xref: /openbmc/linux/mm/memory_hotplug.c (revision e9839402)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 #include <linux/compaction.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * online_page_callback contains pointer to current page onlining function.
44  * Initially it is generic_online_page(). If it is required it could be
45  * changed by calling set_online_page_callback() for callback registration
46  * and restore_online_page_callback() for generic callback restore.
47  */
48 
49 static void generic_online_page(struct page *page);
50 
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53 
54 /* The same as the cpu_hotplug lock, but for memory hotplug. */
55 static struct {
56 	struct task_struct *active_writer;
57 	struct mutex lock; /* Synchronizes accesses to refcount, */
58 	/*
59 	 * Also blocks the new readers during
60 	 * an ongoing mem hotplug operation.
61 	 */
62 	int refcount;
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 	struct lockdep_map dep_map;
66 #endif
67 } mem_hotplug = {
68 	.active_writer = NULL,
69 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 	.refcount = 0,
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 	.dep_map = {.name = "mem_hotplug.lock" },
73 #endif
74 };
75 
76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
79 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
80 
81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
82 bool memhp_auto_online;
83 #else
84 bool memhp_auto_online = true;
85 #endif
86 EXPORT_SYMBOL_GPL(memhp_auto_online);
87 
88 static int __init setup_memhp_default_state(char *str)
89 {
90 	if (!strcmp(str, "online"))
91 		memhp_auto_online = true;
92 	else if (!strcmp(str, "offline"))
93 		memhp_auto_online = false;
94 
95 	return 1;
96 }
97 __setup("memhp_default_state=", setup_memhp_default_state);
98 
99 void get_online_mems(void)
100 {
101 	might_sleep();
102 	if (mem_hotplug.active_writer == current)
103 		return;
104 	memhp_lock_acquire_read();
105 	mutex_lock(&mem_hotplug.lock);
106 	mem_hotplug.refcount++;
107 	mutex_unlock(&mem_hotplug.lock);
108 
109 }
110 
111 void put_online_mems(void)
112 {
113 	if (mem_hotplug.active_writer == current)
114 		return;
115 	mutex_lock(&mem_hotplug.lock);
116 
117 	if (WARN_ON(!mem_hotplug.refcount))
118 		mem_hotplug.refcount++; /* try to fix things up */
119 
120 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
121 		wake_up_process(mem_hotplug.active_writer);
122 	mutex_unlock(&mem_hotplug.lock);
123 	memhp_lock_release();
124 
125 }
126 
127 void mem_hotplug_begin(void)
128 {
129 	mem_hotplug.active_writer = current;
130 
131 	memhp_lock_acquire();
132 	for (;;) {
133 		mutex_lock(&mem_hotplug.lock);
134 		if (likely(!mem_hotplug.refcount))
135 			break;
136 		__set_current_state(TASK_UNINTERRUPTIBLE);
137 		mutex_unlock(&mem_hotplug.lock);
138 		schedule();
139 	}
140 }
141 
142 void mem_hotplug_done(void)
143 {
144 	mem_hotplug.active_writer = NULL;
145 	mutex_unlock(&mem_hotplug.lock);
146 	memhp_lock_release();
147 }
148 
149 /* add this memory to iomem resource */
150 static struct resource *register_memory_resource(u64 start, u64 size)
151 {
152 	struct resource *res;
153 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
154 	if (!res)
155 		return ERR_PTR(-ENOMEM);
156 
157 	res->name = "System RAM";
158 	res->start = start;
159 	res->end = start + size - 1;
160 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
161 	if (request_resource(&iomem_resource, res) < 0) {
162 		pr_debug("System RAM resource %pR cannot be added\n", res);
163 		kfree(res);
164 		return ERR_PTR(-EEXIST);
165 	}
166 	return res;
167 }
168 
169 static void release_memory_resource(struct resource *res)
170 {
171 	if (!res)
172 		return;
173 	release_resource(res);
174 	kfree(res);
175 	return;
176 }
177 
178 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
179 void get_page_bootmem(unsigned long info,  struct page *page,
180 		      unsigned long type)
181 {
182 	page->lru.next = (struct list_head *) type;
183 	SetPagePrivate(page);
184 	set_page_private(page, info);
185 	page_ref_inc(page);
186 }
187 
188 void put_page_bootmem(struct page *page)
189 {
190 	unsigned long type;
191 
192 	type = (unsigned long) page->lru.next;
193 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
194 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
195 
196 	if (page_ref_dec_return(page) == 1) {
197 		ClearPagePrivate(page);
198 		set_page_private(page, 0);
199 		INIT_LIST_HEAD(&page->lru);
200 		free_reserved_page(page);
201 	}
202 }
203 
204 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
205 #ifndef CONFIG_SPARSEMEM_VMEMMAP
206 static void register_page_bootmem_info_section(unsigned long start_pfn)
207 {
208 	unsigned long *usemap, mapsize, section_nr, i;
209 	struct mem_section *ms;
210 	struct page *page, *memmap;
211 
212 	section_nr = pfn_to_section_nr(start_pfn);
213 	ms = __nr_to_section(section_nr);
214 
215 	/* Get section's memmap address */
216 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
217 
218 	/*
219 	 * Get page for the memmap's phys address
220 	 * XXX: need more consideration for sparse_vmemmap...
221 	 */
222 	page = virt_to_page(memmap);
223 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
224 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
225 
226 	/* remember memmap's page */
227 	for (i = 0; i < mapsize; i++, page++)
228 		get_page_bootmem(section_nr, page, SECTION_INFO);
229 
230 	usemap = __nr_to_section(section_nr)->pageblock_flags;
231 	page = virt_to_page(usemap);
232 
233 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
234 
235 	for (i = 0; i < mapsize; i++, page++)
236 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
237 
238 }
239 #else /* CONFIG_SPARSEMEM_VMEMMAP */
240 static void register_page_bootmem_info_section(unsigned long start_pfn)
241 {
242 	unsigned long *usemap, mapsize, section_nr, i;
243 	struct mem_section *ms;
244 	struct page *page, *memmap;
245 
246 	if (!pfn_valid(start_pfn))
247 		return;
248 
249 	section_nr = pfn_to_section_nr(start_pfn);
250 	ms = __nr_to_section(section_nr);
251 
252 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
253 
254 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
255 
256 	usemap = __nr_to_section(section_nr)->pageblock_flags;
257 	page = virt_to_page(usemap);
258 
259 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
260 
261 	for (i = 0; i < mapsize; i++, page++)
262 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
263 }
264 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
265 
266 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
267 {
268 	unsigned long i, pfn, end_pfn, nr_pages;
269 	int node = pgdat->node_id;
270 	struct page *page;
271 	struct zone *zone;
272 
273 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
274 	page = virt_to_page(pgdat);
275 
276 	for (i = 0; i < nr_pages; i++, page++)
277 		get_page_bootmem(node, page, NODE_INFO);
278 
279 	zone = &pgdat->node_zones[0];
280 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
281 		if (zone_is_initialized(zone)) {
282 			nr_pages = zone->wait_table_hash_nr_entries
283 				* sizeof(wait_queue_head_t);
284 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
285 			page = virt_to_page(zone->wait_table);
286 
287 			for (i = 0; i < nr_pages; i++, page++)
288 				get_page_bootmem(node, page, NODE_INFO);
289 		}
290 	}
291 
292 	pfn = pgdat->node_start_pfn;
293 	end_pfn = pgdat_end_pfn(pgdat);
294 
295 	/* register section info */
296 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
297 		/*
298 		 * Some platforms can assign the same pfn to multiple nodes - on
299 		 * node0 as well as nodeN.  To avoid registering a pfn against
300 		 * multiple nodes we check that this pfn does not already
301 		 * reside in some other nodes.
