1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 return; 136 } 137 138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 139 void get_page_bootmem(unsigned long info, struct page *page, 140 unsigned long type) 141 { 142 page->freelist = (void *)type; 143 SetPagePrivate(page); 144 set_page_private(page, info); 145 page_ref_inc(page); 146 } 147 148 void put_page_bootmem(struct page *page) 149 { 150 unsigned long type; 151 152 type = (unsigned long) page->freelist; 153 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 154 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 155 156 if (page_ref_dec_return(page) == 1) { 157 page->freelist = NULL; 158 ClearPagePrivate(page); 159 set_page_private(page, 0); 160 INIT_LIST_HEAD(&page->lru); 161 free_reserved_page(page); 162 } 163 } 164 165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 166 #ifndef CONFIG_SPARSEMEM_VMEMMAP 167 static void register_page_bootmem_info_section(unsigned long start_pfn) 168 { 169 unsigned long mapsize, section_nr, i; 170 struct mem_section *ms; 171 struct page *page, *memmap; 172 struct mem_section_usage *usage; 173 174 section_nr = pfn_to_section_nr(start_pfn); 175 ms = __nr_to_section(section_nr); 176 177 /* Get section's memmap address */ 178 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 179 180 /* 181 * Get page for the memmap's phys address 182 * XXX: need more consideration for sparse_vmemmap... 183 */ 184 page = virt_to_page(memmap); 185 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 186 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 187 188 /* remember memmap's page */ 189 for (i = 0; i < mapsize; i++, page++) 190 get_page_bootmem(section_nr, page, SECTION_INFO); 191 192 usage = ms->usage; 193 page = virt_to_page(usage); 194 195 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 196 197 for (i = 0; i < mapsize; i++, page++) 198 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 199 200 } 201 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 202 static void register_page_bootmem_info_section(unsigned long start_pfn) 203 { 204 unsigned long mapsize, section_nr, i; 205 struct mem_section *ms; 206 struct page *page, *memmap; 207 struct mem_section_usage *usage; 208 209 section_nr = pfn_to_section_nr(start_pfn); 210 ms = __nr_to_section(section_nr); 211 212 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 213 214 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 215 216 usage = ms->usage; 217 page = virt_to_page(usage); 218 219 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 220 221 for (i = 0; i < mapsize; i++, page++) 222 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 223 } 224 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 225 226 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 227 { 228 unsigned long i, pfn, end_pfn, nr_pages; 229 int node = pgdat->node_id; 230 struct page *page; 231 232 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 233 page = virt_to_page(pgdat); 234 235 for (i = 0; i < nr_pages; i++, page++) 236 get_page_bootmem(node, page, NODE_INFO); 237 238 pfn = pgdat->node_start_pfn; 239 end_pfn = pgdat_end_pfn(pgdat); 240 241 /* register section info */ 242 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 243 /* 244 * Some platforms can assign the same pfn to multiple nodes - on 245 * node0 as well as nodeN. To avoid registering a pfn against 246 * multiple nodes we check that this pfn does not already 247 * reside in some other nodes. 248 */ 249 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 250 register_page_bootmem_info_section(pfn); 251 } 252 } 253 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 254 255 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 256 const char *reason) 257 { 258 /* 259 * Disallow all operations smaller than a sub-section and only 260 * allow operations smaller than a section for 261 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 262 * enforces a larger memory_block_size_bytes() granularity for 263 * memory that will be marked online, so this check should only 264 * fire for direct arch_{add,remove}_memory() users outside of 265 * add_memory_resource(). 266 */ 267 unsigned long min_align; 268 269 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 270 min_align = PAGES_PER_SUBSECTION; 271 else 272 min_align = PAGES_PER_SECTION; 273 if (!IS_ALIGNED(pfn, min_align) 274 || !IS_ALIGNED(nr_pages, min_align)) { 275 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 276 reason, pfn, pfn + nr_pages - 1); 277 return -EINVAL; 278 } 279 return 0; 280 } 281 282 /* 283 * Reasonably generic function for adding memory. It is 284 * expected that archs that support memory hotplug will 285 * call this function after deciding the zone to which to 286 * add the new pages. 287 */ 288 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 289 struct mhp_restrictions *restrictions) 290 { 291 int err; 292 unsigned long nr, start_sec, end_sec; 293 struct vmem_altmap *altmap = restrictions->altmap; 294 295 if (altmap) { 296 /* 297 * Validate altmap is within bounds of the total request 298 */ 299 if (altmap->base_pfn != pfn 300 || vmem_altmap_offset(altmap) > nr_pages) { 301 pr_warn_once("memory add fail, invalid altmap\n"); 302 return -EINVAL; 303 } 304 altmap->alloc = 0; 305 } 306 307 err = check_pfn_span(pfn, nr_pages, "add"); 308 if (err) 309 return err; 310 311 start_sec = pfn_to_section_nr(pfn); 312 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 313 for (nr = start_sec; nr <= end_sec; nr++) { 314 unsigned long pfns; 315 316 pfns = min(nr_pages, PAGES_PER_SECTION 317 - (pfn & ~PAGE_SECTION_MASK)); 318 err = sparse_add_section(nid, pfn, pfns, altmap); 319 if (err) 320 break; 321 pfn += pfns; 322 nr_pages -= pfns; 323 cond_resched(); 324 } 325 vmemmap_populate_print_last(); 326 return err; 327 } 328 329 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 330 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 331 unsigned long start_pfn, 332 unsigned long end_pfn) 333 { 334 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 335 if (unlikely(!pfn_valid(start_pfn))) 336 continue; 337 338 if (unlikely(pfn_to_nid(start_pfn) != nid)) 