xref: /openbmc/linux/mm/memory_hotplug.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 enum {
56 	ONLINE_POLICY_CONTIG_ZONES = 0,
57 	ONLINE_POLICY_AUTO_MOVABLE,
58 };
59 
60 const char *online_policy_to_str[] = {
61 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
63 };
64 
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
66 {
67 	int ret = sysfs_match_string(online_policy_to_str, val);
68 
69 	if (ret < 0)
70 		return ret;
71 	*((int *)kp->arg) = ret;
72 	return 0;
73 }
74 
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
76 {
77 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
78 }
79 
80 /*
81  * memory_hotplug.online_policy: configure online behavior when onlining without
82  * specifying a zone (MMOP_ONLINE)
83  *
84  * "contig-zones": keep zone contiguous
85  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
87  */
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 	.set = set_online_policy,
91 	.get = get_online_policy,
92 };
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
96 		"Default: \"contig-zones\"");
97 
98 /*
99  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
100  *
101  * The ratio represent an upper limit and the kernel might decide to not
102  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103  * doesn't allow for more MOVABLE memory.
104  */
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 		"in percent for \"auto-movable\" online policy. Default: 301");
110 
111 /*
112  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
113  */
114 #ifdef CONFIG_NUMA
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 		"Consider numa node stats in addition to global stats in "
119 		"\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
121 
122 /*
123  * online_page_callback contains pointer to current page onlining function.
124  * Initially it is generic_online_page(). If it is required it could be
125  * changed by calling set_online_page_callback() for callback registration
126  * and restore_online_page_callback() for generic callback restore.
127  */
128 
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
131 
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
133 
134 void get_online_mems(void)
135 {
136 	percpu_down_read(&mem_hotplug_lock);
137 }
138 
139 void put_online_mems(void)
140 {
141 	percpu_up_read(&mem_hotplug_lock);
142 }
143 
144 bool movable_node_enabled = false;
145 
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
148 #else
149 int mhp_default_online_type = MMOP_ONLINE;
150 #endif
151 
152 static int __init setup_memhp_default_state(char *str)
153 {
154 	const int online_type = mhp_online_type_from_str(str);
155 
156 	if (online_type >= 0)
157 		mhp_default_online_type = online_type;
158 
159 	return 1;
160 }
161 __setup("memhp_default_state=", setup_memhp_default_state);
162 
163 void mem_hotplug_begin(void)
164 {
165 	cpus_read_lock();
166 	percpu_down_write(&mem_hotplug_lock);
167 }
168 
169 void mem_hotplug_done(void)
170 {
171 	percpu_up_write(&mem_hotplug_lock);
172 	cpus_read_unlock();
173 }
174 
175 u64 max_mem_size = U64_MAX;
176 
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 						 const char *resource_name)
180 {
181 	struct resource *res;
182 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
183 
184 	if (strcmp(resource_name, "System RAM"))
185 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
186 
187 	if (!mhp_range_allowed(start, size, true))
188 		return ERR_PTR(-E2BIG);
189 
190 	/*
191 	 * Make sure value parsed from 'mem=' only restricts memory adding
192 	 * while booting, so that memory hotplug won't be impacted. Please
193 	 * refer to document of 'mem=' in kernel-parameters.txt for more
194 	 * details.
195 	 */
196 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Request ownership of the new memory range.  This might be
201 	 * a child of an existing resource that was present but
202 	 * not marked as busy.
203 	 */
204 	res = __request_region(&iomem_resource, start, size,
205 			       resource_name, flags);
206 
207 	if (!res) {
208 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 				start, start + size);
210 		return ERR_PTR(-EEXIST);
211 	}
212 	return res;
213 }
214 
215 static void release_memory_resource(struct resource *res)
216 {
217 	if (!res)
218 		return;
219 	release_resource(res);
220 	kfree(res);
221 }
222 
223 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
224 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
225 		const char *reason)
226 {
227 	/*
228 	 * Disallow all operations smaller than a sub-section and only
229 	 * allow operations smaller than a section for
230 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
231 	 * enforces a larger memory_block_size_bytes() granularity for
232 	 * memory that will be marked online, so this check should only
233 	 * fire for direct arch_{add,remove}_memory() users outside of
234 	 * add_memory_resource().
235 	 */
236 	unsigned long min_align;
237 
238 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
239 		min_align = PAGES_PER_SUBSECTION;
240 	else
241 		min_align = PAGES_PER_SECTION;
242 	if (!IS_ALIGNED(pfn, min_align)
243 			|| !IS_ALIGNED(nr_pages, min_align)) {
244 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
245 				reason, pfn, pfn + nr_pages - 1);
246 		return -EINVAL;
247 	}
248 	return 0;
249 }
250 
251 /*
252  * Return page for the valid pfn only if the page is online. All pfn
253  * walkers which rely on the fully initialized page->flags and others
254  * should use this rather than pfn_valid && pfn_to_page
255  */
256 struct page *pfn_to_online_page(unsigned long pfn)
257 {
258 	unsigned long nr = pfn_to_section_nr(pfn);
259 	struct dev_pagemap *pgmap;
260 	struct mem_section *ms;
261 
262 	if (nr >= NR_MEM_SECTIONS)
263 		return NULL;
264 
265 	ms = __nr_to_section(nr);
266 	if (!online_section(ms))
267 		return NULL;
268 
269 	/*
270 	 * Save some code text when online_section() +
271 	 * pfn_section_valid() are sufficient.
272 	 */
273 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
274 		return NULL;
275 
276 	if (!pfn_section_valid(ms, pfn))
277 		return NULL;
278 
279 	if (!online_device_section(ms))
280 		return pfn_to_page(pfn);
281 
282 	/*
283 	 * Slowpath: when ZONE_DEVICE collides with
284 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
285 	 * the section may be 'offline' but 'valid'. Only
286 	 * get_dev_pagemap() can determine sub-section online status.
287 	 */
288 	pgmap = get_dev_pagemap(pfn, NULL);
289 	put_dev_pagemap(pgmap);
290 
291 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
292 	if (pgmap)
293 		return NULL;
294 
295 	return pfn_to_page(pfn);
296 }
297 EXPORT_SYMBOL_GPL(pfn_to_online_page);
298 
299 /*
300  * Reasonably generic function for adding memory.  It is
301  * expected that archs that support memory hotplug will
302  * call this function after deciding the zone to which to
303  * add the new pages.
304  */
305 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
306 		struct mhp_params *params)
307 {
308 	const unsigned long end_pfn = pfn + nr_pages;
309 	unsigned long cur_nr_pages;
310 	int err;
311 	struct vmem_altmap *altmap = params->altmap;
312 
313 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
314 		return -EINVAL;
315 
316 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
317 
318 	if (altmap) {
319 		/*
320 		 * Validate altmap is within bounds of the total request
321 		 */
322 		if (altmap->base_pfn != pfn
323 				|| vmem_altmap_offset(altmap) > nr_pages) {
324 			pr_warn_once("memory add fail, invalid altmap\n");
325 			return -EINVAL;
326 		}
327 		altmap->alloc = 0;
328 	}
329 
330 	err = check_pfn_span(pfn, nr_pages, "add");
331 	if (err)
332 		return err;
333 
334 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
335 		/* Select all remaining pages up to the next section boundary */
336 		cur_nr_pages = min(end_pfn - pfn,
337 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
338 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
339 		if (err)
340 			break;
341 		cond_resched();
342 	}
343 	vmemmap_populate_print_last();
344 	return err;
345 }
346 
347 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
348 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
349 				     unsigned long start_pfn,
350 				     unsigned long end_pfn)
351 {
352 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
353 		if (unlikely(!pfn_to_online_page(start_pfn)))
354 			continue;
355 
356 		if (unlikely(pfn_to_nid(start_pfn) != nid))
357 			continue;
358 
359 		if (zone != page_zone(pfn_to_page(start_pfn)))
360 			continue;
361 
362 		return start_pfn;
363 	}
364 
365 	return 0;
366 }
367 
368 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
369 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
370 				    unsigned long start_pfn,
371 				    unsigned long end_pfn)
372 {
373 	unsigned long pfn;
374 
375 	/* pfn is the end pfn of a memory section. */
376 	pfn = end_pfn - 1;
377 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
378 		if (unlikely(!pfn_to_online_page(pfn)))
379 			continue;
380 
381 		if (unlikely(pfn_to_nid(pfn) != nid))
382 			continue;
383 
384 		if (zone != page_zone(pfn_to_page(pfn)))
385 			continue;
386 
387 		return pfn;
388 	}
389 
390 	return 0;
391 }
392 
393 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
394 			     unsigned long end_pfn)
395 {
396 	unsigned long pfn;
397 	int nid = zone_to_nid(zone);
398 
399 	if (zone->zone_start_pfn == start_pfn) {
400 		/*
401 		 * If the section is smallest section in the zone, it need
402 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
403 		 * In this case, we find second smallest valid mem_section
404 		 * for shrinking zone.
