1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 int mhp_default_online_type = MMOP_OFFLINE; 71 #else 72 int mhp_default_online_type = MMOP_ONLINE; 73 #endif 74 75 static int __init setup_memhp_default_state(char *str) 76 { 77 const int online_type = mhp_online_type_from_str(str); 78 79 if (online_type >= 0) 80 mhp_default_online_type = online_type; 81 82 return 1; 83 } 84 __setup("memhp_default_state=", setup_memhp_default_state); 85 86 void mem_hotplug_begin(void) 87 { 88 cpus_read_lock(); 89 percpu_down_write(&mem_hotplug_lock); 90 } 91 92 void mem_hotplug_done(void) 93 { 94 percpu_up_write(&mem_hotplug_lock); 95 cpus_read_unlock(); 96 } 97 98 u64 max_mem_size = U64_MAX; 99 100 /* add this memory to iomem resource */ 101 static struct resource *register_memory_resource(u64 start, u64 size, 102 const char *resource_name) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 107 if (strcmp(resource_name, "System RAM")) 108 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 109 110 if (!mhp_range_allowed(start, size, true)) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Make sure value parsed from 'mem=' only restricts memory adding 115 * while booting, so that memory hotplug won't be impacted. Please 116 * refer to document of 'mem=' in kernel-parameters.txt for more 117 * details. 118 */ 119 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 120 return ERR_PTR(-E2BIG); 121 122 /* 123 * Request ownership of the new memory range. This might be 124 * a child of an existing resource that was present but 125 * not marked as busy. 126 */ 127 res = __request_region(&iomem_resource, start, size, 128 resource_name, flags); 129 130 if (!res) { 131 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 132 start, start + size); 133 return ERR_PTR(-EEXIST); 134 } 135 return res; 136 } 137 138 static void release_memory_resource(struct resource *res) 139 { 140 if (!res) 141 return; 142 release_resource(res); 143 kfree(res); 144 } 145 146 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 147 void get_page_bootmem(unsigned long info, struct page *page, 148 unsigned long type) 149 { 150 page->freelist = (void *)type; 151 SetPagePrivate(page); 152 set_page_private(page, info); 153 page_ref_inc(page); 154 } 155 156 void put_page_bootmem(struct page *page) 157 { 158 unsigned long type; 159 160 type = (unsigned long) page->freelist; 161 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 162 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 163 164 if (page_ref_dec_return(page) == 1) { 165 page->freelist = NULL; 166 ClearPagePrivate(page); 167 set_page_private(page, 0); 168 INIT_LIST_HEAD(&page->lru); 169 free_reserved_page(page); 170 } 171 } 172 173 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 174 #ifndef CONFIG_SPARSEMEM_VMEMMAP 175 static void register_page_bootmem_info_section(unsigned long start_pfn) 176 { 177 unsigned long mapsize, section_nr, i; 178 struct mem_section *ms; 179 struct page *page, *memmap; 180 struct mem_section_usage *usage; 181 182 section_nr = pfn_to_section_nr(start_pfn); 183 ms = __nr_to_section(section_nr); 184 185 /* Get section's memmap address */ 186 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 187 188 /* 189 * Get page for the memmap's phys address 190 * XXX: need more consideration for sparse_vmemmap... 191 */ 192 page = virt_to_page(memmap); 193 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 194 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 195 196 /* remember memmap's page */ 197 for (i = 0; i < mapsize; i++, page++) 198 get_page_bootmem(section_nr, page, SECTION_INFO); 199 200 usage = ms->usage; 201 page = virt_to_page(usage); 202 203 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 204 205 for (i = 0; i < mapsize; i++, page++) 206 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 207 208 } 209 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 210 static void register_page_bootmem_info_section(unsigned long start_pfn) 211 { 212 unsigned long mapsize, section_nr, i; 213 struct mem_section *ms; 214 struct page *page, *memmap; 215 struct mem_section_usage *usage; 216 217 section_nr = pfn_to_section_nr(start_pfn); 218 ms = __nr_to_section(section_nr); 219 220 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 221 222 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 223 224 usage = ms->usage; 225 page = virt_to_page(usage); 226 227 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 228 229 for (i = 0; i < mapsize; i++, page++) 230 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 231 } 232 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 233 234 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 235 { 236 unsigned long i, pfn, end_pfn, nr_pages; 237 int node = pgdat->node_id; 238 struct page *page; 239 240 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 241 page = virt_to_page(pgdat); 242 243 for (i = 0; i < nr_pages; i++, page++) 244 get_page_bootmem(node, page, NODE_INFO); 245 246 pfn = pgdat->node_start_pfn; 247 end_pfn = pgdat_end_pfn(pgdat); 248 249 /* register section info */ 250 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 251 /* 252 * Some platforms can assign the same pfn to multiple nodes - on 253 * node0 as well as nodeN. To avoid registering a pfn against 254 * multiple nodes we check that this pfn does not already 255 * reside in some other nodes. 256 */ 257 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 258 register_page_bootmem_info_section(pfn); 259 } 260 } 261 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 262 263 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 264 const char *reason) 265 { 266 /* 267 * Disallow all operations smaller than a sub-section and only 268 * allow operations smaller than a section for 269 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 270 * enforces a larger memory_block_size_bytes() granularity for 271 * memory that will be marked online, so this check should only 272 * fire for direct arch_{add,remove}_memory() users outside of 273 * add_memory_resource(). 274 */ 275 unsigned long min_align; 276 277 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 278 min_align = PAGES_PER_SUBSECTION; 279 else 280 min_align = PAGES_PER_SECTION; 281 if (!IS_ALIGNED(pfn, min_align) 282 || !IS_ALIGNED(nr_pages, min_align)) { 283 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 284 reason, pfn, pfn + nr_pages - 1); 285 return -EINVAL; 286 } 287 return 0; 288 } 289 290 /* 291 * Return page for the valid pfn only if the page is online. All pfn 292 * walkers which rely on the fully initialized page->flags and others 293 * should use this rather than pfn_valid && pfn_to_page 294 */ 295 struct page *pfn_to_online_page(unsigned long pfn) 296 { 297 unsigned long nr = pfn_to_section_nr(pfn); 298 struct dev_pagemap *pgmap; 299 struct mem_section *ms; 300 301 if (nr >= NR_MEM_SECTIONS) 302 return NULL; 303 304 ms = __nr_to_section(nr); 305 if (!online_section(ms)) 306 return NULL; 307 308 /* 309 * Save some code text when online_section() + 310 * pfn_section_valid() are sufficient. 