339 continue; 340 341 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 342 continue; 343 344 return start_pfn; 345 } 346 347 return 0; 348 } 349 350 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 351 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 352 unsigned long start_pfn, 353 unsigned long end_pfn) 354 { 355 unsigned long pfn; 356 357 /* pfn is the end pfn of a memory section. */ 358 pfn = end_pfn - 1; 359 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 360 if (unlikely(!pfn_valid(pfn))) 361 continue; 362 363 if (unlikely(pfn_to_nid(pfn) != nid)) 364 continue; 365 366 if (zone && zone != page_zone(pfn_to_page(pfn))) 367 continue; 368 369 return pfn; 370 } 371 372 return 0; 373 } 374 375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 376 unsigned long end_pfn) 377 { 378 unsigned long zone_start_pfn = zone->zone_start_pfn; 379 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 380 unsigned long zone_end_pfn = z; 381 unsigned long pfn; 382 int nid = zone_to_nid(zone); 383 384 zone_span_writelock(zone); 385 if (zone_start_pfn == start_pfn) { 386 /* 387 * If the section is smallest section in the zone, it need 388 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 389 * In this case, we find second smallest valid mem_section 390 * for shrinking zone. 391 */ 392 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 393 zone_end_pfn); 394 if (pfn) { 395 zone->zone_start_pfn = pfn; 396 zone->spanned_pages = zone_end_pfn - pfn; 397 } 398 } else if (zone_end_pfn == end_pfn) { 399 /* 400 * If the section is biggest section in the zone, it need 401 * shrink zone->spanned_pages. 402 * In this case, we find second biggest valid mem_section for 403 * shrinking zone. 404 */ 405 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 406 start_pfn); 407 if (pfn) 408 zone->spanned_pages = pfn - zone_start_pfn + 1; 409 } 410 411 /* 412 * The section is not biggest or smallest mem_section in the zone, it 413 * only creates a hole in the zone. So in this case, we need not 414 * change the zone. But perhaps, the zone has only hole data. Thus 415 * it check the zone has only hole or not. 416 */ 417 pfn = zone_start_pfn; 418 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) { 419 if (unlikely(!pfn_valid(pfn))) 420 continue; 421 422 if (page_zone(pfn_to_page(pfn)) != zone) 423 continue; 424 425 /* Skip range to be removed */ 426 if (pfn >= start_pfn && pfn < end_pfn) 427 continue; 428 429 /* If we find valid section, we have nothing to do */ 430 zone_span_writeunlock(zone); 431 return; 432 } 433 434 /* The zone has no valid section */ 435 zone->zone_start_pfn = 0; 436 zone->spanned_pages = 0; 437 zone_span_writeunlock(zone); 438 } 439 440 static void shrink_pgdat_span(struct pglist_data *pgdat, 441 unsigned long start_pfn, unsigned long end_pfn) 442 { 443 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 444 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 445 unsigned long pgdat_end_pfn = p; 446 unsigned long pfn; 447 int nid = pgdat->node_id; 448 449 if (pgdat_start_pfn == start_pfn) { 450 /* 451 * If the section is smallest section in the pgdat, it need 452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 453 * In this case, we find second smallest valid mem_section 454 * for shrinking zone. 455 */ 456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 457 pgdat_end_pfn); 458 if (pfn) { 459 pgdat->node_start_pfn = pfn; 460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 461 } 462 } else if (pgdat_end_pfn == end_pfn) { 463 /* 464 * If the section is biggest section in the pgdat, it need 465 * shrink pgdat->node_spanned_pages. 466 * In this case, we find second biggest valid mem_section for 467 * shrinking zone. 468 */ 469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 470 start_pfn); 471 if (pfn) 472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 473 } 474 475 /* 476 * If the section is not biggest or smallest mem_section in the pgdat, 477 * it only creates a hole in the pgdat. So in this case, we need not 478 * change the pgdat. 479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 480 * has only hole or not. 481 */ 482 pfn = pgdat_start_pfn; 483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) { 484 if (unlikely(!pfn_valid(pfn))) 485 continue; 486 487 if (pfn_to_nid(pfn) != nid) 488 continue; 489 490 /* Skip range to be removed */ 491 if (pfn >= start_pfn && pfn < end_pfn) 492 continue; 493 494 /* If we find valid section, we have nothing to do */ 495 return; 496 } 497 498 /* The pgdat has no valid section */ 499 pgdat->node_start_pfn = 0; 500 pgdat->node_spanned_pages = 0; 501 } 502 503 static void __remove_zone(struct zone *zone, unsigned long start_pfn, 504 unsigned long nr_pages) 505 { 506 struct pglist_data *pgdat = zone->zone_pgdat; 507 unsigned long flags; 508 509 pgdat_resize_lock(zone->zone_pgdat, &flags); 510 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 511 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 512 pgdat_resize_unlock(zone->zone_pgdat, &flags); 513 } 514 515 static void __remove_section(struct zone *zone, unsigned long pfn, 516 unsigned long nr_pages, unsigned long map_offset, 517 struct vmem_altmap *altmap) 518 { 519 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn)); 520 521 if (WARN_ON_ONCE(!valid_section(ms))) 522 return; 523 524 __remove_zone(zone, pfn, nr_pages); 525 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 526 } 527 528 /** 529 * __remove_pages() - remove sections of pages from a zone 530 * @zone: zone from which pages need to be removed 531 * @pfn: starting pageframe (must be aligned to start of a section) 532 * @nr_pages: number of pages to remove (must be multiple of section size) 533 * @altmap: alternative device page map or %NULL if default memmap is used 534 * 535 * Generic helper function to remove section mappings and sysfs entries 536 * for the section of the memory we are removing. Caller needs to make 537 * sure that pages are marked reserved and zones are adjust properly by 538 * calling offline_pages(). 