302 		 */
303 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
304 			register_page_bootmem_info_section(pfn);
305 	}
306 }
307 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
308 
309 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
310 				     unsigned long end_pfn)
311 {
312 	unsigned long old_zone_end_pfn;
313 
314 	zone_span_writelock(zone);
315 
316 	old_zone_end_pfn = zone_end_pfn(zone);
317 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
318 		zone->zone_start_pfn = start_pfn;
319 
320 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
321 				zone->zone_start_pfn;
322 
323 	zone_span_writeunlock(zone);
324 }
325 
326 static void resize_zone(struct zone *zone, unsigned long start_pfn,
327 		unsigned long end_pfn)
328 {
329 	zone_span_writelock(zone);
330 
331 	if (end_pfn - start_pfn) {
332 		zone->zone_start_pfn = start_pfn;
333 		zone->spanned_pages = end_pfn - start_pfn;
334 	} else {
335 		/*
336 		 * make it consist as free_area_init_core(),
337 		 * if spanned_pages = 0, then keep start_pfn = 0
338 		 */
339 		zone->zone_start_pfn = 0;
340 		zone->spanned_pages = 0;
341 	}
342 
343 	zone_span_writeunlock(zone);
344 }
345 
346 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
347 		unsigned long end_pfn)
348 {
349 	enum zone_type zid = zone_idx(zone);
350 	int nid = zone->zone_pgdat->node_id;
351 	unsigned long pfn;
352 
353 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
354 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
355 }
356 
357 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
358  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
359 static int __ref ensure_zone_is_initialized(struct zone *zone,
360 			unsigned long start_pfn, unsigned long num_pages)
361 {
362 	if (!zone_is_initialized(zone))
363 		return init_currently_empty_zone(zone, start_pfn, num_pages);
364 
365 	return 0;
366 }
367 
368 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
369 		unsigned long start_pfn, unsigned long end_pfn)
370 {
371 	int ret;
372 	unsigned long flags;
373 	unsigned long z1_start_pfn;
374 
375 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
376 	if (ret)
377 		return ret;
378 
379 	pgdat_resize_lock(z1->zone_pgdat, &flags);
380 
381 	/* can't move pfns which are higher than @z2 */
382 	if (end_pfn > zone_end_pfn(z2))
383 		goto out_fail;
384 	/* the move out part must be at the left most of @z2 */
385 	if (start_pfn > z2->zone_start_pfn)
386 		goto out_fail;
387 	/* must included/overlap */
388 	if (end_pfn <= z2->zone_start_pfn)
389 		goto out_fail;
390 
391 	/* use start_pfn for z1's start_pfn if z1 is empty */
392 	if (!zone_is_empty(z1))
393 		z1_start_pfn = z1->zone_start_pfn;
394 	else
395 		z1_start_pfn = start_pfn;
396 
397 	resize_zone(z1, z1_start_pfn, end_pfn);
398 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
399 
400 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
401 
402 	fix_zone_id(z1, start_pfn, end_pfn);
403 
404 	return 0;
405 out_fail:
406 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
407 	return -1;
408 }
409 
410 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
411 		unsigned long start_pfn, unsigned long end_pfn)
412 {
413 	int ret;
414 	unsigned long flags;
415 	unsigned long z2_end_pfn;
416 
417 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
418 	if (ret)
419 		return ret;
420 
421 	pgdat_resize_lock(z1->zone_pgdat, &flags);
422 
423 	/* can't move pfns which are lower than @z1 */
424 	if (z1->zone_start_pfn > start_pfn)
425 		goto out_fail;
426 	/* the move out part mast at the right most of @z1 */
427 	if (zone_end_pfn(z1) >  end_pfn)
428 		goto out_fail;
429 	/* must included/overlap */
430 	if (start_pfn >= zone_end_pfn(z1))
431 		goto out_fail;
432 
433 	/* use end_pfn for z2's end_pfn if z2 is empty */
434 	if (!zone_is_empty(z2))
435 		z2_end_pfn = zone_end_pfn(z2);
436 	else
437 		z2_end_pfn = end_pfn;
438 
439 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
440 	resize_zone(z2, start_pfn, z2_end_pfn);
441 
442 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
443 
444 	fix_zone_id(z2, start_pfn, end_pfn);
445 
446 	return 0;
447 out_fail:
448 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
449 	return -1;
450 }
451 
452 static struct zone * __meminit move_pfn_range(int zone_shift,
453 		unsigned long start_pfn, unsigned long end_pfn)
454 {
455 	struct zone *zone = page_zone(pfn_to_page(start_pfn));
456 	int ret = 0;
457 
458 	if (zone_shift < 0)
459 		ret = move_pfn_range_left(zone + zone_shift, zone,
460 					  start_pfn, end_pfn);
461 	else if (zone_shift)
462 		ret = move_pfn_range_right(zone, zone + zone_shift,
463 					   start_pfn, end_pfn);
464 
465 	if (ret)
466 		return NULL;
467 
468 	return zone + zone_shift;
469 }
470 
471 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
472 				      unsigned long end_pfn)
473 {
474 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
475 
476 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
477 		pgdat->node_start_pfn = start_pfn;
478 
479 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
480 					pgdat->node_start_pfn;
481 }
482 
483 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
484 {
485 	struct pglist_data *pgdat = zone->zone_pgdat;
486 	int nr_pages = PAGES_PER_SECTION;
487 	int nid = pgdat->node_id;
488 	int zone_type;
489 	unsigned long flags, pfn;
490 	int ret;
491 
492 	zone_type = zone - pgdat->node_zones;
493 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
494 	if (ret)
495 		return ret;
496 
497 	pgdat_resize_lock(zone->zone_pgdat, &flags);
498 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
499 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
500 			phys_start_pfn + nr_pages);
501 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
502 	memmap_init_zone(nr_pages, nid, zone_type,
503 			 phys_start_pfn, MEMMAP_HOTPLUG);
504 
505 	/* online_page_range is called later and expects pages reserved */
506 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
507 		if (!pfn_valid(pfn))
508 			continue;
509 
510 		SetPageReserved(pfn_to_page(pfn));
511 	}
512 	return 0;
513 }
514 
515 static int __meminit __add_section(int nid, struct zone *zone,
516 					unsigned long phys_start_pfn)
517 {
518 	int ret;
519 
520 	if (pfn_valid(phys_start_pfn))
521 		return -EEXIST;
522 
523 	ret = sparse_add_one_section(zone, phys_start_pfn);
524 
525 	if (ret < 0)
526 		return ret;
527 
528 	ret = __add_zone(zone, phys_start_pfn);
529 
530 	if (ret < 0)
531 		return ret;
532 
533 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
534 }
535 
536 /*
537  * Reasonably generic function for adding memory.  It is
538  * expected that archs that support memory hotplug will
539  * call this function after deciding the zone to which to
540  * add the new pages.
541  */
542 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
543 			unsigned long nr_pages)
544 {
545 	unsigned long i;
546 	int err = 0;
547 	int start_sec, end_sec;
548 	struct vmem_altmap *altmap;
549 
550 	clear_zone_contiguous(zone);
551 
552 	/* during initialize mem_map, align hot-added range to section */
553 	start_sec = pfn_to_section_nr(phys_start_pfn);
554 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
555 
556 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
557 	if (altmap) {
558 		/*
559 		 * Validate altmap is within bounds of the total request
560 		 */
561 		if (altmap->base_pfn != phys_start_pfn
562 				|| vmem_altmap_offset(altmap) > nr_pages) {
563 			pr_warn_once("memory add fail, invalid altmap\n");
564 			err = -EINVAL;
565 			goto out;
566 		}
567 		altmap->alloc = 0;
568 	}
569 
570 	for (i = start_sec; i <= end_sec; i++) {
571 		err = __add_section(nid, zone, section_nr_to_pfn(i));
572 
573 		/*
574 		 * EEXIST is finally dealt with by ioresource collision
575 		 * check. see add_memory() => register_memory_resource()
576 		 * Warning will be printed if there is collision.
