page); 1388 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1389 if (compound_order(head) > PFN_SECTION_SHIFT) { 1390 ret = -EBUSY; 1391 break; 1392 } 1393 if (isolate_huge_page(page, &source)) 1394 move_pages -= 1 << compound_order(head); 1395 continue; 1396 } else if (PageTransHuge(page)) 1397 pfn = page_to_pfn(compound_head(page)) 1398 + hpage_nr_pages(page) - 1; 1399 1400 if (!get_page_unless_zero(page)) 1401 continue; 1402 /* 1403 * We can skip free pages. And we can deal with pages on 1404 * LRU and non-lru movable pages. 1405 */ 1406 if (PageLRU(page)) 1407 ret = isolate_lru_page(page); 1408 else 1409 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1410 if (!ret) { /* Success */ 1411 put_page(page); 1412 list_add_tail(&page->lru, &source); 1413 move_pages--; 1414 if (!__PageMovable(page)) 1415 inc_node_page_state(page, NR_ISOLATED_ANON + 1416 page_is_file_cache(page)); 1417 1418 } else { 1419 #ifdef CONFIG_DEBUG_VM 1420 pr_alert("failed to isolate pfn %lx\n", pfn); 1421 dump_page(page, "isolation failed"); 1422 #endif 1423 put_page(page); 1424 /* Because we don't have big zone->lock. we should 1425 check this again here. */ 1426 if (page_count(page)) { 1427 not_managed++; 1428 ret = -EBUSY; 1429 break; 1430 } 1431 } 1432 } 1433 if (!list_empty(&source)) { 1434 if (not_managed) { 1435 putback_movable_pages(&source); 1436 goto out; 1437 } 1438 1439 /* Allocate a new page from the nearest neighbor node */ 1440 ret = migrate_pages(&source, new_node_page, NULL, 0, 1441 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1442 if (ret) 1443 putback_movable_pages(&source); 1444 } 1445 out: 1446 return ret; 1447 } 1448 1449 /* 1450 * remove from free_area[] and mark all as Reserved. 1451 */ 1452 static int 1453 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1454 void *data) 1455 { 1456 __offline_isolated_pages(start, start + nr_pages); 1457 return 0; 1458 } 1459 1460 static void 1461 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1462 { 1463 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1464 offline_isolated_pages_cb); 1465 } 1466 1467 /* 1468 * Check all pages in range, recoreded as memory resource, are isolated. 1469 */ 1470 static int 1471 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1472 void *data) 1473 { 1474 int ret; 1475 long offlined = *(long *)data; 1476 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1477 offlined = nr_pages; 1478 if (!ret) 1479 *(long *)data += offlined; 1480 return ret; 1481 } 1482 1483 static long 1484 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1485 { 1486 long offlined = 0; 1487 int ret; 1488 1489 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1490 check_pages_isolated_cb); 1491 if (ret < 0) 1492 offlined = (long)ret; 1493 return offlined; 1494 } 1495 1496 static int __init cmdline_parse_movable_node(char *p) 1497 { 1498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1499 movable_node_enabled = true; 1500 #else 1501 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1502 #endif 1503 return 0; 1504 } 1505 early_param("movable_node", cmdline_parse_movable_node); 1506 1507 /* check which state of node_states will be changed when offline memory */ 1508 static void node_states_check_changes_offline(unsigned long nr_pages, 1509 struct zone *zone, struct memory_notify *arg) 1510 { 1511 struct pglist_data *pgdat = zone->zone_pgdat; 1512 unsigned long present_pages = 0; 1513 enum zone_type zt, zone_last = ZONE_NORMAL; 1514 1515 /* 1516 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1517 * contains nodes which have zones of 0...ZONE_NORMAL, 1518 * set zone_last to ZONE_NORMAL. 