311 */ 312 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 313 return NULL; 314 315 if (!pfn_section_valid(ms, pfn)) 316 return NULL; 317 318 if (!online_device_section(ms)) 319 return pfn_to_page(pfn); 320 321 /* 322 * Slowpath: when ZONE_DEVICE collides with 323 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 324 * the section may be 'offline' but 'valid'. Only 325 * get_dev_pagemap() can determine sub-section online status. 326 */ 327 pgmap = get_dev_pagemap(pfn, NULL); 328 put_dev_pagemap(pgmap); 329 330 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 331 if (pgmap) 332 return NULL; 333 334 return pfn_to_page(pfn); 335 } 336 EXPORT_SYMBOL_GPL(pfn_to_online_page); 337 338 /* 339 * Reasonably generic function for adding memory. It is 340 * expected that archs that support memory hotplug will 341 * call this function after deciding the zone to which to 342 * add the new pages. 343 */ 344 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 345 struct mhp_params *params) 346 { 347 const unsigned long end_pfn = pfn + nr_pages; 348 unsigned long cur_nr_pages; 349 int err; 350 struct vmem_altmap *altmap = params->altmap; 351 352 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 353 return -EINVAL; 354 355 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 356 357 if (altmap) { 358 /* 359 * Validate altmap is within bounds of the total request 360 */ 361 if (altmap->base_pfn != pfn 362 || vmem_altmap_offset(altmap) > nr_pages) { 363 pr_warn_once("memory add fail, invalid altmap\n"); 364 return -EINVAL; 365 } 366 altmap->alloc = 0; 367 } 368 369 err = check_pfn_span(pfn, nr_pages, "add"); 370 if (err) 371 return err; 372 373 for (; pfn < end_pfn; pfn += cur_nr_pages) { 374 /* Select all remaining pages up to the next section boundary */ 375 cur_nr_pages = min(end_pfn - pfn, 376 SECTION_ALIGN_UP(pfn + 1) - pfn); 377 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 378 if (err) 379 break; 380 cond_resched(); 381 } 382 vmemmap_populate_print_last(); 383 return err; 384 } 385 386 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 387 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 388 unsigned long start_pfn, 389 unsigned long end_pfn) 390 { 391 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 392 if (unlikely(!pfn_to_online_page(start_pfn))) 393 continue; 394 395 if (unlikely(pfn_to_nid(start_pfn) != nid)) 396 continue; 397 398 if (zone != page_zone(pfn_to_page(start_pfn))) 399 continue; 400 401 return start_pfn; 402 } 403 404 return 0; 405 } 406 407 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 408 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 409 unsigned long start_pfn, 410 unsigned long end_pfn) 411 { 412 unsigned long pfn; 413 414 /* pfn is the end pfn of a memory section. */ 415 pfn = end_pfn - 1; 416 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 417 if (unlikely(!pfn_to_online_page(pfn))) 418 continue; 419 420 if (unlikely(pfn_to_nid(pfn) != nid)) 421 continue; 422 423 if (zone != page_zone(pfn_to_page(pfn))) 424 continue; 425 426 return pfn; 427 } 428 429 return 0; 430 } 431 432 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 433 unsigned long end_pfn) 434 { 435 unsigned long pfn; 436 int nid = zone_to_nid(zone); 437 438 zone_span_writelock(zone); 439 if (zone->zone_start_pfn == start_pfn) { 440 /* 441 * If the section is smallest section in the zone, it need 442 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 443 * In this case, we find second smallest valid mem_section 444 * for shrinking zone. 445 */ 446 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 447 zone_end_pfn(zone)); 448 if (pfn) { 449 zone->spanned_pages = zone_end_pfn(zone) - pfn; 450 zone->zone_start_pfn = pfn; 451 } else { 452 zone->zone_start_pfn = 0; 453 zone->spanned_pages = 0; 454 } 455 } else if (zone_end_pfn(zone) == end_pfn) { 456 /* 457 * If the section is biggest section in the zone, it need 458 * shrink zone->spanned_pages. 459 * In this case, we find second biggest valid mem_section for 460 * shrinking zone. 461 */ 462 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 463 start_pfn); 464 if (pfn) 465 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 466 else { 467 zone->zone_start_pfn = 0; 468 zone->spanned_pages = 0; 469 } 470 } 471 zone_span_writeunlock(zone); 472 } 473 474 static void update_pgdat_span(struct pglist_data *pgdat) 475 { 476 unsigned long node_start_pfn = 0, node_end_pfn = 0; 477 struct zone *zone; 478 479 for (zone = pgdat->node_zones; 480 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 481 unsigned long end_pfn = zone_end_pfn(zone); 482 483 /* No need to lock the zones, they can't change. */ 484 if (!zone->spanned_pages) 485 continue; 486 if (!node_end_pfn) { 487 node_start_pfn = zone->zone_start_pfn; 488 node_end_pfn = end_pfn; 489 continue; 490 } 491 492 if (end_pfn > node_end_pfn) 493 node_end_pfn = end_pfn; 494 if (zone->zone_start_pfn < node_start_pfn) 495 node_start_pfn = zone->zone_start_pfn; 496 } 497 498 pgdat->node_start_pfn = node_start_pfn; 499 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 500 } 501 502 void __ref remove_pfn_range_from_zone(struct zone *zone, 503 unsigned long start_pfn, 504 unsigned long nr_pages) 505 { 506 const unsigned long end_pfn = start_pfn + nr_pages; 507 struct pglist_data *pgdat = zone->zone_pgdat; 508 unsigned long pfn, cur_nr_pages, flags; 509 510 /* Poison struct pages because they are now uninitialized again. */ 511 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 512 cond_resched(); 513 514 /* Select all remaining pages up to the next section boundary */ 515 cur_nr_pages = 516 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 517 page_init_poison(pfn_to_page(pfn), 518 sizeof(struct page) * cur_nr_pages); 519 } 520 521 #ifdef CONFIG_ZONE_DEVICE 522 /* 523 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 524 * we will not try to shrink the zones - which is okay as 525 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 526 */ 527 if (zone_idx(zone) == ZONE_DEVICE) 528 return; 529 #endif 530 531 clear_zone_contiguous(zone); 532 533 pgdat_resize_lock(zone->zone_pgdat, &flags); 534 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 535 update_pgdat_span(pgdat); 536 pgdat_resize_unlock(zone->zone_pgdat, &flags); 537 538 set_zone_contiguous(zone); 539 } 540 541 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 542 unsigned long map_offset, 543 struct vmem_altmap *altmap) 544 { 545 struct mem_section *ms = __pfn_to_section(pfn); 546 547 if (WARN_ON_ONCE(!valid_section(ms))) 548 return; 549 550 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 551 } 552 553 /** 554 * __remove_pages() - remove sections of pages 555 * @pfn: starting pageframe (must be aligned to start of a section) 556 * @nr_pages: number of pages to remove (must be multiple of section size) 557 * @altmap: alternative device page map or %NULL if default memmap is used 558 * 559 * Generic helper function to remove section mappings and sysfs entries 560 * for the section of the memory we are removing. Caller needs to make 561 * sure that pages are marked reserved and zones are adjust properly by 562 * calling offline_pages(). 