xref: /openbmc/linux/mm/memory_hotplug.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 /*
56  * online_page_callback contains pointer to current page onlining function.
57  * Initially it is generic_online_page(). If it is required it could be
58  * changed by calling set_online_page_callback() for callback registration
59  * and restore_online_page_callback() for generic callback restore.
60  */
61 
62 static online_page_callback_t online_page_callback = generic_online_page;
63 static DEFINE_MUTEX(online_page_callback_lock);
64 
65 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66 
67 void get_online_mems(void)
68 {
69 	percpu_down_read(&mem_hotplug_lock);
70 }
71 
72 void put_online_mems(void)
73 {
74 	percpu_up_read(&mem_hotplug_lock);
75 }
76 
77 bool movable_node_enabled = false;
78 
79 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80 int mhp_default_online_type = MMOP_OFFLINE;
81 #else
82 int mhp_default_online_type = MMOP_ONLINE;
83 #endif
84 
85 static int __init setup_memhp_default_state(char *str)
86 {
87 	const int online_type = mhp_online_type_from_str(str);
88 
89 	if (online_type >= 0)
90 		mhp_default_online_type = online_type;
91 
92 	return 1;
93 }
94 __setup("memhp_default_state=", setup_memhp_default_state);
95 
96 void mem_hotplug_begin(void)
97 {
98 	cpus_read_lock();
99 	percpu_down_write(&mem_hotplug_lock);
100 }
101 
102 void mem_hotplug_done(void)
103 {
104 	percpu_up_write(&mem_hotplug_lock);
105 	cpus_read_unlock();
106 }
107 
108 u64 max_mem_size = U64_MAX;
109 
110 /* add this memory to iomem resource */
111 static struct resource *register_memory_resource(u64 start, u64 size,
112 						 const char *resource_name)
113 {
114 	struct resource *res;
115 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116 
117 	if (strcmp(resource_name, "System RAM"))
118 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119 
120 	if (!mhp_range_allowed(start, size, true))
121 		return ERR_PTR(-E2BIG);
122 
123 	/*
124 	 * Make sure value parsed from 'mem=' only restricts memory adding
125 	 * while booting, so that memory hotplug won't be impacted. Please
126 	 * refer to document of 'mem=' in kernel-parameters.txt for more
127 	 * details.
128 	 */
129 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 		return ERR_PTR(-E2BIG);
131 
132 	/*
133 	 * Request ownership of the new memory range.  This might be
134 	 * a child of an existing resource that was present but
135 	 * not marked as busy.
136 	 */
137 	res = __request_region(&iomem_resource, start, size,
138 			       resource_name, flags);
139 
140 	if (!res) {
141 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 				start, start + size);
143 		return ERR_PTR(-EEXIST);
144 	}
145 	return res;
146 }
147 
148 static void release_memory_resource(struct resource *res)
149 {
150 	if (!res)
151 		return;
152 	release_resource(res);
153 	kfree(res);
154 }
155 
156 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
158 		const char *reason)
159 {
160 	/*
161 	 * Disallow all operations smaller than a sub-section and only
162 	 * allow operations smaller than a section for
163 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
164 	 * enforces a larger memory_block_size_bytes() granularity for
165 	 * memory that will be marked online, so this check should only
166 	 * fire for direct arch_{add,remove}_memory() users outside of
167 	 * add_memory_resource().
168 	 */
169 	unsigned long min_align;
170 
171 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
172 		min_align = PAGES_PER_SUBSECTION;
173 	else
174 		min_align = PAGES_PER_SECTION;
175 	if (!IS_ALIGNED(pfn, min_align)
176 			|| !IS_ALIGNED(nr_pages, min_align)) {
177 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
178 				reason, pfn, pfn + nr_pages - 1);
179 		return -EINVAL;
180 	}
181 	return 0;
182 }
183 
184 /*
185  * Return page for the valid pfn only if the page is online. All pfn
186  * walkers which rely on the fully initialized page->flags and others
187  * should use this rather than pfn_valid && pfn_to_page
188  */
189 struct page *pfn_to_online_page(unsigned long pfn)
190 {
191 	unsigned long nr = pfn_to_section_nr(pfn);
192 	struct dev_pagemap *pgmap;
193 	struct mem_section *ms;
194 
195 	if (nr >= NR_MEM_SECTIONS)
196 		return NULL;
197 
198 	ms = __nr_to_section(nr);
199 	if (!online_section(ms))
200 		return NULL;
201 
202 	/*
203 	 * Save some code text when online_section() +
204 	 * pfn_section_valid() are sufficient.
205 	 */
206 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
207 		return NULL;
208 
209 	if (!pfn_section_valid(ms, pfn))
210 		return NULL;
211 
212 	if (!online_device_section(ms))
213 		return pfn_to_page(pfn);
214 
215 	/*
216 	 * Slowpath: when ZONE_DEVICE collides with
217 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
218 	 * the section may be 'offline' but 'valid'. Only
219 	 * get_dev_pagemap() can determine sub-section online status.
220 	 */
221 	pgmap = get_dev_pagemap(pfn, NULL);
222 	put_dev_pagemap(pgmap);
223 
224 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
225 	if (pgmap)
226 		return NULL;
227 
228 	return pfn_to_page(pfn);
229 }
230 EXPORT_SYMBOL_GPL(pfn_to_online_page);
231 
232 /*
233  * Reasonably generic function for adding memory.  It is
234  * expected that archs that support memory hotplug will
235  * call this function after deciding the zone to which to
236  * add the new pages.
237  */
238 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
239 		struct mhp_params *params)
240 {
241 	const unsigned long end_pfn = pfn + nr_pages;
242 	unsigned long cur_nr_pages;
243 	int err;
244 	struct vmem_altmap *altmap = params->altmap;
245 
246 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
247 		return -EINVAL;
248 
249 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
250 
251 	if (altmap) {
252 		/*
253 		 * Validate altmap is within bounds of the total request
254 		 */
255 		if (altmap->base_pfn != pfn
256 				|| vmem_altmap_offset(altmap) > nr_pages) {
257 			pr_warn_once("memory add fail, invalid altmap\n");
258 			return -EINVAL;
259 		}
260 		altmap->alloc = 0;
261 	}
262 
263 	err = check_pfn_span(pfn, nr_pages, "add");
264 	if (err)
265 		return err;
266 
267 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
268 		/* Select all remaining pages up to the next section boundary */
269 		cur_nr_pages = min(end_pfn - pfn,
270 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
271 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
272 		if (err)
273 			break;
274 		cond_resched();
275 	}
276 	vmemmap_populate_print_last();
277 	return err;
278 }
279 
280 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
281 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
282 				     unsigned long start_pfn,
283 				     unsigned long end_pfn)
284 {
285 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
286 		if (unlikely(!pfn_to_online_page(start_pfn)))
287 			continue;
288 
289 		if (unlikely(pfn_to_nid(start_pfn) != nid))
290 			continue;
291 
292 		if (zone != page_zone(pfn_to_page(start_pfn)))
293 			continue;
294 
295 		return start_pfn;
296 	}
297 
298 	return 0;
299 }
300 
301 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
302 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
303 				    unsigned long start_pfn,
304 				    unsigned long end_pfn)
305 {
306 	unsigned long pfn;
307 
308 	/* pfn is the end pfn of a memory section. */
309 	pfn = end_pfn - 1;
310 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
311 		if (unlikely(!pfn_to_online_page(pfn)))
312 			continue;
313 
314 		if (unlikely(pfn_to_nid(pfn) != nid))
315 			continue;
316 
317 		if (zone != page_zone(pfn_to_page(pfn)))
318 			continue;
319 
320 		return pfn;
321 	}
322 
323 	return 0;
324 }
325 
326 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
327 			     unsigned long end_pfn)
328 {
329 	unsigned long pfn;
330 	int nid = zone_to_nid(zone);
331 
332 	if (zone->zone_start_pfn == start_pfn) {
333 		/*
334 		 * If the section is smallest section in the zone, it need
335 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
336 		 * In this case, we find second smallest valid mem_section
337 		 * for shrinking zone.