539 */ 540 void __remove_pages(struct zone *zone, unsigned long pfn, 541 unsigned long nr_pages, struct vmem_altmap *altmap) 542 { 543 unsigned long map_offset = 0; 544 unsigned long nr, start_sec, end_sec; 545 546 map_offset = vmem_altmap_offset(altmap); 547 548 clear_zone_contiguous(zone); 549 550 if (check_pfn_span(pfn, nr_pages, "remove")) 551 return; 552 553 start_sec = pfn_to_section_nr(pfn); 554 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 555 for (nr = start_sec; nr <= end_sec; nr++) { 556 unsigned long pfns; 557 558 cond_resched(); 559 pfns = min(nr_pages, PAGES_PER_SECTION 560 - (pfn & ~PAGE_SECTION_MASK)); 561 __remove_section(zone, pfn, pfns, map_offset, altmap); 562 pfn += pfns; 563 nr_pages -= pfns; 564 map_offset = 0; 565 } 566 567 set_zone_contiguous(zone); 568 } 569 570 int set_online_page_callback(online_page_callback_t callback) 571 { 572 int rc = -EINVAL; 573 574 get_online_mems(); 575 mutex_lock(&online_page_callback_lock); 576 577 if (online_page_callback == generic_online_page) { 578 online_page_callback = callback; 579 rc = 0; 580 } 581 582 mutex_unlock(&online_page_callback_lock); 583 put_online_mems(); 584 585 return rc; 586 } 587 EXPORT_SYMBOL_GPL(set_online_page_callback); 588 589 int restore_online_page_callback(online_page_callback_t callback) 590 { 591 int rc = -EINVAL; 592 593 get_online_mems(); 594 mutex_lock(&online_page_callback_lock); 595 596 if (online_page_callback == callback) { 597 online_page_callback = generic_online_page; 598 rc = 0; 599 } 600 601 mutex_unlock(&online_page_callback_lock); 602 put_online_mems(); 603 604 return rc; 605 } 606 EXPORT_SYMBOL_GPL(restore_online_page_callback); 607 608 void __online_page_set_limits(struct page *page) 609 { 610 } 611 EXPORT_SYMBOL_GPL(__online_page_set_limits); 612 613 void __online_page_increment_counters(struct page *page) 614 { 615 adjust_managed_page_count(page, 1); 616 } 617 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 618 619 void __online_page_free(struct page *page) 620 { 621 __free_reserved_page(page); 622 } 623 EXPORT_SYMBOL_GPL(__online_page_free); 624 625 static void generic_online_page(struct page *page, unsigned int order) 626 { 627 kernel_map_pages(page, 1 << order, 1); 628 __free_pages_core(page, order); 629 totalram_pages_add(1UL << order); 630 #ifdef CONFIG_HIGHMEM 631 if (PageHighMem(page)) 632 totalhigh_pages_add(1UL << order); 633 #endif 634 } 635 636 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 637 { 638 unsigned long end = start + nr_pages; 639 int order, onlined_pages = 0; 640 641 while (start < end) { 642 order = min(MAX_ORDER - 1, 643 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 644 (*online_page_callback)(pfn_to_page(start), order); 645 646 onlined_pages += (1UL << order); 647 start += (1UL << order); 648 } 649 return onlined_pages; 650 } 651 652 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 653 void *arg) 654 { 655 unsigned long onlined_pages = *(unsigned long *)arg; 656 657 if (PageReserved(pfn_to_page(start_pfn))) 658 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 659 660 online_mem_sections(start_pfn, start_pfn + nr_pages); 661 662 *(unsigned long *)arg = onlined_pages; 663 return 0; 664 } 665 666 /* check which state of node_states will be changed when online memory */ 667 static void node_states_check_changes_online(unsigned long nr_pages, 668 struct zone *zone, struct memory_notify *arg) 669 { 670 int nid = zone_to_nid(zone); 671 672 arg->status_change_nid = NUMA_NO_NODE; 673 arg->status_change_nid_normal = NUMA_NO_NODE; 674 arg->status_change_nid_high = NUMA_NO_NODE; 675 676 if (!node_state(nid, N_MEMORY)) 677 arg->status_change_nid = nid; 678 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 679 arg->status_change_nid_normal = nid; 680 #ifdef CONFIG_HIGHMEM 681 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 682 arg->status_change_nid_high = nid; 683 #endif 684 } 685 686 static void node_states_set_node(int node, struct memory_notify *arg) 687 { 688 if (arg->status_change_nid_normal >= 0) 689 node_set_state(node, N_NORMAL_MEMORY); 690 691 if (arg->status_change_nid_high >= 0) 692 node_set_state(node, N_HIGH_MEMORY); 693 694 if (arg->status_change_nid >= 0) 695 node_set_state(node, N_MEMORY); 696 } 697 698 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 699 unsigned long nr_pages) 700 { 701 unsigned long old_end_pfn = zone_end_pfn(zone); 702 703 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 704 zone->zone_start_pfn = start_pfn; 705 706 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 707 } 708 709 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 710 unsigned long nr_pages) 711 { 712 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 713 714 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 715 pgdat->node_start_pfn = start_pfn; 716 717 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 718 } 719 720 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 721 unsigned long nr_pages, struct vmem_altmap *altmap) 722 { 723 struct pglist_data *pgdat = zone->zone_pgdat; 724 int nid = pgdat->node_id; 725 unsigned long flags; 726 727 clear_zone_contiguous(zone); 728 729 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 730 pgdat_resize_lock(pgdat, &flags); 731 zone_span_writelock(zone); 732 if (zone_is_empty(zone)) 733 init_currently_empty_zone(zone, start_pfn, nr_pages); 734 resize_zone_range(zone, start_pfn, nr_pages); 735 zone_span_writeunlock(zone); 736 resize_pgdat_range(pgdat, start_pfn, nr_pages); 737 pgdat_resize_unlock(pgdat, &flags); 738 739 /* 740 * TODO now we have a visible range of pages which are not associated 741 * with their zone properly. Not nice but set_pfnblock_flags_mask 742 * expects the zone spans the pfn range. All the pages in the range 743 * are reserved so nobody should be touching them so we should be safe 744 */ 745 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 746 MEMMAP_HOTPLUG, altmap); 747 748 set_zone_contiguous(zone); 749 } 750 751 /* 752 * Returns a default kernel memory zone for the given pfn range. 753 * If no kernel zone covers this pfn range it will automatically go 754 * to the ZONE_NORMAL. 