xref: /openbmc/linux/mm/memory_hotplug.c (revision e23feb16)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 
35 #include <asm/tlbflush.h>
36 
37 #include "internal.h"
38 
39 /*
40  * online_page_callback contains pointer to current page onlining function.
41  * Initially it is generic_online_page(). If it is required it could be
42  * changed by calling set_online_page_callback() for callback registration
43  * and restore_online_page_callback() for generic callback restore.
44  */
45 
46 static void generic_online_page(struct page *page);
47 
48 static online_page_callback_t online_page_callback = generic_online_page;
49 
50 DEFINE_MUTEX(mem_hotplug_mutex);
51 
52 void lock_memory_hotplug(void)
53 {
54 	mutex_lock(&mem_hotplug_mutex);
55 }
56 
57 void unlock_memory_hotplug(void)
58 {
59 	mutex_unlock(&mem_hotplug_mutex);
60 }
61 
62 
63 /* add this memory to iomem resource */
64 static struct resource *register_memory_resource(u64 start, u64 size)
65 {
66 	struct resource *res;
67 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
68 	BUG_ON(!res);
69 
70 	res->name = "System RAM";
71 	res->start = start;
72 	res->end = start + size - 1;
73 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
74 	if (request_resource(&iomem_resource, res) < 0) {
75 		pr_debug("System RAM resource %pR cannot be added\n", res);
76 		kfree(res);
77 		res = NULL;
78 	}
79 	return res;
80 }
81 
82 static void release_memory_resource(struct resource *res)
83 {
84 	if (!res)
85 		return;
86 	release_resource(res);
87 	kfree(res);
88 	return;
89 }
90 
91 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
92 void get_page_bootmem(unsigned long info,  struct page *page,
93 		      unsigned long type)
94 {
95 	page->lru.next = (struct list_head *) type;
96 	SetPagePrivate(page);
97 	set_page_private(page, info);
98 	atomic_inc(&page->_count);
99 }
100 
101 void put_page_bootmem(struct page *page)
102 {
103 	unsigned long type;
104 
105 	type = (unsigned long) page->lru.next;
106 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
107 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
108 
109 	if (atomic_dec_return(&page->_count) == 1) {
110 		ClearPagePrivate(page);
111 		set_page_private(page, 0);
112 		INIT_LIST_HEAD(&page->lru);
113 		free_reserved_page(page);
114 	}
115 }
116 
117 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
118 #ifndef CONFIG_SPARSEMEM_VMEMMAP
119 static void register_page_bootmem_info_section(unsigned long start_pfn)
120 {
121 	unsigned long *usemap, mapsize, section_nr, i;
122 	struct mem_section *ms;
123 	struct page *page, *memmap;
124 
125 	section_nr = pfn_to_section_nr(start_pfn);
126 	ms = __nr_to_section(section_nr);
127 
128 	/* Get section's memmap address */
129 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
130 
131 	/*
132 	 * Get page for the memmap's phys address
133 	 * XXX: need more consideration for sparse_vmemmap...
134 	 */
135 	page = virt_to_page(memmap);
136 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
137 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
138 
139 	/* remember memmap's page */
140 	for (i = 0; i < mapsize; i++, page++)
141 		get_page_bootmem(section_nr, page, SECTION_INFO);
142 
143 	usemap = __nr_to_section(section_nr)->pageblock_flags;
144 	page = virt_to_page(usemap);
145 
146 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
147 
148 	for (i = 0; i < mapsize; i++, page++)
149 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
150 
151 }
152 #else /* CONFIG_SPARSEMEM_VMEMMAP */
153 static void register_page_bootmem_info_section(unsigned long start_pfn)
154 {
155 	unsigned long *usemap, mapsize, section_nr, i;
156 	struct mem_section *ms;
157 	struct page *page, *memmap;
158 
159 	if (!pfn_valid(start_pfn))
160 		return;
161 
162 	section_nr = pfn_to_section_nr(start_pfn);
163 	ms = __nr_to_section(section_nr);
164 
165 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
166 
167 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
168 
169 	usemap = __nr_to_section(section_nr)->pageblock_flags;
170 	page = virt_to_page(usemap);
171 
172 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
173 
174 	for (i = 0; i < mapsize; i++, page++)
175 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
176 }
177 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
178 
179 void register_page_bootmem_info_node(struct pglist_data *pgdat)
180 {
181 	unsigned long i, pfn, end_pfn, nr_pages;
182 	int node = pgdat->node_id;
183 	struct page *page;
184 	struct zone *zone;
185 
186 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
187 	page = virt_to_page(pgdat);
188 
189 	for (i = 0; i < nr_pages; i++, page++)
190 		get_page_bootmem(node, page, NODE_INFO);
191 
192 	zone = &pgdat->node_zones[0];
193 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
194 		if (zone_is_initialized(zone)) {
195 			nr_pages = zone->wait_table_hash_nr_entries
196 				* sizeof(wait_queue_head_t);
197 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
198 			page = virt_to_page(zone->wait_table);
199 
200 			for (i = 0; i < nr_pages; i++, page++)
201 				get_page_bootmem(node, page, NODE_INFO);
202 		}
203 	}
204 
205 	pfn = pgdat->node_start_pfn;
206 	end_pfn = pgdat_end_pfn(pgdat);
207 
208 	/* register section info */
209 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
210 		/*
211 		 * Some platforms can assign the same pfn to multiple nodes - on
212 		 * node0 as well as nodeN.  To avoid registering a pfn against
213 		 * multiple nodes we check that this pfn does not already
214 		 * reside in some other nodes.