405 		 */
406 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
407 						zone_end_pfn(zone));
408 		if (pfn) {
409 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
410 			zone->zone_start_pfn = pfn;
411 		} else {
412 			zone->zone_start_pfn = 0;
413 			zone->spanned_pages = 0;
414 		}
415 	} else if (zone_end_pfn(zone) == end_pfn) {
416 		/*
417 		 * If the section is biggest section in the zone, it need
418 		 * shrink zone->spanned_pages.
419 		 * In this case, we find second biggest valid mem_section for
420 		 * shrinking zone.
421 		 */
422 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
423 					       start_pfn);
424 		if (pfn)
425 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
426 		else {
427 			zone->zone_start_pfn = 0;
428 			zone->spanned_pages = 0;
429 		}
430 	}
431 }
432 
433 static void update_pgdat_span(struct pglist_data *pgdat)
434 {
435 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
436 	struct zone *zone;
437 
438 	for (zone = pgdat->node_zones;
439 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
440 		unsigned long end_pfn = zone_end_pfn(zone);
441 
442 		/* No need to lock the zones, they can't change. */
443 		if (!zone->spanned_pages)
444 			continue;
445 		if (!node_end_pfn) {
446 			node_start_pfn = zone->zone_start_pfn;
447 			node_end_pfn = end_pfn;
448 			continue;
449 		}
450 
451 		if (end_pfn > node_end_pfn)
452 			node_end_pfn = end_pfn;
453 		if (zone->zone_start_pfn < node_start_pfn)
454 			node_start_pfn = zone->zone_start_pfn;
455 	}
456 
457 	pgdat->node_start_pfn = node_start_pfn;
458 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
459 }
460 
461 void __ref remove_pfn_range_from_zone(struct zone *zone,
462 				      unsigned long start_pfn,
463 				      unsigned long nr_pages)
464 {
465 	const unsigned long end_pfn = start_pfn + nr_pages;
466 	struct pglist_data *pgdat = zone->zone_pgdat;
467 	unsigned long pfn, cur_nr_pages;
468 
469 	/* Poison struct pages because they are now uninitialized again. */
470 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
471 		cond_resched();
472 
473 		/* Select all remaining pages up to the next section boundary */
474 		cur_nr_pages =
475 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
476 		page_init_poison(pfn_to_page(pfn),
477 				 sizeof(struct page) * cur_nr_pages);
478 	}
479 
480 	/*
481 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
482 	 * we will not try to shrink the zones - which is okay as
483 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
484 	 */
485 	if (zone_is_zone_device(zone))
486 		return;
487 
488 	clear_zone_contiguous(zone);
489 
490 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
491 	update_pgdat_span(pgdat);
492 
493 	set_zone_contiguous(zone);
494 }
495 
496 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
497 			     unsigned long map_offset,
498 			     struct vmem_altmap *altmap)
499 {
500 	struct mem_section *ms = __pfn_to_section(pfn);
501 
502 	if (WARN_ON_ONCE(!valid_section(ms)))
503 		return;
504 
505 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
506 }
507 
508 /**
509  * __remove_pages() - remove sections of pages
510  * @pfn: starting pageframe (must be aligned to start of a section)
511  * @nr_pages: number of pages to remove (must be multiple of section size)
512  * @altmap: alternative device page map or %NULL if default memmap is used
513  *
514  * Generic helper function to remove section mappings and sysfs entries
515  * for the section of the memory we are removing. Caller needs to make
516  * sure that pages are marked reserved and zones are adjust properly by
517  * calling offline_pages().
518  */
519 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
520 		    struct vmem_altmap *altmap)
521 {
522 	const unsigned long end_pfn = pfn + nr_pages;
523 	unsigned long cur_nr_pages;
524 	unsigned long map_offset = 0;
525 
526 	map_offset = vmem_altmap_offset(altmap);
527 
528 	if (check_pfn_span(pfn, nr_pages, "remove"))
529 		return;
530 
531 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
532 		cond_resched();
533 		/* Select all remaining pages up to the next section boundary */
534 		cur_nr_pages = min(end_pfn - pfn,
535 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
536 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
537 		map_offset = 0;
538 	}
539 }
540 
541 int set_online_page_callback(online_page_callback_t callback)
542 {
543 	int rc = -EINVAL;
544 
545 	get_online_mems();
546 	mutex_lock(&online_page_callback_lock);
547 
548 	if (online_page_callback == generic_online_page) {
549 		online_page_callback = callback;
550 		rc = 0;
551 	}
552 
553 	mutex_unlock(&online_page_callback_lock);
554 	put_online_mems();
555 
556 	return rc;
557 }
558 EXPORT_SYMBOL_GPL(set_online_page_callback);
559 
560 int restore_online_page_callback(online_page_callback_t callback)
561 {
562 	int rc = -EINVAL;
563 
564 	get_online_mems();
565 	mutex_lock(&online_page_callback_lock);
566 
567 	if (online_page_callback == callback) {
568 		online_page_callback = generic_online_page;
569 		rc = 0;
570 	}
571 
572 	mutex_unlock(&online_page_callback_lock);
573 	put_online_mems();
574 
575 	return rc;
576 }
577 EXPORT_SYMBOL_GPL(restore_online_page_callback);
578 
579 void generic_online_page(struct page *page, unsigned int order)
580 {
581 	/*
582 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
583 	 * so we should map it first. This is better than introducing a special
584 	 * case in page freeing fast path.
585 	 */
586 	debug_pagealloc_map_pages(page, 1 << order);
587 	__free_pages_core(page, order);
588 	totalram_pages_add(1UL << order);
589 #ifdef CONFIG_HIGHMEM
590 	if (PageHighMem(page))
591 		totalhigh_pages_add(1UL << order);
592 #endif
593 }
594 EXPORT_SYMBOL_GPL(generic_online_page);
595 
596 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
597 {
598 	const unsigned long end_pfn = start_pfn + nr_pages;
599 	unsigned long pfn;
600 
601 	/*
602 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
603 	 * decide to not expose all pages to the buddy (e.g., expose them
604 	 * later). We account all pages as being online and belonging to this
605 	 * zone ("present").
606 	 * When using memmap_on_memory, the range might not be aligned to
607 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
608 	 * this and the first chunk to online will be pageblock_nr_pages.
609 	 */
610 	for (pfn = start_pfn; pfn < end_pfn;) {
611 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
612 
613 		(*online_page_callback)(pfn_to_page(pfn), order);
614 		pfn += (1UL << order);
615 	}
616 
617 	/* mark all involved sections as online */
618 	online_mem_sections(start_pfn, end_pfn);
619 }
620 
621 /* check which state of node_states will be changed when online memory */
622 static void node_states_check_changes_online(unsigned long nr_pages,
623 	struct zone *zone, struct memory_notify *arg)
624 {
625 	int nid = zone_to_nid(zone);
626 
627 	arg->status_change_nid = NUMA_NO_NODE;
628 	arg->status_change_nid_normal = NUMA_NO_NODE;
629 	arg->status_change_nid_high = NUMA_NO_NODE;
630 
631 	if (!node_state(nid, N_MEMORY))
632 		arg->status_change_nid = nid;
633 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
634 		arg->status_change_nid_normal = nid;
635 #ifdef CONFIG_HIGHMEM
636 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
637 		arg->status_change_nid_high = nid;
638 #endif
639 }
640 
641 static void node_states_set_node(int node, struct memory_notify *arg)
642 {
643 	if (arg->status_change_nid_normal >= 0)
644 		node_set_state(node, N_NORMAL_MEMORY);
645 
646 	if (arg->status_change_nid_high >= 0)
647 		node_set_state(node, N_HIGH_MEMORY);
648 
649 	if (arg->status_change_nid >= 0)
650 		node_set_state(node, N_MEMORY);
651 }
652 
653 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
654 		unsigned long nr_pages)
655 {
656 	unsigned long old_end_pfn = zone_end_pfn(zone);
657 
658 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
659 		zone->zone_start_pfn = start_pfn;
660 
661 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
662 }
663 
664 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
665                                      unsigned long nr_pages)
666 {
667 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
668 
669 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
670 		pgdat->node_start_pfn = start_pfn;
671 
672 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
673 
674 }
675 
676 static void section_taint_zone_device(unsigned long pfn)
677 {
678 	struct mem_section *ms = __pfn_to_section(pfn);
679 
680 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
681 }
682 
683 /*
684  * Associate the pfn range with the given zone, initializing the memmaps
685  * and resizing the pgdat/zone data to span the added pages. After this
686  * call, all affected pages are PG_reserved.
687  *
688  * All aligned pageblocks are initialized to the specified migratetype
689  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
690  * zone stats (e.g., nr_isolate_pageblock) are touched.