577 		 */
578 		if (err && (err != -EEXIST))
579 			break;
580 		err = 0;
581 	}
582 	vmemmap_populate_print_last();
583 out:
584 	set_zone_contiguous(zone);
585 	return err;
586 }
587 EXPORT_SYMBOL_GPL(__add_pages);
588 
589 #ifdef CONFIG_MEMORY_HOTREMOVE
590 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
591 static int find_smallest_section_pfn(int nid, struct zone *zone,
592 				     unsigned long start_pfn,
593 				     unsigned long end_pfn)
594 {
595 	struct mem_section *ms;
596 
597 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
598 		ms = __pfn_to_section(start_pfn);
599 
600 		if (unlikely(!valid_section(ms)))
601 			continue;
602 
603 		if (unlikely(pfn_to_nid(start_pfn) != nid))
604 			continue;
605 
606 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
607 			continue;
608 
609 		return start_pfn;
610 	}
611 
612 	return 0;
613 }
614 
615 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
616 static int find_biggest_section_pfn(int nid, struct zone *zone,
617 				    unsigned long start_pfn,
618 				    unsigned long end_pfn)
619 {
620 	struct mem_section *ms;
621 	unsigned long pfn;
622 
623 	/* pfn is the end pfn of a memory section. */
624 	pfn = end_pfn - 1;
625 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
626 		ms = __pfn_to_section(pfn);
627 
628 		if (unlikely(!valid_section(ms)))
629 			continue;
630 
631 		if (unlikely(pfn_to_nid(pfn) != nid))
632 			continue;
633 
634 		if (zone && zone != page_zone(pfn_to_page(pfn)))
635 			continue;
636 
637 		return pfn;
638 	}
639 
640 	return 0;
641 }
642 
643 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
644 			     unsigned long end_pfn)
645 {
646 	unsigned long zone_start_pfn = zone->zone_start_pfn;
647 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
648 	unsigned long zone_end_pfn = z;
649 	unsigned long pfn;
650 	struct mem_section *ms;
651 	int nid = zone_to_nid(zone);
652 
653 	zone_span_writelock(zone);
654 	if (zone_start_pfn == start_pfn) {
655 		/*
656 		 * If the section is smallest section in the zone, it need
657 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
658 		 * In this case, we find second smallest valid mem_section
659 		 * for shrinking zone.
660 		 */
661 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
662 						zone_end_pfn);
663 		if (pfn) {
664 			zone->zone_start_pfn = pfn;
665 			zone->spanned_pages = zone_end_pfn - pfn;
666 		}
667 	} else if (zone_end_pfn == end_pfn) {
668 		/*
669 		 * If the section is biggest section in the zone, it need
670 		 * shrink zone->spanned_pages.
671 		 * In this case, we find second biggest valid mem_section for
672 		 * shrinking zone.
673 		 */
674 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
675 					       start_pfn);
676 		if (pfn)
677 			zone->spanned_pages = pfn - zone_start_pfn + 1;
678 	}
679 
680 	/*
681 	 * The section is not biggest or smallest mem_section in the zone, it
682 	 * only creates a hole in the zone. So in this case, we need not
683 	 * change the zone. But perhaps, the zone has only hole data. Thus
684 	 * it check the zone has only hole or not.
685 	 */
686 	pfn = zone_start_pfn;
687 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
688 		ms = __pfn_to_section(pfn);
689 
690 		if (unlikely(!valid_section(ms)))
691 			continue;
692 
693 		if (page_zone(pfn_to_page(pfn)) != zone)
694 			continue;
695 
696 		 /* If the section is current section, it continues the loop */
697 		if (start_pfn == pfn)
698 			continue;
699 
700 		/* If we find valid section, we have nothing to do */
701 		zone_span_writeunlock(zone);
702 		return;
703 	}
704 
705 	/* The zone has no valid section */
706 	zone->zone_start_pfn = 0;
707 	zone->spanned_pages = 0;
708 	zone_span_writeunlock(zone);
709 }
710 
711 static void shrink_pgdat_span(struct pglist_data *pgdat,
712 			      unsigned long start_pfn, unsigned long end_pfn)
713 {
714 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
715 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
716 	unsigned long pgdat_end_pfn = p;
717 	unsigned long pfn;
718 	struct mem_section *ms;
719 	int nid = pgdat->node_id;
720 
721 	if (pgdat_start_pfn == start_pfn) {
722 		/*
723 		 * If the section is smallest section in the pgdat, it need
724 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
725 		 * In this case, we find second smallest valid mem_section
726 		 * for shrinking zone.
727 		 */
728 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
729 						pgdat_end_pfn);
730 		if (pfn) {
731 			pgdat->node_start_pfn = pfn;
732 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
733 		}
734 	} else if (pgdat_end_pfn == end_pfn) {
735 		/*
736 		 * If the section is biggest section in the pgdat, it need
737 		 * shrink pgdat->node_spanned_pages.
738 		 * In this case, we find second biggest valid mem_section for
739 		 * shrinking zone.
740 		 */
741 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
742 					       start_pfn);
743 		if (pfn)
744 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
745 	}
746 
747 	/*
748 	 * If the section is not biggest or smallest mem_section in the pgdat,
749 	 * it only creates a hole in the pgdat. So in this case, we need not
750 	 * change the pgdat.
751 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
752 	 * has only hole or not.
753 	 */
754 	pfn = pgdat_start_pfn;
755 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
756 		ms = __pfn_to_section(pfn);
757 
758 		if (unlikely(!valid_section(ms)))
759 			continue;
760 
761 		if (pfn_to_nid(pfn) != nid)
762 			continue;
763 
764 		 /* If the section is current section, it continues the loop */
765 		if (start_pfn == pfn)
766 			continue;
767 
768 		/* If we find valid section, we have nothing to do */
769 		return;
770 	}
771 
772 	/* The pgdat has no valid section */
773 	pgdat->node_start_pfn = 0;
774 	pgdat->node_spanned_pages = 0;
775 }
776 
777 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
778 {
779 	struct pglist_data *pgdat = zone->zone_pgdat;
780 	int nr_pages = PAGES_PER_SECTION;
781 	int zone_type;
782 	unsigned long flags;
783 
784 	zone_type = zone - pgdat->node_zones;
785 
786 	pgdat_resize_lock(zone->zone_pgdat, &flags);
787 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
788 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
789 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
790 }
791 
792 static int __remove_section(struct zone *zone, struct mem_section *ms,
793 		unsigned long map_offset)
794 {
795 	unsigned long start_pfn;
796 	int scn_nr;
797 	int ret = -EINVAL;
798 
799 	if (!valid_section(ms))
800 		return ret;
801 
802 	ret = unregister_memory_section(ms);
803 	if (ret)
804 		return ret;
805 
806 	scn_nr = __section_nr(ms);
807 	start_pfn = section_nr_to_pfn(scn_nr);
808 	__remove_zone(zone, start_pfn);
809 
810 	sparse_remove_one_section(zone, ms, map_offset);
811 	return 0;
812 }
813 
814 /**
815  * __remove_pages() - remove sections of pages from a zone
816  * @zone: zone from which pages need to be removed
817  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
818  * @nr_pages: number of pages to remove (must be multiple of section size)
819  *
820  * Generic helper function to remove section mappings and sysfs entries
821  * for the section of the memory we are removing. Caller needs to make
822  * sure that pages are marked reserved and zones are adjust properly by
823  * calling offline_pages().