215 		 */
216 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
217 			register_page_bootmem_info_section(pfn);
218 	}
219 }
220 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
221 
222 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
223 			   unsigned long end_pfn)
224 {
225 	unsigned long old_zone_end_pfn;
226 
227 	zone_span_writelock(zone);
228 
229 	old_zone_end_pfn = zone_end_pfn(zone);
230 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
231 		zone->zone_start_pfn = start_pfn;
232 
233 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
234 				zone->zone_start_pfn;
235 
236 	zone_span_writeunlock(zone);
237 }
238 
239 static void resize_zone(struct zone *zone, unsigned long start_pfn,
240 		unsigned long end_pfn)
241 {
242 	zone_span_writelock(zone);
243 
244 	if (end_pfn - start_pfn) {
245 		zone->zone_start_pfn = start_pfn;
246 		zone->spanned_pages = end_pfn - start_pfn;
247 	} else {
248 		/*
249 		 * make it consist as free_area_init_core(),
250 		 * if spanned_pages = 0, then keep start_pfn = 0
251 		 */
252 		zone->zone_start_pfn = 0;
253 		zone->spanned_pages = 0;
254 	}
255 
256 	zone_span_writeunlock(zone);
257 }
258 
259 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
260 		unsigned long end_pfn)
261 {
262 	enum zone_type zid = zone_idx(zone);
263 	int nid = zone->zone_pgdat->node_id;
264 	unsigned long pfn;
265 
266 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
267 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
268 }
269 
270 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
271  * alloc_bootmem_node_nopanic() */
272 static int __ref ensure_zone_is_initialized(struct zone *zone,
273 			unsigned long start_pfn, unsigned long num_pages)
274 {
275 	if (!zone_is_initialized(zone))
276 		return init_currently_empty_zone(zone, start_pfn, num_pages,
277 						 MEMMAP_HOTPLUG);
278 	return 0;
279 }
280 
281 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
282 		unsigned long start_pfn, unsigned long end_pfn)
283 {
284 	int ret;
285 	unsigned long flags;
286 	unsigned long z1_start_pfn;
287 
288 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
289 	if (ret)
290 		return ret;
291 
292 	pgdat_resize_lock(z1->zone_pgdat, &flags);
293 
294 	/* can't move pfns which are higher than @z2 */
295 	if (end_pfn > zone_end_pfn(z2))
296 		goto out_fail;
297 	/* the move out part must be at the left most of @z2 */
298 	if (start_pfn > z2->zone_start_pfn)
299 		goto out_fail;
300 	/* must included/overlap */
301 	if (end_pfn <= z2->zone_start_pfn)
302 		goto out_fail;
303 
304 	/* use start_pfn for z1's start_pfn if z1 is empty */
305 	if (!zone_is_empty(z1))
306 		z1_start_pfn = z1->zone_start_pfn;
307 	else
308 		z1_start_pfn = start_pfn;
309 
310 	resize_zone(z1, z1_start_pfn, end_pfn);
311 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
312 
313 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
314 
315 	fix_zone_id(z1, start_pfn, end_pfn);
316 
317 	return 0;
318 out_fail:
319 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
320 	return -1;
321 }
322 
323 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
324 		unsigned long start_pfn, unsigned long end_pfn)
325 {
326 	int ret;
327 	unsigned long flags;
328 	unsigned long z2_end_pfn;
329 
330 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
331 	if (ret)
332 		return ret;
333 
334 	pgdat_resize_lock(z1->zone_pgdat, &flags);
335 
336 	/* can't move pfns which are lower than @z1 */
337 	if (z1->zone_start_pfn > start_pfn)
338 		goto out_fail;
339 	/* the move out part mast at the right most of @z1 */
340 	if (zone_end_pfn(z1) >  end_pfn)
341 		goto out_fail;
342 	/* must included/overlap */
343 	if (start_pfn >= zone_end_pfn(z1))
344 		goto out_fail;
345 
346 	/* use end_pfn for z2's end_pfn if z2 is empty */
347 	if (!zone_is_empty(z2))
348 		z2_end_pfn = zone_end_pfn(z2);
349 	else
350 		z2_end_pfn = end_pfn;
351 
352 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
353 	resize_zone(z2, start_pfn, z2_end_pfn);
354 
355 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
356 
357 	fix_zone_id(z2, start_pfn, end_pfn);
358 
359 	return 0;
360 out_fail:
361 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
362 	return -1;
363 }
364 
365 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
366 			    unsigned long end_pfn)
367 {
368 	unsigned long old_pgdat_end_pfn =
369 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
370 
371 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
372 		pgdat->node_start_pfn = start_pfn;
373 
374 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
375 					pgdat->node_start_pfn;
376 }
377 
378 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
379 {
380 	struct pglist_data *pgdat = zone->zone_pgdat;
381 	int nr_pages = PAGES_PER_SECTION;
382 	int nid = pgdat->node_id;
383 	int zone_type;
384 	unsigned long flags;
385 	int ret;
386 
387 	zone_type = zone - pgdat->node_zones;
388 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
389 	if (ret)
390 		return ret;
391 
392 	pgdat_resize_lock(zone->zone_pgdat, &flags);
393 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
394 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
395 			phys_start_pfn + nr_pages);
396 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
397 	memmap_init_zone(nr_pages, nid, zone_type,
398 			 phys_start_pfn, MEMMAP_HOTPLUG);
399 	return 0;
400 }
401 
402 static int __meminit __add_section(int nid, struct zone *zone,
403 					unsigned long phys_start_pfn)
404 {
405 	int nr_pages = PAGES_PER_SECTION;
406 	int ret;
407 
408 	if (pfn_valid(phys_start_pfn))
409 		return -EEXIST;
410 
411 	ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
412 
413 	if (ret < 0)
414 		return ret;
415 
416 	ret = __add_zone(zone, phys_start_pfn);
417 
418 	if (ret < 0)
419 		return ret;
420 
421 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
422 }
423 
424 /*
425  * Reasonably generic function for adding memory.  It is
426  * expected that archs that support memory hotplug will
427  * call this function after deciding the zone to which to
428  * add the new pages.
429  */
430 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
431 			unsigned long nr_pages)
432 {
433 	unsigned long i;
434 	int err = 0;
435 	int start_sec, end_sec;
436 	/* during initialize mem_map, align hot-added range to section */
437 	start_sec = pfn_to_section_nr(phys_start_pfn);
438 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
439 
440 	for (i = start_sec; i <= end_sec; i++) {
441 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
442 
443 		/*
444 		 * EEXIST is finally dealt with by ioresource collision
445 		 * check. see add_memory() => register_memory_resource()
446 		 * Warning will be printed if there is collision.
447 		 */
448 		if (err && (err != -EEXIST))
449 			break;
450 		err = 0;
451 	}
452 
453 	return err;
454 }
455 EXPORT_SYMBOL_GPL(__add_pages);
456 
457 #ifdef CONFIG_MEMORY_HOTREMOVE
458 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
459 static int find_smallest_section_pfn(int nid, struct zone *zone,
460 				     unsigned long start_pfn,
461 				     unsigned long end_pfn)
462 {
463 	struct mem_section *ms;
464 
465 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
466 		ms = __pfn_to_section(start_pfn);
467 
468 		if (unlikely(!valid_section(ms)))
469 			continue;
470 
471 		if (unlikely(pfn_to_nid(start_pfn) != nid))
472 			continue;
473 
474 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
475 			continue;
476 
477 		return start_pfn;
478 	}
479 
480 	return 0;
481 }
482 
483 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
484 static int find_biggest_section_pfn(int nid, struct zone *zone,
485 				    unsigned long start_pfn,
486 				    unsigned long end_pfn)
487 {
488 	struct mem_section *ms;
489 	unsigned long pfn;
490 
491 	/* pfn is the end pfn of a memory section. */
492 	pfn = end_pfn - 1;
493 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
494 		ms = __pfn_to_section(pfn);
495 
496 		if (unlikely(!valid_section(ms)))
497 			continue;
498 
499 		if (unlikely(pfn_to_nid(pfn) != nid))
500 			continue;
501 
502 		if (zone && zone != page_zone(pfn_to_page(pfn)))
503 			continue;
504 
505 		return pfn;
506 	}
507 
508 	return 0;
509 }
510 
511 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
512 			     unsigned long end_pfn)
513 {
514 	unsigned long zone_start_pfn = zone->zone_start_pfn;
515 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
516 	unsigned long zone_end_pfn = z;
517 	unsigned long pfn;
518 	struct mem_section *ms;
519 	int nid = zone_to_nid(zone);
520 
521 	zone_span_writelock(zone);
522 	if (zone_start_pfn == start_pfn) {
523 		/*
524 		 * If the section is smallest section in the zone, it need
525 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
526 		 * In this case, we find second smallest valid mem_section
527 		 * for shrinking zone.