691  */
692 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
693 				  unsigned long nr_pages,
694 				  struct vmem_altmap *altmap, int migratetype)
695 {
696 	struct pglist_data *pgdat = zone->zone_pgdat;
697 	int nid = pgdat->node_id;
698 
699 	clear_zone_contiguous(zone);
700 
701 	if (zone_is_empty(zone))
702 		init_currently_empty_zone(zone, start_pfn, nr_pages);
703 	resize_zone_range(zone, start_pfn, nr_pages);
704 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
705 
706 	/*
707 	 * Subsection population requires care in pfn_to_online_page().
708 	 * Set the taint to enable the slow path detection of
709 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
710 	 * section.
711 	 */
712 	if (zone_is_zone_device(zone)) {
713 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
714 			section_taint_zone_device(start_pfn);
715 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
716 			section_taint_zone_device(start_pfn + nr_pages);
717 	}
718 
719 	/*
720 	 * TODO now we have a visible range of pages which are not associated
721 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
722 	 * expects the zone spans the pfn range. All the pages in the range
723 	 * are reserved so nobody should be touching them so we should be safe
724 	 */
725 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
726 			 MEMINIT_HOTPLUG, altmap, migratetype);
727 
728 	set_zone_contiguous(zone);
729 }
730 
731 struct auto_movable_stats {
732 	unsigned long kernel_early_pages;
733 	unsigned long movable_pages;
734 };
735 
736 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
737 					    struct zone *zone)
738 {
739 	if (zone_idx(zone) == ZONE_MOVABLE) {
740 		stats->movable_pages += zone->present_pages;
741 	} else {
742 		stats->kernel_early_pages += zone->present_early_pages;
743 #ifdef CONFIG_CMA
744 		/*
745 		 * CMA pages (never on hotplugged memory) behave like
746 		 * ZONE_MOVABLE.
747 		 */
748 		stats->movable_pages += zone->cma_pages;
749 		stats->kernel_early_pages -= zone->cma_pages;
750 #endif /* CONFIG_CMA */
751 	}
752 }
753 struct auto_movable_group_stats {
754 	unsigned long movable_pages;
755 	unsigned long req_kernel_early_pages;
756 };
757 
758 static int auto_movable_stats_account_group(struct memory_group *group,
759 					   void *arg)
760 {
761 	const int ratio = READ_ONCE(auto_movable_ratio);
762 	struct auto_movable_group_stats *stats = arg;
763 	long pages;
764 
765 	/*
766 	 * We don't support modifying the config while the auto-movable online
767 	 * policy is already enabled. Just avoid the division by zero below.
768 	 */
769 	if (!ratio)
770 		return 0;
771 
772 	/*
773 	 * Calculate how many early kernel pages this group requires to
774 	 * satisfy the configured zone ratio.
775 	 */
776 	pages = group->present_movable_pages * 100 / ratio;
777 	pages -= group->present_kernel_pages;
778 
779 	if (pages > 0)
780 		stats->req_kernel_early_pages += pages;
781 	stats->movable_pages += group->present_movable_pages;
782 	return 0;
783 }
784 
785 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
786 					    unsigned long nr_pages)
787 {
788 	unsigned long kernel_early_pages, movable_pages;
789 	struct auto_movable_group_stats group_stats = {};
790 	struct auto_movable_stats stats = {};
791 	pg_data_t *pgdat = NODE_DATA(nid);
792 	struct zone *zone;
793 	int i;
794 
795 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
796 	if (nid == NUMA_NO_NODE) {
797 		/* TODO: cache values */
798 		for_each_populated_zone(zone)
799 			auto_movable_stats_account_zone(&stats, zone);
800 	} else {
801 		for (i = 0; i < MAX_NR_ZONES; i++) {
802 			zone = pgdat->node_zones + i;
803 			if (populated_zone(zone))
804 				auto_movable_stats_account_zone(&stats, zone);
805 		}
806 	}
807 
808 	kernel_early_pages = stats.kernel_early_pages;
809 	movable_pages = stats.movable_pages;
810 
811 	/*
812 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
813 	 * memory within the same group. Remove the effect of all but the
814 	 * current group from the stats.
815 	 */
816 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
817 				   group, &group_stats);
818 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
819 		return false;
820 	kernel_early_pages -= group_stats.req_kernel_early_pages;
821 	movable_pages -= group_stats.movable_pages;
822 
823 	if (group && group->is_dynamic)
824 		kernel_early_pages += group->present_kernel_pages;
825 
826 	/*
827 	 * Test if we could online the given number of pages to ZONE_MOVABLE
828 	 * and still stay in the configured ratio.
829 	 */
830 	movable_pages += nr_pages;
831 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
832 }
833 
834 /*
835  * Returns a default kernel memory zone for the given pfn range.
836  * If no kernel zone covers this pfn range it will automatically go
837  * to the ZONE_NORMAL.
838  */
839 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
840 		unsigned long nr_pages)
841 {
842 	struct pglist_data *pgdat = NODE_DATA(nid);
843 	int zid;
844 
845 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
846 		struct zone *zone = &pgdat->node_zones[zid];
847 
848 		if (zone_intersects(zone, start_pfn, nr_pages))
849 			return zone;
850 	}
851 
852 	return &pgdat->node_zones[ZONE_NORMAL];
853 }
854 
855 /*
856  * Determine to which zone to online memory dynamically based on user
857  * configuration and system stats. We care about the following ratio:
858  *
859  *   MOVABLE : KERNEL
860  *
861  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
862  * one of the kernel zones. CMA pages inside one of the kernel zones really
863  * behaves like ZONE_MOVABLE, so we treat them accordingly.
864  *
865  * We don't allow for hotplugged memory in a KERNEL zone to increase the
866  * amount of MOVABLE memory we can have, so we end up with:
867  *
868  *   MOVABLE : KERNEL_EARLY
869  *
870  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
871  * boot. We base our calculation on KERNEL_EARLY internally, because:
872  *
873  * a) Hotplugged memory in one of the kernel zones can sometimes still get
874  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
875  *    There is no coordination across memory devices, therefore "automatic"
876  *    hotunplugging, as implemented in hypervisors, could result in zone
877  *    imbalances.
878  * b) Early/boot memory in one of the kernel zones can usually not get
879  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
880  *    with unmovable allocations). While there are corner cases where it might
881  *    still work, it is barely relevant in practice.
882  *
883  * Exceptions are dynamic memory groups, which allow for more MOVABLE
884  * memory within the same memory group -- because in that case, there is
885  * coordination within the single memory device managed by a single driver.
886  *
887  * We rely on "present pages" instead of "managed pages", as the latter is
888  * highly unreliable and dynamic in virtualized environments, and does not
889  * consider boot time allocations. For example, memory ballooning adjusts the
890  * managed pages when inflating/deflating the balloon, and balloon compaction
891  * can even migrate inflated pages between zones.
892  *
893  * Using "present pages" is better but some things to keep in mind are:
894  *
895  * a) Some memblock allocations, such as for the crashkernel area, are
896  *    effectively unused by the kernel, yet they account to "present pages".
897  *    Fortunately, these allocations are comparatively small in relevant setups
898  *    (e.g., fraction of system memory).
899  * b) Some hotplugged memory blocks in virtualized environments, esecially
900  *    hotplugged by virtio-mem, look like they are completely present, however,
901  *    only parts of the memory block are actually currently usable.
902  *    "present pages" is an upper limit that can get reached at runtime. As
903  *    we base our calculations on KERNEL_EARLY, this is not an issue.
904  */
905 static struct zone *auto_movable_zone_for_pfn(int nid,
906 					      struct memory_group *group,
907 					      unsigned long pfn,
908 					      unsigned long nr_pages)
909 {
910 	unsigned long online_pages = 0, max_pages, end_pfn;
911 	struct page *page;
912 
913 	if (!auto_movable_ratio)
914 		goto kernel_zone;
915 
916 	if (group && !group->is_dynamic) {
917 		max_pages = group->s.max_pages;
918 		online_pages = group->present_movable_pages;
919 
920 		/* If anything is !MOVABLE online the rest !MOVABLE. */
921 		if (group->present_kernel_pages)
922 			goto kernel_zone;
923 	} else if (!group || group->d.unit_pages == nr_pages) {
924 		max_pages = nr_pages;
925 	} else {
926 		max_pages = group->d.unit_pages;
927 		/*
928 		 * Take a look at all online sections in the current unit.
929 		 * We can safely assume that all pages within a section belong
930 		 * to the same zone, because dynamic memory groups only deal
931 		 * with hotplugged memory.
932 		 */
933 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
934 		end_pfn = pfn + group->d.unit_pages;
935 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
936 			page = pfn_to_online_page(pfn);
937 			if (!page)
938 				continue;
939 			/* If anything is !MOVABLE online the rest !MOVABLE. */
940 			if (page_zonenum(page) != ZONE_MOVABLE)
941 				goto kernel_zone;
942 			online_pages += PAGES_PER_SECTION;
943 		}
944 	}
945 
946 	/*
947 	 * Online MOVABLE if we could *currently* online all remaining parts
948 	 * MOVABLE. We expect to (add+) online them immediately next, so if
949 	 * nobody interferes, all will be MOVABLE if possible.