563 */ 564 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 565 struct vmem_altmap *altmap) 566 { 567 const unsigned long end_pfn = pfn + nr_pages; 568 unsigned long cur_nr_pages; 569 unsigned long map_offset = 0; 570 571 map_offset = vmem_altmap_offset(altmap); 572 573 if (check_pfn_span(pfn, nr_pages, "remove")) 574 return; 575 576 for (; pfn < end_pfn; pfn += cur_nr_pages) { 577 cond_resched(); 578 /* Select all remaining pages up to the next section boundary */ 579 cur_nr_pages = min(end_pfn - pfn, 580 SECTION_ALIGN_UP(pfn + 1) - pfn); 581 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 582 map_offset = 0; 583 } 584 } 585 586 int set_online_page_callback(online_page_callback_t callback) 587 { 588 int rc = -EINVAL; 589 590 get_online_mems(); 591 mutex_lock(&online_page_callback_lock); 592 593 if (online_page_callback == generic_online_page) { 594 online_page_callback = callback; 595 rc = 0; 596 } 597 598 mutex_unlock(&online_page_callback_lock); 599 put_online_mems(); 600 601 return rc; 602 } 603 EXPORT_SYMBOL_GPL(set_online_page_callback); 604 605 int restore_online_page_callback(online_page_callback_t callback) 606 { 607 int rc = -EINVAL; 608 609 get_online_mems(); 610 mutex_lock(&online_page_callback_lock); 611 612 if (online_page_callback == callback) { 613 online_page_callback = generic_online_page; 614 rc = 0; 615 } 616 617 mutex_unlock(&online_page_callback_lock); 618 put_online_mems(); 619 620 return rc; 621 } 622 EXPORT_SYMBOL_GPL(restore_online_page_callback); 623 624 void generic_online_page(struct page *page, unsigned int order) 625 { 626 /* 627 * Freeing the page with debug_pagealloc enabled will try to unmap it, 628 * so we should map it first. This is better than introducing a special 629 * case in page freeing fast path. 630 */ 631 debug_pagealloc_map_pages(page, 1 << order); 632 __free_pages_core(page, order); 633 totalram_pages_add(1UL << order); 634 #ifdef CONFIG_HIGHMEM 635 if (PageHighMem(page)) 636 totalhigh_pages_add(1UL << order); 637 #endif 638 } 639 EXPORT_SYMBOL_GPL(generic_online_page); 640 641 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 642 { 643 const unsigned long end_pfn = start_pfn + nr_pages; 644 unsigned long pfn; 645 646 /* 647 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 648 * decide to not expose all pages to the buddy (e.g., expose them 649 * later). We account all pages as being online and belonging to this 650 * zone ("present"). 651 */ 652 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) 653 (*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1); 654 655 /* mark all involved sections as online */ 656 online_mem_sections(start_pfn, end_pfn); 657 } 658 659 /* check which state of node_states will be changed when online memory */ 660 static void node_states_check_changes_online(unsigned long nr_pages, 661 struct zone *zone, struct memory_notify *arg) 662 { 663 int nid = zone_to_nid(zone); 664 665 arg->status_change_nid = NUMA_NO_NODE; 666 arg->status_change_nid_normal = NUMA_NO_NODE; 667 arg->status_change_nid_high = NUMA_NO_NODE; 668 669 if (!node_state(nid, N_MEMORY)) 670 arg->status_change_nid = nid; 671 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 672 arg->status_change_nid_normal = nid; 673 #ifdef CONFIG_HIGHMEM 674 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 675 arg->status_change_nid_high = nid; 676 #endif 677 } 678 679 static void node_states_set_node(int node, struct memory_notify *arg) 680 { 681 if (arg->status_change_nid_normal >= 0) 682 node_set_state(node, N_NORMAL_MEMORY); 683 684 if (arg->status_change_nid_high >= 0) 685 node_set_state(node, N_HIGH_MEMORY); 686 687 if (arg->status_change_nid >= 0) 688 node_set_state(node, N_MEMORY); 689 } 690 691 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 692 unsigned long nr_pages) 693 { 694 unsigned long old_end_pfn = zone_end_pfn(zone); 695 696 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 697 zone->zone_start_pfn = start_pfn; 698 699 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 700 } 701 702 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 703 unsigned long nr_pages) 704 { 705 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 706 707 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 708 pgdat->node_start_pfn = start_pfn; 709 710 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 711 712 } 713 714 static void section_taint_zone_device(unsigned long pfn) 715 { 716 struct mem_section *ms = __pfn_to_section(pfn); 717 718 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 719 } 720 721 /* 722 * Associate the pfn range with the given zone, initializing the memmaps 723 * and resizing the pgdat/zone data to span the added pages. After this 724 * call, all affected pages are PG_reserved. 725 * 726 * All aligned pageblocks are initialized to the specified migratetype 727 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 728 * zone stats (e.g., nr_isolate_pageblock) are touched. 729 */ 730 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 731 unsigned long nr_pages, 732 struct vmem_altmap *altmap, int migratetype) 733 { 734 struct pglist_data *pgdat = zone->zone_pgdat; 735 int nid = pgdat->node_id; 736 unsigned long flags; 737 738 clear_zone_contiguous(zone); 739 740 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 741 pgdat_resize_lock(pgdat, &flags); 742 zone_span_writelock(zone); 743 if (zone_is_empty(zone)) 744 init_currently_empty_zone(zone, start_pfn, nr_pages); 745 resize_zone_range(zone, start_pfn, nr_pages); 746 zone_span_writeunlock(zone); 747 resize_pgdat_range(pgdat, start_pfn, nr_pages); 748 pgdat_resize_unlock(pgdat, &flags); 749 750 /* 751 * Subsection population requires care in pfn_to_online_page(). 752 * Set the taint to enable the slow path detection of 753 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 754 * section. 755 */ 756 if (zone_is_zone_device(zone)) { 757 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 758 section_taint_zone_device(start_pfn); 759 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 760 section_taint_zone_device(start_pfn + nr_pages); 761 } 762 763 /* 764 * TODO now we have a visible range of pages which are not associated 765 * with their zone properly. Not nice but set_pfnblock_flags_mask 766 * expects the zone spans the pfn range. All the pages in the range 767 * are reserved so nobody should be touching them so we should be safe 768 */ 769 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 770 MEMINIT_HOTPLUG, altmap, migratetype); 771 772 set_zone_contiguous(zone); 773 } 774 775 /* 776 * Returns a default kernel memory zone for the given pfn range. 777 * If no kernel zone covers this pfn range it will automatically go 778 * to the ZONE_NORMAL. 779 */ 780 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 781 unsigned long nr_pages) 782 { 783 struct pglist_data *pgdat = NODE_DATA(nid); 784 int zid; 785 786 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 787 struct zone *zone = &pgdat->node_zones[zid]; 788 789 if (zone_intersects(zone, start_pfn, nr_pages)) 790 return zone; 791 } 792 793 return &pgdat->node_zones[ZONE_NORMAL]; 794 } 795 796 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 797 unsigned long nr_pages) 798 { 799 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 800 nr_pages); 801 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 802 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 803 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 804 805 /* 806 * We inherit the existing zone in a simple case where zones do not 807 * overlap in the given range 808 */ 809 if (in_kernel ^ in_movable) 810 return (in_kernel) ? kernel_zone : movable_zone; 811 812 /* 813 * If the range doesn't belong to any zone or two zones overlap in the 814 * given range then we use movable zone only if movable_node is 815 * enabled because we always online to a kernel zone by default. 