1519 * 1520 * If we don't have HIGHMEM nor movable node, 1521 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1522 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1523 */ 1524 if (N_MEMORY == N_NORMAL_MEMORY) 1525 zone_last = ZONE_MOVABLE; 1526 1527 /* 1528 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1529 * If the memory to be offline is in a zone of 0...zone_last, 1530 * and it is the last present memory, 0...zone_last will 1531 * become empty after offline , thus we can determind we will 1532 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1533 */ 1534 for (zt = 0; zt <= zone_last; zt++) 1535 present_pages += pgdat->node_zones[zt].present_pages; 1536 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1537 arg->status_change_nid_normal = zone_to_nid(zone); 1538 else 1539 arg->status_change_nid_normal = -1; 1540 1541 #ifdef CONFIG_HIGHMEM 1542 /* 1543 * If we have movable node, node_states[N_HIGH_MEMORY] 1544 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1545 * set zone_last to ZONE_HIGHMEM. 1546 * 1547 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1548 * contains nodes which have zones of 0...ZONE_MOVABLE, 1549 * set zone_last to ZONE_MOVABLE. 1550 */ 1551 zone_last = ZONE_HIGHMEM; 1552 if (N_MEMORY == N_HIGH_MEMORY) 1553 zone_last = ZONE_MOVABLE; 1554 1555 for (; zt <= zone_last; zt++) 1556 present_pages += pgdat->node_zones[zt].present_pages; 1557 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1558 arg->status_change_nid_high = zone_to_nid(zone); 1559 else 1560 arg->status_change_nid_high = -1; 1561 #else 1562 arg->status_change_nid_high = arg->status_change_nid_normal; 1563 #endif 1564 1565 /* 1566 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1567 */ 1568 zone_last = ZONE_MOVABLE; 1569 1570 /* 1571 * check whether node_states[N_HIGH_MEMORY] will be changed 1572 * If we try to offline the last present @nr_pages from the node, 1573 * we can determind we will need to clear the node from 1574 * node_states[N_HIGH_MEMORY]. 1575 */ 1576 for (; zt <= zone_last; zt++) 1577 present_pages += pgdat->node_zones[zt].present_pages; 1578 if (nr_pages >= present_pages) 1579 arg->status_change_nid = zone_to_nid(zone); 1580 else 1581 arg->status_change_nid = -1; 1582 } 1583 1584 static void node_states_clear_node(int node, struct memory_notify *arg) 1585 { 1586 if (arg->status_change_nid_normal >= 0) 1587 node_clear_state(node, N_NORMAL_MEMORY); 1588 1589 if ((N_MEMORY != N_NORMAL_MEMORY) && 1590 (arg->status_change_nid_high >= 0)) 1591 node_clear_state(node, N_HIGH_MEMORY); 1592 1593 if ((N_MEMORY != N_HIGH_MEMORY) && 1594 (arg->status_change_nid >= 0)) 1595 node_clear_state(node, N_MEMORY); 1596 } 1597 1598 static int __ref __offline_pages(unsigned long start_pfn, 1599 unsigned long end_pfn) 1600 { 1601 unsigned long pfn, nr_pages; 1602 long offlined_pages; 1603 int ret, node; 1604 unsigned long flags; 1605 unsigned long valid_start, valid_end; 1606 struct zone *zone; 1607 struct memory_notify arg; 1608 1609 /* at least, alignment against pageblock is necessary */ 1610 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1611 return -EINVAL; 1612 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1613 return -EINVAL; 1614 /* This makes hotplug much easier...and readable. 1615 we assume this for now. .*/ 1616 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end)) 1617 return -EINVAL; 1618 1619 zone = page_zone(pfn_to_page(valid_start)); 1620 node = zone_to_nid(zone); 1621 nr_pages = end_pfn - start_pfn; 1622 1623 /* set above range as isolated */ 1624 ret = start_isolate_page_range(start_pfn, end_pfn, 1625 MIGRATE_MOVABLE, true); 1626 if (ret) 1627 return ret; 1628 1629 arg.start_pfn = start_pfn; 1630 arg.nr_pages = nr_pages; 1631 node_states_check_changes_offline(nr_pages, zone, &arg); 1632 1633 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1634 ret = notifier_to_errno(ret); 1635 if (ret) 