824  */
825 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
826 		 unsigned long nr_pages)
827 {
828 	unsigned long i;
829 	unsigned long map_offset = 0;
830 	int sections_to_remove, ret = 0;
831 
832 	/* In the ZONE_DEVICE case device driver owns the memory region */
833 	if (is_dev_zone(zone)) {
834 		struct page *page = pfn_to_page(phys_start_pfn);
835 		struct vmem_altmap *altmap;
836 
837 		altmap = to_vmem_altmap((unsigned long) page);
838 		if (altmap)
839 			map_offset = vmem_altmap_offset(altmap);
840 	} else {
841 		resource_size_t start, size;
842 
843 		start = phys_start_pfn << PAGE_SHIFT;
844 		size = nr_pages * PAGE_SIZE;
845 
846 		ret = release_mem_region_adjustable(&iomem_resource, start,
847 					size);
848 		if (ret) {
849 			resource_size_t endres = start + size - 1;
850 
851 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
852 					&start, &endres, ret);
853 		}
854 	}
855 
856 	clear_zone_contiguous(zone);
857 
858 	/*
859 	 * We can only remove entire sections
860 	 */
861 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
862 	BUG_ON(nr_pages % PAGES_PER_SECTION);
863 
864 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
865 	for (i = 0; i < sections_to_remove; i++) {
866 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
867 
868 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
869 		map_offset = 0;
870 		if (ret)
871 			break;
872 	}
873 
874 	set_zone_contiguous(zone);
875 
876 	return ret;
877 }
878 EXPORT_SYMBOL_GPL(__remove_pages);
879 #endif /* CONFIG_MEMORY_HOTREMOVE */
880 
881 int set_online_page_callback(online_page_callback_t callback)
882 {
883 	int rc = -EINVAL;
884 
885 	get_online_mems();
886 	mutex_lock(&online_page_callback_lock);
887 
888 	if (online_page_callback == generic_online_page) {
889 		online_page_callback = callback;
890 		rc = 0;
891 	}
892 
893 	mutex_unlock(&online_page_callback_lock);
894 	put_online_mems();
895 
896 	return rc;
897 }
898 EXPORT_SYMBOL_GPL(set_online_page_callback);
899 
900 int restore_online_page_callback(online_page_callback_t callback)
901 {
902 	int rc = -EINVAL;
903 
904 	get_online_mems();
905 	mutex_lock(&online_page_callback_lock);
906 
907 	if (online_page_callback == callback) {
908 		online_page_callback = generic_online_page;
909 		rc = 0;
910 	}
911 
912 	mutex_unlock(&online_page_callback_lock);
913 	put_online_mems();
914 
915 	return rc;
916 }
917 EXPORT_SYMBOL_GPL(restore_online_page_callback);
918 
919 void __online_page_set_limits(struct page *page)
920 {
921 }
922 EXPORT_SYMBOL_GPL(__online_page_set_limits);
923 
924 void __online_page_increment_counters(struct page *page)
925 {
926 	adjust_managed_page_count(page, 1);
927 }
928 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
929 
930 void __online_page_free(struct page *page)
931 {
932 	__free_reserved_page(page);
933 }
934 EXPORT_SYMBOL_GPL(__online_page_free);
935 
936 static void generic_online_page(struct page *page)
937 {
938 	__online_page_set_limits(page);
939 	__online_page_increment_counters(page);
940 	__online_page_free(page);
941 }
942 
943 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
944 			void *arg)
945 {
946 	unsigned long i;
947 	unsigned long onlined_pages = *(unsigned long *)arg;
948 	struct page *page;
949 	if (PageReserved(pfn_to_page(start_pfn)))
950 		for (i = 0; i < nr_pages; i++) {
951 			page = pfn_to_page(start_pfn + i);
952 			(*online_page_callback)(page);
953 			onlined_pages++;
954 		}
955 	*(unsigned long *)arg = onlined_pages;
956 	return 0;
957 }
958 
959 #ifdef CONFIG_MOVABLE_NODE
960 /*
961  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
962  * normal memory.
963  */
964 static bool can_online_high_movable(struct zone *zone)
965 {
966 	return true;
967 }
968 #else /* CONFIG_MOVABLE_NODE */
969 /* ensure every online node has NORMAL memory */
970 static bool can_online_high_movable(struct zone *zone)
971 {
972 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
973 }
974 #endif /* CONFIG_MOVABLE_NODE */
975 
976 /* check which state of node_states will be changed when online memory */
977 static void node_states_check_changes_online(unsigned long nr_pages,
978 	struct zone *zone, struct memory_notify *arg)
979 {
980 	int nid = zone_to_nid(zone);
981 	enum zone_type zone_last = ZONE_NORMAL;
982 
983 	/*
984 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
985 	 * contains nodes which have zones of 0...ZONE_NORMAL,
986 	 * set zone_last to ZONE_NORMAL.
987 	 *
988 	 * If we don't have HIGHMEM nor movable node,
989 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
990 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
991 	 */
992 	if (N_MEMORY == N_NORMAL_MEMORY)
993 		zone_last = ZONE_MOVABLE;
994 
995 	/*
996 	 * if the memory to be online is in a zone of 0...zone_last, and
997 	 * the zones of 0...zone_last don't have memory before online, we will
998 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
999 	 * the memory is online.
1000 	 */
1001 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
1002 		arg->status_change_nid_normal = nid;
1003 	else
1004 		arg->status_change_nid_normal = -1;
1005 
1006 #ifdef CONFIG_HIGHMEM
1007 	/*
1008 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1009 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1010 	 * set zone_last to ZONE_HIGHMEM.
1011 	 *
1012 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1013 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1014 	 * set zone_last to ZONE_MOVABLE.
1015 	 */
1016 	zone_last = ZONE_HIGHMEM;
1017 	if (N_MEMORY == N_HIGH_MEMORY)
1018 		zone_last = ZONE_MOVABLE;
1019 
1020 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1021 		arg->status_change_nid_high = nid;
1022 	else
1023 		arg->status_change_nid_high = -1;
1024 #else
1025 	arg->status_change_nid_high = arg->status_change_nid_normal;
1026 #endif
1027 
1028 	/*
1029 	 * if the node don't have memory befor online, we will need to
1030 	 * set the node to node_states[N_MEMORY] after the memory
1031 	 * is online.
1032 	 */
1033 	if (!node_state(nid, N_MEMORY))
1034 		arg->status_change_nid = nid;
1035 	else
1036 		arg->status_change_nid = -1;
1037 }
1038 
1039 static void node_states_set_node(int node, struct memory_notify *arg)
1040 {
1041 	if (arg->status_change_nid_normal >= 0)
1042 		node_set_state(node, N_NORMAL_MEMORY);
1043 
1044 	if (arg->status_change_nid_high >= 0)
1045 		node_set_state(node, N_HIGH_MEMORY);
1046 
1047 	node_set_state(node, N_MEMORY);
1048 }
1049 
1050 int zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1051 		   enum zone_type target)
1052 {
1053 	struct zone *zone = page_zone(pfn_to_page(pfn));
1054 	enum zone_type idx = zone_idx(zone);
1055 	int i;
1056 
1057 	if (idx < target) {
1058 		/* pages must be at end of current zone */
1059 		if (pfn + nr_pages != zone_end_pfn(zone))
1060 			return 0;
1061 
1062 		/* no zones in use between current zone and target */
1063 		for (i = idx + 1; i < target; i++)
1064 			if (zone_is_initialized(zone - idx + i))
1065 				return 0;
1066 	}
1067 
1068 	if (target < idx) {
1069 		/* pages must be at beginning of current zone */
1070 		if (pfn != zone->zone_start_pfn)
1071 			return 0;
1072 
1073 		/* no zones in use between current zone and target */
1074 		for (i = target + 1; i < idx; i++)
1075 			if (zone_is_initialized(zone - idx + i))
1076 				return 0;
1077 	}
1078 
1079 	return target - idx;
1080 }
1081 
1082 /* Must be protected by mem_hotplug_begin() */
1083 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1084 {
1085 	unsigned long flags;
1086 	unsigned long onlined_pages = 0;
1087 	struct zone *zone;
1088 	int need_zonelists_rebuild = 0;
1089 	int nid;
1090 	int ret;
1091 	struct memory_notify arg;
1092 	int zone_shift = 0;
1093 
1094 	/*
1095 	 * This doesn't need a lock to do pfn_to_page().
1096 	 * The section can't be removed here because of the
1097 	 * memory_block->state_mutex.
1098 	 */
1099 	zone = page_zone(pfn_to_page(pfn));
1100 
1101 	if ((zone_idx(zone) > ZONE_NORMAL ||
1102 	    online_type == MMOP_ONLINE_MOVABLE) &&
1103 	    !can_online_high_movable(zone))
1104 		return -EINVAL;
1105 
1106 	if (online_type == MMOP_ONLINE_KERNEL)
1107 		zone_shift = zone_can_shift(pfn, nr_pages, ZONE_NORMAL);
1108 	else if (online_type == MMOP_ONLINE_MOVABLE)
1109 		zone_shift = zone_can_shift(pfn, nr_pages, ZONE_MOVABLE);
1110 
1111 	zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1112 	if (!zone)
1113 		return -EINVAL;
1114 
1115 	arg.start_pfn = pfn;
1116 	arg.nr_pages = nr_pages;
1117 	node_states_check_changes_online(nr_pages, zone, &arg);
1118 
1119 	nid = zone_to_nid(zone);
1120 
1121 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1122 	ret = notifier_to_errno(ret);
1123 	if (ret)
1124 		goto failed_addition;
1125 
1126 	/*
1127 	 * If this zone is not populated, then it is not in zonelist.
1128 	 * This means the page allocator ignores this zone.
1129 	 * So, zonelist must be updated after online.