528 		 */
529 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
530 						zone_end_pfn);
531 		if (pfn) {
532 			zone->zone_start_pfn = pfn;
533 			zone->spanned_pages = zone_end_pfn - pfn;
534 		}
535 	} else if (zone_end_pfn == end_pfn) {
536 		/*
537 		 * If the section is biggest section in the zone, it need
538 		 * shrink zone->spanned_pages.
539 		 * In this case, we find second biggest valid mem_section for
540 		 * shrinking zone.
541 		 */
542 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
543 					       start_pfn);
544 		if (pfn)
545 			zone->spanned_pages = pfn - zone_start_pfn + 1;
546 	}
547 
548 	/*
549 	 * The section is not biggest or smallest mem_section in the zone, it
550 	 * only creates a hole in the zone. So in this case, we need not
551 	 * change the zone. But perhaps, the zone has only hole data. Thus
552 	 * it check the zone has only hole or not.
553 	 */
554 	pfn = zone_start_pfn;
555 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
556 		ms = __pfn_to_section(pfn);
557 
558 		if (unlikely(!valid_section(ms)))
559 			continue;
560 
561 		if (page_zone(pfn_to_page(pfn)) != zone)
562 			continue;
563 
564 		 /* If the section is current section, it continues the loop */
565 		if (start_pfn == pfn)
566 			continue;
567 
568 		/* If we find valid section, we have nothing to do */
569 		zone_span_writeunlock(zone);
570 		return;
571 	}
572 
573 	/* The zone has no valid section */
574 	zone->zone_start_pfn = 0;
575 	zone->spanned_pages = 0;
576 	zone_span_writeunlock(zone);
577 }
578 
579 static void shrink_pgdat_span(struct pglist_data *pgdat,
580 			      unsigned long start_pfn, unsigned long end_pfn)
581 {
582 	unsigned long pgdat_start_pfn =  pgdat->node_start_pfn;
583 	unsigned long pgdat_end_pfn =
584 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
585 	unsigned long pfn;
586 	struct mem_section *ms;
587 	int nid = pgdat->node_id;
588 
589 	if (pgdat_start_pfn == start_pfn) {
590 		/*
591 		 * If the section is smallest section in the pgdat, it need
592 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
593 		 * In this case, we find second smallest valid mem_section
594 		 * for shrinking zone.
595 		 */
596 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
597 						pgdat_end_pfn);
598 		if (pfn) {
599 			pgdat->node_start_pfn = pfn;
600 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
601 		}
602 	} else if (pgdat_end_pfn == end_pfn) {
603 		/*
604 		 * If the section is biggest section in the pgdat, it need
605 		 * shrink pgdat->node_spanned_pages.
606 		 * In this case, we find second biggest valid mem_section for
607 		 * shrinking zone.
608 		 */
609 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
610 					       start_pfn);
611 		if (pfn)
612 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
613 	}
614 
615 	/*
616 	 * If the section is not biggest or smallest mem_section in the pgdat,
617 	 * it only creates a hole in the pgdat. So in this case, we need not
618 	 * change the pgdat.
619 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
620 	 * has only hole or not.
621 	 */
622 	pfn = pgdat_start_pfn;
623 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
624 		ms = __pfn_to_section(pfn);
625 
626 		if (unlikely(!valid_section(ms)))
627 			continue;
628 
629 		if (pfn_to_nid(pfn) != nid)
630 			continue;
631 
632 		 /* If the section is current section, it continues the loop */
633 		if (start_pfn == pfn)
634 			continue;
635 
636 		/* If we find valid section, we have nothing to do */
637 		return;
638 	}
639 
640 	/* The pgdat has no valid section */
641 	pgdat->node_start_pfn = 0;
642 	pgdat->node_spanned_pages = 0;
643 }
644 
645 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
646 {
647 	struct pglist_data *pgdat = zone->zone_pgdat;
648 	int nr_pages = PAGES_PER_SECTION;
649 	int zone_type;
650 	unsigned long flags;
651 
652 	zone_type = zone - pgdat->node_zones;
653 
654 	pgdat_resize_lock(zone->zone_pgdat, &flags);
655 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
656 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
657 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
658 }
659 
660 static int __remove_section(struct zone *zone, struct mem_section *ms)
661 {
662 	unsigned long start_pfn;
663 	int scn_nr;
664 	int ret = -EINVAL;
665 
666 	if (!valid_section(ms))
667 		return ret;
668 
669 	ret = unregister_memory_section(ms);
670 	if (ret)
671 		return ret;
672 
673 	scn_nr = __section_nr(ms);
674 	start_pfn = section_nr_to_pfn(scn_nr);
675 	__remove_zone(zone, start_pfn);
676 
677 	sparse_remove_one_section(zone, ms);
678 	return 0;
679 }
680 
681 /**
682  * __remove_pages() - remove sections of pages from a zone
683  * @zone: zone from which pages need to be removed
684  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
685  * @nr_pages: number of pages to remove (must be multiple of section size)
686  *
687  * Generic helper function to remove section mappings and sysfs entries
688  * for the section of the memory we are removing. Caller needs to make
689  * sure that pages are marked reserved and zones are adjust properly by
690  * calling offline_pages().