816 */ 817 return movable_node_enabled ? movable_zone : kernel_zone; 818 } 819 820 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 821 unsigned long nr_pages) 822 { 823 if (online_type == MMOP_ONLINE_KERNEL) 824 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 825 826 if (online_type == MMOP_ONLINE_MOVABLE) 827 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 828 829 return default_zone_for_pfn(nid, start_pfn, nr_pages); 830 } 831 832 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 833 int online_type, int nid) 834 { 835 unsigned long flags; 836 struct zone *zone; 837 int need_zonelists_rebuild = 0; 838 int ret; 839 struct memory_notify arg; 840 841 /* We can only online full sections (e.g., SECTION_IS_ONLINE) */ 842 if (WARN_ON_ONCE(!nr_pages || 843 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION))) 844 return -EINVAL; 845 846 mem_hotplug_begin(); 847 848 /* associate pfn range with the zone */ 849 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 850 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 851 852 arg.start_pfn = pfn; 853 arg.nr_pages = nr_pages; 854 node_states_check_changes_online(nr_pages, zone, &arg); 855 856 ret = memory_notify(MEM_GOING_ONLINE, &arg); 857 ret = notifier_to_errno(ret); 858 if (ret) 859 goto failed_addition; 860 861 /* 862 * Fixup the number of isolated pageblocks before marking the sections 863 * onlining, such that undo_isolate_page_range() works correctly. 864 */ 865 spin_lock_irqsave(&zone->lock, flags); 866 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 867 spin_unlock_irqrestore(&zone->lock, flags); 868 869 /* 870 * If this zone is not populated, then it is not in zonelist. 871 * This means the page allocator ignores this zone. 872 * So, zonelist must be updated after online. 873 */ 874 if (!populated_zone(zone)) { 875 need_zonelists_rebuild = 1; 876 setup_zone_pageset(zone); 877 } 878 879 online_pages_range(pfn, nr_pages); 880 zone->present_pages += nr_pages; 881 882 pgdat_resize_lock(zone->zone_pgdat, &flags); 883 zone->zone_pgdat->node_present_pages += nr_pages; 884 pgdat_resize_unlock(zone->zone_pgdat, &flags); 885 886 node_states_set_node(nid, &arg); 887 if (need_zonelists_rebuild) 888 build_all_zonelists(NULL); 889 zone_pcp_update(zone); 890 891 /* Basic onlining is complete, allow allocation of onlined pages. */ 892 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 893 894 /* 895 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 896 * the tail of the freelist when undoing isolation). Shuffle the whole 897 * zone to make sure the just onlined pages are properly distributed 898 * across the whole freelist - to create an initial shuffle. 899 */ 900 shuffle_zone(zone); 901 902 init_per_zone_wmark_min(); 903 904 kswapd_run(nid); 905 kcompactd_run(nid); 906 907 writeback_set_ratelimit(); 908 909 memory_notify(MEM_ONLINE, &arg); 910 mem_hotplug_done(); 911 return 0; 912 913 failed_addition: 914 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 915 (unsigned long long) pfn << PAGE_SHIFT, 916 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 917 memory_notify(MEM_CANCEL_ONLINE, &arg); 918 remove_pfn_range_from_zone(zone, pfn, nr_pages); 919 mem_hotplug_done(); 920 return ret; 921 } 922 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 923 924 static void reset_node_present_pages(pg_data_t *pgdat) 925 { 926 struct zone *z; 927 928 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 929 z->present_pages = 0; 930 931 pgdat->node_present_pages = 0; 932 } 933 934 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 935 static pg_data_t __ref *hotadd_new_pgdat(int nid) 936 { 937 struct pglist_data *pgdat; 938 939 pgdat = NODE_DATA(nid); 940 if (!pgdat) { 941 pgdat = arch_alloc_nodedata(nid); 942 if (!pgdat) 943 return NULL; 944 945 pgdat->per_cpu_nodestats = 946 alloc_percpu(struct per_cpu_nodestat); 947 arch_refresh_nodedata(nid, pgdat); 948 } else { 949 int cpu; 950 /* 951 * Reset the nr_zones, order and highest_zoneidx before reuse. 952 * Note that kswapd will init kswapd_highest_zoneidx properly 953 * when it starts in the near future. 954 */ 955 pgdat->nr_zones = 0; 956 pgdat->kswapd_order = 0; 957 pgdat->kswapd_highest_zoneidx = 0; 958 for_each_online_cpu(cpu) { 959 struct per_cpu_nodestat *p; 960 961 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 962 memset(p, 0, sizeof(*p)); 963 } 964 } 965 966 /* we can use NODE_DATA(nid) from here */ 967 pgdat->node_id = nid; 968 pgdat->node_start_pfn = 0; 969 970 /* init node's zones as empty zones, we don't have any present pages.*/ 971 free_area_init_core_hotplug(nid); 972 973 /* 974 * The node we allocated has no zone fallback lists. For avoiding 975 * to access not-initialized zonelist, build here. 976 */ 977 build_all_zonelists(pgdat); 978 979 /* 980 * When memory is hot-added, all the memory is in offline state. So 981 * clear all zones' present_pages because they will be updated in 982 * online_pages() and offline_pages(). 983 */ 984 reset_node_managed_pages(pgdat); 985 reset_node_present_pages(pgdat); 986 987 return pgdat; 988 } 989 990 static void rollback_node_hotadd(int nid) 991 { 992 pg_data_t *pgdat = NODE_DATA(nid); 993 994 arch_refresh_nodedata(nid, NULL); 995 free_percpu(pgdat->per_cpu_nodestats); 996 arch_free_nodedata(pgdat); 997 } 998 999 1000 /** 1001 * try_online_node - online a node if offlined 1002 * @nid: the node ID 1003 * @set_node_online: Whether we want to online the node 1004 * called by cpu_up() to online a node without onlined memory. 1005 * 1006 * Returns: 1007 * 1 -> a new node has been allocated 1008 * 0 -> the node is already online 1009 * -ENOMEM -> the node could not be allocated 1010 */ 1011 static int __try_online_node(int nid, bool set_node_online) 1012 { 1013 pg_data_t *pgdat; 1014 int ret = 1; 1015 1016 if (node_online(nid)) 1017 return 0; 1018 1019 pgdat = hotadd_new_pgdat(nid); 1020 if (!pgdat) { 1021 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1022 ret = -ENOMEM; 1023 goto out; 1024 } 1025 1026 if (set_node_online) { 1027 node_set_online(nid); 1028 ret = register_one_node(nid); 1029 BUG_ON(ret); 1030 } 1031 out: 1032 return ret; 1033 } 1034 1035 /* 1036 * Users of this function always want to online/register the node 1037 */ 1038 int try_online_node(int nid) 1039 { 1040 int ret; 1041 1042 mem_hotplug_begin(); 1043 ret = __try_online_node(nid, true); 1044 mem_hotplug_done(); 1045 return ret; 1046 } 1047 1048 static int check_hotplug_memory_range(u64 start, u64 size) 1049 { 1050 /* memory range must be block size aligned */ 1051 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1052 !IS_ALIGNED(size, memory_block_size_bytes())) { 1053 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1054 memory_block_size_bytes(), start, size); 1055 return -EINVAL; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int online_memory_block(struct memory_block *mem, void *arg) 1062 { 1063 mem->online_type = mhp_default_online_type; 1064 return device_online(&mem->dev); 1065 } 1066 1067 /* 1068 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1069 * and online/offline operations (triggered e.g. by sysfs). 