950 	 */
951 	nr_pages = max_pages - online_pages;
952 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
953 		goto kernel_zone;
954 
955 #ifdef CONFIG_NUMA
956 	if (auto_movable_numa_aware &&
957 	    !auto_movable_can_online_movable(nid, group, nr_pages))
958 		goto kernel_zone;
959 #endif /* CONFIG_NUMA */
960 
961 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
962 kernel_zone:
963 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
964 }
965 
966 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
967 		unsigned long nr_pages)
968 {
969 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
970 			nr_pages);
971 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
972 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
973 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
974 
975 	/*
976 	 * We inherit the existing zone in a simple case where zones do not
977 	 * overlap in the given range
978 	 */
979 	if (in_kernel ^ in_movable)
980 		return (in_kernel) ? kernel_zone : movable_zone;
981 
982 	/*
983 	 * If the range doesn't belong to any zone or two zones overlap in the
984 	 * given range then we use movable zone only if movable_node is
985 	 * enabled because we always online to a kernel zone by default.
986 	 */
987 	return movable_node_enabled ? movable_zone : kernel_zone;
988 }
989 
990 struct zone *zone_for_pfn_range(int online_type, int nid,
991 		struct memory_group *group, unsigned long start_pfn,
992 		unsigned long nr_pages)
993 {
994 	if (online_type == MMOP_ONLINE_KERNEL)
995 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
996 
997 	if (online_type == MMOP_ONLINE_MOVABLE)
998 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
999 
1000 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1001 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1002 
1003 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1004 }
1005 
1006 /*
1007  * This function should only be called by memory_block_{online,offline},
1008  * and {online,offline}_pages.
1009  */
1010 void adjust_present_page_count(struct page *page, struct memory_group *group,
1011 			       long nr_pages)
1012 {
1013 	struct zone *zone = page_zone(page);
1014 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1015 
1016 	/*
1017 	 * We only support onlining/offlining/adding/removing of complete
1018 	 * memory blocks; therefore, either all is either early or hotplugged.
1019 	 */
1020 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1021 		zone->present_early_pages += nr_pages;
1022 	zone->present_pages += nr_pages;
1023 	zone->zone_pgdat->node_present_pages += nr_pages;
1024 
1025 	if (group && movable)
1026 		group->present_movable_pages += nr_pages;
1027 	else if (group && !movable)
1028 		group->present_kernel_pages += nr_pages;
1029 }
1030 
1031 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1032 			      struct zone *zone)
1033 {
1034 	unsigned long end_pfn = pfn + nr_pages;
1035 	int ret;
1036 
1037 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1038 	if (ret)
1039 		return ret;
1040 
1041 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1042 
1043 	/*
1044 	 * It might be that the vmemmap_pages fully span sections. If that is
1045 	 * the case, mark those sections online here as otherwise they will be
1046 	 * left offline.
1047 	 */
1048 	if (nr_pages >= PAGES_PER_SECTION)
1049 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1050 
1051 	return ret;
1052 }
1053 
1054 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1055 {
1056 	unsigned long end_pfn = pfn + nr_pages;
1057 
1058 	/*
1059 	 * It might be that the vmemmap_pages fully span sections. If that is
1060 	 * the case, mark those sections offline here as otherwise they will be
1061 	 * left online.
1062 	 */
1063 	if (nr_pages >= PAGES_PER_SECTION)
1064 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1065 
1066         /*
1067 	 * The pages associated with this vmemmap have been offlined, so
1068 	 * we can reset its state here.
1069 	 */
1070 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1071 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1072 }
1073 
1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1075 		       struct zone *zone, struct memory_group *group)
1076 {
1077 	unsigned long flags;
1078 	int need_zonelists_rebuild = 0;
1079 	const int nid = zone_to_nid(zone);
1080 	int ret;
1081 	struct memory_notify arg;
1082 
1083 	/*
1084 	 * {on,off}lining is constrained to full memory sections (or more
1085 	 * precisely to memory blocks from the user space POV).
1086 	 * memmap_on_memory is an exception because it reserves initial part
1087 	 * of the physical memory space for vmemmaps. That space is pageblock
1088 	 * aligned.
1089 	 */
1090 	if (WARN_ON_ONCE(!nr_pages ||
1091 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1092 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1093 		return -EINVAL;
1094 
1095 	mem_hotplug_begin();
1096 
1097 	/* associate pfn range with the zone */
1098 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1099 
1100 	arg.start_pfn = pfn;
1101 	arg.nr_pages = nr_pages;
1102 	node_states_check_changes_online(nr_pages, zone, &arg);
1103 
1104 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1105 	ret = notifier_to_errno(ret);
1106 	if (ret)
1107 		goto failed_addition;
1108 
1109 	/*
1110 	 * Fixup the number of isolated pageblocks before marking the sections
1111 	 * onlining, such that undo_isolate_page_range() works correctly.
1112 	 */
1113 	spin_lock_irqsave(&zone->lock, flags);
1114 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1115 	spin_unlock_irqrestore(&zone->lock, flags);
1116 
1117 	/*
1118 	 * If this zone is not populated, then it is not in zonelist.
1119 	 * This means the page allocator ignores this zone.
1120 	 * So, zonelist must be updated after online.
1121 	 */
1122 	if (!populated_zone(zone)) {
1123 		need_zonelists_rebuild = 1;
1124 		setup_zone_pageset(zone);
1125 	}
1126 
1127 	online_pages_range(pfn, nr_pages);
1128 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1129 
1130 	node_states_set_node(nid, &arg);
1131 	if (need_zonelists_rebuild)
1132 		build_all_zonelists(NULL);
1133 
1134 	/* Basic onlining is complete, allow allocation of onlined pages. */
1135 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1136 
1137 	/*
1138 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1139 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1140 	 * zone to make sure the just onlined pages are properly distributed
1141 	 * across the whole freelist - to create an initial shuffle.
1142 	 */
1143 	shuffle_zone(zone);
1144 
1145 	/* reinitialise watermarks and update pcp limits */
1146 	init_per_zone_wmark_min();
1147 
1148 	kswapd_run(nid);
1149 	kcompactd_run(nid);
1150 
1151 	writeback_set_ratelimit();
1152 
1153 	memory_notify(MEM_ONLINE, &arg);
1154 	mem_hotplug_done();
1155 	return 0;
1156 
1157 failed_addition:
1158 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1159 		 (unsigned long long) pfn << PAGE_SHIFT,
1160 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1161 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1162 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1163 	mem_hotplug_done();
1164 	return ret;
1165 }
1166 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1167 
1168 static void reset_node_present_pages(pg_data_t *pgdat)
1169 {
1170 	struct zone *z;
1171 
1172 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1173 		z->present_pages = 0;
1174 
1175 	pgdat->node_present_pages = 0;
1176 }
1177 
1178 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1179 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1180 {
1181 	struct pglist_data *pgdat;
1182 
1183 	pgdat = NODE_DATA(nid);
1184 	if (!pgdat) {
1185 		pgdat = arch_alloc_nodedata(nid);
1186 		if (!pgdat)
1187 			return NULL;
1188 
1189 		pgdat->per_cpu_nodestats =
1190 			alloc_percpu(struct per_cpu_nodestat);
1191 		arch_refresh_nodedata(nid, pgdat);
1192 	} else {
1193 		int cpu;
1194 		/*
1195 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
1196 		 * Note that kswapd will init kswapd_highest_zoneidx properly
1197 		 * when it starts in the near future.
1198 		 */
1199 		pgdat->nr_zones = 0;
1200 		pgdat->kswapd_order = 0;
1201 		pgdat->kswapd_highest_zoneidx = 0;
1202 		for_each_online_cpu(cpu) {
1203 			struct per_cpu_nodestat *p;
1204 
1205 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1206 			memset(p, 0, sizeof(*p));
1207 		}
1208 	}
1209 
1210 	/* we can use NODE_DATA(nid) from here */
1211 	pgdat->node_id = nid;
1212 	pgdat->node_start_pfn = 0;
1213 
1214 	/* init node's zones as empty zones, we don't have any present pages.*/
1215 	free_area_init_core_hotplug(nid);
1216 
1217 	/*
1218 	 * The node we allocated has no zone fallback lists. For avoiding
1219 	 * to access not-initialized zonelist, build here.
1220 	 */
1221 	build_all_zonelists(pgdat);
1222 
1223 	/*
1224 	 * When memory is hot-added, all the memory is in offline state. So
1225 	 * clear all zones' present_pages because they will be updated in
1226 	 * online_pages() and offline_pages().