338 		 */
339 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
340 						zone_end_pfn(zone));
341 		if (pfn) {
342 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
343 			zone->zone_start_pfn = pfn;
344 		} else {
345 			zone->zone_start_pfn = 0;
346 			zone->spanned_pages = 0;
347 		}
348 	} else if (zone_end_pfn(zone) == end_pfn) {
349 		/*
350 		 * If the section is biggest section in the zone, it need
351 		 * shrink zone->spanned_pages.
352 		 * In this case, we find second biggest valid mem_section for
353 		 * shrinking zone.
354 		 */
355 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
356 					       start_pfn);
357 		if (pfn)
358 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
359 		else {
360 			zone->zone_start_pfn = 0;
361 			zone->spanned_pages = 0;
362 		}
363 	}
364 }
365 
366 static void update_pgdat_span(struct pglist_data *pgdat)
367 {
368 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
369 	struct zone *zone;
370 
371 	for (zone = pgdat->node_zones;
372 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
373 		unsigned long end_pfn = zone_end_pfn(zone);
374 
375 		/* No need to lock the zones, they can't change. */
376 		if (!zone->spanned_pages)
377 			continue;
378 		if (!node_end_pfn) {
379 			node_start_pfn = zone->zone_start_pfn;
380 			node_end_pfn = end_pfn;
381 			continue;
382 		}
383 
384 		if (end_pfn > node_end_pfn)
385 			node_end_pfn = end_pfn;
386 		if (zone->zone_start_pfn < node_start_pfn)
387 			node_start_pfn = zone->zone_start_pfn;
388 	}
389 
390 	pgdat->node_start_pfn = node_start_pfn;
391 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
392 }
393 
394 void __ref remove_pfn_range_from_zone(struct zone *zone,
395 				      unsigned long start_pfn,
396 				      unsigned long nr_pages)
397 {
398 	const unsigned long end_pfn = start_pfn + nr_pages;
399 	struct pglist_data *pgdat = zone->zone_pgdat;
400 	unsigned long pfn, cur_nr_pages;
401 
402 	/* Poison struct pages because they are now uninitialized again. */
403 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
404 		cond_resched();
405 
406 		/* Select all remaining pages up to the next section boundary */
407 		cur_nr_pages =
408 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
409 		page_init_poison(pfn_to_page(pfn),
410 				 sizeof(struct page) * cur_nr_pages);
411 	}
412 
413 #ifdef CONFIG_ZONE_DEVICE
414 	/*
415 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
416 	 * we will not try to shrink the zones - which is okay as
417 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
418 	 */
419 	if (zone_idx(zone) == ZONE_DEVICE)
420 		return;
421 #endif
422 
423 	clear_zone_contiguous(zone);
424 
425 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
426 	update_pgdat_span(pgdat);
427 
428 	set_zone_contiguous(zone);
429 }
430 
431 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
432 			     unsigned long map_offset,
433 			     struct vmem_altmap *altmap)
434 {
435 	struct mem_section *ms = __pfn_to_section(pfn);
436 
437 	if (WARN_ON_ONCE(!valid_section(ms)))
438 		return;
439 
440 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
441 }
442 
443 /**
444  * __remove_pages() - remove sections of pages
445  * @pfn: starting pageframe (must be aligned to start of a section)
446  * @nr_pages: number of pages to remove (must be multiple of section size)
447  * @altmap: alternative device page map or %NULL if default memmap is used
448  *
449  * Generic helper function to remove section mappings and sysfs entries
450  * for the section of the memory we are removing. Caller needs to make
451  * sure that pages are marked reserved and zones are adjust properly by
452  * calling offline_pages().
453  */
454 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
455 		    struct vmem_altmap *altmap)
456 {
457 	const unsigned long end_pfn = pfn + nr_pages;
458 	unsigned long cur_nr_pages;
459 	unsigned long map_offset = 0;
460 
461 	map_offset = vmem_altmap_offset(altmap);
462 
463 	if (check_pfn_span(pfn, nr_pages, "remove"))
464 		return;
465 
466 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
467 		cond_resched();
468 		/* Select all remaining pages up to the next section boundary */
469 		cur_nr_pages = min(end_pfn - pfn,
470 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
471 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
472 		map_offset = 0;
473 	}
474 }
475 
476 int set_online_page_callback(online_page_callback_t callback)
477 {
478 	int rc = -EINVAL;
479 
480 	get_online_mems();
481 	mutex_lock(&online_page_callback_lock);
482 
483 	if (online_page_callback == generic_online_page) {
484 		online_page_callback = callback;
485 		rc = 0;
486 	}
487 
488 	mutex_unlock(&online_page_callback_lock);
489 	put_online_mems();
490 
491 	return rc;
492 }
493 EXPORT_SYMBOL_GPL(set_online_page_callback);
494 
495 int restore_online_page_callback(online_page_callback_t callback)
496 {
497 	int rc = -EINVAL;
498 
499 	get_online_mems();
500 	mutex_lock(&online_page_callback_lock);
501 
502 	if (online_page_callback == callback) {
503 		online_page_callback = generic_online_page;
504 		rc = 0;
505 	}
506 
507 	mutex_unlock(&online_page_callback_lock);
508 	put_online_mems();
509 
510 	return rc;
511 }
512 EXPORT_SYMBOL_GPL(restore_online_page_callback);
513 
514 void generic_online_page(struct page *page, unsigned int order)
515 {
516 	/*
517 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
518 	 * so we should map it first. This is better than introducing a special
519 	 * case in page freeing fast path.
520 	 */
521 	debug_pagealloc_map_pages(page, 1 << order);
522 	__free_pages_core(page, order);
523 	totalram_pages_add(1UL << order);
524 #ifdef CONFIG_HIGHMEM
525 	if (PageHighMem(page))
526 		totalhigh_pages_add(1UL << order);
527 #endif
528 }
529 EXPORT_SYMBOL_GPL(generic_online_page);
530 
531 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
532 {
533 	const unsigned long end_pfn = start_pfn + nr_pages;
534 	unsigned long pfn;
535 
536 	/*
537 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
538 	 * decide to not expose all pages to the buddy (e.g., expose them
539 	 * later). We account all pages as being online and belonging to this
540 	 * zone ("present").
541 	 * When using memmap_on_memory, the range might not be aligned to
542 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
543 	 * this and the first chunk to online will be pageblock_nr_pages.