1070 * 1071 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1072 */ 1073 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1074 { 1075 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1076 u64 start, size; 1077 bool new_node = false; 1078 int ret; 1079 1080 start = res->start; 1081 size = resource_size(res); 1082 1083 ret = check_hotplug_memory_range(start, size); 1084 if (ret) 1085 return ret; 1086 1087 if (!node_possible(nid)) { 1088 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1089 return -EINVAL; 1090 } 1091 1092 mem_hotplug_begin(); 1093 1094 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1095 memblock_add_node(start, size, nid); 1096 1097 ret = __try_online_node(nid, false); 1098 if (ret < 0) 1099 goto error; 1100 new_node = ret; 1101 1102 /* call arch's memory hotadd */ 1103 ret = arch_add_memory(nid, start, size, ¶ms); 1104 if (ret < 0) 1105 goto error; 1106 1107 /* create memory block devices after memory was added */ 1108 ret = create_memory_block_devices(start, size); 1109 if (ret) { 1110 arch_remove_memory(nid, start, size, NULL); 1111 goto error; 1112 } 1113 1114 if (new_node) { 1115 /* If sysfs file of new node can't be created, cpu on the node 1116 * can't be hot-added. There is no rollback way now. 1117 * So, check by BUG_ON() to catch it reluctantly.. 1118 * We online node here. We can't roll back from here. 1119 */ 1120 node_set_online(nid); 1121 ret = __register_one_node(nid); 1122 BUG_ON(ret); 1123 } 1124 1125 /* link memory sections under this node.*/ 1126 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1127 MEMINIT_HOTPLUG); 1128 1129 /* create new memmap entry */ 1130 if (!strcmp(res->name, "System RAM")) 1131 firmware_map_add_hotplug(start, start + size, "System RAM"); 1132 1133 /* device_online() will take the lock when calling online_pages() */ 1134 mem_hotplug_done(); 1135 1136 /* 1137 * In case we're allowed to merge the resource, flag it and trigger 1138 * merging now that adding succeeded. 1139 */ 1140 if (mhp_flags & MHP_MERGE_RESOURCE) 1141 merge_system_ram_resource(res); 1142 1143 /* online pages if requested */ 1144 if (mhp_default_online_type != MMOP_OFFLINE) 1145 walk_memory_blocks(start, size, NULL, online_memory_block); 1146 1147 return ret; 1148 error: 1149 /* rollback pgdat allocation and others */ 1150 if (new_node) 1151 rollback_node_hotadd(nid); 1152 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1153 memblock_remove(start, size); 1154 mem_hotplug_done(); 1155 return ret; 1156 } 1157 1158 /* requires device_hotplug_lock, see add_memory_resource() */ 1159 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1160 { 1161 struct resource *res; 1162 int ret; 1163 1164 res = register_memory_resource(start, size, "System RAM"); 1165 if (IS_ERR(res)) 1166 return PTR_ERR(res); 1167 1168 ret = add_memory_resource(nid, res, mhp_flags); 1169 if (ret < 0) 1170 release_memory_resource(res); 1171 return ret; 1172 } 1173 1174 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1175 { 1176 int rc; 1177 1178 lock_device_hotplug(); 1179 rc = __add_memory(nid, start, size, mhp_flags); 1180 unlock_device_hotplug(); 1181 1182 return rc; 1183 } 1184 EXPORT_SYMBOL_GPL(add_memory); 1185 1186 /* 1187 * Add special, driver-managed memory to the system as system RAM. Such 1188 * memory is not exposed via the raw firmware-provided memmap as system 1189 * RAM, instead, it is detected and added by a driver - during cold boot, 1190 * after a reboot, and after kexec. 1191 * 1192 * Reasons why this memory should not be used for the initial memmap of a 1193 * kexec kernel or for placing kexec images: 1194 * - The booting kernel is in charge of determining how this memory will be 1195 * used (e.g., use persistent memory as system RAM) 1196 * - Coordination with a hypervisor is required before this memory 1197 * can be used (e.g., inaccessible parts). 1198 * 1199 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1200 * memory map") are created. Also, the created memory resource is flagged 1201 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1202 * this memory as well (esp., not place kexec images onto it). 1203 * 1204 * The resource_name (visible via /proc/iomem) has to have the format 1205 * "System RAM ($DRIVER)". 1206 */ 1207 int add_memory_driver_managed(int nid, u64 start, u64 size, 1208 const char *resource_name, mhp_t mhp_flags) 1209 { 1210 struct resource *res; 1211 int rc; 1212 1213 if (!resource_name || 1214 strstr(resource_name, "System RAM (") != resource_name || 1215 resource_name[strlen(resource_name) - 1] != ')') 1216 return -EINVAL; 1217 1218 lock_device_hotplug(); 1219 1220 res = register_memory_resource(start, size, resource_name); 1221 if (IS_ERR(res)) { 1222 rc = PTR_ERR(res); 1223 goto out_unlock; 1224 } 1225 1226 rc = add_memory_resource(nid, res, mhp_flags); 1227 if (rc < 0) 1228 release_memory_resource(res); 1229 1230 out_unlock: 1231 unlock_device_hotplug(); 1232 return rc; 1233 } 1234 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1235 1236 /* 1237 * Platforms should define arch_get_mappable_range() that provides 1238 * maximum possible addressable physical memory range for which the 1239 * linear mapping could be created. The platform returned address 1240 * range must adhere to these following semantics. 1241 * 1242 * - range.start <= range.end 1243 * - Range includes both end points [range.start..range.end] 1244 * 1245 * There is also a fallback definition provided here, allowing the 1246 * entire possible physical address range in case any platform does 1247 * not define arch_get_mappable_range(). 1248 */ 1249 struct range __weak arch_get_mappable_range(void) 1250 { 1251 struct range mhp_range = { 1252 .start = 0UL, 1253 .end = -1ULL, 1254 }; 1255 return mhp_range; 1256 } 1257 1258 struct range mhp_get_pluggable_range(bool need_mapping) 1259 { 1260 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1261 struct range mhp_range; 1262 1263 if (need_mapping) { 1264 mhp_range = arch_get_mappable_range(); 1265 if (mhp_range.start > max_phys) { 1266 mhp_range.start = 0; 1267 mhp_range.end = 0; 1268 } 1269 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1270 } else { 1271 mhp_range.start = 0; 1272 mhp_range.end = max_phys; 1273 } 1274 return mhp_range; 1275 } 1276 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1277 1278 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1279 { 1280 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1281 u64 end = start + size; 1282 1283 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1284 return true; 1285 1286 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1287 start, end, mhp_range.start, mhp_range.end); 1288 return false; 1289 } 1290 1291 #ifdef CONFIG_MEMORY_HOTREMOVE 1292 /* 1293 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1294 * memory holes). When true, return