1636 goto failed_removal; 1637 1638 pfn = start_pfn; 1639 repeat: 1640 /* start memory hot removal */ 1641 ret = -EINTR; 1642 if (signal_pending(current)) 1643 goto failed_removal; 1644 1645 cond_resched(); 1646 lru_add_drain_all(); 1647 drain_all_pages(zone); 1648 1649 pfn = scan_movable_pages(start_pfn, end_pfn); 1650 if (pfn) { /* We have movable pages */ 1651 ret = do_migrate_range(pfn, end_pfn); 1652 goto repeat; 1653 } 1654 1655 /* 1656 * dissolve free hugepages in the memory block before doing offlining 1657 * actually in order to make hugetlbfs's object counting consistent. 1658 */ 1659 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1660 if (ret) 1661 goto failed_removal; 1662 /* check again */ 1663 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1664 if (offlined_pages < 0) 1665 goto repeat; 1666 pr_info("Offlined Pages %ld\n", offlined_pages); 1667 /* Ok, all of our target is isolated. 1668 We cannot do rollback at this point. */ 1669 offline_isolated_pages(start_pfn, end_pfn); 1670 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1671 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1672 /* removal success */ 1673 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1674 zone->present_pages -= offlined_pages; 1675 1676 pgdat_resize_lock(zone->zone_pgdat, &flags); 1677 zone->zone_pgdat->node_present_pages -= offlined_pages; 1678 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1679 1680 init_per_zone_wmark_min(); 1681 1682 if (!populated_zone(zone)) { 1683 zone_pcp_reset(zone); 1684 build_all_zonelists(NULL); 1685 } else 1686 zone_pcp_update(zone); 1687 1688 node_states_clear_node(node, &arg); 1689 if (arg.status_change_nid >= 0) { 1690 kswapd_stop(node); 1691 kcompactd_stop(node); 1692 } 1693 1694 vm_total_pages = nr_free_pagecache_pages(); 1695 writeback_set_ratelimit(); 1696 1697 memory_notify(MEM_OFFLINE, &arg); 1698 return 0; 1699 1700 failed_removal: 1701 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1702 (unsigned long long) start_pfn << PAGE_SHIFT, 1703 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1704 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1705 /* pushback to free area */ 1706 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1707 return ret; 1708 } 1709 1710 /* Must be protected by mem_hotplug_begin() or a device_lock */ 1711 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1712 { 1713 return __offline_pages(start_pfn, start_pfn + nr_pages); 1714 } 1715 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1716 1717 /** 1718 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1719 * @start_pfn: start pfn of the memory range 1720 * @end_pfn: end pfn of the memory range 1721 * @arg: argument passed to func 1722 * @func: callback for each memory section walked 1723 * 1724 * This function walks through all present mem sections in range 1725 * [start_pfn, end_pfn) and call func on each mem section. 1726 * 1727 * Returns the return value of func. 1728 */ 1729 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1730 void *arg, int (*func)(struct memory_block *, void *)) 1731 { 1732 struct memory_block *mem = NULL; 1733 struct mem_section *section; 1734 unsigned long pfn, section_nr; 1735 int ret; 1736 1737 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1738 section_nr = pfn_to_section_nr(pfn); 1739 if (!present_section_nr(section_nr)) 1740 continue; 1741 1742 section = __nr_to_section(section_nr); 1743 /* same memblock? */ 1744 if (mem) 1745 if ((section_nr >= mem->start_section_nr) && 1746 (section_nr <= mem->end_section_nr)) 1747 continue; 1748 1749 mem = find_memory_block_hinted(section, mem); 1750 if (!mem) 1751 continue; 1752 1753 ret = func(mem, arg); 1754 if (ret) { 1755 kobject_put(&mem->dev.kobj); 1756 return ret; 