1227 	 */
1228 	reset_node_managed_pages(pgdat);
1229 	reset_node_present_pages(pgdat);
1230 
1231 	return pgdat;
1232 }
1233 
1234 static void rollback_node_hotadd(int nid)
1235 {
1236 	pg_data_t *pgdat = NODE_DATA(nid);
1237 
1238 	arch_refresh_nodedata(nid, NULL);
1239 	free_percpu(pgdat->per_cpu_nodestats);
1240 	arch_free_nodedata(pgdat);
1241 }
1242 
1243 
1244 /*
1245  * __try_online_node - online a node if offlined
1246  * @nid: the node ID
1247  * @set_node_online: Whether we want to online the node
1248  * called by cpu_up() to online a node without onlined memory.
1249  *
1250  * Returns:
1251  * 1 -> a new node has been allocated
1252  * 0 -> the node is already online
1253  * -ENOMEM -> the node could not be allocated
1254  */
1255 static int __try_online_node(int nid, bool set_node_online)
1256 {
1257 	pg_data_t *pgdat;
1258 	int ret = 1;
1259 
1260 	if (node_online(nid))
1261 		return 0;
1262 
1263 	pgdat = hotadd_new_pgdat(nid);
1264 	if (!pgdat) {
1265 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1266 		ret = -ENOMEM;
1267 		goto out;
1268 	}
1269 
1270 	if (set_node_online) {
1271 		node_set_online(nid);
1272 		ret = register_one_node(nid);
1273 		BUG_ON(ret);
1274 	}
1275 out:
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Users of this function always want to online/register the node
1281  */
1282 int try_online_node(int nid)
1283 {
1284 	int ret;
1285 
1286 	mem_hotplug_begin();
1287 	ret =  __try_online_node(nid, true);
1288 	mem_hotplug_done();
1289 	return ret;
1290 }
1291 
1292 static int check_hotplug_memory_range(u64 start, u64 size)
1293 {
1294 	/* memory range must be block size aligned */
1295 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1296 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1297 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1298 		       memory_block_size_bytes(), start, size);
1299 		return -EINVAL;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static int online_memory_block(struct memory_block *mem, void *arg)
1306 {
1307 	mem->online_type = mhp_default_online_type;
1308 	return device_online(&mem->dev);
1309 }
1310 
1311 bool mhp_supports_memmap_on_memory(unsigned long size)
1312 {
1313 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1314 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1315 	unsigned long remaining_size = size - vmemmap_size;
1316 
1317 	/*
1318 	 * Besides having arch support and the feature enabled at runtime, we
1319 	 * need a few more assumptions to hold true:
1320 	 *
1321 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1322 	 *    in memory block granularity. We don't want the vmemmap of online
1323 	 *    memory blocks to reside on offline memory blocks. In the future,
1324 	 *    we might want to support variable-sized memory blocks to make the
1325 	 *    feature more versatile.
1326 	 *
1327 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1328 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1329 	 *    other memory blocks)
1330 	 *
1331 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1332 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1333 	 *    code requires applicable ranges to be page-aligned, for example, to
1334 	 *    set the migratetypes properly.
1335 	 *
1336 	 * TODO: Although we have a check here to make sure that vmemmap pages
1337 	 *       fully populate a PMD, it is not the right place to check for
1338 	 *       this. A much better solution involves improving vmemmap code
1339 	 *       to fallback to base pages when trying to populate vmemmap using
1340 	 *       altmap as an alternative source of memory, and we do not exactly
1341 	 *       populate a single PMD.
1342 	 */
1343 	return memmap_on_memory &&
1344 	       !hugetlb_free_vmemmap_enabled &&
1345 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1346 	       size == memory_block_size_bytes() &&
1347 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1348 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1349 }
1350 
1351 /*
1352  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1353  * and online/offline operations (triggered e.g. by sysfs).
1354  *
1355  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1356  */
1357 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1358 {
1359 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1360 	struct vmem_altmap mhp_altmap = {};
1361 	struct memory_group *group = NULL;
1362 	u64 start, size;
1363 	bool new_node = false;
1364 	int ret;
1365 
1366 	start = res->start;
1367 	size = resource_size(res);
1368 
1369 	ret = check_hotplug_memory_range(start, size);
1370 	if (ret)
1371 		return ret;
1372 
1373 	if (mhp_flags & MHP_NID_IS_MGID) {
1374 		group = memory_group_find_by_id(nid);
1375 		if (!group)
1376 			return -EINVAL;
1377 		nid = group->nid;
1378 	}
1379 
1380 	if (!node_possible(nid)) {
1381 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1382 		return -EINVAL;
1383 	}
1384 
1385 	mem_hotplug_begin();
1386 
1387 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1388 		memblock_add_node(start, size, nid);
1389 
1390 	ret = __try_online_node(nid, false);
1391 	if (ret < 0)
1392 		goto error;
1393 	new_node = ret;
1394 
1395 	/*
1396 	 * Self hosted memmap array
1397 	 */
1398 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1399 		if (!mhp_supports_memmap_on_memory(size)) {
1400 			ret = -EINVAL;
1401 			goto error;
1402 		}
1403 		mhp_altmap.free = PHYS_PFN(size);
1404 		mhp_altmap.base_pfn = PHYS_PFN(start);
1405 		params.altmap = &mhp_altmap;
1406 	}
1407 
1408 	/* call arch's memory hotadd */
1409 	ret = arch_add_memory(nid, start, size, &params);
1410 	if (ret < 0)
1411 		goto error;
1412 
1413 	/* create memory block devices after memory was added */
1414 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1415 					  group);
1416 	if (ret) {
1417 		arch_remove_memory(start, size, NULL);
1418 		goto error;
1419 	}
1420 
1421 	if (new_node) {
1422 		/* If sysfs file of new node can't be created, cpu on the node
1423 		 * can't be hot-added. There is no rollback way now.
1424 		 * So, check by BUG_ON() to catch it reluctantly..
1425 		 * We online node here. We can't roll back from here.
1426 		 */
1427 		node_set_online(nid);
1428 		ret = __register_one_node(nid);
1429 		BUG_ON(ret);
1430 	}
1431 
1432 	/* link memory sections under this node.*/
1433 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1434 			  MEMINIT_HOTPLUG);
1435 
1436 	/* create new memmap entry */
1437 	if (!strcmp(res->name, "System RAM"))
1438 		firmware_map_add_hotplug(start, start + size, "System RAM");
1439 
1440 	/* device_online() will take the lock when calling online_pages() */
1441 	mem_hotplug_done();
1442 
1443 	/*
1444 	 * In case we're allowed to merge the resource, flag it and trigger
1445 	 * merging now that adding succeeded.
1446 	 */
1447 	if (mhp_flags & MHP_MERGE_RESOURCE)
1448 		merge_system_ram_resource(res);
1449 
1450 	/* online pages if requested */
1451 	if (mhp_default_online_type != MMOP_OFFLINE)
1452 		walk_memory_blocks(start, size, NULL, online_memory_block);
1453 
1454 	return ret;
1455 error:
1456 	/* rollback pgdat allocation and others */
1457 	if (new_node)
1458 		rollback_node_hotadd(nid);
1459 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1460 		memblock_remove(start, size);
1461 	mem_hotplug_done();
1462 	return ret;
1463 }
1464 
1465 /* requires device_hotplug_lock, see add_memory_resource() */
1466 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1467 {
1468 	struct resource *res;
1469 	int ret;
1470 
1471 	res = register_memory_resource(start, size, "System RAM");
1472 	if (IS_ERR(res))
1473 		return PTR_ERR(res);
1474 
1475 	ret = add_memory_resource(nid, res, mhp_flags);
1476 	if (ret < 0)
1477 		release_memory_resource(res);
1478 	return ret;
1479 }
1480 
1481 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1482 {
1483 	int rc;
1484 
1485 	lock_device_hotplug();
1486 	rc = __add_memory(nid, start, size, mhp_flags);
1487 	unlock_device_hotplug();
1488 
1489 	return rc;
1490 }
1491 EXPORT_SYMBOL_GPL(add_memory);
1492 
1493 /*
1494  * Add special, driver-managed memory to the system as system RAM. Such
1495  * memory is not exposed via the raw firmware-provided memmap as system
1496  * RAM, instead, it is detected and added by a driver - during cold boot,
1497  * after a reboot, and after kexec.
1498  *
1499  * Reasons why this memory should not be used for the initial memmap of a
1500  * kexec kernel or for placing kexec images:
1501  * - The booting kernel is in charge of determining how this memory will be
1502  *   used (e.g., use persistent memory as system RAM)
1503  * - Coordination with a hypervisor is required before this memory
1504  *   can be used (e.g., inaccessible parts).
1505  *
1506  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1507  * memory map") are created. Also, the created memory resource is flagged
1508  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1509  * this memory as well (esp., not place kexec images onto it).
1510  *
1511  * The resource_name (visible via /proc/iomem) has to have the format
1512  * "System RAM ($DRIVER)".