544 	 */
545 	for (pfn = start_pfn; pfn < end_pfn;) {
546 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
547 
548 		(*online_page_callback)(pfn_to_page(pfn), order);
549 		pfn += (1UL << order);
550 	}
551 
552 	/* mark all involved sections as online */
553 	online_mem_sections(start_pfn, end_pfn);
554 }
555 
556 /* check which state of node_states will be changed when online memory */
557 static void node_states_check_changes_online(unsigned long nr_pages,
558 	struct zone *zone, struct memory_notify *arg)
559 {
560 	int nid = zone_to_nid(zone);
561 
562 	arg->status_change_nid = NUMA_NO_NODE;
563 	arg->status_change_nid_normal = NUMA_NO_NODE;
564 	arg->status_change_nid_high = NUMA_NO_NODE;
565 
566 	if (!node_state(nid, N_MEMORY))
567 		arg->status_change_nid = nid;
568 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
569 		arg->status_change_nid_normal = nid;
570 #ifdef CONFIG_HIGHMEM
571 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
572 		arg->status_change_nid_high = nid;
573 #endif
574 }
575 
576 static void node_states_set_node(int node, struct memory_notify *arg)
577 {
578 	if (arg->status_change_nid_normal >= 0)
579 		node_set_state(node, N_NORMAL_MEMORY);
580 
581 	if (arg->status_change_nid_high >= 0)
582 		node_set_state(node, N_HIGH_MEMORY);
583 
584 	if (arg->status_change_nid >= 0)
585 		node_set_state(node, N_MEMORY);
586 }
587 
588 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
589 		unsigned long nr_pages)
590 {
591 	unsigned long old_end_pfn = zone_end_pfn(zone);
592 
593 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
594 		zone->zone_start_pfn = start_pfn;
595 
596 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
597 }
598 
599 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
600                                      unsigned long nr_pages)
601 {
602 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
603 
604 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
605 		pgdat->node_start_pfn = start_pfn;
606 
607 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
608 
609 }
610 
611 static void section_taint_zone_device(unsigned long pfn)
612 {
613 	struct mem_section *ms = __pfn_to_section(pfn);
614 
615 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
616 }
617 
618 /*
619  * Associate the pfn range with the given zone, initializing the memmaps
620  * and resizing the pgdat/zone data to span the added pages. After this
621  * call, all affected pages are PG_reserved.
622  *
623  * All aligned pageblocks are initialized to the specified migratetype
624  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
625  * zone stats (e.g., nr_isolate_pageblock) are touched.
626  */
627 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
628 				  unsigned long nr_pages,
629 				  struct vmem_altmap *altmap, int migratetype)
630 {
631 	struct pglist_data *pgdat = zone->zone_pgdat;
632 	int nid = pgdat->node_id;
633 
634 	clear_zone_contiguous(zone);
635 
636 	if (zone_is_empty(zone))
637 		init_currently_empty_zone(zone, start_pfn, nr_pages);
638 	resize_zone_range(zone, start_pfn, nr_pages);
639 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
640 
641 	/*
642 	 * Subsection population requires care in pfn_to_online_page().
643 	 * Set the taint to enable the slow path detection of
644 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
645 	 * section.
646 	 */
647 	if (zone_is_zone_device(zone)) {
648 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
649 			section_taint_zone_device(start_pfn);
650 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
651 			section_taint_zone_device(start_pfn + nr_pages);
652 	}
653 
654 	/*
655 	 * TODO now we have a visible range of pages which are not associated
656 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
657 	 * expects the zone spans the pfn range. All the pages in the range
658 	 * are reserved so nobody should be touching them so we should be safe
659 	 */
660 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
661 			 MEMINIT_HOTPLUG, altmap, migratetype);
662 
663 	set_zone_contiguous(zone);
664 }
665 
666 /*
667  * Returns a default kernel memory zone for the given pfn range.
668  * If no kernel zone covers this pfn range it will automatically go
669  * to the ZONE_NORMAL.
670  */
671 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
672 		unsigned long nr_pages)
673 {
674 	struct pglist_data *pgdat = NODE_DATA(nid);
675 	int zid;
676 
677 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
678 		struct zone *zone = &pgdat->node_zones[zid];
679 
680 		if (zone_intersects(zone, start_pfn, nr_pages))
681 			return zone;
682 	}
683 
684 	return &pgdat->node_zones[ZONE_NORMAL];
685 }
686 
687 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
688 		unsigned long nr_pages)
689 {
690 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
691 			nr_pages);
692 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
693 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
694 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
695 
696 	/*
697 	 * We inherit the existing zone in a simple case where zones do not
698 	 * overlap in the given range
699 	 */
700 	if (in_kernel ^ in_movable)
701 		return (in_kernel) ? kernel_zone : movable_zone;
702 
703 	/*
704 	 * If the range doesn't belong to any zone or two zones overlap in the
705 	 * given range then we use movable zone only if movable_node is
706 	 * enabled because we always online to a kernel zone by default.
707 	 */
708 	return movable_node_enabled ? movable_zone : kernel_zone;
709 }
710 
711 struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
712 		unsigned long nr_pages)
713 {
714 	if (online_type == MMOP_ONLINE_KERNEL)
715 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
716 
717 	if (online_type == MMOP_ONLINE_MOVABLE)
718 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
719 
720 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
721 }
722 
723 /*
724  * This function should only be called by memory_block_{online,offline},
725  * and {online,offline}_pages.
726  */
727 void adjust_present_page_count(struct zone *zone, long nr_pages)
728 {
729 	zone->present_pages += nr_pages;
730 	zone->zone_pgdat->node_present_pages += nr_pages;
731 }
732 
733 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
734 			      struct zone *zone)
735 {
736 	unsigned long end_pfn = pfn + nr_pages;
737 	int ret;
738 
739 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
740 	if (ret)
741 		return ret;
742 
743 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
744 
745 	/*
746 	 * It might be that the vmemmap_pages fully span sections. If that is
747 	 * the case, mark those sections online here as otherwise they will be
748 	 * left offline.
749 	 */
750 	if (nr_pages >= PAGES_PER_SECTION)
751 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
752 
753 	return ret;
754 }
755 
756 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
757 {
758 	unsigned long end_pfn = pfn + nr_pages;
759 
760 	/*
761 	 * It might be that the vmemmap_pages fully span sections. If that is
762 	 * the case, mark those sections offline here as otherwise they will be
763 	 * left online.
764 	 */
765 	if (nr_pages >= PAGES_PER_SECTION)
766 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
767 
768         /*
769 	 * The pages associated with this vmemmap have been offlined, so
770 	 * we can reset its state here.
771 	 */
772 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
773 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
774 }
775 
776 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
777 {
778 	unsigned long flags;
779 	int need_zonelists_rebuild = 0;
780 	const int nid = zone_to_nid(zone);
781 	int ret;
782 	struct memory_notify arg;
783 
784 	/*
785 	 * {on,off}lining is constrained to full memory sections (or more
786 	 * precisely to memory blocks from the user space POV).
787 	 * memmap_on_memory is an exception because it reserves initial part
788 	 * of the physical memory space for vmemmaps. That space is pageblock
789 	 * aligned.
790 	 */
791 	if (WARN_ON_ONCE(!nr_pages ||
792 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
793 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
794 		return -EINVAL;
795 
796 	mem_hotplug_begin();
797 
798 	/* associate pfn range with the zone */
799 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
800 
801 	arg.start_pfn = pfn;
802 	arg.nr_pages = nr_pages;
803 	node_states_check_changes_online(nr_pages, zone, &arg);
804 
805 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
806 	ret = notifier_to_errno(ret);
807 	if (ret)
808 		goto failed_addition;
809 
810 	/*
811 	 * Fixup the number of isolated pageblocks before marking the sections
812 	 * onlining, such that undo_isolate_page_range() works correctly.
813 	 */
814 	spin_lock_irqsave(&zone->lock, flags);
815 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
816 	spin_unlock_irqrestore(&zone->lock, flags);
817 
818 	/*
819 	 * If this zone is not populated, then it is not in zonelist.
820 	 * This means the page allocator ignores this zone.
821 	 * So, zonelist must be updated after online.
822 	 */
823 	if (!populated_zone(zone)) {
824 		need_zonelists_rebuild = 1;
825 		setup_zone_pageset(zone);
826 	}
827 
828 	online_pages_range(pfn, nr_pages);
829 	adjust_present_page_count(zone, nr_pages);
830 
831 	node_states_set_node(nid, &arg);
832 	if (need_zonelists_rebuild)
833 		build_all_zonelists(NULL);
834 
835 	/* Basic onlining is complete, allow allocation of onlined pages. */
836 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
837 
838 	/*
839 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
840 	 * the tail of the freelist when undoing isolation). Shuffle the whole
841 	 * zone to make sure the just onlined pages are properly distributed
842 	 * across the whole freelist - to create an initial shuffle.