755 */ 756 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 757 unsigned long nr_pages) 758 { 759 struct pglist_data *pgdat = NODE_DATA(nid); 760 int zid; 761 762 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 763 struct zone *zone = &pgdat->node_zones[zid]; 764 765 if (zone_intersects(zone, start_pfn, nr_pages)) 766 return zone; 767 } 768 769 return &pgdat->node_zones[ZONE_NORMAL]; 770 } 771 772 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 773 unsigned long nr_pages) 774 { 775 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 776 nr_pages); 777 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 778 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 779 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 780 781 /* 782 * We inherit the existing zone in a simple case where zones do not 783 * overlap in the given range 784 */ 785 if (in_kernel ^ in_movable) 786 return (in_kernel) ? kernel_zone : movable_zone; 787 788 /* 789 * If the range doesn't belong to any zone or two zones overlap in the 790 * given range then we use movable zone only if movable_node is 791 * enabled because we always online to a kernel zone by default. 792 */ 793 return movable_node_enabled ? movable_zone : kernel_zone; 794 } 795 796 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 797 unsigned long nr_pages) 798 { 799 if (online_type == MMOP_ONLINE_KERNEL) 800 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 801 802 if (online_type == MMOP_ONLINE_MOVABLE) 803 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 804 805 return default_zone_for_pfn(nid, start_pfn, nr_pages); 806 } 807 808 /* 809 * Associates the given pfn range with the given node and the zone appropriate 810 * for the given online type. 811 */ 812 static struct zone * __meminit move_pfn_range(int online_type, int nid, 813 unsigned long start_pfn, unsigned long nr_pages) 814 { 815 struct zone *zone; 816 817 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 818 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 819 return zone; 820 } 821 822 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 823 { 824 unsigned long flags; 825 unsigned long onlined_pages = 0; 826 struct zone *zone; 827 int need_zonelists_rebuild = 0; 828 int nid; 829 int ret; 830 struct memory_notify arg; 831 struct memory_block *mem; 832 833 mem_hotplug_begin(); 834 835 /* 836 * We can't use pfn_to_nid() because nid might be stored in struct page 837 * which is not yet initialized. Instead, we find nid from memory block. 838 */ 839 mem = find_memory_block(__pfn_to_section(pfn)); 840 nid = mem->nid; 841 put_device(&mem->dev); 842 843 /* associate pfn range with the zone */ 844 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 845 846 arg.start_pfn = pfn; 847 arg.nr_pages = nr_pages; 848 node_states_check_changes_online(nr_pages, zone, &arg); 849 850 ret = memory_notify(MEM_GOING_ONLINE, &arg); 851 ret = notifier_to_errno(ret); 852 if (ret) 853 goto failed_addition; 854 855 /* 856 * If this zone is not populated, then it is not in zonelist. 857 * This means the page allocator ignores this zone. 858 * So, zonelist must be updated after online. 859 */ 860 if (!populated_zone(zone)) { 861 need_zonelists_rebuild = 1; 862 setup_zone_pageset(zone); 863 } 864 865 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 866 online_pages_range); 867 if (ret) { 868 if (need_zonelists_rebuild) 869 zone_pcp_reset(zone); 870 goto failed_addition; 871 } 872 873 zone->present_pages += onlined_pages; 874 875 pgdat_resize_lock(zone->zone_pgdat, &flags); 876 zone->zone_pgdat->node_present_pages += onlined_pages; 877 pgdat_resize_unlock(zone->zone_pgdat, &flags); 878 879 shuffle_zone(zone); 880 881 if (onlined_pages) { 882 node_states_set_node(nid, &arg); 883 if (need_zonelists_rebuild) 884 build_all_zonelists(NULL); 885 else 886 zone_pcp_update(zone); 887 } 888 889 init_per_zone_wmark_min(); 890 891 if (onlined_pages) { 892 kswapd_run(nid); 893 kcompactd_run(nid); 894 } 895 896 vm_total_pages = nr_free_pagecache_pages(); 897 898 writeback_set_ratelimit(); 899 900 if (onlined_pages) 901 memory_notify(MEM_ONLINE, &arg); 902 mem_hotplug_done(); 903 return 0; 904 905 failed_addition: 906 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 907 (unsigned long long) pfn << PAGE_SHIFT, 908 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 909 memory_notify(MEM_CANCEL_ONLINE, &arg); 910 mem_hotplug_done(); 911 return ret; 912 } 913 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 914 915 static void reset_node_present_pages(pg_data_t *pgdat) 916 { 917 struct zone *z; 918 919 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 920 z->present_pages = 0; 921 922 pgdat->node_present_pages = 0; 923 } 924 925 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 926 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 927 { 928 struct pglist_data *pgdat; 929 unsigned long start_pfn = PFN_DOWN(start); 930 931 pgdat = NODE_DATA(nid); 932 if (!pgdat) { 933 pgdat = arch_alloc_nodedata(nid); 934 if (!pgdat) 935 return NULL; 936 937 arch_refresh_nodedata(nid, pgdat); 938 } else { 939 /* 940 * Reset the nr_zones, order and classzone_idx before reuse. 941 * Note that kswapd will init kswapd_classzone_idx properly 942 * when it starts in the near future. 943 */ 944 pgdat->nr_zones = 0; 945 pgdat->kswapd_order = 0; 946 pgdat->kswapd_classzone_idx = 0; 947 } 948 949 /* we can use NODE_DATA(nid) from here */ 950 951 pgdat->node_id = nid; 952 pgdat->node_start_pfn = start_pfn; 953 954 /* init node's zones as empty zones, we don't have any present pages.*/ 955 free_area_init_core_hotplug(nid); 956 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 957 958 /* 959 * The node we allocated has no zone fallback lists. For avoiding 960 * to access not-initialized zonelist, build here. 961 */ 962 build_all_zonelists(pgdat); 963 964 /* 965 * When memory is hot-added, all the memory is in offline state. So 966 * clear all zones' present_pages because they will be updated in 967 * online_pages() and offline_pages(). 