691  */
692 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
693 		 unsigned long nr_pages)
694 {
695 	unsigned long i;
696 	int sections_to_remove;
697 	resource_size_t start, size;
698 	int ret = 0;
699 
700 	/*
701 	 * We can only remove entire sections
702 	 */
703 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
704 	BUG_ON(nr_pages % PAGES_PER_SECTION);
705 
706 	start = phys_start_pfn << PAGE_SHIFT;
707 	size = nr_pages * PAGE_SIZE;
708 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
709 	if (ret) {
710 		resource_size_t endres = start + size - 1;
711 
712 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
713 				&start, &endres, ret);
714 	}
715 
716 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
717 	for (i = 0; i < sections_to_remove; i++) {
718 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
719 		ret = __remove_section(zone, __pfn_to_section(pfn));
720 		if (ret)
721 			break;
722 	}
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(__remove_pages);
726 #endif /* CONFIG_MEMORY_HOTREMOVE */
727 
728 int set_online_page_callback(online_page_callback_t callback)
729 {
730 	int rc = -EINVAL;
731 
732 	lock_memory_hotplug();
733 
734 	if (online_page_callback == generic_online_page) {
735 		online_page_callback = callback;
736 		rc = 0;
737 	}
738 
739 	unlock_memory_hotplug();
740 
741 	return rc;
742 }
743 EXPORT_SYMBOL_GPL(set_online_page_callback);
744 
745 int restore_online_page_callback(online_page_callback_t callback)
746 {
747 	int rc = -EINVAL;
748 
749 	lock_memory_hotplug();
750 
751 	if (online_page_callback == callback) {
752 		online_page_callback = generic_online_page;
753 		rc = 0;
754 	}
755 
756 	unlock_memory_hotplug();
757 
758 	return rc;
759 }
760 EXPORT_SYMBOL_GPL(restore_online_page_callback);
761 
762 void __online_page_set_limits(struct page *page)
763 {
764 }
765 EXPORT_SYMBOL_GPL(__online_page_set_limits);
766 
767 void __online_page_increment_counters(struct page *page)
768 {
769 	adjust_managed_page_count(page, 1);
770 }
771 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
772 
773 void __online_page_free(struct page *page)
774 {
775 	__free_reserved_page(page);
776 }
777 EXPORT_SYMBOL_GPL(__online_page_free);
778 
779 static void generic_online_page(struct page *page)
780 {
781 	__online_page_set_limits(page);
782 	__online_page_increment_counters(page);
783 	__online_page_free(page);
784 }
785 
786 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
787 			void *arg)
788 {
789 	unsigned long i;
790 	unsigned long onlined_pages = *(unsigned long *)arg;
791 	struct page *page;
792 	if (PageReserved(pfn_to_page(start_pfn)))
793 		for (i = 0; i < nr_pages; i++) {
794 			page = pfn_to_page(start_pfn + i);
795 			(*online_page_callback)(page);
796 			onlined_pages++;
797 		}
798 	*(unsigned long *)arg = onlined_pages;
799 	return 0;
800 }
801 
802 #ifdef CONFIG_MOVABLE_NODE
803 /*
804  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
805  * normal memory.
806  */
807 static bool can_online_high_movable(struct zone *zone)
808 {
809 	return true;
810 }
811 #else /* CONFIG_MOVABLE_NODE */
812 /* ensure every online node has NORMAL memory */
813 static bool can_online_high_movable(struct zone *zone)
814 {
815 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
816 }
817 #endif /* CONFIG_MOVABLE_NODE */
818 
819 /* check which state of node_states will be changed when online memory */
820 static void node_states_check_changes_online(unsigned long nr_pages,
821 	struct zone *zone, struct memory_notify *arg)
822 {
823 	int nid = zone_to_nid(zone);
824 	enum zone_type zone_last = ZONE_NORMAL;
825 
826 	/*
827 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
828 	 * contains nodes which have zones of 0...ZONE_NORMAL,
829 	 * set zone_last to ZONE_NORMAL.
830 	 *
831 	 * If we don't have HIGHMEM nor movable node,
832 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
833 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
834 	 */
835 	if (N_MEMORY == N_NORMAL_MEMORY)
836 		zone_last = ZONE_MOVABLE;
837 
838 	/*
839 	 * if the memory to be online is in a zone of 0...zone_last, and
840 	 * the zones of 0...zone_last don't have memory before online, we will
841 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
842 	 * the memory is online.
843 	 */
844 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
845 		arg->status_change_nid_normal = nid;
846 	else
847 		arg->status_change_nid_normal = -1;
848 
849 #ifdef CONFIG_HIGHMEM
850 	/*
851 	 * If we have movable node, node_states[N_HIGH_MEMORY]
852 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
853 	 * set zone_last to ZONE_HIGHMEM.
854 	 *
855 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
856 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
857 	 * set zone_last to ZONE_MOVABLE.
858 	 */
859 	zone_last = ZONE_HIGHMEM;
860 	if (N_MEMORY == N_HIGH_MEMORY)
861 		zone_last = ZONE_MOVABLE;
862 
863 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
864 		arg->status_change_nid_high = nid;
865 	else
866 		arg->status_change_nid_high = -1;
867 #else
868 	arg->status_change_nid_high = arg->status_change_nid_normal;
869 #endif
870 
871 	/*
872 	 * if the node don't have memory befor online, we will need to
873 	 * set the node to node_states[N_MEMORY] after the memory
874 	 * is online.
875 	 */
876 	if (!node_state(nid, N_MEMORY))
877 		arg->status_change_nid = nid;
878 	else
879 		arg->status_change_nid = -1;
880 }
881 
882 static void node_states_set_node(int node, struct memory_notify *arg)
883 {
884 	if (arg->status_change_nid_normal >= 0)
885 		node_set_state(node, N_NORMAL_MEMORY);
886 
887 	if (arg->status_change_nid_high >= 0)
888 		node_set_state(node, N_HIGH_MEMORY);
889 
890 	node_set_state(node, N_MEMORY);
891 }
892 
893 
894 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
895 {
896 	unsigned long flags;
897 	unsigned long onlined_pages = 0;
898 	struct zone *zone;
899 	int need_zonelists_rebuild = 0;
900 	int nid;
901 	int ret;
902 	struct memory_notify arg;
903 
904 	lock_memory_hotplug();
905 	/*
906 	 * This doesn't need a lock to do pfn_to_page().
907 	 * The section can't be removed here because of the
908 	 * memory_block->state_mutex.
909 	 */
910 	zone = page_zone(pfn_to_page(pfn));
911 
912 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
913 	    !can_online_high_movable(zone)) {
914 		unlock_memory_hotplug();
915 		return -EINVAL;
916 	}
917 
918 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
919 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
920 			unlock_memory_hotplug();
921 			return -EINVAL;
922 		}
923 	}
924 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
925 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
926 			unlock_memory_hotplug();
927 			return -EINVAL;
928 		}
929 	}
930 
931 	/* Previous code may changed the zone of the pfn range */
932 	zone = page_zone(pfn_to_page(pfn));
933 
934 	arg.start_pfn = pfn;
935 	arg.nr_pages = nr_pages;
936 	node_states_check_changes_online(nr_pages, zone, &arg);
937 
938 	nid = page_to_nid(pfn_to_page(pfn));
939 
940 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
941 	ret = notifier_to_errno(ret);
942 	if (ret) {
943 		memory_notify(MEM_CANCEL_ONLINE, &arg);
944 		unlock_memory_hotplug();
945 		return ret;
946 	}
947 	/*
948 	 * If this zone is not populated, then it is not in zonelist.
949 	 * This means the page allocator ignores this zone.
950 	 * So, zonelist must be updated after online.