843 	 */
844 	shuffle_zone(zone);
845 
846 	/* reinitialise watermarks and update pcp limits */
847 	init_per_zone_wmark_min();
848 
849 	kswapd_run(nid);
850 	kcompactd_run(nid);
851 
852 	writeback_set_ratelimit();
853 
854 	memory_notify(MEM_ONLINE, &arg);
855 	mem_hotplug_done();
856 	return 0;
857 
858 failed_addition:
859 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
860 		 (unsigned long long) pfn << PAGE_SHIFT,
861 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
862 	memory_notify(MEM_CANCEL_ONLINE, &arg);
863 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
864 	mem_hotplug_done();
865 	return ret;
866 }
867 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
868 
869 static void reset_node_present_pages(pg_data_t *pgdat)
870 {
871 	struct zone *z;
872 
873 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
874 		z->present_pages = 0;
875 
876 	pgdat->node_present_pages = 0;
877 }
878 
879 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
880 static pg_data_t __ref *hotadd_new_pgdat(int nid)
881 {
882 	struct pglist_data *pgdat;
883 
884 	pgdat = NODE_DATA(nid);
885 	if (!pgdat) {
886 		pgdat = arch_alloc_nodedata(nid);
887 		if (!pgdat)
888 			return NULL;
889 
890 		pgdat->per_cpu_nodestats =
891 			alloc_percpu(struct per_cpu_nodestat);
892 		arch_refresh_nodedata(nid, pgdat);
893 	} else {
894 		int cpu;
895 		/*
896 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
897 		 * Note that kswapd will init kswapd_highest_zoneidx properly
898 		 * when it starts in the near future.
899 		 */
900 		pgdat->nr_zones = 0;
901 		pgdat->kswapd_order = 0;
902 		pgdat->kswapd_highest_zoneidx = 0;
903 		for_each_online_cpu(cpu) {
904 			struct per_cpu_nodestat *p;
905 
906 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
907 			memset(p, 0, sizeof(*p));
908 		}
909 	}
910 
911 	/* we can use NODE_DATA(nid) from here */
912 	pgdat->node_id = nid;
913 	pgdat->node_start_pfn = 0;
914 
915 	/* init node's zones as empty zones, we don't have any present pages.*/
916 	free_area_init_core_hotplug(nid);
917 
918 	/*
919 	 * The node we allocated has no zone fallback lists. For avoiding
920 	 * to access not-initialized zonelist, build here.
921 	 */
922 	build_all_zonelists(pgdat);
923 
924 	/*
925 	 * When memory is hot-added, all the memory is in offline state. So
926 	 * clear all zones' present_pages because they will be updated in
927 	 * online_pages() and offline_pages().
928 	 */
929 	reset_node_managed_pages(pgdat);
930 	reset_node_present_pages(pgdat);
931 
932 	return pgdat;
933 }
934 
935 static void rollback_node_hotadd(int nid)
936 {
937 	pg_data_t *pgdat = NODE_DATA(nid);
938 
939 	arch_refresh_nodedata(nid, NULL);
940 	free_percpu(pgdat->per_cpu_nodestats);
941 	arch_free_nodedata(pgdat);
942 }
943 
944 
945 /*
946  * __try_online_node - online a node if offlined
947  * @nid: the node ID
948  * @set_node_online: Whether we want to online the node
949  * called by cpu_up() to online a node without onlined memory.
950  *
951  * Returns:
952  * 1 -> a new node has been allocated
953  * 0 -> the node is already online
954  * -ENOMEM -> the node could not be allocated
955  */
956 static int __try_online_node(int nid, bool set_node_online)
957 {
958 	pg_data_t *pgdat;
959 	int ret = 1;
960 
961 	if (node_online(nid))
962 		return 0;
963 
964 	pgdat = hotadd_new_pgdat(nid);
965 	if (!pgdat) {
966 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
967 		ret = -ENOMEM;
968 		goto out;
969 	}
970 
971 	if (set_node_online) {
972 		node_set_online(nid);
973 		ret = register_one_node(nid);
974 		BUG_ON(ret);
975 	}
976 out:
977 	return ret;
978 }
979 
980 /*
981  * Users of this function always want to online/register the node
982  */
983 int try_online_node(int nid)
984 {
985 	int ret;
986 
987 	mem_hotplug_begin();
988 	ret =  __try_online_node(nid, true);
989 	mem_hotplug_done();
990 	return ret;
991 }
992 
993 static int check_hotplug_memory_range(u64 start, u64 size)
994 {
995 	/* memory range must be block size aligned */
996 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
997 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
998 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
999 		       memory_block_size_bytes(), start, size);
1000 		return -EINVAL;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static int online_memory_block(struct memory_block *mem, void *arg)
1007 {
1008 	mem->online_type = mhp_default_online_type;
1009 	return device_online(&mem->dev);
1010 }
1011 
1012 bool mhp_supports_memmap_on_memory(unsigned long size)
1013 {
1014 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016 	unsigned long remaining_size = size - vmemmap_size;
1017 
1018 	/*
1019 	 * Besides having arch support and the feature enabled at runtime, we
1020 	 * need a few more assumptions to hold true:
1021 	 *
1022 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1023 	 *    in memory block granularity. We don't want the vmemmap of online
1024 	 *    memory blocks to reside on offline memory blocks. In the future,
1025 	 *    we might want to support variable-sized memory blocks to make the
1026 	 *    feature more versatile.
1027 	 *
1028 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1030 	 *    other memory blocks)
1031 	 *
1032 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1034 	 *    code requires applicable ranges to be page-aligned, for example, to
1035 	 *    set the migratetypes properly.
1036 	 *
1037 	 * TODO: Although we have a check here to make sure that vmemmap pages
1038 	 *       fully populate a PMD, it is not the right place to check for
1039 	 *       this. A much better solution involves improving vmemmap code
1040 	 *       to fallback to base pages when trying to populate vmemmap using
1041 	 *       altmap as an alternative source of memory, and we do not exactly
1042 	 *       populate a single PMD.
1043 	 */
1044 	return memmap_on_memory &&
1045 	       !hugetlb_free_vmemmap_enabled &&
1046 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047 	       size == memory_block_size_bytes() &&
1048 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050 }
1051 
1052 /*
1053  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054  * and online/offline operations (triggered e.g. by sysfs).
1055  *
1056  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057  */
1058 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059 {
1060 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061 	struct vmem_altmap mhp_altmap = {};
1062 	u64 start, size;
1063 	bool new_node = false;
1064 	int ret;
1065 
1066 	start = res->start;
1067 	size = resource_size(res);
1068 
1069 	ret = check_hotplug_memory_range(start, size);
1070 	if (ret)
1071 		return ret;
1072 
1073 	if (!node_possible(nid)) {
1074 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075 		return -EINVAL;
1076 	}
1077 
1078 	mem_hotplug_begin();
1079 
1080 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081 		memblock_add_node(start, size, nid);
1082 
1083 	ret = __try_online_node(nid, false);
1084 	if (ret < 0)
1085 		goto error;
1086 	new_node = ret;
1087 
1088 	/*
1089 	 * Self hosted memmap array
1090 	 */
1091 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092 		if (!mhp_supports_memmap_on_memory(size)) {
1093 			ret = -EINVAL;
1094 			goto error;
1095 		}
1096 		mhp_altmap.free = PHYS_PFN(size);
1097 		mhp_altmap.base_pfn = PHYS_PFN(start);
1098 		params.altmap = &mhp_altmap;
1099 	}
1100 
1101 	/* call arch's memory hotadd */
1102 	ret = arch_add_memory(nid, start, size, &params);
1103 	if (ret < 0)
1104 		goto error;
1105 
1106 	/* create memory block devices after memory was added */
1107 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108 	if (ret) {
1109 		arch_remove_memory(nid, start, size, NULL);
1110 		goto error;
1111 	}
1112 
1113 	if (new_node) {
1114 		/* If sysfs file of new node can't be created, cpu on the node
1115 		 * can't be hot-added. There is no rollback way now.