968 */ 969 reset_node_managed_pages(pgdat); 970 reset_node_present_pages(pgdat); 971 972 return pgdat; 973 } 974 975 static void rollback_node_hotadd(int nid) 976 { 977 pg_data_t *pgdat = NODE_DATA(nid); 978 979 arch_refresh_nodedata(nid, NULL); 980 free_percpu(pgdat->per_cpu_nodestats); 981 arch_free_nodedata(pgdat); 982 return; 983 } 984 985 986 /** 987 * try_online_node - online a node if offlined 988 * @nid: the node ID 989 * @start: start addr of the node 990 * @set_node_online: Whether we want to online the node 991 * called by cpu_up() to online a node without onlined memory. 992 * 993 * Returns: 994 * 1 -> a new node has been allocated 995 * 0 -> the node is already online 996 * -ENOMEM -> the node could not be allocated 997 */ 998 static int __try_online_node(int nid, u64 start, bool set_node_online) 999 { 1000 pg_data_t *pgdat; 1001 int ret = 1; 1002 1003 if (node_online(nid)) 1004 return 0; 1005 1006 pgdat = hotadd_new_pgdat(nid, start); 1007 if (!pgdat) { 1008 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1009 ret = -ENOMEM; 1010 goto out; 1011 } 1012 1013 if (set_node_online) { 1014 node_set_online(nid); 1015 ret = register_one_node(nid); 1016 BUG_ON(ret); 1017 } 1018 out: 1019 return ret; 1020 } 1021 1022 /* 1023 * Users of this function always want to online/register the node 1024 */ 1025 int try_online_node(int nid) 1026 { 1027 int ret; 1028 1029 mem_hotplug_begin(); 1030 ret = __try_online_node(nid, 0, true); 1031 mem_hotplug_done(); 1032 return ret; 1033 } 1034 1035 static int check_hotplug_memory_range(u64 start, u64 size) 1036 { 1037 /* memory range must be block size aligned */ 1038 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1039 !IS_ALIGNED(size, memory_block_size_bytes())) { 1040 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1041 memory_block_size_bytes(), start, size); 1042 return -EINVAL; 1043 } 1044 1045 return 0; 1046 } 1047 1048 static int online_memory_block(struct memory_block *mem, void *arg) 1049 { 1050 return device_online(&mem->dev); 1051 } 1052 1053 /* 1054 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1055 * and online/offline operations (triggered e.g. by sysfs). 1056 * 1057 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1058 */ 1059 int __ref add_memory_resource(int nid, struct resource *res) 1060 { 1061 struct mhp_restrictions restrictions = {}; 1062 u64 start, size; 1063 bool new_node = false; 1064 int ret; 1065 1066 start = res->start; 1067 size = resource_size(res); 1068 1069 ret = check_hotplug_memory_range(start, size); 1070 if (ret) 1071 return ret; 1072 1073 mem_hotplug_begin(); 1074 1075 /* 1076 * Add new range to memblock so that when hotadd_new_pgdat() is called 1077 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1078 * this new range and calculate total pages correctly. The range will 1079 * be removed at hot-remove time. 1080 */ 1081 memblock_add_node(start, size, nid); 1082 1083 ret = __try_online_node(nid, start, false); 1084 if (ret < 0) 1085 goto error; 1086 new_node = ret; 1087 1088 /* call arch's memory hotadd */ 1089 ret = arch_add_memory(nid, start, size, &restrictions); 1090 if (ret < 0) 1091 goto error; 1092 1093 /* create memory block devices after memory was added */ 1094 ret = create_memory_block_devices(start, size); 1095 if (ret) { 1096 arch_remove_memory(nid, start, size, NULL); 1097 goto error; 1098 } 1099 1100 if (new_node) { 1101 /* If sysfs file of new node can't be created, cpu on the node 1102 * can't be hot-added. There is no rollback way now. 1103 * So, check by BUG_ON() to catch it reluctantly.. 1104 * We online node here. We can't roll back from here. 1105 */ 1106 node_set_online(nid); 1107 ret = __register_one_node(nid); 1108 BUG_ON(ret); 1109 } 1110 1111 /* link memory sections under this node.*/ 1112 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1113 BUG_ON(ret); 1114 1115 /* create new memmap entry */ 1116 firmware_map_add_hotplug(start, start + size, "System RAM"); 1117 1118 /* device_online() will take the lock when calling online_pages() */ 1119 mem_hotplug_done(); 1120 1121 /* online pages if requested */ 1122 if (memhp_auto_online) 1123 walk_memory_blocks(start, size, NULL, online_memory_block); 1124 1125 return ret; 1126 error: 1127 /* rollback pgdat allocation and others */ 1128 if (new_node) 1129 rollback_node_hotadd(nid); 1130 memblock_remove(start, size); 1131 mem_hotplug_done(); 1132 return ret; 1133 } 1134 1135 /* requires device_hotplug_lock, see add_memory_resource() */ 1136 int __ref __add_memory(int nid, u64 start, u64 size) 1137 { 1138 struct resource *res; 1139 int ret; 1140 1141 res = register_memory_resource(start, size); 1142 if (IS_ERR(res)) 1143 return PTR_ERR(res); 1144 1145 ret = add_memory_resource(nid, res); 1146 if (ret < 0) 1147 release_memory_resource(res); 1148 return ret; 1149 } 1150 1151 int add_memory(int nid, u64 start, u64 size) 1152 { 1153 int rc; 1154 1155 lock_device_hotplug(); 1156 rc = __add_memory(nid, start, size); 1157 unlock_device_hotplug(); 1158 1159 return rc; 1160 } 1161 EXPORT_SYMBOL_GPL(add_memory); 1162 1163 #ifdef CONFIG_MEMORY_HOTREMOVE 1164 /* 1165 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1166 * set and the size of the free page is given by page_order(). Using this, 1167 * the function determines if the pageblock contains only free pages. 1168 * Due to buddy contraints, a free page at least the size of a pageblock will 1169 * be located at the start of the pageblock 1170 */ 1171 static inline int pageblock_free(struct page *page) 1172 { 1173 return PageBuddy(page) && page_order(page) >= pageblock_order; 1174 } 1175 1176 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1177 static unsigned long next_active_pageblock(unsigned long pfn) 1178 { 1179 struct page *page = pfn_to_page(pfn); 1180 1181 /* Ensure the starting page is pageblock-aligned */ 1182 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1183 1184 /* If the entire pageblock is free, move to the end of free page */ 1185 if (pageblock_free(page)) { 1186 int order; 1187 /* be careful. we don't have locks, page_order can be changed.*/ 1188 order = page_order(page); 1189 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1190 return pfn + (1 << order); 1191 } 1192 1193 return pfn + pageblock_nr_pages; 1194 } 1195 1196 static bool is_pageblock_removable_nolock(unsigned long pfn) 1197 { 1198 struct page *page = pfn_to_page(pfn); 1199 struct zone *zone; 1200 1201 /* 1202 * We have to be careful here because we are iterating over memory 1203 * sections which are not zone aware so we might end up outside of 1204 * the zone but still within the section. 