1757 } 1758 } 1759 1760 if (mem) 1761 kobject_put(&mem->dev.kobj); 1762 1763 return 0; 1764 } 1765 1766 #ifdef CONFIG_MEMORY_HOTREMOVE 1767 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1768 { 1769 int ret = !is_memblock_offlined(mem); 1770 1771 if (unlikely(ret)) { 1772 phys_addr_t beginpa, endpa; 1773 1774 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1775 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1776 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1777 &beginpa, &endpa); 1778 } 1779 1780 return ret; 1781 } 1782 1783 static int check_cpu_on_node(pg_data_t *pgdat) 1784 { 1785 int cpu; 1786 1787 for_each_present_cpu(cpu) { 1788 if (cpu_to_node(cpu) == pgdat->node_id) 1789 /* 1790 * the cpu on this node isn't removed, and we can't 1791 * offline this node. 1792 */ 1793 return -EBUSY; 1794 } 1795 1796 return 0; 1797 } 1798 1799 static void unmap_cpu_on_node(pg_data_t *pgdat) 1800 { 1801 #ifdef CONFIG_ACPI_NUMA 1802 int cpu; 1803 1804 for_each_possible_cpu(cpu) 1805 if (cpu_to_node(cpu) == pgdat->node_id) 1806 numa_clear_node(cpu); 1807 #endif 1808 } 1809 1810 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1811 { 1812 int ret; 1813 1814 ret = check_cpu_on_node(pgdat); 1815 if (ret) 1816 return ret; 1817 1818 /* 1819 * the node will be offlined when we come here, so we can clear 1820 * the cpu_to_node() now. 1821 */ 1822 1823 unmap_cpu_on_node(pgdat); 1824 return 0; 1825 } 1826 1827 /** 1828 * try_offline_node 1829 * @nid: the node ID 1830 * 1831 * Offline a node if all memory sections and cpus of the node are removed. 1832 * 1833 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1834 * and online/offline operations before this call. 1835 */ 1836 void try_offline_node(int nid) 1837 { 1838 pg_data_t *pgdat = NODE_DATA(nid); 1839 unsigned long start_pfn = pgdat->node_start_pfn; 1840 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1841 unsigned long pfn; 1842 1843 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1844 unsigned long section_nr = pfn_to_section_nr(pfn); 1845 1846 if (!present_section_nr(section_nr)) 1847 continue; 1848 1849 if (pfn_to_nid(pfn) != nid) 1850 continue; 1851 1852 /* 1853 * some memory sections of this node are not removed, and we 1854 * can't offline node now. 1855 */ 1856 return; 1857 } 1858 1859 if (check_and_unmap_cpu_on_node(pgdat)) 1860 return; 1861 1862 /* 1863 * all memory/cpu of this node are removed, we can offline this 1864 * node now. 1865 */ 1866 node_set_offline(nid); 1867 unregister_one_node(nid); 1868 } 1869 EXPORT_SYMBOL(try_offline_node); 1870 1871 /** 1872 * remove_memory 1873 * @nid: the node ID 1874 * @start: physical address of the region to remove 1875 * @size: size of the region to remove 1876 * 1877 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1878 * and online/offline operations before this call, as required by 1879 * try_offline_node(). 1880 */ 1881 void __ref remove_memory(int nid, u64 start, u64 size) 1882 { 1883 int ret; 1884 1885 BUG_ON(check_hotplug_memory_range(start, size)); 1886 1887 mem_hotplug_begin(); 1888 1889 /* 1890 * All memory blocks must be offlined before removing memory. Check 1891 * whether all memory blocks in question are offline and trigger a BUG() 1892 * if this is not the case. 1893 */ 1894 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1895 check_memblock_offlined_cb); 1896 if (ret) 1897 BUG(); 1898 1899 /* remove memmap entry */ 1900 firmware_map_remove(start, start + size, "System RAM"); 1901 memblock_free(start, size); 1902 memblock_remove(start, size); 1903 1904 arch_remove_memory(start, size, NULL); 1905 1906 try_offline_node(nid); 1907 1908 mem_hotplug_done(); 1909 } 1910 EXPORT_SYMBOL_GPL(remove_memory); 1911 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1912