the zone. 1295 */ 1296 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1297 unsigned long end_pfn) 1298 { 1299 unsigned long pfn, sec_end_pfn; 1300 struct zone *zone = NULL; 1301 struct page *page; 1302 int i; 1303 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1304 pfn < end_pfn; 1305 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1306 /* Make sure the memory section is present first */ 1307 if (!present_section_nr(pfn_to_section_nr(pfn))) 1308 continue; 1309 for (; pfn < sec_end_pfn && pfn < end_pfn; 1310 pfn += MAX_ORDER_NR_PAGES) { 1311 i = 0; 1312 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1313 while ((i < MAX_ORDER_NR_PAGES) && 1314 !pfn_valid_within(pfn + i)) 1315 i++; 1316 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1317 continue; 1318 /* Check if we got outside of the zone */ 1319 if (zone && !zone_spans_pfn(zone, pfn + i)) 1320 return NULL; 1321 page = pfn_to_page(pfn + i); 1322 if (zone && page_zone(page) != zone) 1323 return NULL; 1324 zone = page_zone(page); 1325 } 1326 } 1327 1328 return zone; 1329 } 1330 1331 /* 1332 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1333 * non-lru movable pages and hugepages). Will skip over most unmovable 1334 * pages (esp., pages that can be skipped when offlining), but bail out on 1335 * definitely unmovable pages. 1336 * 1337 * Returns: 1338 * 0 in case a movable page is found and movable_pfn was updated. 1339 * -ENOENT in case no movable page was found. 1340 * -EBUSY in case a definitely unmovable page was found. 1341 */ 1342 static int scan_movable_pages(unsigned long start, unsigned long end, 1343 unsigned long *movable_pfn) 1344 { 1345 unsigned long pfn; 1346 1347 for (pfn = start; pfn < end; pfn++) { 1348 struct page *page, *head; 1349 unsigned long skip; 1350 1351 if (!pfn_valid(pfn)) 1352 continue; 1353 page = pfn_to_page(pfn); 1354 if (PageLRU(page)) 1355 goto found; 1356 if (__PageMovable(page)) 1357 goto found; 1358 1359 /* 1360 * PageOffline() pages that are not marked __PageMovable() and 1361 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1362 * definitely unmovable. If their reference count would be 0, 1363 * they could at least be skipped when offlining memory. 1364 */ 1365 if (PageOffline(page) && page_count(page)) 1366 return -EBUSY; 1367 1368 if (!PageHuge(page)) 1369 continue; 1370 head = compound_head(page); 1371 /* 1372 * This test is racy as we hold no reference or lock. The 1373 * hugetlb page could have been free'ed and head is no longer 1374 * a hugetlb page before the following check. In such unlikely 1375 * cases false positives and negatives are possible. Calling 1376 * code must deal with these scenarios. 1377 */ 1378 if (HPageMigratable(head)) 1379 goto found; 1380 skip = compound_nr(head) - (page - head); 1381 pfn += skip - 1; 1382 } 1383 return -ENOENT; 1384 found: 1385 *movable_pfn = pfn; 1386 return 0; 1387 } 1388 1389 static int 1390 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1391 { 1392 unsigned long pfn; 1393 struct page *page, *head; 1394 int ret = 0; 1395 LIST_HEAD(source); 1396 1397 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1398 if (!pfn_valid(pfn)) 1399 continue; 1400 page = pfn_to_page(pfn); 1401 head = compound_head(page); 1402 1403 if (PageHuge(page)) { 1404 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1405 isolate_huge_page(head, &source); 1406 continue; 1407 } else if (PageTransHuge(page)) 1408 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1409 1410 /* 1411 * HWPoison pages have elevated reference counts so the migration would 1412 * fail on them. It also doesn't make any sense to migrate them in the 1413 * first place. Still try to unmap such a page in case it is still mapped 1414 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1415 * the unmap as the catch all safety net). 1416 */ 1417 if (PageHWPoison(page)) { 1418 if (WARN_ON(PageLRU(page))) 1419 isolate_lru_page(page); 1420 if (page_mapped(page)) 1421 try_to_unmap(page, TTU_IGNORE_MLOCK); 1422 continue; 1423 } 1424 1425 if (!get_page_unless_zero(page)) 1426 continue; 1427 /* 1428 * We can skip free pages. And we can deal with pages on 1429 * LRU and non-lru movable pages. 1430 */ 1431 if (PageLRU(page)) 1432 ret = isolate_lru_page(page); 1433 else 1434 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1435 if (!ret) { /* Success */ 1436 list_add_tail(&page->lru, &source); 1437 if (!__PageMovable(page)) 1438 inc_node_page_state(page, NR_ISOLATED_ANON + 1439 page_is_file_lru(page)); 1440 1441 } else { 1442 pr_warn("failed to isolate pfn %lx\n", pfn); 1443 dump_page(page, "isolation failed"); 1444 } 1445 put_page(page); 1446 } 1447 if (!list_empty(&source)) { 1448 nodemask_t nmask = node_states[N_MEMORY]; 1449 struct migration_target_control mtc = { 1450 .nmask = &nmask, 1451 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1452 }; 1453 1454 /* 1455 * We have checked that migration range is on a single zone so 1456 * we can use the nid of the first page to all the others. 1457 */ 1458 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1459 1460 /* 1461 * try to allocate from a different node but reuse this node 1462 * if there are no other online nodes to be used (e.g. we are 1463 * offlining a part of the only existing node) 1464 */ 1465 node_clear(mtc.nid, nmask); 1466 if (nodes_empty(nmask)) 1467 node_set(mtc.nid, nmask); 1468 ret = migrate_pages(&source, alloc_migration_target, NULL, 1469 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1470 if (ret) { 1471 list_for_each_entry(page, &source, lru) { 1472 pr_warn("migrating pfn %lx failed ret:%d ", 1473 page_to_pfn(page), ret); 1474 dump_page(page, "migration failure"); 1475 } 1476 putback_movable_pages(&source); 1477 } 1478 } 1479 1480 return ret; 1481 } 1482 1483 static int __init cmdline_parse_movable_node(char *p) 1484 { 1485 movable_node_enabled = true; 1486 return 0; 1487 } 1488 early_param("movable_node", cmdline_parse_movable_node); 1489 1490 /* check which state of node_states will be changed when offline memory */ 1491 static void node_states_check_changes_offline(unsigned long nr_pages, 1492 struct zone *zone, struct memory_notify *arg) 1493 { 1494 struct pglist_data *pgdat = zone->zone_pgdat; 1495 unsigned long present_pages = 0; 1496 enum zone_type zt; 1497 1498 arg->status_change_nid = NUMA_NO_NODE; 1499 arg->status_change_nid_normal = NUMA_NO_NODE; 1500 arg->status_change_nid_high = NUMA_NO_NODE; 1501 1502 /* 1503 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1504 * If the memory to be offline is within the range 1505 * [0..ZONE_NORMAL], and it is the last present memory there, 1506 * the zones in that range will become empty after the offlining, 1507 * thus we can determine that we need to clear the node from 1508 * node_states[N_NORMAL_MEMORY]. 1509 */ 1510 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1511 present_pages += pgdat->node_zones[zt].present_pages; 1512 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1513 arg->status_change_nid_normal = zone_to_nid(zone); 1514 1515 #ifdef CONFIG_HIGHMEM 1516 /* 1517 * node_states[N_HIGH_MEMORY] contains nodes which 1518 * have normal memory or high memory. 