1205 * We have to take care about the node as well. If the node is offline 1206 * its NODE_DATA will be NULL - see page_zone. 1207 */ 1208 if (!node_online(page_to_nid(page))) 1209 return false; 1210 1211 zone = page_zone(page); 1212 pfn = page_to_pfn(page); 1213 if (!zone_spans_pfn(zone, pfn)) 1214 return false; 1215 1216 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1217 } 1218 1219 /* Checks if this range of memory is likely to be hot-removable. */ 1220 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1221 { 1222 unsigned long end_pfn, pfn; 1223 1224 end_pfn = min(start_pfn + nr_pages, 1225 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1226 1227 /* Check the starting page of each pageblock within the range */ 1228 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1229 if (!is_pageblock_removable_nolock(pfn)) 1230 return false; 1231 cond_resched(); 1232 } 1233 1234 /* All pageblocks in the memory block are likely to be hot-removable */ 1235 return true; 1236 } 1237 1238 /* 1239 * Confirm all pages in a range [start, end) belong to the same zone. 1240 * When true, return its valid [start, end). 1241 */ 1242 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1243 unsigned long *valid_start, unsigned long *valid_end) 1244 { 1245 unsigned long pfn, sec_end_pfn; 1246 unsigned long start, end; 1247 struct zone *zone = NULL; 1248 struct page *page; 1249 int i; 1250 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1251 pfn < end_pfn; 1252 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1253 /* Make sure the memory section is present first */ 1254 if (!present_section_nr(pfn_to_section_nr(pfn))) 1255 continue; 1256 for (; pfn < sec_end_pfn && pfn < end_pfn; 1257 pfn += MAX_ORDER_NR_PAGES) { 1258 i = 0; 1259 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1260 while ((i < MAX_ORDER_NR_PAGES) && 1261 !pfn_valid_within(pfn + i)) 1262 i++; 1263 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1264 continue; 1265 /* Check if we got outside of the zone */ 1266 if (zone && !zone_spans_pfn(zone, pfn + i)) 1267 return 0; 1268 page = pfn_to_page(pfn + i); 1269 if (zone && page_zone(page) != zone) 1270 return 0; 1271 if (!zone) 1272 start = pfn + i; 1273 zone = page_zone(page); 1274 end = pfn + MAX_ORDER_NR_PAGES; 1275 } 1276 } 1277 1278 if (zone) { 1279 *valid_start = start; 1280 *valid_end = min(end, end_pfn); 1281 return 1; 1282 } else { 1283 return 0; 1284 } 1285 } 1286 1287 /* 1288 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1289 * non-lru movable pages and hugepages). We scan pfn because it's much 1290 * easier than scanning over linked list. This function returns the pfn 1291 * of the first found movable page if it's found, otherwise 0. 1292 */ 1293 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1294 { 1295 unsigned long pfn; 1296 1297 for (pfn = start; pfn < end; pfn++) { 1298 struct page *page, *head; 1299 unsigned long skip; 1300 1301 if (!pfn_valid(pfn)) 1302 continue; 1303 page = pfn_to_page(pfn); 1304 if (PageLRU(page)) 1305 return pfn; 1306 if (__PageMovable(page)) 1307 return pfn; 1308 1309 if (!PageHuge(page)) 1310 continue; 1311 head = compound_head(page); 1312 if (page_huge_active(head)) 1313 return pfn; 1314 skip = (1 << compound_order(head)) - (page - head); 1315 pfn += skip - 1; 1316 } 1317 return 0; 1318 } 1319 1320 static struct page *new_node_page(struct page *page, unsigned long private) 1321 { 1322 int nid = page_to_nid(page); 1323 nodemask_t nmask = node_states[N_MEMORY]; 1324 1325 /* 1326 * try to allocate from a different node but reuse this node if there 1327 * are no other online nodes to be used (e.g. we are offlining a part 1328 * of the only existing node) 1329 */ 1330 node_clear(nid, nmask); 1331 if (nodes_empty(nmask)) 1332 node_set(nid, nmask); 1333 1334 return new_page_nodemask(page, nid, &nmask); 1335 } 1336 1337 static int 1338 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1339 { 1340 unsigned long pfn; 1341 struct page *page; 1342 int ret = 0; 1343 LIST_HEAD(source); 1344 1345 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1346 if (!pfn_valid(pfn)) 1347 continue; 1348 page = pfn_to_page(pfn); 1349 1350 if (PageHuge(page)) { 1351 struct page *head = compound_head(page); 1352 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1353 isolate_huge_page(head, &source); 1354 continue; 1355 } else if (PageTransHuge(page)) 1356 pfn = page_to_pfn(compound_head(page)) 1357 + hpage_nr_pages(page) - 1; 1358 1359 /* 1360 * HWPoison pages have elevated reference counts so the migration would 1361 * fail on them. It also doesn't make any sense to migrate them in the 1362 * first place. Still try to unmap such a page in case it is still mapped 1363 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1364 * the unmap as the catch all safety net). 1365 */ 1366 if (PageHWPoison(page)) { 1367 if (WARN_ON(PageLRU(page))) 1368 isolate_lru_page(page); 1369 if (page_mapped(page)) 1370 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1371 continue; 1372 } 1373 1374 if (!get_page_unless_zero(page)) 1375 continue; 1376 /* 1377 * We can skip free pages. And we can deal with pages on 1378 * LRU and non-lru movable pages. 1379 */ 1380 if (PageLRU(page)) 1381 ret = isolate_lru_page(page); 1382 else 1383 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1384 if (!ret) { /* Success */ 1385 list_add_tail(&page->lru, &source); 1386 if (!__PageMovable(page)) 1387 inc_node_page_state(page, NR_ISOLATED_ANON + 1388 page_is_file_cache(page)); 1389 1390 } else { 1391 pr_warn("failed to isolate pfn %lx\n", pfn); 1392 dump_page(page, "isolation failed"); 1393 } 1394 put_page(page); 1395 } 1396 if (!list_empty(&source)) { 1397 /* Allocate a new page from the nearest neighbor node */ 1398 ret = migrate_pages(&source, new_node_page, NULL, 0, 1399 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1400 if (ret) { 1401 list_for_each_entry(page, &source, lru) { 1402 pr_warn("migrating pfn %lx failed ret:%d ", 1403 page_to_pfn(page), ret); 1404 dump_page(page, "migration failure"); 1405 } 1406 putback_movable_pages(&source); 1407 } 1408 } 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * remove from free_area[] and mark all as Reserved. 