951 	 */
952 	mutex_lock(&zonelists_mutex);
953 	if (!populated_zone(zone)) {
954 		need_zonelists_rebuild = 1;
955 		build_all_zonelists(NULL, zone);
956 	}
957 
958 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
959 		online_pages_range);
960 	if (ret) {
961 		if (need_zonelists_rebuild)
962 			zone_pcp_reset(zone);
963 		mutex_unlock(&zonelists_mutex);
964 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
965 		       (unsigned long long) pfn << PAGE_SHIFT,
966 		       (((unsigned long long) pfn + nr_pages)
967 			    << PAGE_SHIFT) - 1);
968 		memory_notify(MEM_CANCEL_ONLINE, &arg);
969 		unlock_memory_hotplug();
970 		return ret;
971 	}
972 
973 	zone->present_pages += onlined_pages;
974 
975 	pgdat_resize_lock(zone->zone_pgdat, &flags);
976 	zone->zone_pgdat->node_present_pages += onlined_pages;
977 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
978 
979 	if (onlined_pages) {
980 		node_states_set_node(zone_to_nid(zone), &arg);
981 		if (need_zonelists_rebuild)
982 			build_all_zonelists(NULL, NULL);
983 		else
984 			zone_pcp_update(zone);
985 	}
986 
987 	mutex_unlock(&zonelists_mutex);
988 
989 	init_per_zone_wmark_min();
990 
991 	if (onlined_pages)
992 		kswapd_run(zone_to_nid(zone));
993 
994 	vm_total_pages = nr_free_pagecache_pages();
995 
996 	writeback_set_ratelimit();
997 
998 	if (onlined_pages)
999 		memory_notify(MEM_ONLINE, &arg);
1000 	unlock_memory_hotplug();
1001 
1002 	return 0;
1003 }
1004 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1005 
1006 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1007 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1008 {
1009 	struct pglist_data *pgdat;
1010 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1011 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1012 	unsigned long start_pfn = start >> PAGE_SHIFT;
1013 
1014 	pgdat = NODE_DATA(nid);
1015 	if (!pgdat) {
1016 		pgdat = arch_alloc_nodedata(nid);
1017 		if (!pgdat)
1018 			return NULL;
1019 
1020 		arch_refresh_nodedata(nid, pgdat);
1021 	}
1022 
1023 	/* we can use NODE_DATA(nid) from here */
1024 
1025 	/* init node's zones as empty zones, we don't have any present pages.*/
1026 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1027 
1028 	/*
1029 	 * The node we allocated has no zone fallback lists. For avoiding
1030 	 * to access not-initialized zonelist, build here.
1031 	 */
1032 	mutex_lock(&zonelists_mutex);
1033 	build_all_zonelists(pgdat, NULL);
1034 	mutex_unlock(&zonelists_mutex);
1035 
1036 	return pgdat;
1037 }
1038 
1039 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1040 {
1041 	arch_refresh_nodedata(nid, NULL);
1042 	arch_free_nodedata(pgdat);
1043 	return;
1044 }
1045 
1046 
1047 /*
1048  * called by cpu_up() to online a node without onlined memory.
1049  */
1050 int mem_online_node(int nid)
1051 {
1052 	pg_data_t	*pgdat;
1053 	int	ret;
1054 
1055 	lock_memory_hotplug();
1056 	pgdat = hotadd_new_pgdat(nid, 0);
1057 	if (!pgdat) {
1058 		ret = -ENOMEM;
1059 		goto out;
1060 	}
1061 	node_set_online(nid);
1062 	ret = register_one_node(nid);
1063 	BUG_ON(ret);
1064 
1065 out:
1066 	unlock_memory_hotplug();
1067 	return ret;
1068 }
1069 
1070 static int check_hotplug_memory_range(u64 start, u64 size)
1071 {
1072 	u64 start_pfn = start >> PAGE_SHIFT;
1073 	u64 nr_pages = size >> PAGE_SHIFT;
1074 
1075 	/* Memory range must be aligned with section */
1076 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1077 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1078 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1079 				(unsigned long long)start,
1080 				(unsigned long long)size);
1081 		return -EINVAL;
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1088 int __ref add_memory(int nid, u64 start, u64 size)
1089 {
1090 	pg_data_t *pgdat = NULL;
1091 	bool new_pgdat;
1092 	bool new_node;
1093 	struct resource *res;
1094 	int ret;
1095 
1096 	ret = check_hotplug_memory_range(start, size);
1097 	if (ret)
1098 		return ret;
1099 
1100 	lock_memory_hotplug();
1101 
1102 	res = register_memory_resource(start, size);
1103 	ret = -EEXIST;
1104 	if (!res)
1105 		goto out;
1106 
1107 	{	/* Stupid hack to suppress address-never-null warning */
1108 		void *p = NODE_DATA(nid);
1109 		new_pgdat = !p;
1110 	}
1111 	new_node = !node_online(nid);
1112 	if (new_node) {
1113 		pgdat = hotadd_new_pgdat(nid, start);
1114 		ret = -ENOMEM;
1115 		if (!pgdat)
1116 			goto error;
1117 	}
1118 
1119 	/* call arch's memory hotadd */
1120 	ret = arch_add_memory(nid, start, size);
1121 
1122 	if (ret < 0)
1123 		goto error;
1124 
1125 	/* we online node here. we can't roll back from here. */
1126 	node_set_online(nid);
1127 
1128 	if (new_node) {
1129 		ret = register_one_node(nid);
1130 		/*
1131 		 * If sysfs file of new node can't create, cpu on the node
1132 		 * can't be hot-added. There is no rollback way now.
1133 		 * So, check by BUG_ON() to catch it reluctantly..
1134 		 */
1135 		BUG_ON(ret);
1136 	}
1137 
1138 	/* create new memmap entry */
1139 	firmware_map_add_hotplug(start, start + size, "System RAM");
1140 
1141 	goto out;
1142 
1143 error:
1144 	/* rollback pgdat allocation and others */
1145 	if (new_pgdat)
1146 		rollback_node_hotadd(nid, pgdat);
1147 	release_memory_resource(res);
1148 
1149 out:
1150 	unlock_memory_hotplug();
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(add_memory);
1154 
1155 #ifdef CONFIG_MEMORY_HOTREMOVE
1156 /*
1157  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1158  * set and the size of the free page is given by page_order(). Using this,
1159  * the function determines if the pageblock contains only free pages.
1160  * Due to buddy contraints, a free page at least the size of a pageblock will
1161  * be located at the start of the pageblock
1162  */
1163 static inline int pageblock_free(struct page *page)
1164 {
1165 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1166 }
1167 
1168 /* Return the start of the next active pageblock after a given page */
1169 static struct page *next_active_pageblock(struct page *page)
1170 {
1171 	/* Ensure the starting page is pageblock-aligned */
1172 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1173 
1174 	/* If the entire pageblock is free, move to the end of free page */
1175 	if (pageblock_free(page)) {
1176 		int order;
1177 		/* be careful. we don't have locks, page_order can be changed.*/
1178 		order = page_order(page);
1179 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1180 			return page + (1 << order);
1181 	}
1182 
1183 	return page + pageblock_nr_pages;
1184 }
1185 
1186 /* Checks if this range of memory is likely to be hot-removable. */
1187 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1188 {
1189 	struct page *page = pfn_to_page(start_pfn);
1190 	struct page *end_page = page + nr_pages;
1191 
1192 	/* Check the starting page of each pageblock within the range */
1193 	for (; page < end_page; page = next_active_pageblock(page)) {
1194 		if (!is_pageblock_removable_nolock(page))
1195 			return 0;
1196 		cond_resched();
1197 	}
1198 
1199 	/* All pageblocks in the memory block are likely to be hot-removable */
1200 	return 1;
1201 }
1202 
1203 /*
1204  * Confirm all pages in a range [start, end) is belongs to the same zone.