1513  */
1514 int add_memory_driver_managed(int nid, u64 start, u64 size,
1515 			      const char *resource_name, mhp_t mhp_flags)
1516 {
1517 	struct resource *res;
1518 	int rc;
1519 
1520 	if (!resource_name ||
1521 	    strstr(resource_name, "System RAM (") != resource_name ||
1522 	    resource_name[strlen(resource_name) - 1] != ')')
1523 		return -EINVAL;
1524 
1525 	lock_device_hotplug();
1526 
1527 	res = register_memory_resource(start, size, resource_name);
1528 	if (IS_ERR(res)) {
1529 		rc = PTR_ERR(res);
1530 		goto out_unlock;
1531 	}
1532 
1533 	rc = add_memory_resource(nid, res, mhp_flags);
1534 	if (rc < 0)
1535 		release_memory_resource(res);
1536 
1537 out_unlock:
1538 	unlock_device_hotplug();
1539 	return rc;
1540 }
1541 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1542 
1543 /*
1544  * Platforms should define arch_get_mappable_range() that provides
1545  * maximum possible addressable physical memory range for which the
1546  * linear mapping could be created. The platform returned address
1547  * range must adhere to these following semantics.
1548  *
1549  * - range.start <= range.end
1550  * - Range includes both end points [range.start..range.end]
1551  *
1552  * There is also a fallback definition provided here, allowing the
1553  * entire possible physical address range in case any platform does
1554  * not define arch_get_mappable_range().
1555  */
1556 struct range __weak arch_get_mappable_range(void)
1557 {
1558 	struct range mhp_range = {
1559 		.start = 0UL,
1560 		.end = -1ULL,
1561 	};
1562 	return mhp_range;
1563 }
1564 
1565 struct range mhp_get_pluggable_range(bool need_mapping)
1566 {
1567 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1568 	struct range mhp_range;
1569 
1570 	if (need_mapping) {
1571 		mhp_range = arch_get_mappable_range();
1572 		if (mhp_range.start > max_phys) {
1573 			mhp_range.start = 0;
1574 			mhp_range.end = 0;
1575 		}
1576 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1577 	} else {
1578 		mhp_range.start = 0;
1579 		mhp_range.end = max_phys;
1580 	}
1581 	return mhp_range;
1582 }
1583 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1584 
1585 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1586 {
1587 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1588 	u64 end = start + size;
1589 
1590 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1591 		return true;
1592 
1593 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1594 		start, end, mhp_range.start, mhp_range.end);
1595 	return false;
1596 }
1597 
1598 #ifdef CONFIG_MEMORY_HOTREMOVE
1599 /*
1600  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1601  * memory holes). When true, return the zone.
1602  */
1603 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1604 				  unsigned long end_pfn)
1605 {
1606 	unsigned long pfn, sec_end_pfn;
1607 	struct zone *zone = NULL;
1608 	struct page *page;
1609 
1610 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1611 	     pfn < end_pfn;
1612 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1613 		/* Make sure the memory section is present first */
1614 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1615 			continue;
1616 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1617 		     pfn += MAX_ORDER_NR_PAGES) {
1618 			/* Check if we got outside of the zone */
1619 			if (zone && !zone_spans_pfn(zone, pfn))
1620 				return NULL;
1621 			page = pfn_to_page(pfn);
1622 			if (zone && page_zone(page) != zone)
1623 				return NULL;
1624 			zone = page_zone(page);
1625 		}
1626 	}
1627 
1628 	return zone;
1629 }
1630 
1631 /*
1632  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1633  * non-lru movable pages and hugepages). Will skip over most unmovable
1634  * pages (esp., pages that can be skipped when offlining), but bail out on
1635  * definitely unmovable pages.
1636  *
1637  * Returns:
1638  *	0 in case a movable page is found and movable_pfn was updated.
1639  *	-ENOENT in case no movable page was found.
1640  *	-EBUSY in case a definitely unmovable page was found.
1641  */
1642 static int scan_movable_pages(unsigned long start, unsigned long end,
1643 			      unsigned long *movable_pfn)
1644 {
1645 	unsigned long pfn;
1646 
1647 	for (pfn = start; pfn < end; pfn++) {
1648 		struct page *page, *head;
1649 		unsigned long skip;
1650 
1651 		if (!pfn_valid(pfn))
1652 			continue;
1653 		page = pfn_to_page(pfn);
1654 		if (PageLRU(page))
1655 			goto found;
1656 		if (__PageMovable(page))
1657 			goto found;
1658 
1659 		/*
1660 		 * PageOffline() pages that are not marked __PageMovable() and
1661 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1662 		 * definitely unmovable. If their reference count would be 0,
1663 		 * they could at least be skipped when offlining memory.
1664 		 */
1665 		if (PageOffline(page) && page_count(page))
1666 			return -EBUSY;
1667 
1668 		if (!PageHuge(page))
1669 			continue;
1670 		head = compound_head(page);
1671 		/*
1672 		 * This test is racy as we hold no reference or lock.  The
1673 		 * hugetlb page could have been free'ed and head is no longer
1674 		 * a hugetlb page before the following check.  In such unlikely
1675 		 * cases false positives and negatives are possible.  Calling
1676 		 * code must deal with these scenarios.
1677 		 */
1678 		if (HPageMigratable(head))
1679 			goto found;
1680 		skip = compound_nr(head) - (page - head);
1681 		pfn += skip - 1;
1682 	}
1683 	return -ENOENT;
1684 found:
1685 	*movable_pfn = pfn;
1686 	return 0;
1687 }
1688 
1689 static int
1690 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1691 {
1692 	unsigned long pfn;
1693 	struct page *page, *head;
1694 	int ret = 0;
1695 	LIST_HEAD(source);
1696 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1697 				      DEFAULT_RATELIMIT_BURST);
1698 
1699 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1700 		if (!pfn_valid(pfn))
1701 			continue;
1702 		page = pfn_to_page(pfn);
1703 		head = compound_head(page);
1704 
1705 		if (PageHuge(page)) {
1706 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1707 			isolate_huge_page(head, &source);
1708 			continue;
1709 		} else if (PageTransHuge(page))
1710 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1711 
1712 		/*
1713 		 * HWPoison pages have elevated reference counts so the migration would
1714 		 * fail on them. It also doesn't make any sense to migrate them in the
1715 		 * first place. Still try to unmap such a page in case it is still mapped
1716 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1717 		 * the unmap as the catch all safety net).
1718 		 */
1719 		if (PageHWPoison(page)) {
1720 			if (WARN_ON(PageLRU(page)))
1721 				isolate_lru_page(page);
1722 			if (page_mapped(page))
1723 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1724 			continue;
1725 		}
1726 
1727 		if (!get_page_unless_zero(page))
1728 			continue;
1729 		/*
1730 		 * We can skip free pages. And we can deal with pages on
1731 		 * LRU and non-lru movable pages.
1732 		 */
1733 		if (PageLRU(page))
1734 			ret = isolate_lru_page(page);
1735 		else
1736 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1737 		if (!ret) { /* Success */
1738 			list_add_tail(&page->lru, &source);
1739 			if (!__PageMovable(page))
1740 				inc_node_page_state(page, NR_ISOLATED_ANON +
1741 						    page_is_file_lru(page));
1742 
1743 		} else {
1744 			if (__ratelimit(&migrate_rs)) {
1745 				pr_warn("failed to isolate pfn %lx\n", pfn);
1746 				dump_page(page, "isolation failed");
1747 			}
1748 		}
1749 		put_page(page);
1750 	}
1751 	if (!list_empty(&source)) {
1752 		nodemask_t nmask = node_states[N_MEMORY];
1753 		struct migration_target_control mtc = {
1754 			.nmask = &nmask,
1755 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1756 		};
1757 
1758 		/*
1759 		 * We have checked that migration range is on a single zone so
1760 		 * we can use the nid of the first page to all the others.
1761 		 */
1762 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1763 
1764 		/*
1765 		 * try to allocate from a different node but reuse this node
1766 		 * if there are no other online nodes to be used (e.g. we are
1767 		 * offlining a part of the only existing node)
1768 		 */
1769 		node_clear(mtc.nid, nmask);
1770 		if (nodes_empty(nmask))
1771 			node_set(mtc.nid, nmask);
1772 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1773 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1774 		if (ret) {
1775 			list_for_each_entry(page, &source, lru) {
1776 				if (__ratelimit(&migrate_rs)) {
1777 					pr_warn("migrating pfn %lx failed ret:%d\n",
1778 						page_to_pfn(page), ret);
1779 					dump_page(page, "migration failure");
1780 				}
1781 			}
1782 			putback_movable_pages(&source);
1783 		}
1784 	}
1785 
1786 	return ret;
1787 }
1788 
1789 static int __init cmdline_parse_movable_node(char *p)
1790 {
1791 	movable_node_enabled = true;
1792 	return 0;
1793 }
1794 early_param("movable_node", cmdline_parse_movable_node);
1795 
1796 /* check which state of node_states will be changed when offline memory */
1797 static void node_states_check_changes_offline(unsigned long nr_pages,
1798 		struct zone *zone, struct memory_notify *arg)
1799 {
1800 	struct pglist_data *pgdat = zone->zone_pgdat;
1801 	unsigned long present_pages = 0;
1802 	enum zone_type zt;
1803 
1804 	arg->status_change_nid = NUMA_NO_NODE;
1805 	arg->status_change_nid_normal = NUMA_NO_NODE;
1806 	arg->status_change_nid_high = NUMA_NO_NODE;
1807 
1808 	/*
1809 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1810 	 * If the memory to be offline is within the range
1811 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1812 	 * the zones in that range will become empty after the offlining,
1813 	 * thus we can determine that we need to clear the node from
1814 	 * node_states[N_NORMAL_MEMORY].