1415 */ 1416 static int 1417 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1418 void *data) 1419 { 1420 unsigned long *offlined_pages = (unsigned long *)data; 1421 1422 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1423 return 0; 1424 } 1425 1426 /* 1427 * Check all pages in range, recoreded as memory resource, are isolated. 1428 */ 1429 static int 1430 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1431 void *data) 1432 { 1433 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1434 } 1435 1436 static int __init cmdline_parse_movable_node(char *p) 1437 { 1438 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1439 movable_node_enabled = true; 1440 #else 1441 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1442 #endif 1443 return 0; 1444 } 1445 early_param("movable_node", cmdline_parse_movable_node); 1446 1447 /* check which state of node_states will be changed when offline memory */ 1448 static void node_states_check_changes_offline(unsigned long nr_pages, 1449 struct zone *zone, struct memory_notify *arg) 1450 { 1451 struct pglist_data *pgdat = zone->zone_pgdat; 1452 unsigned long present_pages = 0; 1453 enum zone_type zt; 1454 1455 arg->status_change_nid = NUMA_NO_NODE; 1456 arg->status_change_nid_normal = NUMA_NO_NODE; 1457 arg->status_change_nid_high = NUMA_NO_NODE; 1458 1459 /* 1460 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1461 * If the memory to be offline is within the range 1462 * [0..ZONE_NORMAL], and it is the last present memory there, 1463 * the zones in that range will become empty after the offlining, 1464 * thus we can determine that we need to clear the node from 1465 * node_states[N_NORMAL_MEMORY]. 1466 */ 1467 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1468 present_pages += pgdat->node_zones[zt].present_pages; 1469 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1470 arg->status_change_nid_normal = zone_to_nid(zone); 1471 1472 #ifdef CONFIG_HIGHMEM 1473 /* 1474 * node_states[N_HIGH_MEMORY] contains nodes which 1475 * have normal memory or high memory. 1476 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1477 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1478 * we determine that the zones in that range become empty, 1479 * we need to clear the node for N_HIGH_MEMORY. 1480 */ 1481 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1482 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1483 arg->status_change_nid_high = zone_to_nid(zone); 1484 #endif 1485 1486 /* 1487 * We have accounted the pages from [0..ZONE_NORMAL), and 1488 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1489 * as well. 1490 * Here we count the possible pages from ZONE_MOVABLE. 1491 * If after having accounted all the pages, we see that the nr_pages 1492 * to be offlined is over or equal to the accounted pages, 1493 * we know that the node will become empty, and so, we can clear 1494 * it for N_MEMORY as well. 1495 */ 1496 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1497 1498 if (nr_pages >= present_pages) 1499 arg->status_change_nid = zone_to_nid(zone); 1500 } 1501 1502 static void node_states_clear_node(int node, struct memory_notify *arg) 1503 { 1504 if (arg->status_change_nid_normal >= 0) 1505 node_clear_state(node, N_NORMAL_MEMORY); 1506 1507 if (arg->status_change_nid_high >= 0) 1508 node_clear_state(node, N_HIGH_MEMORY); 1509 1510 if (arg->status_change_nid >= 0) 1511 node_clear_state(node, N_MEMORY); 1512 } 1513 1514 static int __ref __offline_pages(unsigned long start_pfn, 1515 unsigned long end_pfn) 1516 { 1517 unsigned long pfn, nr_pages; 1518 unsigned long offlined_pages = 0; 1519 int ret, node, nr_isolate_pageblock; 1520 unsigned long flags; 1521 unsigned long valid_start, valid_end; 1522 struct zone *zone; 1523 struct memory_notify arg; 1524 char *reason; 1525 1526 mem_hotplug_begin(); 1527 1528 /* This makes hotplug much easier...and readable. 1529 we assume this for now. .*/ 1530 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1531 &valid_end)) { 1532 ret = -EINVAL; 1533 reason = "multizone range"; 1534 goto failed_removal; 1535 } 1536 1537 zone = page_zone(pfn_to_page(valid_start)); 1538 node = zone_to_nid(zone); 1539 nr_pages = end_pfn - start_pfn; 1540 1541 /* set above range as isolated */ 1542 ret = start_isolate_page_range(start_pfn, end_pfn, 1543 MIGRATE_MOVABLE, 1544 SKIP_HWPOISON | REPORT_FAILURE); 1545 if (ret < 0) { 1546 reason = "failure to isolate range"; 1547 goto failed_removal; 1548 } 1549 nr_isolate_pageblock = ret; 1550 1551 arg.start_pfn = start_pfn; 1552 arg.nr_pages = nr_pages; 1553 node_states_check_changes_offline(nr_pages, zone, &arg); 1554 1555 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1556 ret = notifier_to_errno(ret); 1557 if (ret) { 1558 reason = "notifier failure"; 1559 goto failed_removal_isolated; 1560 } 1561 1562 do { 1563 for (pfn = start_pfn; pfn;) { 1564 if (signal_pending(current)) { 1565 ret = -EINTR; 1566 reason = "signal backoff"; 1567 goto failed_removal_isolated; 1568 } 1569 1570 cond_resched(); 1571 lru_add_drain_all(); 1572 1573 pfn = scan_movable_pages(pfn, end_pfn); 1574 if (pfn) { 1575 /* 1576 * TODO: fatal migration failures should bail 1577 * out 1578 */ 1579 do_migrate_range(pfn, end_pfn); 1580 } 1581 } 1582 1583 /* 1584 * Dissolve free hugepages in the memory block before doing 1585 * offlining actually in order to make hugetlbfs's object 1586 * counting consistent. 1587 */ 1588 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1589 if (ret) { 1590 reason = "failure to dissolve huge pages"; 1591 goto failed_removal_isolated; 1592 } 1593 /* check again */ 1594 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1595 NULL, check_pages_isolated_cb); 1596 } while (ret); 1597 1598 /* Ok, all of our target is isolated. 