1519 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1520 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1521 * we determine that the zones in that range become empty, 1522 * we need to clear the node for N_HIGH_MEMORY. 1523 */ 1524 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1525 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1526 arg->status_change_nid_high = zone_to_nid(zone); 1527 #endif 1528 1529 /* 1530 * We have accounted the pages from [0..ZONE_NORMAL), and 1531 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1532 * as well. 1533 * Here we count the possible pages from ZONE_MOVABLE. 1534 * If after having accounted all the pages, we see that the nr_pages 1535 * to be offlined is over or equal to the accounted pages, 1536 * we know that the node will become empty, and so, we can clear 1537 * it for N_MEMORY as well. 1538 */ 1539 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1540 1541 if (nr_pages >= present_pages) 1542 arg->status_change_nid = zone_to_nid(zone); 1543 } 1544 1545 static void node_states_clear_node(int node, struct memory_notify *arg) 1546 { 1547 if (arg->status_change_nid_normal >= 0) 1548 node_clear_state(node, N_NORMAL_MEMORY); 1549 1550 if (arg->status_change_nid_high >= 0) 1551 node_clear_state(node, N_HIGH_MEMORY); 1552 1553 if (arg->status_change_nid >= 0) 1554 node_clear_state(node, N_MEMORY); 1555 } 1556 1557 static int count_system_ram_pages_cb(unsigned long start_pfn, 1558 unsigned long nr_pages, void *data) 1559 { 1560 unsigned long *nr_system_ram_pages = data; 1561 1562 *nr_system_ram_pages += nr_pages; 1563 return 0; 1564 } 1565 1566 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1567 { 1568 const unsigned long end_pfn = start_pfn + nr_pages; 1569 unsigned long pfn, system_ram_pages = 0; 1570 unsigned long flags; 1571 struct zone *zone; 1572 struct memory_notify arg; 1573 int ret, node; 1574 char *reason; 1575 1576 /* We can only offline full sections (e.g., SECTION_IS_ONLINE) */ 1577 if (WARN_ON_ONCE(!nr_pages || 1578 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION))) 1579 return -EINVAL; 1580 1581 mem_hotplug_begin(); 1582 1583 /* 1584 * Don't allow to offline memory blocks that contain holes. 1585 * Consequently, memory blocks with holes can never get onlined 1586 * via the hotplug path - online_pages() - as hotplugged memory has 1587 * no holes. This way, we e.g., don't have to worry about marking 1588 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1589 * avoid using walk_system_ram_range() later. 1590 */ 1591 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1592 count_system_ram_pages_cb); 1593 if (system_ram_pages != nr_pages) { 1594 ret = -EINVAL; 1595 reason = "memory holes"; 1596 goto failed_removal; 1597 } 1598 1599 /* This makes hotplug much easier...and readable. 1600 we assume this for now. .*/ 1601 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1602 if (!zone) { 1603 ret = -EINVAL; 1604 reason = "multizone range"; 1605 goto failed_removal; 1606 } 1607 node = zone_to_nid(zone); 1608 1609 /* 1610 * Disable pcplists so that page isolation cannot race with freeing 1611 * in a way that pages from isolated pageblock are left on pcplists. 1612 */ 1613 zone_pcp_disable(zone); 1614 1615 /* set above range as isolated */ 1616 ret = start_isolate_page_range(start_pfn, end_pfn, 1617 MIGRATE_MOVABLE, 1618 MEMORY_OFFLINE | REPORT_FAILURE); 1619 if (ret) { 1620 reason = "failure to isolate range"; 1621 goto failed_removal_pcplists_disabled; 1622 } 1623 1624 arg.start_pfn = start_pfn; 1625 arg.nr_pages = nr_pages; 1626 node_states_check_changes_offline(nr_pages, zone, &arg); 1627 1628 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1629 ret = notifier_to_errno(ret); 1630 if (ret) { 1631 reason = "notifier failure"; 1632 goto failed_removal_isolated; 1633 } 1634 1635 do { 1636 pfn = start_pfn; 1637 do { 1638 if (signal_pending(current)) { 1639 ret = -EINTR; 1640 reason = "signal backoff"; 1641 goto failed_removal_isolated; 1642 } 1643 1644 cond_resched(); 1645 lru_add_drain_all(); 1646 1647 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1648 if (!ret) { 1649 /* 1650 * TODO: fatal migration failures should bail 1651 * out 1652 */ 1653 do_migrate_range(pfn, end_pfn); 1654 } 1655 } while (!ret); 1656 1657 if (ret != -ENOENT) { 1658 reason = "unmovable page"; 1659 goto failed_removal_isolated; 1660 } 1661 1662 /* 1663 * Dissolve free hugepages in the memory block before doing 1664 * offlining actually in order to make hugetlbfs's object 1665 * counting consistent. 1666 */ 1667 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1668 if (ret) { 1669 reason = "failure to dissolve huge pages"; 1670 goto failed_removal_isolated; 1671 } 1672 1673 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1674 1675 } while (ret); 1676 1677 /* Mark all sections offline and remove free pages from the buddy. */ 1678 __offline_isolated_pages(start_pfn, end_pfn); 1679 pr_debug("Offlined Pages %ld\n", nr_pages); 1680 1681 /* 1682 * The memory sections are marked offline, and the pageblock flags 1683 * effectively stale; nobody should be touching them. Fixup the number 1684 * of isolated pageblocks, memory onlining will properly revert this. 1685 */ 1686 spin_lock_irqsave(&zone->lock, flags); 1687 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1688 spin_unlock_irqrestore(&zone->lock, flags); 1689 1690 zone_pcp_enable(zone); 1691 1692 /* removal success */ 1693 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1694 zone->present_pages -= nr_pages; 1695 1696 pgdat_resize_lock(zone->zone_pgdat, &flags); 1697 zone->zone_pgdat->node_present_pages -= nr_pages; 1698 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1699 1700 init_per_zone_wmark_min(); 1701 1702 if (!populated_zone(zone)) { 1703 zone_pcp_reset(zone); 1704 build_all_zonelists(NULL); 1705 } else 1706 zone_pcp_update(zone); 1707 1708 node_states_clear_node(node, &arg); 1709 if (arg.status_change_nid >= 0) { 1710 kswapd_stop(node); 1711 kcompactd_stop(node); 1712 } 1713 1714 writeback_set_ratelimit(); 1715 1716 memory_notify(MEM_OFFLINE, &arg); 1717 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1718 mem_hotplug_done(); 1719 return 0; 1720 1721 failed_removal_isolated: 1722 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1723 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1724 failed_removal_pcplists_disabled: 1725 zone_pcp_enable(zone); 1726 failed_removal: 1727 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1728 (unsigned long long) start_pfn << PAGE_SHIFT, 1729 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1730 reason); 1731 /* pushback to free area */ 1732 mem_hotplug_done(); 1733 return ret; 1734 } 1735 1736 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1737 { 1738 int ret = !is_memblock_offlined(mem); 1739 1740 if (unlikely(ret)) { 1741 phys_addr_t beginpa, endpa; 1742 1743 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1744 endpa = beginpa + memory_block_size_bytes() - 1; 1745 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1746 &beginpa, &endpa); 1747 1748 return -EBUSY; 1749 } 1750 return 0; 1751 } 1752 1753 static int check_cpu_on_node(pg_data_t *pgdat) 1754 { 1755 int cpu; 1756 1757 for_each_present_cpu(cpu) { 1758 if (cpu_to_node(cpu) == pgdat->node_id) 1759 /* 1760 * the cpu on this node isn't removed, and we can't 1761 * offline this node. 1762 */ 1763 return -EBUSY; 1764 } 1765 1766 return 0; 1767 } 1768 1769 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1770 { 1771 int nid = *(int *)arg; 1772 1773 /* 1774 * If a memory block belongs to multiple nodes, the stored nid is not 1775 * reliable. However, such blocks are always online (e.g., cannot get 1776 * offlined) and, therefore, are still spanned by the node. 1777 */ 1778 return mem->nid == nid ? -EEXIST : 0; 1779 } 1780 1781 /** 1782 * try_offline_node 1783 * @nid: the node ID 1784 * 1785 * Offline a node if all memory sections and cpus of the node are removed. 