1116 		 * So, check by BUG_ON() to catch it reluctantly..
1117 		 * We online node here. We can't roll back from here.
1118 		 */
1119 		node_set_online(nid);
1120 		ret = __register_one_node(nid);
1121 		BUG_ON(ret);
1122 	}
1123 
1124 	/* link memory sections under this node.*/
1125 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126 			  MEMINIT_HOTPLUG);
1127 
1128 	/* create new memmap entry */
1129 	if (!strcmp(res->name, "System RAM"))
1130 		firmware_map_add_hotplug(start, start + size, "System RAM");
1131 
1132 	/* device_online() will take the lock when calling online_pages() */
1133 	mem_hotplug_done();
1134 
1135 	/*
1136 	 * In case we're allowed to merge the resource, flag it and trigger
1137 	 * merging now that adding succeeded.
1138 	 */
1139 	if (mhp_flags & MHP_MERGE_RESOURCE)
1140 		merge_system_ram_resource(res);
1141 
1142 	/* online pages if requested */
1143 	if (mhp_default_online_type != MMOP_OFFLINE)
1144 		walk_memory_blocks(start, size, NULL, online_memory_block);
1145 
1146 	return ret;
1147 error:
1148 	/* rollback pgdat allocation and others */
1149 	if (new_node)
1150 		rollback_node_hotadd(nid);
1151 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152 		memblock_remove(start, size);
1153 	mem_hotplug_done();
1154 	return ret;
1155 }
1156 
1157 /* requires device_hotplug_lock, see add_memory_resource() */
1158 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159 {
1160 	struct resource *res;
1161 	int ret;
1162 
1163 	res = register_memory_resource(start, size, "System RAM");
1164 	if (IS_ERR(res))
1165 		return PTR_ERR(res);
1166 
1167 	ret = add_memory_resource(nid, res, mhp_flags);
1168 	if (ret < 0)
1169 		release_memory_resource(res);
1170 	return ret;
1171 }
1172 
1173 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174 {
1175 	int rc;
1176 
1177 	lock_device_hotplug();
1178 	rc = __add_memory(nid, start, size, mhp_flags);
1179 	unlock_device_hotplug();
1180 
1181 	return rc;
1182 }
1183 EXPORT_SYMBOL_GPL(add_memory);
1184 
1185 /*
1186  * Add special, driver-managed memory to the system as system RAM. Such
1187  * memory is not exposed via the raw firmware-provided memmap as system
1188  * RAM, instead, it is detected and added by a driver - during cold boot,
1189  * after a reboot, and after kexec.
1190  *
1191  * Reasons why this memory should not be used for the initial memmap of a
1192  * kexec kernel or for placing kexec images:
1193  * - The booting kernel is in charge of determining how this memory will be
1194  *   used (e.g., use persistent memory as system RAM)
1195  * - Coordination with a hypervisor is required before this memory
1196  *   can be used (e.g., inaccessible parts).
1197  *
1198  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199  * memory map") are created. Also, the created memory resource is flagged
1200  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201  * this memory as well (esp., not place kexec images onto it).
1202  *
1203  * The resource_name (visible via /proc/iomem) has to have the format
1204  * "System RAM ($DRIVER)".
1205  */
1206 int add_memory_driver_managed(int nid, u64 start, u64 size,
1207 			      const char *resource_name, mhp_t mhp_flags)
1208 {
1209 	struct resource *res;
1210 	int rc;
1211 
1212 	if (!resource_name ||
1213 	    strstr(resource_name, "System RAM (") != resource_name ||
1214 	    resource_name[strlen(resource_name) - 1] != ')')
1215 		return -EINVAL;
1216 
1217 	lock_device_hotplug();
1218 
1219 	res = register_memory_resource(start, size, resource_name);
1220 	if (IS_ERR(res)) {
1221 		rc = PTR_ERR(res);
1222 		goto out_unlock;
1223 	}
1224 
1225 	rc = add_memory_resource(nid, res, mhp_flags);
1226 	if (rc < 0)
1227 		release_memory_resource(res);
1228 
1229 out_unlock:
1230 	unlock_device_hotplug();
1231 	return rc;
1232 }
1233 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234 
1235 /*
1236  * Platforms should define arch_get_mappable_range() that provides
1237  * maximum possible addressable physical memory range for which the
1238  * linear mapping could be created. The platform returned address
1239  * range must adhere to these following semantics.
1240  *
1241  * - range.start <= range.end
1242  * - Range includes both end points [range.start..range.end]
1243  *
1244  * There is also a fallback definition provided here, allowing the
1245  * entire possible physical address range in case any platform does
1246  * not define arch_get_mappable_range().
1247  */
1248 struct range __weak arch_get_mappable_range(void)
1249 {
1250 	struct range mhp_range = {
1251 		.start = 0UL,
1252 		.end = -1ULL,
1253 	};
1254 	return mhp_range;
1255 }
1256 
1257 struct range mhp_get_pluggable_range(bool need_mapping)
1258 {
1259 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260 	struct range mhp_range;
1261 
1262 	if (need_mapping) {
1263 		mhp_range = arch_get_mappable_range();
1264 		if (mhp_range.start > max_phys) {
1265 			mhp_range.start = 0;
1266 			mhp_range.end = 0;
1267 		}
1268 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269 	} else {
1270 		mhp_range.start = 0;
1271 		mhp_range.end = max_phys;
1272 	}
1273 	return mhp_range;
1274 }
1275 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276 
1277 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278 {
1279 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280 	u64 end = start + size;
1281 
1282 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283 		return true;
1284 
1285 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286 		start, end, mhp_range.start, mhp_range.end);
1287 	return false;
1288 }
1289 
1290 #ifdef CONFIG_MEMORY_HOTREMOVE
1291 /*
1292  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293  * memory holes). When true, return the zone.
1294  */
1295 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296 				  unsigned long end_pfn)
1297 {
1298 	unsigned long pfn, sec_end_pfn;
1299 	struct zone *zone = NULL;
1300 	struct page *page;
1301 	int i;
1302 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303 	     pfn < end_pfn;
1304 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305 		/* Make sure the memory section is present first */
1306 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1307 			continue;
1308 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1309 		     pfn += MAX_ORDER_NR_PAGES) {
1310 			i = 0;
1311 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312 			while ((i < MAX_ORDER_NR_PAGES) &&
1313 				!pfn_valid_within(pfn + i))
1314 				i++;
1315 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316 				continue;
1317 			/* Check if we got outside of the zone */
1318 			if (zone && !zone_spans_pfn(zone, pfn + i))
1319 				return NULL;
1320 			page = pfn_to_page(pfn + i);
1321 			if (zone && page_zone(page) != zone)
1322 				return NULL;
1323 			zone = page_zone(page);
1324 		}
1325 	}
1326 
1327 	return zone;
1328 }
1329 
1330 /*
1331  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332  * non-lru movable pages and hugepages). Will skip over most unmovable
1333  * pages (esp., pages that can be skipped when offlining), but bail out on
1334  * definitely unmovable pages.