1599 We cannot do rollback at this point. */ 1600 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1601 &offlined_pages, offline_isolated_pages_cb); 1602 pr_info("Offlined Pages %ld\n", offlined_pages); 1603 /* 1604 * Onlining will reset pagetype flags and makes migrate type 1605 * MOVABLE, so just need to decrease the number of isolated 1606 * pageblocks zone counter here. 1607 */ 1608 spin_lock_irqsave(&zone->lock, flags); 1609 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1610 spin_unlock_irqrestore(&zone->lock, flags); 1611 1612 /* removal success */ 1613 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1614 zone->present_pages -= offlined_pages; 1615 1616 pgdat_resize_lock(zone->zone_pgdat, &flags); 1617 zone->zone_pgdat->node_present_pages -= offlined_pages; 1618 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1619 1620 init_per_zone_wmark_min(); 1621 1622 if (!populated_zone(zone)) { 1623 zone_pcp_reset(zone); 1624 build_all_zonelists(NULL); 1625 } else 1626 zone_pcp_update(zone); 1627 1628 node_states_clear_node(node, &arg); 1629 if (arg.status_change_nid >= 0) { 1630 kswapd_stop(node); 1631 kcompactd_stop(node); 1632 } 1633 1634 vm_total_pages = nr_free_pagecache_pages(); 1635 writeback_set_ratelimit(); 1636 1637 memory_notify(MEM_OFFLINE, &arg); 1638 mem_hotplug_done(); 1639 return 0; 1640 1641 failed_removal_isolated: 1642 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1643 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1644 failed_removal: 1645 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1646 (unsigned long long) start_pfn << PAGE_SHIFT, 1647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1648 reason); 1649 /* pushback to free area */ 1650 mem_hotplug_done(); 1651 return ret; 1652 } 1653 1654 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1655 { 1656 return __offline_pages(start_pfn, start_pfn + nr_pages); 1657 } 1658 1659 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1660 { 1661 int ret = !is_memblock_offlined(mem); 1662 1663 if (unlikely(ret)) { 1664 phys_addr_t beginpa, endpa; 1665 1666 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1667 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1668 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1669 &beginpa, &endpa); 1670 1671 return -EBUSY; 1672 } 1673 return 0; 1674 } 1675 1676 static int check_cpu_on_node(pg_data_t *pgdat) 1677 { 1678 int cpu; 1679 1680 for_each_present_cpu(cpu) { 1681 if (cpu_to_node(cpu) == pgdat->node_id) 1682 /* 1683 * the cpu on this node isn't removed, and we can't 1684 * offline this node. 1685 */ 1686 return -EBUSY; 1687 } 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * try_offline_node 1694 * @nid: the node ID 1695 * 1696 * Offline a node if all memory sections and cpus of the node are removed. 1697 * 1698 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1699 * and online/offline operations before this call. 1700 */ 1701 void try_offline_node(int nid) 1702 { 1703 pg_data_t *pgdat = NODE_DATA(nid); 1704 unsigned long start_pfn = pgdat->node_start_pfn; 1705 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1706 unsigned long pfn; 1707 1708 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1709 unsigned long section_nr = pfn_to_section_nr(pfn); 1710 1711 if (!present_section_nr(section_nr)) 1712 continue; 1713 1714 if (pfn_to_nid(pfn) != nid) 1715 continue; 1716 1717 /* 1718 * some memory sections of this node are not removed, and we 1719 * can't offline node now. 1720 */ 1721 return; 1722 } 1723 1724 if (check_cpu_on_node(pgdat)) 1725 return; 1726 1727 /* 1728 * all memory/cpu of this node are removed, we can offline this 1729 * node now. 1730 */ 1731 node_set_offline(nid); 1732 unregister_one_node(nid); 1733 } 1734 EXPORT_SYMBOL(try_offline_node); 1735 1736 static void __release_memory_resource(resource_size_t start, 1737 resource_size_t size) 1738 { 1739 int ret; 1740 1741 /* 1742 * When removing memory in the same granularity as it was added, 1743 * this function never fails. It might only fail if resources 1744 * have to be adjusted or split. We'll ignore the error, as 1745 * removing of memory cannot fail. 1746 */ 1747 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1748 if (ret) { 1749 resource_size_t endres = start + size - 1; 1750 1751 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1752 &start, &endres, ret); 1753 } 1754 } 1755 1756 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1757 { 1758 int rc = 0; 1759 1760 BUG_ON(check_hotplug_memory_range(start, size)); 1761 1762 mem_hotplug_begin(); 1763 1764 /* 1765 * All memory blocks must be offlined before removing memory. Check 1766 * whether all memory blocks in question are offline and return error 1767 * if this is not the case. 1768 */ 1769 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1770 if (rc) 1771 goto done; 1772 1773 /* remove memmap entry */ 1774 firmware_map_remove(start, start + size, "System RAM"); 1775 memblock_free(start, size); 1776 memblock_remove(start, size); 1777 1778 /* remove memory block devices before removing memory */ 1779 remove_memory_block_devices(start, size); 1780 1781 arch_remove_memory(nid, start, size, NULL); 1782 __release_memory_resource(start, size); 1783 1784 try_offline_node(nid); 1785 1786 done: 1787 mem_hotplug_done(); 1788 return rc; 1789 } 1790 1791 /** 1792 * remove_memory 1793 * @nid: the node ID 1794 * @start: physical address of the region to remove 1795 * @size: size of the region to remove 1796 * 1797 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1798 * and online/offline operations before this call, as required by 1799 * try_offline_node(). 1800 */ 1801 void __remove_memory(int nid, u64 start, u64 size) 1802 { 1803 1804 /* 1805 * trigger BUG() is some memory is not offlined prior to calling this 1806 * function 1807 */ 1808 if (try_remove_memory(nid, start, size)) 1809 BUG(); 1810 } 1811 1812 /* 1813 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1814 * some memory is not offline 1815 */ 1816 int remove_memory(int nid, u64 start, u64 size) 1817 { 1818 int rc; 1819 1820 lock_device_hotplug(); 1821 rc = try_remove_memory(nid, start, size); 1822 unlock_device_hotplug(); 1823 1824 return rc; 1825 } 1826 EXPORT_SYMBOL_GPL(remove_memory); 1827 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1828