1786 * 1787 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1788 * and online/offline operations before this call. 1789 */ 1790 void try_offline_node(int nid) 1791 { 1792 pg_data_t *pgdat = NODE_DATA(nid); 1793 int rc; 1794 1795 /* 1796 * If the node still spans pages (especially ZONE_DEVICE), don't 1797 * offline it. A node spans memory after move_pfn_range_to_zone(), 1798 * e.g., after the memory block was onlined. 1799 */ 1800 if (pgdat->node_spanned_pages) 1801 return; 1802 1803 /* 1804 * Especially offline memory blocks might not be spanned by the 1805 * node. They will get spanned by the node once they get onlined. 1806 * However, they link to the node in sysfs and can get onlined later. 1807 */ 1808 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 1809 if (rc) 1810 return; 1811 1812 if (check_cpu_on_node(pgdat)) 1813 return; 1814 1815 /* 1816 * all memory/cpu of this node are removed, we can offline this 1817 * node now. 1818 */ 1819 node_set_offline(nid); 1820 unregister_one_node(nid); 1821 } 1822 EXPORT_SYMBOL(try_offline_node); 1823 1824 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1825 { 1826 int rc = 0; 1827 1828 BUG_ON(check_hotplug_memory_range(start, size)); 1829 1830 /* 1831 * All memory blocks must be offlined before removing memory. Check 1832 * whether all memory blocks in question are offline and return error 1833 * if this is not the case. 1834 */ 1835 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1836 if (rc) 1837 return rc; 1838 1839 /* remove memmap entry */ 1840 firmware_map_remove(start, start + size, "System RAM"); 1841 1842 /* 1843 * Memory block device removal under the device_hotplug_lock is 1844 * a barrier against racing online attempts. 1845 */ 1846 remove_memory_block_devices(start, size); 1847 1848 mem_hotplug_begin(); 1849 1850 arch_remove_memory(nid, start, size, NULL); 1851 1852 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1853 memblock_free(start, size); 1854 memblock_remove(start, size); 1855 } 1856 1857 release_mem_region_adjustable(start, size); 1858 1859 try_offline_node(nid); 1860 1861 mem_hotplug_done(); 1862 return 0; 1863 } 1864 1865 /** 1866 * remove_memory 1867 * @nid: the node ID 1868 * @start: physical address of the region to remove 1869 * @size: size of the region to remove 1870 * 1871 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1872 * and online/offline operations before this call, as required by 1873 * try_offline_node(). 1874 */ 1875 void __remove_memory(int nid, u64 start, u64 size) 1876 { 1877 1878 /* 1879 * trigger BUG() if some memory is not offlined prior to calling this 1880 * function 1881 */ 1882 if (try_remove_memory(nid, start, size)) 1883 BUG(); 1884 } 1885 1886 /* 1887 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1888 * some memory is not offline 1889 */ 1890 int remove_memory(int nid, u64 start, u64 size) 1891 { 1892 int rc; 1893 1894 lock_device_hotplug(); 1895 rc = try_remove_memory(nid, start, size); 1896 unlock_device_hotplug(); 1897 1898 return rc; 1899 } 1900 EXPORT_SYMBOL_GPL(remove_memory); 1901 1902 static int try_offline_memory_block(struct memory_block *mem, void *arg) 1903 { 1904 uint8_t online_type = MMOP_ONLINE_KERNEL; 1905 uint8_t **online_types = arg; 1906 struct page *page; 1907 int rc; 1908 1909 /* 1910 * Sense the online_type via the zone of the memory block. Offlining 1911 * with multiple zones within one memory block will be rejected 1912 * by offlining code ... so we don't care about that. 1913 */ 1914 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 1915 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 1916 online_type = MMOP_ONLINE_MOVABLE; 1917 1918 rc = device_offline(&mem->dev); 1919 /* 1920 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 1921 * so try_reonline_memory_block() can do the right thing. 1922 */ 1923 if (!rc) 1924 **online_types = online_type; 1925 1926 (*online_types)++; 1927 /* Ignore if already offline. */ 1928 return rc < 0 ? rc : 0; 1929 } 1930 1931 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 1932 { 1933 uint8_t **online_types = arg; 1934 int rc; 1935 1936 if (**online_types != MMOP_OFFLINE) { 1937 mem->online_type = **online_types; 1938 rc = device_online(&mem->dev); 1939 if (rc < 0) 1940 pr_warn("%s: Failed to re-online memory: %d", 1941 __func__, rc); 1942 } 1943 1944 /* Continue processing all remaining memory blocks. */ 1945 (*online_types)++; 1946 return 0; 1947 } 1948 1949 /* 1950 * Try to offline and remove memory. Might take a long time to finish in case 1951 * memory is still in use. Primarily useful for memory devices that logically 1952 * unplugged all memory (so it's no longer in use) and want to offline + remove 1953 * that memory. 1954 */ 1955 int offline_and_remove_memory(int nid, u64 start, u64 size) 1956 { 1957 const unsigned long mb_count = size / memory_block_size_bytes(); 1958 uint8_t *online_types, *tmp; 1959 int rc; 1960 1961 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 1962 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 1963 return -EINVAL; 1964 1965 /* 1966 * We'll remember the old online type of each memory block, so we can 1967 * try to revert whatever we did when offlining one memory block fails 1968 * after offlining some others succeeded. 1969 */ 1970 online_types = kmalloc_array(mb_count, sizeof(*online_types), 1971 GFP_KERNEL); 1972 if (!online_types) 1973 return -ENOMEM; 1974 /* 1975 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 1976 * try_offline_memory_block(), we'll skip all unprocessed blocks in 1977 * try_reonline_memory_block(). 1978 */ 1979 memset(online_types, MMOP_OFFLINE, mb_count); 1980 1981 lock_device_hotplug(); 1982 1983 tmp = online_types; 1984 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 1985 1986 /* 1987 * In case we succeeded to offline all memory, remove it. 1988 * This cannot fail as it cannot get onlined in the meantime. 1989 */ 1990 if (!rc) { 1991 rc = try_remove_memory(nid, start, size); 1992 if (rc) 1993 pr_err("%s: Failed to remove memory: %d", __func__, rc); 1994 } 1995 1996 /* 1997 * Rollback what we did. While memory onlining might theoretically fail 1998 * (nacked by a notifier), it barely ever happens. 1999 */ 2000 if (rc) { 2001 tmp = online_types; 2002 walk_memory_blocks(start, size, &tmp, 2003 try_reonline_memory_block); 2004 } 2005 unlock_device_hotplug(); 2006 2007 kfree(online_types); 2008 return rc; 2009 } 2010 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2011 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2012