1205  */
1206 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1207 {
1208 	unsigned long pfn;
1209 	struct zone *zone = NULL;
1210 	struct page *page;
1211 	int i;
1212 	for (pfn = start_pfn;
1213 	     pfn < end_pfn;
1214 	     pfn += MAX_ORDER_NR_PAGES) {
1215 		i = 0;
1216 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1217 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1218 			i++;
1219 		if (i == MAX_ORDER_NR_PAGES)
1220 			continue;
1221 		page = pfn_to_page(pfn + i);
1222 		if (zone && page_zone(page) != zone)
1223 			return 0;
1224 		zone = page_zone(page);
1225 	}
1226 	return 1;
1227 }
1228 
1229 /*
1230  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1231  * and hugepages). We scan pfn because it's much easier than scanning over
1232  * linked list. This function returns the pfn of the first found movable
1233  * page if it's found, otherwise 0.
1234  */
1235 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1236 {
1237 	unsigned long pfn;
1238 	struct page *page;
1239 	for (pfn = start; pfn < end; pfn++) {
1240 		if (pfn_valid(pfn)) {
1241 			page = pfn_to_page(pfn);
1242 			if (PageLRU(page))
1243 				return pfn;
1244 			if (PageHuge(page)) {
1245 				if (is_hugepage_active(page))
1246 					return pfn;
1247 				else
1248 					pfn = round_up(pfn + 1,
1249 						1 << compound_order(page)) - 1;
1250 			}
1251 		}
1252 	}
1253 	return 0;
1254 }
1255 
1256 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1257 static int
1258 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1259 {
1260 	unsigned long pfn;
1261 	struct page *page;
1262 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1263 	int not_managed = 0;
1264 	int ret = 0;
1265 	LIST_HEAD(source);
1266 
1267 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1268 		if (!pfn_valid(pfn))
1269 			continue;
1270 		page = pfn_to_page(pfn);
1271 
1272 		if (PageHuge(page)) {
1273 			struct page *head = compound_head(page);
1274 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1275 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1276 				ret = -EBUSY;
1277 				break;
1278 			}
1279 			if (isolate_huge_page(page, &source))
1280 				move_pages -= 1 << compound_order(head);
1281 			continue;
1282 		}
1283 
1284 		if (!get_page_unless_zero(page))
1285 			continue;
1286 		/*
1287 		 * We can skip free pages. And we can only deal with pages on
1288 		 * LRU.
1289 		 */
1290 		ret = isolate_lru_page(page);
1291 		if (!ret) { /* Success */
1292 			put_page(page);
1293 			list_add_tail(&page->lru, &source);
1294 			move_pages--;
1295 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1296 					    page_is_file_cache(page));
1297 
1298 		} else {
1299 #ifdef CONFIG_DEBUG_VM
1300 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1301 			       pfn);
1302 			dump_page(page);
1303 #endif
1304 			put_page(page);
1305 			/* Because we don't have big zone->lock. we should
1306 			   check this again here. */
1307 			if (page_count(page)) {
1308 				not_managed++;
1309 				ret = -EBUSY;
1310 				break;
1311 			}
1312 		}
1313 	}
1314 	if (!list_empty(&source)) {
1315 		if (not_managed) {
1316 			putback_movable_pages(&source);
1317 			goto out;
1318 		}
1319 
1320 		/*
1321 		 * alloc_migrate_target should be improooooved!!
1322 		 * migrate_pages returns # of failed pages.
1323 		 */
1324 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1325 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1326 		if (ret)
1327 			putback_movable_pages(&source);
1328 	}
1329 out:
1330 	return ret;
1331 }
1332 
1333 /*
1334  * remove from free_area[] and mark all as Reserved.
1335  */
1336 static int
1337 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1338 			void *data)
1339 {
1340 	__offline_isolated_pages(start, start + nr_pages);
1341 	return 0;
1342 }
1343 
1344 static void
1345 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1346 {
1347 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1348 				offline_isolated_pages_cb);
1349 }
1350 
1351 /*
1352  * Check all pages in range, recoreded as memory resource, are isolated.
1353  */
1354 static int
1355 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1356 			void *data)
1357 {
1358 	int ret;
1359 	long offlined = *(long *)data;
1360 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1361 	offlined = nr_pages;
1362 	if (!ret)
1363 		*(long *)data += offlined;
1364 	return ret;
1365 }
1366 
1367 static long
1368 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1369 {
1370 	long offlined = 0;
1371 	int ret;
1372 
1373 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1374 			check_pages_isolated_cb);
1375 	if (ret < 0)
1376 		offlined = (long)ret;
1377 	return offlined;
1378 }
1379 
1380 #ifdef CONFIG_MOVABLE_NODE
1381 /*
1382  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1383  * normal memory.
1384  */
1385 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1386 {
1387 	return true;
1388 }
1389 #else /* CONFIG_MOVABLE_NODE */
1390 /* ensure the node has NORMAL memory if it is still online */
1391 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1392 {
1393 	struct pglist_data *pgdat = zone->zone_pgdat;
1394 	unsigned long present_pages = 0;
1395 	enum zone_type zt;
1396 
1397 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1398 		present_pages += pgdat->node_zones[zt].present_pages;
1399 
1400 	if (present_pages > nr_pages)
1401 		return true;
1402 
1403 	present_pages = 0;
1404 	for (; zt <= ZONE_MOVABLE; zt++)
1405 		present_pages += pgdat->node_zones[zt].present_pages;
1406 
1407 	/*
1408 	 * we can't offline the last normal memory until all
1409 	 * higher memory is offlined.
1410 	 */
1411 	return present_pages == 0;
1412 }
1413 #endif /* CONFIG_MOVABLE_NODE */
1414 
1415 /* check which state of node_states will be changed when offline memory */
1416 static void node_states_check_changes_offline(unsigned long nr_pages,
1417 		struct zone *zone, struct memory_notify *arg)
1418 {
1419 	struct pglist_data *pgdat = zone->zone_pgdat;
1420 	unsigned long present_pages = 0;
1421 	enum zone_type zt, zone_last = ZONE_NORMAL;
1422 
1423 	/*
1424 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1425 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1426 	 * set zone_last to ZONE_NORMAL.