1815 	 */
1816 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1817 		present_pages += pgdat->node_zones[zt].present_pages;
1818 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1819 		arg->status_change_nid_normal = zone_to_nid(zone);
1820 
1821 #ifdef CONFIG_HIGHMEM
1822 	/*
1823 	 * node_states[N_HIGH_MEMORY] contains nodes which
1824 	 * have normal memory or high memory.
1825 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1826 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1827 	 * we determine that the zones in that range become empty,
1828 	 * we need to clear the node for N_HIGH_MEMORY.
1829 	 */
1830 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1832 		arg->status_change_nid_high = zone_to_nid(zone);
1833 #endif
1834 
1835 	/*
1836 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1837 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1838 	 * as well.
1839 	 * Here we count the possible pages from ZONE_MOVABLE.
1840 	 * If after having accounted all the pages, we see that the nr_pages
1841 	 * to be offlined is over or equal to the accounted pages,
1842 	 * we know that the node will become empty, and so, we can clear
1843 	 * it for N_MEMORY as well.
1844 	 */
1845 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1846 
1847 	if (nr_pages >= present_pages)
1848 		arg->status_change_nid = zone_to_nid(zone);
1849 }
1850 
1851 static void node_states_clear_node(int node, struct memory_notify *arg)
1852 {
1853 	if (arg->status_change_nid_normal >= 0)
1854 		node_clear_state(node, N_NORMAL_MEMORY);
1855 
1856 	if (arg->status_change_nid_high >= 0)
1857 		node_clear_state(node, N_HIGH_MEMORY);
1858 
1859 	if (arg->status_change_nid >= 0)
1860 		node_clear_state(node, N_MEMORY);
1861 }
1862 
1863 static int count_system_ram_pages_cb(unsigned long start_pfn,
1864 				     unsigned long nr_pages, void *data)
1865 {
1866 	unsigned long *nr_system_ram_pages = data;
1867 
1868 	*nr_system_ram_pages += nr_pages;
1869 	return 0;
1870 }
1871 
1872 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1873 			struct memory_group *group)
1874 {
1875 	const unsigned long end_pfn = start_pfn + nr_pages;
1876 	unsigned long pfn, system_ram_pages = 0;
1877 	unsigned long flags;
1878 	struct zone *zone;
1879 	struct memory_notify arg;
1880 	int ret, node;
1881 	char *reason;
1882 
1883 	/*
1884 	 * {on,off}lining is constrained to full memory sections (or more
1885 	 * precisely to memory blocks from the user space POV).
1886 	 * memmap_on_memory is an exception because it reserves initial part
1887 	 * of the physical memory space for vmemmaps. That space is pageblock
1888 	 * aligned.
1889 	 */
1890 	if (WARN_ON_ONCE(!nr_pages ||
1891 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1892 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1893 		return -EINVAL;
1894 
1895 	mem_hotplug_begin();
1896 
1897 	/*
1898 	 * Don't allow to offline memory blocks that contain holes.
1899 	 * Consequently, memory blocks with holes can never get onlined
1900 	 * via the hotplug path - online_pages() - as hotplugged memory has
1901 	 * no holes. This way, we e.g., don't have to worry about marking
1902 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1903 	 * avoid using walk_system_ram_range() later.
1904 	 */
1905 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1906 			      count_system_ram_pages_cb);
1907 	if (system_ram_pages != nr_pages) {
1908 		ret = -EINVAL;
1909 		reason = "memory holes";
1910 		goto failed_removal;
1911 	}
1912 
1913 	/* This makes hotplug much easier...and readable.
1914 	   we assume this for now. .*/
1915 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1916 	if (!zone) {
1917 		ret = -EINVAL;
1918 		reason = "multizone range";
1919 		goto failed_removal;
1920 	}
1921 	node = zone_to_nid(zone);
1922 
1923 	/*
1924 	 * Disable pcplists so that page isolation cannot race with freeing
1925 	 * in a way that pages from isolated pageblock are left on pcplists.
1926 	 */
1927 	zone_pcp_disable(zone);
1928 	lru_cache_disable();
1929 
1930 	/* set above range as isolated */
1931 	ret = start_isolate_page_range(start_pfn, end_pfn,
1932 				       MIGRATE_MOVABLE,
1933 				       MEMORY_OFFLINE | REPORT_FAILURE);
1934 	if (ret) {
1935 		reason = "failure to isolate range";
1936 		goto failed_removal_pcplists_disabled;
1937 	}
1938 
1939 	arg.start_pfn = start_pfn;
1940 	arg.nr_pages = nr_pages;
1941 	node_states_check_changes_offline(nr_pages, zone, &arg);
1942 
1943 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1944 	ret = notifier_to_errno(ret);
1945 	if (ret) {
1946 		reason = "notifier failure";
1947 		goto failed_removal_isolated;
1948 	}
1949 
1950 	do {
1951 		pfn = start_pfn;
1952 		do {
1953 			if (signal_pending(current)) {
1954 				ret = -EINTR;
1955 				reason = "signal backoff";
1956 				goto failed_removal_isolated;
1957 			}
1958 
1959 			cond_resched();
1960 
1961 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1962 			if (!ret) {
1963 				/*
1964 				 * TODO: fatal migration failures should bail
1965 				 * out
1966 				 */
1967 				do_migrate_range(pfn, end_pfn);
1968 			}
1969 		} while (!ret);
1970 
1971 		if (ret != -ENOENT) {
1972 			reason = "unmovable page";
1973 			goto failed_removal_isolated;
1974 		}
1975 
1976 		/*
1977 		 * Dissolve free hugepages in the memory block before doing
1978 		 * offlining actually in order to make hugetlbfs's object
1979 		 * counting consistent.
1980 		 */
1981 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1982 		if (ret) {
1983 			reason = "failure to dissolve huge pages";
1984 			goto failed_removal_isolated;
1985 		}
1986 
1987 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1988 
1989 	} while (ret);
1990 
1991 	/* Mark all sections offline and remove free pages from the buddy. */
1992 	__offline_isolated_pages(start_pfn, end_pfn);
1993 	pr_debug("Offlined Pages %ld\n", nr_pages);
1994 
1995 	/*
1996 	 * The memory sections are marked offline, and the pageblock flags
1997 	 * effectively stale; nobody should be touching them. Fixup the number
1998 	 * of isolated pageblocks, memory onlining will properly revert this.
1999 	 */
2000 	spin_lock_irqsave(&zone->lock, flags);
2001 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2002 	spin_unlock_irqrestore(&zone->lock, flags);
2003 
2004 	lru_cache_enable();
2005 	zone_pcp_enable(zone);
2006 
2007 	/* removal success */
2008 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2009 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2010 
2011 	/* reinitialise watermarks and update pcp limits */
2012 	init_per_zone_wmark_min();
2013 
2014 	if (!populated_zone(zone)) {
2015 		zone_pcp_reset(zone);
2016 		build_all_zonelists(NULL);
2017 	}
2018 
2019 	node_states_clear_node(node, &arg);
2020 	if (arg.status_change_nid >= 0) {
2021 		kswapd_stop(node);
2022 		kcompactd_stop(node);
2023 	}
2024 
2025 	writeback_set_ratelimit();
2026 
2027 	memory_notify(MEM_OFFLINE, &arg);
2028 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2029 	mem_hotplug_done();
2030 	return 0;
2031 
2032 failed_removal_isolated:
2033 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2034 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2035 failed_removal_pcplists_disabled:
2036 	lru_cache_enable();
2037 	zone_pcp_enable(zone);
2038 failed_removal:
2039 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2040 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2041 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2042 		 reason);
2043 	/* pushback to free area */
2044 	mem_hotplug_done();
2045 	return ret;
2046 }
2047 
2048 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2049 {
2050 	int ret = !is_memblock_offlined(mem);
2051 	int *nid = arg;
2052 
2053 	*nid = mem->nid;
2054 	if (unlikely(ret)) {
2055 		phys_addr_t beginpa, endpa;
2056 
2057 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2058 		endpa = beginpa + memory_block_size_bytes() - 1;
2059 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2060 			&beginpa, &endpa);
2061 
2062 		return -EBUSY;
2063 	}
2064 	return 0;
2065 }
2066 
2067 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2068 {
2069 	/*
2070 	 * If not set, continue with the next block.