1130 	 */
1131 	mutex_lock(&zonelists_mutex);
1132 	if (!populated_zone(zone)) {
1133 		need_zonelists_rebuild = 1;
1134 		build_all_zonelists(NULL, zone);
1135 	}
1136 
1137 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1138 		online_pages_range);
1139 	if (ret) {
1140 		if (need_zonelists_rebuild)
1141 			zone_pcp_reset(zone);
1142 		mutex_unlock(&zonelists_mutex);
1143 		goto failed_addition;
1144 	}
1145 
1146 	zone->present_pages += onlined_pages;
1147 
1148 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1149 	zone->zone_pgdat->node_present_pages += onlined_pages;
1150 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1151 
1152 	if (onlined_pages) {
1153 		node_states_set_node(nid, &arg);
1154 		if (need_zonelists_rebuild)
1155 			build_all_zonelists(NULL, NULL);
1156 		else
1157 			zone_pcp_update(zone);
1158 	}
1159 
1160 	mutex_unlock(&zonelists_mutex);
1161 
1162 	init_per_zone_wmark_min();
1163 
1164 	if (onlined_pages) {
1165 		kswapd_run(nid);
1166 		kcompactd_run(nid);
1167 	}
1168 
1169 	vm_total_pages = nr_free_pagecache_pages();
1170 
1171 	writeback_set_ratelimit();
1172 
1173 	if (onlined_pages)
1174 		memory_notify(MEM_ONLINE, &arg);
1175 	return 0;
1176 
1177 failed_addition:
1178 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1179 		 (unsigned long long) pfn << PAGE_SHIFT,
1180 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1181 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1182 	return ret;
1183 }
1184 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1185 
1186 static void reset_node_present_pages(pg_data_t *pgdat)
1187 {
1188 	struct zone *z;
1189 
1190 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1191 		z->present_pages = 0;
1192 
1193 	pgdat->node_present_pages = 0;
1194 }
1195 
1196 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1197 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1198 {
1199 	struct pglist_data *pgdat;
1200 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1201 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1202 	unsigned long start_pfn = PFN_DOWN(start);
1203 
1204 	pgdat = NODE_DATA(nid);
1205 	if (!pgdat) {
1206 		pgdat = arch_alloc_nodedata(nid);
1207 		if (!pgdat)
1208 			return NULL;
1209 
1210 		arch_refresh_nodedata(nid, pgdat);
1211 	} else {
1212 		/* Reset the nr_zones, order and classzone_idx before reuse */
1213 		pgdat->nr_zones = 0;
1214 		pgdat->kswapd_order = 0;
1215 		pgdat->kswapd_classzone_idx = 0;
1216 	}
1217 
1218 	/* we can use NODE_DATA(nid) from here */
1219 
1220 	/* init node's zones as empty zones, we don't have any present pages.*/
1221 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1222 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1223 
1224 	/*
1225 	 * The node we allocated has no zone fallback lists. For avoiding
1226 	 * to access not-initialized zonelist, build here.
1227 	 */
1228 	mutex_lock(&zonelists_mutex);
1229 	build_all_zonelists(pgdat, NULL);
1230 	mutex_unlock(&zonelists_mutex);
1231 
1232 	/*
1233 	 * zone->managed_pages is set to an approximate value in
1234 	 * free_area_init_core(), which will cause
1235 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1236 	 * So reset it to 0 before any memory is onlined.
1237 	 */
1238 	reset_node_managed_pages(pgdat);
1239 
1240 	/*
1241 	 * When memory is hot-added, all the memory is in offline state. So
1242 	 * clear all zones' present_pages because they will be updated in
1243 	 * online_pages() and offline_pages().
1244 	 */
1245 	reset_node_present_pages(pgdat);
1246 
1247 	return pgdat;
1248 }
1249 
1250 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1251 {
1252 	arch_refresh_nodedata(nid, NULL);
1253 	free_percpu(pgdat->per_cpu_nodestats);
1254 	arch_free_nodedata(pgdat);
1255 	return;
1256 }
1257 
1258 
1259 /**
1260  * try_online_node - online a node if offlined
1261  *
1262  * called by cpu_up() to online a node without onlined memory.
1263  */
1264 int try_online_node(int nid)
1265 {
1266 	pg_data_t	*pgdat;
1267 	int	ret;
1268 
1269 	if (node_online(nid))
1270 		return 0;
1271 
1272 	mem_hotplug_begin();
1273 	pgdat = hotadd_new_pgdat(nid, 0);
1274 	if (!pgdat) {
1275 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1276 		ret = -ENOMEM;
1277 		goto out;
1278 	}
1279 	node_set_online(nid);
1280 	ret = register_one_node(nid);
1281 	BUG_ON(ret);
1282 
1283 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1284 		mutex_lock(&zonelists_mutex);
1285 		build_all_zonelists(NULL, NULL);
1286 		mutex_unlock(&zonelists_mutex);
1287 	}
1288 
1289 out:
1290 	mem_hotplug_done();
1291 	return ret;
1292 }
1293 
1294 static int check_hotplug_memory_range(u64 start, u64 size)
1295 {
1296 	u64 start_pfn = PFN_DOWN(start);
1297 	u64 nr_pages = size >> PAGE_SHIFT;
1298 
1299 	/* Memory range must be aligned with section */
1300 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1301 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1302 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1303 				(unsigned long long)start,
1304 				(unsigned long long)size);
1305 		return -EINVAL;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  * If movable zone has already been setup, newly added memory should be check.
1313  * If its address is higher than movable zone, it should be added as movable.
1314  * Without this check, movable zone may overlap with other zone.
1315  */
1316 static int should_add_memory_movable(int nid, u64 start, u64 size)
1317 {
1318 	unsigned long start_pfn = start >> PAGE_SHIFT;
1319 	pg_data_t *pgdat = NODE_DATA(nid);
1320 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1321 
1322 	if (zone_is_empty(movable_zone))
1323 		return 0;
1324 
1325 	if (movable_zone->zone_start_pfn <= start_pfn)
1326 		return 1;
1327 
1328 	return 0;
1329 }
1330 
1331 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1332 		bool for_device)
1333 {
1334 #ifdef CONFIG_ZONE_DEVICE
1335 	if (for_device)
1336 		return ZONE_DEVICE;
1337 #endif
1338 	if (should_add_memory_movable(nid, start, size))
1339 		return ZONE_MOVABLE;
1340 
1341 	return zone_default;
1342 }
1343 
1344 static int online_memory_block(struct memory_block *mem, void *arg)
1345 {
1346 	return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1347 }
1348 
1349 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1350 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1351 {
1352 	u64 start, size;
1353 	pg_data_t *pgdat = NULL;
1354 	bool new_pgdat;
1355 	bool new_node;
1356 	int ret;
1357 
1358 	start = res->start;
1359 	size = resource_size(res);
1360 
1361 	ret = check_hotplug_memory_range(start, size);
1362 	if (ret)
1363 		return ret;
1364 
1365 	{	/* Stupid hack to suppress address-never-null warning */
1366 		void *p = NODE_DATA(nid);
1367 		new_pgdat = !p;
1368 	}
1369 
1370 	mem_hotplug_begin();
1371 
1372 	/*
1373 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1374 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1375 	 * this new range and calculate total pages correctly.  The range will
1376 	 * be removed at hot-remove time.
1377 	 */
1378 	memblock_add_node(start, size, nid);
1379 
1380 	new_node = !node_online(nid);
1381 	if (new_node) {
1382 		pgdat = hotadd_new_pgdat(nid, start);
1383 		ret = -ENOMEM;
1384 		if (!pgdat)
1385 			goto error;
1386 	}
1387 
1388 	/* call arch's memory hotadd */
1389 	ret = arch_add_memory(nid, start, size, false);
1390 
1391 	if (ret < 0)
1392 		goto error;
1393 
1394 	/* we online node here. we can't roll back from here. */
1395 	node_set_online(nid);
1396 
1397 	if (new_node) {
1398 		ret = register_one_node(nid);
1399 		/*
1400 		 * If sysfs file of new node can't create, cpu on the node
1401 		 * can't be hot-added. There is no rollback way now.
1402 		 * So, check by BUG_ON() to catch it reluctantly..