1335  *
1336  * Returns:
1337  *	0 in case a movable page is found and movable_pfn was updated.
1338  *	-ENOENT in case no movable page was found.
1339  *	-EBUSY in case a definitely unmovable page was found.
1340  */
1341 static int scan_movable_pages(unsigned long start, unsigned long end,
1342 			      unsigned long *movable_pfn)
1343 {
1344 	unsigned long pfn;
1345 
1346 	for (pfn = start; pfn < end; pfn++) {
1347 		struct page *page, *head;
1348 		unsigned long skip;
1349 
1350 		if (!pfn_valid(pfn))
1351 			continue;
1352 		page = pfn_to_page(pfn);
1353 		if (PageLRU(page))
1354 			goto found;
1355 		if (__PageMovable(page))
1356 			goto found;
1357 
1358 		/*
1359 		 * PageOffline() pages that are not marked __PageMovable() and
1360 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361 		 * definitely unmovable. If their reference count would be 0,
1362 		 * they could at least be skipped when offlining memory.
1363 		 */
1364 		if (PageOffline(page) && page_count(page))
1365 			return -EBUSY;
1366 
1367 		if (!PageHuge(page))
1368 			continue;
1369 		head = compound_head(page);
1370 		/*
1371 		 * This test is racy as we hold no reference or lock.  The
1372 		 * hugetlb page could have been free'ed and head is no longer
1373 		 * a hugetlb page before the following check.  In such unlikely
1374 		 * cases false positives and negatives are possible.  Calling
1375 		 * code must deal with these scenarios.
1376 		 */
1377 		if (HPageMigratable(head))
1378 			goto found;
1379 		skip = compound_nr(head) - (page - head);
1380 		pfn += skip - 1;
1381 	}
1382 	return -ENOENT;
1383 found:
1384 	*movable_pfn = pfn;
1385 	return 0;
1386 }
1387 
1388 static int
1389 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390 {
1391 	unsigned long pfn;
1392 	struct page *page, *head;
1393 	int ret = 0;
1394 	LIST_HEAD(source);
1395 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396 				      DEFAULT_RATELIMIT_BURST);
1397 
1398 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399 		if (!pfn_valid(pfn))
1400 			continue;
1401 		page = pfn_to_page(pfn);
1402 		head = compound_head(page);
1403 
1404 		if (PageHuge(page)) {
1405 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406 			isolate_huge_page(head, &source);
1407 			continue;
1408 		} else if (PageTransHuge(page))
1409 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410 
1411 		/*
1412 		 * HWPoison pages have elevated reference counts so the migration would
1413 		 * fail on them. It also doesn't make any sense to migrate them in the
1414 		 * first place. Still try to unmap such a page in case it is still mapped
1415 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416 		 * the unmap as the catch all safety net).
1417 		 */
1418 		if (PageHWPoison(page)) {
1419 			if (WARN_ON(PageLRU(page)))
1420 				isolate_lru_page(page);
1421 			if (page_mapped(page))
1422 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1423 			continue;
1424 		}
1425 
1426 		if (!get_page_unless_zero(page))
1427 			continue;
1428 		/*
1429 		 * We can skip free pages. And we can deal with pages on
1430 		 * LRU and non-lru movable pages.
1431 		 */
1432 		if (PageLRU(page))
1433 			ret = isolate_lru_page(page);
1434 		else
1435 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436 		if (!ret) { /* Success */
1437 			list_add_tail(&page->lru, &source);
1438 			if (!__PageMovable(page))
1439 				inc_node_page_state(page, NR_ISOLATED_ANON +
1440 						    page_is_file_lru(page));
1441 
1442 		} else {
1443 			if (__ratelimit(&migrate_rs)) {
1444 				pr_warn("failed to isolate pfn %lx\n", pfn);
1445 				dump_page(page, "isolation failed");
1446 			}
1447 		}
1448 		put_page(page);
1449 	}
1450 	if (!list_empty(&source)) {
1451 		nodemask_t nmask = node_states[N_MEMORY];
1452 		struct migration_target_control mtc = {
1453 			.nmask = &nmask,
1454 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455 		};
1456 
1457 		/*
1458 		 * We have checked that migration range is on a single zone so
1459 		 * we can use the nid of the first page to all the others.
1460 		 */
1461 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462 
1463 		/*
1464 		 * try to allocate from a different node but reuse this node
1465 		 * if there are no other online nodes to be used (e.g. we are
1466 		 * offlining a part of the only existing node)
1467 		 */
1468 		node_clear(mtc.nid, nmask);
1469 		if (nodes_empty(nmask))
1470 			node_set(mtc.nid, nmask);
1471 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1472 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473 		if (ret) {
1474 			list_for_each_entry(page, &source, lru) {
1475 				if (__ratelimit(&migrate_rs)) {
1476 					pr_warn("migrating pfn %lx failed ret:%d\n",
1477 						page_to_pfn(page), ret);
1478 					dump_page(page, "migration failure");
1479 				}
1480 			}
1481 			putback_movable_pages(&source);
1482 		}
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 static int __init cmdline_parse_movable_node(char *p)
1489 {
1490 	movable_node_enabled = true;
1491 	return 0;
1492 }
1493 early_param("movable_node", cmdline_parse_movable_node);
1494 
1495 /* check which state of node_states will be changed when offline memory */
1496 static void node_states_check_changes_offline(unsigned long nr_pages,
1497 		struct zone *zone, struct memory_notify *arg)
1498 {
1499 	struct pglist_data *pgdat = zone->zone_pgdat;
1500 	unsigned long present_pages = 0;
1501 	enum zone_type zt;
1502 
1503 	arg->status_change_nid = NUMA_NO_NODE;
1504 	arg->status_change_nid_normal = NUMA_NO_NODE;
1505 	arg->status_change_nid_high = NUMA_NO_NODE;
1506 
1507 	/*
1508 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509 	 * If the memory to be offline is within the range
1510 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1511 	 * the zones in that range will become empty after the offlining,
1512 	 * thus we can determine that we need to clear the node from
1513 	 * node_states[N_NORMAL_MEMORY].
1514 	 */
1515 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516 		present_pages += pgdat->node_zones[zt].present_pages;
1517 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518 		arg->status_change_nid_normal = zone_to_nid(zone);
1519 
1520 #ifdef CONFIG_HIGHMEM
1521 	/*
1522 	 * node_states[N_HIGH_MEMORY] contains nodes which
1523 	 * have normal memory or high memory.
1524 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526 	 * we determine that the zones in that range become empty,
1527 	 * we need to clear the node for N_HIGH_MEMORY.
1528 	 */
1529 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531 		arg->status_change_nid_high = zone_to_nid(zone);
1532 #endif
1533 
1534 	/*
1535 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1536 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537 	 * as well.
1538 	 * Here we count the possible pages from ZONE_MOVABLE.
1539 	 * If after having accounted all the pages, we see that the nr_pages
1540 	 * to be offlined is over or equal to the accounted pages,
1541 	 * we know that the node will become empty, and so, we can clear
1542 	 * it for N_MEMORY as well.