1427 	 *
1428 	 * If we don't have HIGHMEM nor movable node,
1429 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1430 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1431 	 */
1432 	if (N_MEMORY == N_NORMAL_MEMORY)
1433 		zone_last = ZONE_MOVABLE;
1434 
1435 	/*
1436 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1437 	 * If the memory to be offline is in a zone of 0...zone_last,
1438 	 * and it is the last present memory, 0...zone_last will
1439 	 * become empty after offline , thus we can determind we will
1440 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1441 	 */
1442 	for (zt = 0; zt <= zone_last; zt++)
1443 		present_pages += pgdat->node_zones[zt].present_pages;
1444 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1445 		arg->status_change_nid_normal = zone_to_nid(zone);
1446 	else
1447 		arg->status_change_nid_normal = -1;
1448 
1449 #ifdef CONFIG_HIGHMEM
1450 	/*
1451 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1452 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1453 	 * set zone_last to ZONE_HIGHMEM.
1454 	 *
1455 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1456 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1457 	 * set zone_last to ZONE_MOVABLE.
1458 	 */
1459 	zone_last = ZONE_HIGHMEM;
1460 	if (N_MEMORY == N_HIGH_MEMORY)
1461 		zone_last = ZONE_MOVABLE;
1462 
1463 	for (; zt <= zone_last; zt++)
1464 		present_pages += pgdat->node_zones[zt].present_pages;
1465 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1466 		arg->status_change_nid_high = zone_to_nid(zone);
1467 	else
1468 		arg->status_change_nid_high = -1;
1469 #else
1470 	arg->status_change_nid_high = arg->status_change_nid_normal;
1471 #endif
1472 
1473 	/*
1474 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1475 	 */
1476 	zone_last = ZONE_MOVABLE;
1477 
1478 	/*
1479 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1480 	 * If we try to offline the last present @nr_pages from the node,
1481 	 * we can determind we will need to clear the node from
1482 	 * node_states[N_HIGH_MEMORY].
1483 	 */
1484 	for (; zt <= zone_last; zt++)
1485 		present_pages += pgdat->node_zones[zt].present_pages;
1486 	if (nr_pages >= present_pages)
1487 		arg->status_change_nid = zone_to_nid(zone);
1488 	else
1489 		arg->status_change_nid = -1;
1490 }
1491 
1492 static void node_states_clear_node(int node, struct memory_notify *arg)
1493 {
1494 	if (arg->status_change_nid_normal >= 0)
1495 		node_clear_state(node, N_NORMAL_MEMORY);
1496 
1497 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1498 	    (arg->status_change_nid_high >= 0))
1499 		node_clear_state(node, N_HIGH_MEMORY);
1500 
1501 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1502 	    (arg->status_change_nid >= 0))
1503 		node_clear_state(node, N_MEMORY);
1504 }
1505 
1506 static int __ref __offline_pages(unsigned long start_pfn,
1507 		  unsigned long end_pfn, unsigned long timeout)
1508 {
1509 	unsigned long pfn, nr_pages, expire;
1510 	long offlined_pages;
1511 	int ret, drain, retry_max, node;
1512 	unsigned long flags;
1513 	struct zone *zone;
1514 	struct memory_notify arg;
1515 
1516 	/* at least, alignment against pageblock is necessary */
1517 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1518 		return -EINVAL;
1519 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1520 		return -EINVAL;
1521 	/* This makes hotplug much easier...and readable.
1522 	   we assume this for now. .*/
1523 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1524 		return -EINVAL;
1525 
1526 	lock_memory_hotplug();
1527 
1528 	zone = page_zone(pfn_to_page(start_pfn));
1529 	node = zone_to_nid(zone);
1530 	nr_pages = end_pfn - start_pfn;
1531 
1532 	ret = -EINVAL;
1533 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1534 		goto out;
1535 
1536 	/* set above range as isolated */
1537 	ret = start_isolate_page_range(start_pfn, end_pfn,
1538 				       MIGRATE_MOVABLE, true);
1539 	if (ret)
1540 		goto out;
1541 
1542 	arg.start_pfn = start_pfn;
1543 	arg.nr_pages = nr_pages;
1544 	node_states_check_changes_offline(nr_pages, zone, &arg);
1545 
1546 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1547 	ret = notifier_to_errno(ret);
1548 	if (ret)
1549 		goto failed_removal;
1550 
1551 	pfn = start_pfn;
1552 	expire = jiffies + timeout;
1553 	drain = 0;
1554 	retry_max = 5;
1555 repeat:
1556 	/* start memory hot removal */
1557 	ret = -EAGAIN;
1558 	if (time_after(jiffies, expire))
1559 		goto failed_removal;
1560 	ret = -EINTR;
1561 	if (signal_pending(current))
1562 		goto failed_removal;
1563 	ret = 0;
1564 	if (drain) {
1565 		lru_add_drain_all();
1566 		cond_resched();
1567 		drain_all_pages();
1568 	}
1569 
1570 	pfn = scan_movable_pages(start_pfn, end_pfn);
1571 	if (pfn) { /* We have movable pages */
1572 		ret = do_migrate_range(pfn, end_pfn);
1573 		if (!ret) {
1574 			drain = 1;
1575 			goto repeat;
1576 		} else {
1577 			if (ret < 0)
1578 				if (--retry_max == 0)
1579 					goto failed_removal;
1580 			yield();
1581 			drain = 1;
1582 			goto repeat;
1583 		}
1584 	}
1585 	/* drain all zone's lru pagevec, this is asynchronous... */
1586 	lru_add_drain_all();
1587 	yield();
1588 	/* drain pcp pages, this is synchronous. */
1589 	drain_all_pages();
1590 	/*
1591 	 * dissolve free hugepages in the memory block before doing offlining
1592 	 * actually in order to make hugetlbfs's object counting consistent.
1593 	 */
1594 	dissolve_free_huge_pages(start_pfn, end_pfn);
1595 	/* check again */
1596 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1597 	if (offlined_pages < 0) {
1598 		ret = -EBUSY;
1599 		goto failed_removal;
1600 	}
1601 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1602 	/* Ok, all of our target is isolated.
1603 	   We cannot do rollback at this point. */
1604 	offline_isolated_pages(start_pfn, end_pfn);
1605 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1606 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1607 	/* removal success */
1608 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1609 	zone->present_pages -= offlined_pages;
1610 
1611 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1612 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1613 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1614 
1615 	init_per_zone_wmark_min();
1616 
1617 	if (!populated_zone(zone)) {
1618 		zone_pcp_reset(zone);
1619 		mutex_lock(&zonelists_mutex);
1620 		build_all_zonelists(NULL, NULL);
1621 		mutex_unlock(&zonelists_mutex);
1622 	} else
1623 		zone_pcp_update(zone);
1624 
1625 	node_states_clear_node(node, &arg);
1626 	if (arg.status_change_nid >= 0)
1627 		kswapd_stop(node);
1628 
1629 	vm_total_pages = nr_free_pagecache_pages();
1630 	writeback_set_ratelimit();
1631 
1632 	memory_notify(MEM_OFFLINE, &arg);
1633 	unlock_memory_hotplug();
1634 	return 0;
1635 
1636 failed_removal:
1637 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1638 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1639 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1640 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1641 	/* pushback to free area */
1642 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1643 
1644 out:
1645 	unlock_memory_hotplug();
1646 	return ret;
1647 }
1648 
1649 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1650 {
1651 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1652 }
1653 #endif /* CONFIG_MEMORY_HOTREMOVE */
1654 
1655 /**
1656  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1657  * @start_pfn: start pfn of the memory range
1658  * @end_pfn: end pfn of the memory range
1659  * @arg: argument passed to func
1660  * @func: callback for each memory section walked
1661  *
1662  * This function walks through all present mem sections in range
1663  * [start_pfn, end_pfn) and call func on each mem section.