1403 		 */
1404 		BUG_ON(ret);
1405 	}
1406 
1407 	/* create new memmap entry */
1408 	firmware_map_add_hotplug(start, start + size, "System RAM");
1409 
1410 	/* online pages if requested */
1411 	if (online)
1412 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1413 				  NULL, online_memory_block);
1414 
1415 	goto out;
1416 
1417 error:
1418 	/* rollback pgdat allocation and others */
1419 	if (new_pgdat)
1420 		rollback_node_hotadd(nid, pgdat);
1421 	memblock_remove(start, size);
1422 
1423 out:
1424 	mem_hotplug_done();
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(add_memory_resource);
1428 
1429 int __ref add_memory(int nid, u64 start, u64 size)
1430 {
1431 	struct resource *res;
1432 	int ret;
1433 
1434 	res = register_memory_resource(start, size);
1435 	if (IS_ERR(res))
1436 		return PTR_ERR(res);
1437 
1438 	ret = add_memory_resource(nid, res, memhp_auto_online);
1439 	if (ret < 0)
1440 		release_memory_resource(res);
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(add_memory);
1444 
1445 #ifdef CONFIG_MEMORY_HOTREMOVE
1446 /*
1447  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1448  * set and the size of the free page is given by page_order(). Using this,
1449  * the function determines if the pageblock contains only free pages.
1450  * Due to buddy contraints, a free page at least the size of a pageblock will
1451  * be located at the start of the pageblock
1452  */
1453 static inline int pageblock_free(struct page *page)
1454 {
1455 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1456 }
1457 
1458 /* Return the start of the next active pageblock after a given page */
1459 static struct page *next_active_pageblock(struct page *page)
1460 {
1461 	/* Ensure the starting page is pageblock-aligned */
1462 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1463 
1464 	/* If the entire pageblock is free, move to the end of free page */
1465 	if (pageblock_free(page)) {
1466 		int order;
1467 		/* be careful. we don't have locks, page_order can be changed.*/
1468 		order = page_order(page);
1469 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1470 			return page + (1 << order);
1471 	}
1472 
1473 	return page + pageblock_nr_pages;
1474 }
1475 
1476 /* Checks if this range of memory is likely to be hot-removable. */
1477 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1478 {
1479 	struct page *page = pfn_to_page(start_pfn);
1480 	struct page *end_page = page + nr_pages;
1481 
1482 	/* Check the starting page of each pageblock within the range */
1483 	for (; page < end_page; page = next_active_pageblock(page)) {
1484 		if (!is_pageblock_removable_nolock(page))
1485 			return false;
1486 		cond_resched();
1487 	}
1488 
1489 	/* All pageblocks in the memory block are likely to be hot-removable */
1490 	return true;
1491 }
1492 
1493 /*
1494  * Confirm all pages in a range [start, end) is belongs to the same zone.
1495  */
1496 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1497 {
1498 	unsigned long pfn, sec_end_pfn;
1499 	struct zone *zone = NULL;
1500 	struct page *page;
1501 	int i;
1502 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1503 	     pfn < end_pfn;
1504 	     pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1505 		/* Make sure the memory section is present first */
1506 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1507 			continue;
1508 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1509 		     pfn += MAX_ORDER_NR_PAGES) {
1510 			i = 0;
1511 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1512 			while ((i < MAX_ORDER_NR_PAGES) &&
1513 				!pfn_valid_within(pfn + i))
1514 				i++;
1515 			if (i == MAX_ORDER_NR_PAGES)
1516 				continue;
1517 			page = pfn_to_page(pfn + i);
1518 			if (zone && page_zone(page) != zone)
1519 				return 0;
1520 			zone = page_zone(page);
1521 		}
1522 	}
1523 	return 1;
1524 }
1525 
1526 /*
1527  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1528  * and hugepages). We scan pfn because it's much easier than scanning over
1529  * linked list. This function returns the pfn of the first found movable
1530  * page if it's found, otherwise 0.
1531  */
1532 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1533 {
1534 	unsigned long pfn;
1535 	struct page *page;
1536 	for (pfn = start; pfn < end; pfn++) {
1537 		if (pfn_valid(pfn)) {
1538 			page = pfn_to_page(pfn);
1539 			if (PageLRU(page))
1540 				return pfn;
1541 			if (PageHuge(page)) {
1542 				if (page_huge_active(page))
1543 					return pfn;
1544 				else
1545 					pfn = round_up(pfn + 1,
1546 						1 << compound_order(page)) - 1;
1547 			}
1548 		}
1549 	}
1550 	return 0;
1551 }
1552 
1553 static struct page *new_node_page(struct page *page, unsigned long private,
1554 		int **result)
1555 {
1556 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1557 	int nid = page_to_nid(page);
1558 	nodemask_t nmask = node_states[N_MEMORY];
1559 	struct page *new_page = NULL;
1560 
1561 	/*
1562 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
1563 	 * accordance with memory policy of the user process if possible. For
1564 	 * now as a simple work-around, we use the next node for destination.
1565 	 */
1566 	if (PageHuge(page))
1567 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1568 					next_node_in(nid, nmask));
1569 
1570 	node_clear(nid, nmask);
1571 
1572 	if (PageHighMem(page)
1573 	    || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1574 		gfp_mask |= __GFP_HIGHMEM;
1575 
1576 	if (!nodes_empty(nmask))
1577 		new_page = __alloc_pages_nodemask(gfp_mask, 0,
1578 					node_zonelist(nid, gfp_mask), &nmask);
1579 	if (!new_page)
1580 		new_page = __alloc_pages(gfp_mask, 0,
1581 					node_zonelist(nid, gfp_mask));
1582 
1583 	return new_page;
1584 }
1585 
1586 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1587 static int
1588 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1589 {
1590 	unsigned long pfn;
1591 	struct page *page;
1592 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1593 	int not_managed = 0;
1594 	int ret = 0;
1595 	LIST_HEAD(source);
1596 
1597 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1598 		if (!pfn_valid(pfn))
1599 			continue;
1600 		page = pfn_to_page(pfn);
1601 
1602 		if (PageHuge(page)) {
1603 			struct page *head = compound_head(page);
1604 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1605 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1606 				ret = -EBUSY;
1607 				break;
1608 			}
1609 			if (isolate_huge_page(page, &source))
1610 				move_pages -= 1 << compound_order(head);
1611 			continue;
1612 		}
1613 
1614 		if (!get_page_unless_zero(page))
1615 			continue;
1616 		/*
1617 		 * We can skip free pages. And we can only deal with pages on
1618 		 * LRU.
1619 		 */
1620 		ret = isolate_lru_page(page);
1621 		if (!ret) { /* Success */
1622 			put_page(page);
1623 			list_add_tail(&page->lru, &source);
1624 			move_pages--;
1625 			inc_node_page_state(page, NR_ISOLATED_ANON +
1626 					    page_is_file_cache(page));
1627 
1628 		} else {
1629 #ifdef CONFIG_DEBUG_VM
1630 			pr_alert("removing pfn %lx from LRU failed\n", pfn);
1631 			dump_page(page, "failed to remove from LRU");
1632 #endif
1633 			put_page(page);
1634 			/* Because we don't have big zone->lock. we should
1635 			   check this again here. */
1636 			if (page_count(page)) {
1637 				not_managed++;
1638 				ret = -EBUSY;
1639 				break;
1640 			}
1641 		}
1642 	}
1643 	if (!list_empty(&source)) {
1644 		if (not_managed) {
1645 			putback_movable_pages(&source);
1646 			goto out;
1647 		}
1648 
1649 		/* Allocate a new page from the nearest neighbor node */
1650 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1651 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1652 		if (ret)
1653 			putback_movable_pages(&source);
1654 	}
1655 out:
1656 	return ret;
1657 }
1658 
1659 /*
1660  * remove from free_area[] and mark all as Reserved.
1661  */
1662 static int
1663 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1664 			void *data)
1665 {
1666 	__offline_isolated_pages(start, start + nr_pages);
1667 	return 0;
1668 }
1669 
1670 static void
1671 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1672 {
1673 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1674 				offline_isolated_pages_cb);
1675 }
1676 
1677 /*
1678  * Check all pages in range, recoreded as memory resource, are isolated.
1679  */
1680 static int
1681 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1682 			void *data)
1683 {
1684 	int ret;
1685 	long offlined = *(long *)data;
1686 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1687 	offlined = nr_pages;
1688 	if (!ret)
1689 		*(long *)data += offlined;
1690 	return ret;
1691 }
1692 
1693 static long
1694 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1695 {
1696 	long offlined = 0;
1697 	int ret;
1698 
1699 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1700 			check_pages_isolated_cb);
1701 	if (ret < 0)
1702 		offlined = (long)ret;
1703 	return offlined;
1704 }
1705 
1706 #ifdef CONFIG_MOVABLE_NODE
1707 /*
1708  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1709  * normal memory.