1543 	 */
1544 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545 
1546 	if (nr_pages >= present_pages)
1547 		arg->status_change_nid = zone_to_nid(zone);
1548 }
1549 
1550 static void node_states_clear_node(int node, struct memory_notify *arg)
1551 {
1552 	if (arg->status_change_nid_normal >= 0)
1553 		node_clear_state(node, N_NORMAL_MEMORY);
1554 
1555 	if (arg->status_change_nid_high >= 0)
1556 		node_clear_state(node, N_HIGH_MEMORY);
1557 
1558 	if (arg->status_change_nid >= 0)
1559 		node_clear_state(node, N_MEMORY);
1560 }
1561 
1562 static int count_system_ram_pages_cb(unsigned long start_pfn,
1563 				     unsigned long nr_pages, void *data)
1564 {
1565 	unsigned long *nr_system_ram_pages = data;
1566 
1567 	*nr_system_ram_pages += nr_pages;
1568 	return 0;
1569 }
1570 
1571 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572 {
1573 	const unsigned long end_pfn = start_pfn + nr_pages;
1574 	unsigned long pfn, system_ram_pages = 0;
1575 	unsigned long flags;
1576 	struct zone *zone;
1577 	struct memory_notify arg;
1578 	int ret, node;
1579 	char *reason;
1580 
1581 	/*
1582 	 * {on,off}lining is constrained to full memory sections (or more
1583 	 * precisely to memory blocks from the user space POV).
1584 	 * memmap_on_memory is an exception because it reserves initial part
1585 	 * of the physical memory space for vmemmaps. That space is pageblock
1586 	 * aligned.
1587 	 */
1588 	if (WARN_ON_ONCE(!nr_pages ||
1589 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591 		return -EINVAL;
1592 
1593 	mem_hotplug_begin();
1594 
1595 	/*
1596 	 * Don't allow to offline memory blocks that contain holes.
1597 	 * Consequently, memory blocks with holes can never get onlined
1598 	 * via the hotplug path - online_pages() - as hotplugged memory has
1599 	 * no holes. This way, we e.g., don't have to worry about marking
1600 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601 	 * avoid using walk_system_ram_range() later.
1602 	 */
1603 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604 			      count_system_ram_pages_cb);
1605 	if (system_ram_pages != nr_pages) {
1606 		ret = -EINVAL;
1607 		reason = "memory holes";
1608 		goto failed_removal;
1609 	}
1610 
1611 	/* This makes hotplug much easier...and readable.
1612 	   we assume this for now. .*/
1613 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614 	if (!zone) {
1615 		ret = -EINVAL;
1616 		reason = "multizone range";
1617 		goto failed_removal;
1618 	}
1619 	node = zone_to_nid(zone);
1620 
1621 	/*
1622 	 * Disable pcplists so that page isolation cannot race with freeing
1623 	 * in a way that pages from isolated pageblock are left on pcplists.
1624 	 */
1625 	zone_pcp_disable(zone);
1626 	lru_cache_disable();
1627 
1628 	/* set above range as isolated */
1629 	ret = start_isolate_page_range(start_pfn, end_pfn,
1630 				       MIGRATE_MOVABLE,
1631 				       MEMORY_OFFLINE | REPORT_FAILURE);
1632 	if (ret) {
1633 		reason = "failure to isolate range";
1634 		goto failed_removal_pcplists_disabled;
1635 	}
1636 
1637 	arg.start_pfn = start_pfn;
1638 	arg.nr_pages = nr_pages;
1639 	node_states_check_changes_offline(nr_pages, zone, &arg);
1640 
1641 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642 	ret = notifier_to_errno(ret);
1643 	if (ret) {
1644 		reason = "notifier failure";
1645 		goto failed_removal_isolated;
1646 	}
1647 
1648 	do {
1649 		pfn = start_pfn;
1650 		do {
1651 			if (signal_pending(current)) {
1652 				ret = -EINTR;
1653 				reason = "signal backoff";
1654 				goto failed_removal_isolated;
1655 			}
1656 
1657 			cond_resched();
1658 
1659 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660 			if (!ret) {
1661 				/*
1662 				 * TODO: fatal migration failures should bail
1663 				 * out
1664 				 */
1665 				do_migrate_range(pfn, end_pfn);
1666 			}
1667 		} while (!ret);
1668 
1669 		if (ret != -ENOENT) {
1670 			reason = "unmovable page";
1671 			goto failed_removal_isolated;
1672 		}
1673 
1674 		/*
1675 		 * Dissolve free hugepages in the memory block before doing
1676 		 * offlining actually in order to make hugetlbfs's object
1677 		 * counting consistent.
1678 		 */
1679 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680 		if (ret) {
1681 			reason = "failure to dissolve huge pages";
1682 			goto failed_removal_isolated;
1683 		}
1684 
1685 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686 
1687 	} while (ret);
1688 
1689 	/* Mark all sections offline and remove free pages from the buddy. */
1690 	__offline_isolated_pages(start_pfn, end_pfn);
1691 	pr_debug("Offlined Pages %ld\n", nr_pages);
1692 
1693 	/*
1694 	 * The memory sections are marked offline, and the pageblock flags
1695 	 * effectively stale; nobody should be touching them. Fixup the number
1696 	 * of isolated pageblocks, memory onlining will properly revert this.
1697 	 */
1698 	spin_lock_irqsave(&zone->lock, flags);
1699 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700 	spin_unlock_irqrestore(&zone->lock, flags);
1701 
1702 	lru_cache_enable();
1703 	zone_pcp_enable(zone);
1704 
1705 	/* removal success */
1706 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707 	adjust_present_page_count(zone, -nr_pages);
1708 
1709 	/* reinitialise watermarks and update pcp limits */
1710 	init_per_zone_wmark_min();
1711 
1712 	if (!populated_zone(zone)) {
1713 		zone_pcp_reset(zone);
1714 		build_all_zonelists(NULL);
1715 	}
1716 
1717 	node_states_clear_node(node, &arg);
1718 	if (arg.status_change_nid >= 0) {
1719 		kswapd_stop(node);
1720 		kcompactd_stop(node);
1721 	}
1722 
1723 	writeback_set_ratelimit();
1724 
1725 	memory_notify(MEM_OFFLINE, &arg);
1726 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727 	mem_hotplug_done();
1728 	return 0;
1729 
1730 failed_removal_isolated:
1731 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733 failed_removal_pcplists_disabled:
1734 	zone_pcp_enable(zone);
1735 failed_removal:
1736 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1737 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1738 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1739 		 reason);
1740 	/* pushback to free area */
1741 	mem_hotplug_done();
1742 	return ret;
1743 }
1744 
1745 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1746 {
1747 	int ret = !is_memblock_offlined(mem);
1748 
1749 	if (unlikely(ret)) {
1750 		phys_addr_t beginpa, endpa;
1751 
1752 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1753 		endpa = beginpa + memory_block_size_bytes() - 1;
1754 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1755 			&beginpa, &endpa);
1756 
1757 		return -EBUSY;
1758 	}
1759 	return 0;
1760 }
1761 
1762 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1763 {
1764 	/*
1765 	 * If not set, continue with the next block.
1766 	 */
1767 	return mem->nr_vmemmap_pages;
1768 }
1769 
1770 static int check_cpu_on_node(pg_data_t *pgdat)
1771 {
1772 	int cpu;
1773 
1774 	for_each_present_cpu(cpu) {
1775 		if (cpu_to_node(cpu) == pgdat->node_id)
1776 			/*
1777 			 * the cpu on this node isn't removed, and we can't
1778 			 * offline this node.
1779 			 */
1780 			return -EBUSY;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1787 {
1788 	int nid = *(int *)arg;
1789 
1790 	/*
1791 	 * If a memory block belongs to multiple nodes, the stored nid is not
1792 	 * reliable. However, such blocks are always online (e.g., cannot get
1793 	 * offlined) and, therefore, are still spanned by the node.
1794 	 */
1795 	return mem->nid == nid ? -EEXIST : 0;
1796 }
1797 
1798 /**
1799  * try_offline_node
1800  * @nid: the node ID
1801  *
1802  * Offline a node if all memory sections and cpus of the node are removed.
1803  *
1804  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1805  * and online/offline operations before this call.