1664  *
1665  * Returns the return value of func.
1666  */
1667 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1668 		void *arg, int (*func)(struct memory_block *, void *))
1669 {
1670 	struct memory_block *mem = NULL;
1671 	struct mem_section *section;
1672 	unsigned long pfn, section_nr;
1673 	int ret;
1674 
1675 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1676 		section_nr = pfn_to_section_nr(pfn);
1677 		if (!present_section_nr(section_nr))
1678 			continue;
1679 
1680 		section = __nr_to_section(section_nr);
1681 		/* same memblock? */
1682 		if (mem)
1683 			if ((section_nr >= mem->start_section_nr) &&
1684 			    (section_nr <= mem->end_section_nr))
1685 				continue;
1686 
1687 		mem = find_memory_block_hinted(section, mem);
1688 		if (!mem)
1689 			continue;
1690 
1691 		ret = func(mem, arg);
1692 		if (ret) {
1693 			kobject_put(&mem->dev.kobj);
1694 			return ret;
1695 		}
1696 	}
1697 
1698 	if (mem)
1699 		kobject_put(&mem->dev.kobj);
1700 
1701 	return 0;
1702 }
1703 
1704 #ifdef CONFIG_MEMORY_HOTREMOVE
1705 static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
1706 {
1707 	int ret = !is_memblock_offlined(mem);
1708 
1709 	if (unlikely(ret)) {
1710 		phys_addr_t beginpa, endpa;
1711 
1712 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1713 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1714 		pr_warn("removing memory fails, because memory "
1715 			"[%pa-%pa] is onlined\n",
1716 			&beginpa, &endpa);
1717 	}
1718 
1719 	return ret;
1720 }
1721 
1722 static int check_cpu_on_node(pg_data_t *pgdat)
1723 {
1724 	int cpu;
1725 
1726 	for_each_present_cpu(cpu) {
1727 		if (cpu_to_node(cpu) == pgdat->node_id)
1728 			/*
1729 			 * the cpu on this node isn't removed, and we can't
1730 			 * offline this node.
1731 			 */
1732 			return -EBUSY;
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 static void unmap_cpu_on_node(pg_data_t *pgdat)
1739 {
1740 #ifdef CONFIG_ACPI_NUMA
1741 	int cpu;
1742 
1743 	for_each_possible_cpu(cpu)
1744 		if (cpu_to_node(cpu) == pgdat->node_id)
1745 			numa_clear_node(cpu);
1746 #endif
1747 }
1748 
1749 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1750 {
1751 	int ret;
1752 
1753 	ret = check_cpu_on_node(pgdat);
1754 	if (ret)
1755 		return ret;
1756 
1757 	/*
1758 	 * the node will be offlined when we come here, so we can clear
1759 	 * the cpu_to_node() now.
1760 	 */
1761 
1762 	unmap_cpu_on_node(pgdat);
1763 	return 0;
1764 }
1765 
1766 /**
1767  * try_offline_node
1768  *
1769  * Offline a node if all memory sections and cpus of the node are removed.
1770  *
1771  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1772  * and online/offline operations before this call.
1773  */
1774 void try_offline_node(int nid)
1775 {
1776 	pg_data_t *pgdat = NODE_DATA(nid);
1777 	unsigned long start_pfn = pgdat->node_start_pfn;
1778 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1779 	unsigned long pfn;
1780 	struct page *pgdat_page = virt_to_page(pgdat);
1781 	int i;
1782 
1783 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1784 		unsigned long section_nr = pfn_to_section_nr(pfn);
1785 
1786 		if (!present_section_nr(section_nr))
1787 			continue;
1788 
1789 		if (pfn_to_nid(pfn) != nid)
1790 			continue;
1791 
1792 		/*
1793 		 * some memory sections of this node are not removed, and we
1794 		 * can't offline node now.
1795 		 */
1796 		return;
1797 	}
1798 
1799 	if (check_and_unmap_cpu_on_node(pgdat))
1800 		return;
1801 
1802 	/*
1803 	 * all memory/cpu of this node are removed, we can offline this
1804 	 * node now.
1805 	 */
1806 	node_set_offline(nid);
1807 	unregister_one_node(nid);
1808 
1809 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1810 		/* node data is allocated from boot memory */
1811 		return;
1812 
1813 	/* free waittable in each zone */
1814 	for (i = 0; i < MAX_NR_ZONES; i++) {
1815 		struct zone *zone = pgdat->node_zones + i;
1816 
1817 		/*
1818 		 * wait_table may be allocated from boot memory,
1819 		 * here only free if it's allocated by vmalloc.
1820 		 */
1821 		if (is_vmalloc_addr(zone->wait_table))
1822 			vfree(zone->wait_table);
1823 	}
1824 
1825 	/*
1826 	 * Since there is no way to guarentee the address of pgdat/zone is not
1827 	 * on stack of any kernel threads or used by other kernel objects
1828 	 * without reference counting or other symchronizing method, do not
1829 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1830 	 * the memory when the node is online again.
1831 	 */
1832 	memset(pgdat, 0, sizeof(*pgdat));
1833 }
1834 EXPORT_SYMBOL(try_offline_node);
1835 
1836 /**
1837  * remove_memory
1838  *
1839  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1840  * and online/offline operations before this call, as required by
1841  * try_offline_node().
1842  */
1843 void __ref remove_memory(int nid, u64 start, u64 size)
1844 {
1845 	int ret;
1846 
1847 	BUG_ON(check_hotplug_memory_range(start, size));
1848 
1849 	lock_memory_hotplug();
1850 
1851 	/*
1852 	 * All memory blocks must be offlined before removing memory.  Check
1853 	 * whether all memory blocks in question are offline and trigger a BUG()
1854 	 * if this is not the case.
1855 	 */
1856 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1857 				is_memblock_offlined_cb);
1858 	if (ret) {
1859 		unlock_memory_hotplug();
1860 		BUG();
1861 	}
1862 
1863 	/* remove memmap entry */
1864 	firmware_map_remove(start, start + size, "System RAM");
1865 
1866 	arch_remove_memory(start, size);
1867 
1868 	try_offline_node(nid);
1869 
1870 	unlock_memory_hotplug();
1871 }
1872 EXPORT_SYMBOL_GPL(remove_memory);
1873 #endif /* CONFIG_MEMORY_HOTREMOVE */
1874