1710  */
1711 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1712 {
1713 	return true;
1714 }
1715 #else /* CONFIG_MOVABLE_NODE */
1716 /* ensure the node has NORMAL memory if it is still online */
1717 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1718 {
1719 	struct pglist_data *pgdat = zone->zone_pgdat;
1720 	unsigned long present_pages = 0;
1721 	enum zone_type zt;
1722 
1723 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1724 		present_pages += pgdat->node_zones[zt].present_pages;
1725 
1726 	if (present_pages > nr_pages)
1727 		return true;
1728 
1729 	present_pages = 0;
1730 	for (; zt <= ZONE_MOVABLE; zt++)
1731 		present_pages += pgdat->node_zones[zt].present_pages;
1732 
1733 	/*
1734 	 * we can't offline the last normal memory until all
1735 	 * higher memory is offlined.
1736 	 */
1737 	return present_pages == 0;
1738 }
1739 #endif /* CONFIG_MOVABLE_NODE */
1740 
1741 static int __init cmdline_parse_movable_node(char *p)
1742 {
1743 #ifdef CONFIG_MOVABLE_NODE
1744 	/*
1745 	 * Memory used by the kernel cannot be hot-removed because Linux
1746 	 * cannot migrate the kernel pages. When memory hotplug is
1747 	 * enabled, we should prevent memblock from allocating memory
1748 	 * for the kernel.
1749 	 *
1750 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1751 	 * SRAT is parsed, we don't know about it.
1752 	 *
1753 	 * The kernel image is loaded into memory at very early time. We
1754 	 * cannot prevent this anyway. So on NUMA system, we set any
1755 	 * node the kernel resides in as un-hotpluggable.
1756 	 *
1757 	 * Since on modern servers, one node could have double-digit
1758 	 * gigabytes memory, we can assume the memory around the kernel
1759 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1760 	 * allocate memory near the kernel image to try the best to keep
1761 	 * the kernel away from hotpluggable memory.
1762 	 */
1763 	memblock_set_bottom_up(true);
1764 	movable_node_enabled = true;
1765 #else
1766 	pr_warn("movable_node option not supported\n");
1767 #endif
1768 	return 0;
1769 }
1770 early_param("movable_node", cmdline_parse_movable_node);
1771 
1772 /* check which state of node_states will be changed when offline memory */
1773 static void node_states_check_changes_offline(unsigned long nr_pages,
1774 		struct zone *zone, struct memory_notify *arg)
1775 {
1776 	struct pglist_data *pgdat = zone->zone_pgdat;
1777 	unsigned long present_pages = 0;
1778 	enum zone_type zt, zone_last = ZONE_NORMAL;
1779 
1780 	/*
1781 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1782 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1783 	 * set zone_last to ZONE_NORMAL.
1784 	 *
1785 	 * If we don't have HIGHMEM nor movable node,
1786 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1787 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1788 	 */
1789 	if (N_MEMORY == N_NORMAL_MEMORY)
1790 		zone_last = ZONE_MOVABLE;
1791 
1792 	/*
1793 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1794 	 * If the memory to be offline is in a zone of 0...zone_last,
1795 	 * and it is the last present memory, 0...zone_last will
1796 	 * become empty after offline , thus we can determind we will
1797 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1798 	 */
1799 	for (zt = 0; zt <= zone_last; zt++)
1800 		present_pages += pgdat->node_zones[zt].present_pages;
1801 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1802 		arg->status_change_nid_normal = zone_to_nid(zone);
1803 	else
1804 		arg->status_change_nid_normal = -1;
1805 
1806 #ifdef CONFIG_HIGHMEM
1807 	/*
1808 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1809 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1810 	 * set zone_last to ZONE_HIGHMEM.
1811 	 *
1812 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1813 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1814 	 * set zone_last to ZONE_MOVABLE.
1815 	 */
1816 	zone_last = ZONE_HIGHMEM;
1817 	if (N_MEMORY == N_HIGH_MEMORY)
1818 		zone_last = ZONE_MOVABLE;
1819 
1820 	for (; zt <= zone_last; zt++)
1821 		present_pages += pgdat->node_zones[zt].present_pages;
1822 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1823 		arg->status_change_nid_high = zone_to_nid(zone);
1824 	else
1825 		arg->status_change_nid_high = -1;
1826 #else
1827 	arg->status_change_nid_high = arg->status_change_nid_normal;
1828 #endif
1829 
1830 	/*
1831 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1832 	 */
1833 	zone_last = ZONE_MOVABLE;
1834 
1835 	/*
1836 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1837 	 * If we try to offline the last present @nr_pages from the node,
1838 	 * we can determind we will need to clear the node from
1839 	 * node_states[N_HIGH_MEMORY].
1840 	 */
1841 	for (; zt <= zone_last; zt++)
1842 		present_pages += pgdat->node_zones[zt].present_pages;
1843 	if (nr_pages >= present_pages)
1844 		arg->status_change_nid = zone_to_nid(zone);
1845 	else
1846 		arg->status_change_nid = -1;
1847 }
1848 
1849 static void node_states_clear_node(int node, struct memory_notify *arg)
1850 {
1851 	if (arg->status_change_nid_normal >= 0)
1852 		node_clear_state(node, N_NORMAL_MEMORY);
1853 
1854 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1855 	    (arg->status_change_nid_high >= 0))
1856 		node_clear_state(node, N_HIGH_MEMORY);
1857 
1858 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1859 	    (arg->status_change_nid >= 0))
1860 		node_clear_state(node, N_MEMORY);
1861 }
1862 
1863 static int __ref __offline_pages(unsigned long start_pfn,
1864 		  unsigned long end_pfn, unsigned long timeout)
1865 {
1866 	unsigned long pfn, nr_pages, expire;
1867 	long offlined_pages;
1868 	int ret, drain, retry_max, node;
1869 	unsigned long flags;
1870 	struct zone *zone;
1871 	struct memory_notify arg;
1872 
1873 	/* at least, alignment against pageblock is necessary */
1874 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1875 		return -EINVAL;
1876 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1877 		return -EINVAL;
1878 	/* This makes hotplug much easier...and readable.
1879 	   we assume this for now. .*/
1880 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1881 		return -EINVAL;
1882 
1883 	zone = page_zone(pfn_to_page(start_pfn));
1884 	node = zone_to_nid(zone);
1885 	nr_pages = end_pfn - start_pfn;
1886 
1887 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1888 		return -EINVAL;
1889 
1890 	/* set above range as isolated */
1891 	ret = start_isolate_page_range(start_pfn, end_pfn,
1892 				       MIGRATE_MOVABLE, true);
1893 	if (ret)
1894 		return ret;
1895 
1896 	arg.start_pfn = start_pfn;
1897 	arg.nr_pages = nr_pages;
1898 	node_states_check_changes_offline(nr_pages, zone, &arg);
1899 
1900 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1901 	ret = notifier_to_errno(ret);
1902 	if (ret)
1903 		goto failed_removal;
1904 
1905 	pfn = start_pfn;
1906 	expire = jiffies + timeout;
1907 	drain = 0;
1908 	retry_max = 5;
1909 repeat:
1910 	/* start memory hot removal */
1911 	ret = -EAGAIN;
1912 	if (time_after(jiffies, expire))
1913 		goto failed_removal;
1914 	ret = -EINTR;
1915 	if (signal_pending(current))
1916 		goto failed_removal;
1917 	ret = 0;
1918 	if (drain) {
1919 		lru_add_drain_all();
1920 		cond_resched();
1921 		drain_all_pages(zone);
1922 	}
1923 
1924 	pfn = scan_movable_pages(start_pfn, end_pfn);
1925 	if (pfn) { /* We have movable pages */
1926 		ret = do_migrate_range(pfn, end_pfn);
1927 		if (!ret) {
1928 			drain = 1;
1929 			goto repeat;
1930 		} else {
1931 			if (ret < 0)
1932 				if (--retry_max == 0)
1933 					goto failed_removal;
1934 			yield();
1935 			drain = 1;
1936 			goto repeat;
1937 		}
1938 	}
1939 	/* drain all zone's lru pagevec, this is asynchronous... */
1940 	lru_add_drain_all();
1941 	yield();
1942 	/* drain pcp pages, this is synchronous. */
1943 	drain_all_pages(zone);
1944 	/*
1945 	 * dissolve free hugepages in the memory block before doing offlining
1946 	 * actually in order to make hugetlbfs's object counting consistent.