2071 	 */
2072 	return mem->nr_vmemmap_pages;
2073 }
2074 
2075 static int check_cpu_on_node(pg_data_t *pgdat)
2076 {
2077 	int cpu;
2078 
2079 	for_each_present_cpu(cpu) {
2080 		if (cpu_to_node(cpu) == pgdat->node_id)
2081 			/*
2082 			 * the cpu on this node isn't removed, and we can't
2083 			 * offline this node.
2084 			 */
2085 			return -EBUSY;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2092 {
2093 	int nid = *(int *)arg;
2094 
2095 	/*
2096 	 * If a memory block belongs to multiple nodes, the stored nid is not
2097 	 * reliable. However, such blocks are always online (e.g., cannot get
2098 	 * offlined) and, therefore, are still spanned by the node.
2099 	 */
2100 	return mem->nid == nid ? -EEXIST : 0;
2101 }
2102 
2103 /**
2104  * try_offline_node
2105  * @nid: the node ID
2106  *
2107  * Offline a node if all memory sections and cpus of the node are removed.
2108  *
2109  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2110  * and online/offline operations before this call.
2111  */
2112 void try_offline_node(int nid)
2113 {
2114 	pg_data_t *pgdat = NODE_DATA(nid);
2115 	int rc;
2116 
2117 	/*
2118 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2119 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2120 	 * e.g., after the memory block was onlined.
2121 	 */
2122 	if (pgdat->node_spanned_pages)
2123 		return;
2124 
2125 	/*
2126 	 * Especially offline memory blocks might not be spanned by the
2127 	 * node. They will get spanned by the node once they get onlined.
2128 	 * However, they link to the node in sysfs and can get onlined later.
2129 	 */
2130 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2131 	if (rc)
2132 		return;
2133 
2134 	if (check_cpu_on_node(pgdat))
2135 		return;
2136 
2137 	/*
2138 	 * all memory/cpu of this node are removed, we can offline this
2139 	 * node now.
2140 	 */
2141 	node_set_offline(nid);
2142 	unregister_one_node(nid);
2143 }
2144 EXPORT_SYMBOL(try_offline_node);
2145 
2146 static int __ref try_remove_memory(u64 start, u64 size)
2147 {
2148 	struct vmem_altmap mhp_altmap = {};
2149 	struct vmem_altmap *altmap = NULL;
2150 	unsigned long nr_vmemmap_pages;
2151 	int rc = 0, nid = NUMA_NO_NODE;
2152 
2153 	BUG_ON(check_hotplug_memory_range(start, size));
2154 
2155 	/*
2156 	 * All memory blocks must be offlined before removing memory.  Check
2157 	 * whether all memory blocks in question are offline and return error
2158 	 * if this is not the case.
2159 	 *
2160 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2161 	 * we'd only try to offline the last determined one -- which is good
2162 	 * enough for the cases we care about.
2163 	 */
2164 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2165 	if (rc)
2166 		return rc;
2167 
2168 	/*
2169 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2170 	 * the same granularity it was added - a single memory block.
2171 	 */
2172 	if (memmap_on_memory) {
2173 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2174 						      get_nr_vmemmap_pages_cb);
2175 		if (nr_vmemmap_pages) {
2176 			if (size != memory_block_size_bytes()) {
2177 				pr_warn("Refuse to remove %#llx - %#llx,"
2178 					"wrong granularity\n",
2179 					start, start + size);
2180 				return -EINVAL;
2181 			}
2182 
2183 			/*
2184 			 * Let remove_pmd_table->free_hugepage_table do the
2185 			 * right thing if we used vmem_altmap when hot-adding
2186 			 * the range.
2187 			 */
2188 			mhp_altmap.alloc = nr_vmemmap_pages;
2189 			altmap = &mhp_altmap;
2190 		}
2191 	}
2192 
2193 	/* remove memmap entry */
2194 	firmware_map_remove(start, start + size, "System RAM");
2195 
2196 	/*
2197 	 * Memory block device removal under the device_hotplug_lock is
2198 	 * a barrier against racing online attempts.
2199 	 */
2200 	remove_memory_block_devices(start, size);
2201 
2202 	mem_hotplug_begin();
2203 
2204 	arch_remove_memory(start, size, altmap);
2205 
2206 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2207 		memblock_free(start, size);
2208 		memblock_remove(start, size);
2209 	}
2210 
2211 	release_mem_region_adjustable(start, size);
2212 
2213 	if (nid != NUMA_NO_NODE)
2214 		try_offline_node(nid);
2215 
2216 	mem_hotplug_done();
2217 	return 0;
2218 }
2219 
2220 /**
2221  * __remove_memory - Remove memory if every memory block is offline
2222  * @start: physical address of the region to remove
2223  * @size: size of the region to remove
2224  *
2225  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2226  * and online/offline operations before this call, as required by
2227  * try_offline_node().
2228  */
2229 void __remove_memory(u64 start, u64 size)
2230 {
2231 
2232 	/*
2233 	 * trigger BUG() if some memory is not offlined prior to calling this
2234 	 * function
2235 	 */
2236 	if (try_remove_memory(start, size))
2237 		BUG();
2238 }
2239 
2240 /*
2241  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2242  * some memory is not offline
2243  */
2244 int remove_memory(u64 start, u64 size)
2245 {
2246 	int rc;
2247 
2248 	lock_device_hotplug();
2249 	rc = try_remove_memory(start, size);
2250 	unlock_device_hotplug();
2251 
2252 	return rc;
2253 }
2254 EXPORT_SYMBOL_GPL(remove_memory);
2255 
2256 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2257 {
2258 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2259 	uint8_t **online_types = arg;
2260 	struct page *page;
2261 	int rc;
2262 
2263 	/*
2264 	 * Sense the online_type via the zone of the memory block. Offlining
2265 	 * with multiple zones within one memory block will be rejected
2266 	 * by offlining code ... so we don't care about that.
2267 	 */
2268 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2269 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2270 		online_type = MMOP_ONLINE_MOVABLE;
2271 
2272 	rc = device_offline(&mem->dev);
2273 	/*
2274 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2275 	 * so try_reonline_memory_block() can do the right thing.
2276 	 */
2277 	if (!rc)
2278 		**online_types = online_type;
2279 
2280 	(*online_types)++;
2281 	/* Ignore if already offline. */
2282 	return rc < 0 ? rc : 0;
2283 }
2284 
2285 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2286 {
2287 	uint8_t **online_types = arg;
2288 	int rc;
2289 
2290 	if (**online_types != MMOP_OFFLINE) {
2291 		mem->online_type = **online_types;
2292 		rc = device_online(&mem->dev);
2293 		if (rc < 0)
2294 			pr_warn("%s: Failed to re-online memory: %d",
2295 				__func__, rc);
2296 	}
2297 
2298 	/* Continue processing all remaining memory blocks. */
2299 	(*online_types)++;
2300 	return 0;
2301 }
2302 
2303 /*
2304  * Try to offline and remove memory. Might take a long time to finish in case
2305  * memory is still in use. Primarily useful for memory devices that logically
2306  * unplugged all memory (so it's no longer in use) and want to offline + remove
2307  * that memory.
2308  */
2309 int offline_and_remove_memory(u64 start, u64 size)
2310 {
2311 	const unsigned long mb_count = size / memory_block_size_bytes();
2312 	uint8_t *online_types, *tmp;
2313 	int rc;
2314 
2315 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2316 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2317 		return -EINVAL;
2318 
2319 	/*
2320 	 * We'll remember the old online type of each memory block, so we can
2321 	 * try to revert whatever we did when offlining one memory block fails
2322 	 * after offlining some others succeeded.
2323 	 */
2324 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2325 				     GFP_KERNEL);
2326 	if (!online_types)
2327 		return -ENOMEM;
2328 	/*
2329 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2330 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2331 	 * try_reonline_memory_block().
2332 	 */
2333 	memset(online_types, MMOP_OFFLINE, mb_count);
2334 
2335 	lock_device_hotplug();
2336 
2337 	tmp = online_types;
2338 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2339 
2340 	/*
2341 	 * In case we succeeded to offline all memory, remove it.
2342 	 * This cannot fail as it cannot get onlined in the meantime.
2343 	 */
2344 	if (!rc) {
2345 		rc = try_remove_memory(start, size);
2346 		if (rc)
2347 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2348 	}
2349 
2350 	/*
2351 	 * Rollback what we did. While memory onlining might theoretically fail
2352 	 * (nacked by a notifier), it barely ever happens.
2353 	 */
2354 	if (rc) {
2355 		tmp = online_types;
2356 		walk_memory_blocks(start, size, &tmp,
2357 				   try_reonline_memory_block);
2358 	}
2359 	unlock_device_hotplug();
2360 
2361 	kfree(online_types);
2362 	return rc;
2363 }
2364 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2365 #endif /* CONFIG_MEMORY_HOTREMOVE */
2366