1806  */
1807 void try_offline_node(int nid)
1808 {
1809 	pg_data_t *pgdat = NODE_DATA(nid);
1810 	int rc;
1811 
1812 	/*
1813 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1814 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1815 	 * e.g., after the memory block was onlined.
1816 	 */
1817 	if (pgdat->node_spanned_pages)
1818 		return;
1819 
1820 	/*
1821 	 * Especially offline memory blocks might not be spanned by the
1822 	 * node. They will get spanned by the node once they get onlined.
1823 	 * However, they link to the node in sysfs and can get onlined later.
1824 	 */
1825 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1826 	if (rc)
1827 		return;
1828 
1829 	if (check_cpu_on_node(pgdat))
1830 		return;
1831 
1832 	/*
1833 	 * all memory/cpu of this node are removed, we can offline this
1834 	 * node now.
1835 	 */
1836 	node_set_offline(nid);
1837 	unregister_one_node(nid);
1838 }
1839 EXPORT_SYMBOL(try_offline_node);
1840 
1841 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1842 {
1843 	int rc = 0;
1844 	struct vmem_altmap mhp_altmap = {};
1845 	struct vmem_altmap *altmap = NULL;
1846 	unsigned long nr_vmemmap_pages;
1847 
1848 	BUG_ON(check_hotplug_memory_range(start, size));
1849 
1850 	/*
1851 	 * All memory blocks must be offlined before removing memory.  Check
1852 	 * whether all memory blocks in question are offline and return error
1853 	 * if this is not the case.
1854 	 */
1855 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1856 	if (rc)
1857 		return rc;
1858 
1859 	/*
1860 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1861 	 * the same granularity it was added - a single memory block.
1862 	 */
1863 	if (memmap_on_memory) {
1864 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1865 						      get_nr_vmemmap_pages_cb);
1866 		if (nr_vmemmap_pages) {
1867 			if (size != memory_block_size_bytes()) {
1868 				pr_warn("Refuse to remove %#llx - %#llx,"
1869 					"wrong granularity\n",
1870 					start, start + size);
1871 				return -EINVAL;
1872 			}
1873 
1874 			/*
1875 			 * Let remove_pmd_table->free_hugepage_table do the
1876 			 * right thing if we used vmem_altmap when hot-adding
1877 			 * the range.
1878 			 */
1879 			mhp_altmap.alloc = nr_vmemmap_pages;
1880 			altmap = &mhp_altmap;
1881 		}
1882 	}
1883 
1884 	/* remove memmap entry */
1885 	firmware_map_remove(start, start + size, "System RAM");
1886 
1887 	/*
1888 	 * Memory block device removal under the device_hotplug_lock is
1889 	 * a barrier against racing online attempts.
1890 	 */
1891 	remove_memory_block_devices(start, size);
1892 
1893 	mem_hotplug_begin();
1894 
1895 	arch_remove_memory(nid, start, size, altmap);
1896 
1897 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1898 		memblock_free(start, size);
1899 		memblock_remove(start, size);
1900 	}
1901 
1902 	release_mem_region_adjustable(start, size);
1903 
1904 	try_offline_node(nid);
1905 
1906 	mem_hotplug_done();
1907 	return 0;
1908 }
1909 
1910 /**
1911  * __remove_memory - Remove memory if every memory block is offline
1912  * @nid: the node ID
1913  * @start: physical address of the region to remove
1914  * @size: size of the region to remove
1915  *
1916  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1917  * and online/offline operations before this call, as required by
1918  * try_offline_node().
1919  */
1920 void __remove_memory(int nid, u64 start, u64 size)
1921 {
1922 
1923 	/*
1924 	 * trigger BUG() if some memory is not offlined prior to calling this
1925 	 * function
1926 	 */
1927 	if (try_remove_memory(nid, start, size))
1928 		BUG();
1929 }
1930 
1931 /*
1932  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1933  * some memory is not offline
1934  */
1935 int remove_memory(int nid, u64 start, u64 size)
1936 {
1937 	int rc;
1938 
1939 	lock_device_hotplug();
1940 	rc  = try_remove_memory(nid, start, size);
1941 	unlock_device_hotplug();
1942 
1943 	return rc;
1944 }
1945 EXPORT_SYMBOL_GPL(remove_memory);
1946 
1947 static int try_offline_memory_block(struct memory_block *mem, void *arg)
1948 {
1949 	uint8_t online_type = MMOP_ONLINE_KERNEL;
1950 	uint8_t **online_types = arg;
1951 	struct page *page;
1952 	int rc;
1953 
1954 	/*
1955 	 * Sense the online_type via the zone of the memory block. Offlining
1956 	 * with multiple zones within one memory block will be rejected
1957 	 * by offlining code ... so we don't care about that.
1958 	 */
1959 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1960 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1961 		online_type = MMOP_ONLINE_MOVABLE;
1962 
1963 	rc = device_offline(&mem->dev);
1964 	/*
1965 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1966 	 * so try_reonline_memory_block() can do the right thing.
1967 	 */
1968 	if (!rc)
1969 		**online_types = online_type;
1970 
1971 	(*online_types)++;
1972 	/* Ignore if already offline. */
1973 	return rc < 0 ? rc : 0;
1974 }
1975 
1976 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1977 {
1978 	uint8_t **online_types = arg;
1979 	int rc;
1980 
1981 	if (**online_types != MMOP_OFFLINE) {
1982 		mem->online_type = **online_types;
1983 		rc = device_online(&mem->dev);
1984 		if (rc < 0)
1985 			pr_warn("%s: Failed to re-online memory: %d",
1986 				__func__, rc);
1987 	}
1988 
1989 	/* Continue processing all remaining memory blocks. */
1990 	(*online_types)++;
1991 	return 0;
1992 }
1993 
1994 /*
1995  * Try to offline and remove memory. Might take a long time to finish in case
1996  * memory is still in use. Primarily useful for memory devices that logically
1997  * unplugged all memory (so it's no longer in use) and want to offline + remove
1998  * that memory.
1999  */
2000 int offline_and_remove_memory(int nid, u64 start, u64 size)
2001 {
2002 	const unsigned long mb_count = size / memory_block_size_bytes();
2003 	uint8_t *online_types, *tmp;
2004 	int rc;
2005 
2006 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2007 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2008 		return -EINVAL;
2009 
2010 	/*
2011 	 * We'll remember the old online type of each memory block, so we can
2012 	 * try to revert whatever we did when offlining one memory block fails
2013 	 * after offlining some others succeeded.
2014 	 */
2015 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2016 				     GFP_KERNEL);
2017 	if (!online_types)
2018 		return -ENOMEM;
2019 	/*
2020 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2021 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2022 	 * try_reonline_memory_block().
2023 	 */
2024 	memset(online_types, MMOP_OFFLINE, mb_count);
2025 
2026 	lock_device_hotplug();
2027 
2028 	tmp = online_types;
2029 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2030 
2031 	/*
2032 	 * In case we succeeded to offline all memory, remove it.
2033 	 * This cannot fail as it cannot get onlined in the meantime.
2034 	 */
2035 	if (!rc) {
2036 		rc = try_remove_memory(nid, start, size);
2037 		if (rc)
2038 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2039 	}
2040 
2041 	/*
2042 	 * Rollback what we did. While memory onlining might theoretically fail
2043 	 * (nacked by a notifier), it barely ever happens.
2044 	 */
2045 	if (rc) {
2046 		tmp = online_types;
2047 		walk_memory_blocks(start, size, &tmp,
2048 				   try_reonline_memory_block);
2049 	}
2050 	unlock_device_hotplug();
2051 
2052 	kfree(online_types);
2053 	return rc;
2054 }
2055 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2056 #endif /* CONFIG_MEMORY_HOTREMOVE */
2057