1947 	 */
1948 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1949 	if (ret)
1950 		goto failed_removal;
1951 	/* check again */
1952 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1953 	if (offlined_pages < 0) {
1954 		ret = -EBUSY;
1955 		goto failed_removal;
1956 	}
1957 	pr_info("Offlined Pages %ld\n", offlined_pages);
1958 	/* Ok, all of our target is isolated.
1959 	   We cannot do rollback at this point. */
1960 	offline_isolated_pages(start_pfn, end_pfn);
1961 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1962 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1963 	/* removal success */
1964 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1965 	zone->present_pages -= offlined_pages;
1966 
1967 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1968 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1969 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1970 
1971 	init_per_zone_wmark_min();
1972 
1973 	if (!populated_zone(zone)) {
1974 		zone_pcp_reset(zone);
1975 		mutex_lock(&zonelists_mutex);
1976 		build_all_zonelists(NULL, NULL);
1977 		mutex_unlock(&zonelists_mutex);
1978 	} else
1979 		zone_pcp_update(zone);
1980 
1981 	node_states_clear_node(node, &arg);
1982 	if (arg.status_change_nid >= 0) {
1983 		kswapd_stop(node);
1984 		kcompactd_stop(node);
1985 	}
1986 
1987 	vm_total_pages = nr_free_pagecache_pages();
1988 	writeback_set_ratelimit();
1989 
1990 	memory_notify(MEM_OFFLINE, &arg);
1991 	return 0;
1992 
1993 failed_removal:
1994 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1995 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1996 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1997 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1998 	/* pushback to free area */
1999 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2000 	return ret;
2001 }
2002 
2003 /* Must be protected by mem_hotplug_begin() */
2004 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
2005 {
2006 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2007 }
2008 #endif /* CONFIG_MEMORY_HOTREMOVE */
2009 
2010 /**
2011  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2012  * @start_pfn: start pfn of the memory range
2013  * @end_pfn: end pfn of the memory range
2014  * @arg: argument passed to func
2015  * @func: callback for each memory section walked
2016  *
2017  * This function walks through all present mem sections in range
2018  * [start_pfn, end_pfn) and call func on each mem section.
2019  *
2020  * Returns the return value of func.
2021  */
2022 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2023 		void *arg, int (*func)(struct memory_block *, void *))
2024 {
2025 	struct memory_block *mem = NULL;
2026 	struct mem_section *section;
2027 	unsigned long pfn, section_nr;
2028 	int ret;
2029 
2030 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2031 		section_nr = pfn_to_section_nr(pfn);
2032 		if (!present_section_nr(section_nr))
2033 			continue;
2034 
2035 		section = __nr_to_section(section_nr);
2036 		/* same memblock? */
2037 		if (mem)
2038 			if ((section_nr >= mem->start_section_nr) &&
2039 			    (section_nr <= mem->end_section_nr))
2040 				continue;
2041 
2042 		mem = find_memory_block_hinted(section, mem);
2043 		if (!mem)
2044 			continue;
2045 
2046 		ret = func(mem, arg);
2047 		if (ret) {
2048 			kobject_put(&mem->dev.kobj);
2049 			return ret;
2050 		}
2051 	}
2052 
2053 	if (mem)
2054 		kobject_put(&mem->dev.kobj);
2055 
2056 	return 0;
2057 }
2058 
2059 #ifdef CONFIG_MEMORY_HOTREMOVE
2060 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2061 {
2062 	int ret = !is_memblock_offlined(mem);
2063 
2064 	if (unlikely(ret)) {
2065 		phys_addr_t beginpa, endpa;
2066 
2067 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2068 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2069 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2070 			&beginpa, &endpa);
2071 	}
2072 
2073 	return ret;
2074 }
2075 
2076 static int check_cpu_on_node(pg_data_t *pgdat)
2077 {
2078 	int cpu;
2079 
2080 	for_each_present_cpu(cpu) {
2081 		if (cpu_to_node(cpu) == pgdat->node_id)
2082 			/*
2083 			 * the cpu on this node isn't removed, and we can't
2084 			 * offline this node.
2085 			 */
2086 			return -EBUSY;
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 static void unmap_cpu_on_node(pg_data_t *pgdat)
2093 {
2094 #ifdef CONFIG_ACPI_NUMA
2095 	int cpu;
2096 
2097 	for_each_possible_cpu(cpu)
2098 		if (cpu_to_node(cpu) == pgdat->node_id)
2099 			numa_clear_node(cpu);
2100 #endif
2101 }
2102 
2103 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2104 {
2105 	int ret;
2106 
2107 	ret = check_cpu_on_node(pgdat);
2108 	if (ret)
2109 		return ret;
2110 
2111 	/*
2112 	 * the node will be offlined when we come here, so we can clear
2113 	 * the cpu_to_node() now.
2114 	 */
2115 
2116 	unmap_cpu_on_node(pgdat);
2117 	return 0;
2118 }
2119 
2120 /**
2121  * try_offline_node
2122  *
2123  * Offline a node if all memory sections and cpus of the node are removed.
2124  *
2125  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2126  * and online/offline operations before this call.
2127  */
2128 void try_offline_node(int nid)
2129 {
2130 	pg_data_t *pgdat = NODE_DATA(nid);
2131 	unsigned long start_pfn = pgdat->node_start_pfn;
2132 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2133 	unsigned long pfn;
2134 	int i;
2135 
2136 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2137 		unsigned long section_nr = pfn_to_section_nr(pfn);
2138 
2139 		if (!present_section_nr(section_nr))
2140 			continue;
2141 
2142 		if (pfn_to_nid(pfn) != nid)
2143 			continue;
2144 
2145 		/*
2146 		 * some memory sections of this node are not removed, and we
2147 		 * can't offline node now.
2148 		 */
2149 		return;
2150 	}
2151 
2152 	if (check_and_unmap_cpu_on_node(pgdat))
2153 		return;
2154 
2155 	/*
2156 	 * all memory/cpu of this node are removed, we can offline this
2157 	 * node now.
2158 	 */
2159 	node_set_offline(nid);
2160 	unregister_one_node(nid);
2161 
2162 	/* free waittable in each zone */
2163 	for (i = 0; i < MAX_NR_ZONES; i++) {
2164 		struct zone *zone = pgdat->node_zones + i;
2165 
2166 		/*
2167 		 * wait_table may be allocated from boot memory,
2168 		 * here only free if it's allocated by vmalloc.
2169 		 */
2170 		if (is_vmalloc_addr(zone->wait_table)) {
2171 			vfree(zone->wait_table);
2172 			zone->wait_table = NULL;
2173 		}
2174 	}
2175 }
2176 EXPORT_SYMBOL(try_offline_node);
2177 
2178 /**
2179  * remove_memory
2180  *
2181  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2182  * and online/offline operations before this call, as required by
2183  * try_offline_node().
2184  */
2185 void __ref remove_memory(int nid, u64 start, u64 size)
2186 {
2187 	int ret;
2188 
2189 	BUG_ON(check_hotplug_memory_range(start, size));
2190 
2191 	mem_hotplug_begin();
2192 
2193 	/*
2194 	 * All memory blocks must be offlined before removing memory.  Check
2195 	 * whether all memory blocks in question are offline and trigger a BUG()
2196 	 * if this is not the case.
2197 	 */
2198 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2199 				check_memblock_offlined_cb);
2200 	if (ret)
2201 		BUG();
2202 
2203 	/* remove memmap entry */
2204 	firmware_map_remove(start, start + size, "System RAM");
2205 	memblock_free(start, size);
2206 	memblock_remove(start, size);
2207 
2208 	arch_remove_memory(start, size);
2209 
2210 	try_offline_node(nid);
2211 
2212 	mem_hotplug_done();
2213 }
2214 EXPORT_SYMBOL_GPL(remove_memory);
2215 #endif /* CONFIG_MEMORY_HOTREMOVE */
2216