1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 } 136 137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 138 void get_page_bootmem(unsigned long info, struct page *page, 139 unsigned long type) 140 { 141 page->freelist = (void *)type; 142 SetPagePrivate(page); 143 set_page_private(page, info); 144 page_ref_inc(page); 145 } 146 147 void put_page_bootmem(struct page *page) 148 { 149 unsigned long type; 150 151 type = (unsigned long) page->freelist; 152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 154 155 if (page_ref_dec_return(page) == 1) { 156 page->freelist = NULL; 157 ClearPagePrivate(page); 158 set_page_private(page, 0); 159 INIT_LIST_HEAD(&page->lru); 160 free_reserved_page(page); 161 } 162 } 163 164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 165 #ifndef CONFIG_SPARSEMEM_VMEMMAP 166 static void register_page_bootmem_info_section(unsigned long start_pfn) 167 { 168 unsigned long mapsize, section_nr, i; 169 struct mem_section *ms; 170 struct page *page, *memmap; 171 struct mem_section_usage *usage; 172 173 section_nr = pfn_to_section_nr(start_pfn); 174 ms = __nr_to_section(section_nr); 175 176 /* Get section's memmap address */ 177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 178 179 /* 180 * Get page for the memmap's phys address 181 * XXX: need more consideration for sparse_vmemmap... 182 */ 183 page = virt_to_page(memmap); 184 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 186 187 /* remember memmap's page */ 188 for (i = 0; i < mapsize; i++, page++) 189 get_page_bootmem(section_nr, page, SECTION_INFO); 190 191 usage = ms->usage; 192 page = virt_to_page(usage); 193 194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 195 196 for (i = 0; i < mapsize; i++, page++) 197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 198 199 } 200 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 201 static void register_page_bootmem_info_section(unsigned long start_pfn) 202 { 203 unsigned long mapsize, section_nr, i; 204 struct mem_section *ms; 205 struct page *page, *memmap; 206 struct mem_section_usage *usage; 207 208 section_nr = pfn_to_section_nr(start_pfn); 209 ms = __nr_to_section(section_nr); 210 211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 212 213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 214 215 usage = ms->usage; 216 page = virt_to_page(usage); 217 218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 219 220 for (i = 0; i < mapsize; i++, page++) 221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 222 } 223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 224 225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 226 { 227 unsigned long i, pfn, end_pfn, nr_pages; 228 int node = pgdat->node_id; 229 struct page *page; 230 231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 232 page = virt_to_page(pgdat); 233 234 for (i = 0; i < nr_pages; i++, page++) 235 get_page_bootmem(node, page, NODE_INFO); 236 237 pfn = pgdat->node_start_pfn; 238 end_pfn = pgdat_end_pfn(pgdat); 239 240 /* register section info */ 241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 242 /* 243 * Some platforms can assign the same pfn to multiple nodes - on 244 * node0 as well as nodeN. To avoid registering a pfn against 245 * multiple nodes we check that this pfn does not already 246 * reside in some other nodes. 247 */ 248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 249 register_page_bootmem_info_section(pfn); 250 } 251 } 252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 253 254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 255 const char *reason) 256 { 257 /* 258 * Disallow all operations smaller than a sub-section and only 259 * allow operations smaller than a section for 260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 261 * enforces a larger memory_block_size_bytes() granularity for 262 * memory that will be marked online, so this check should only 263 * fire for direct arch_{add,remove}_memory() users outside of 264 * add_memory_resource(). 265 */ 266 unsigned long min_align; 267 268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 269 min_align = PAGES_PER_SUBSECTION; 270 else 271 min_align = PAGES_PER_SECTION; 272 if (!IS_ALIGNED(pfn, min_align) 273 || !IS_ALIGNED(nr_pages, min_align)) { 274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 275 reason, pfn, pfn + nr_pages - 1); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 /* 282 * Reasonably generic function for adding memory. It is 283 * expected that archs that support memory hotplug will 284 * call this function after deciding the zone to which to 285 * add the new pages. 286 */ 287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 288 struct mhp_restrictions *restrictions) 289 { 290 int err; 291 unsigned long nr, start_sec, end_sec; 292 struct vmem_altmap *altmap = restrictions->altmap; 293 294 if (altmap) { 295 /* 296 * Validate altmap is within bounds of the total request 297 */ 298 if (altmap->base_pfn != pfn 299 || vmem_altmap_offset(altmap) > nr_pages) { 300 pr_warn_once("memory add fail, invalid altmap\n"); 301 return -EINVAL; 302 } 303 altmap->alloc = 0; 304 } 305 306 err = check_pfn_span(pfn, nr_pages, "add"); 307 if (err) 308 return err; 309 310 start_sec = pfn_to_section_nr(pfn); 311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 312 for (nr = start_sec; nr <= end_sec; nr++) { 313 unsigned long pfns; 314 315 pfns = min(nr_pages, PAGES_PER_SECTION 316 - (pfn & ~PAGE_SECTION_MASK)); 317 err = sparse_add_section(nid, pfn, pfns, altmap); 318 if (err) 319 break; 320 pfn += pfns; 321 nr_pages -= pfns; 322 cond_resched(); 323 } 324 vmemmap_populate_print_last(); 325 return err; 326 } 327 328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 330 unsigned long start_pfn, 331 unsigned long end_pfn) 332 { 333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 334 if (unlikely(!pfn_valid(start_pfn))) 335 continue; 336 337 if (unlikely(pfn_to_nid(start_pfn) != nid)) 338 continue; 339 340 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 341 continue; 342 343 return start_pfn; 344 } 345 346 return 0; 347 } 348 349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 351 unsigned long start_pfn, 352 unsigned long end_pfn) 353 { 354 unsigned long pfn; 355 356 /* pfn is the end pfn of a memory section. */ 357 pfn = end_pfn - 1; 358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 359 if (unlikely(!pfn_valid(pfn))) 360 continue; 361 362 if (unlikely(pfn_to_nid(pfn) != nid)) 363 continue; 364 365 if (zone && zone != page_zone(pfn_to_page(pfn))) 366 continue; 367 368 return pfn; 369 } 370 371 return 0; 372 } 373 374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 375 unsigned long end_pfn) 376 { 377 unsigned long zone_start_pfn = zone->zone_start_pfn; 378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 379 unsigned long zone_end_pfn = z; 380 unsigned long pfn; 381 int nid = zone_to_nid(zone); 382 383 zone_span_writelock(zone); 384 if (zone_start_pfn == start_pfn) { 385 /* 386 * If the section is smallest section in the zone, it need 387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 388 * In this case, we find second smallest valid mem_section 389 * for shrinking zone. 390 */ 391 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 392 zone_end_pfn); 393 if (pfn) { 394 zone->zone_start_pfn = pfn; 395 zone->spanned_pages = zone_end_pfn - pfn; 396 } 397 } else if (zone_end_pfn == end_pfn) { 398 /* 399 * If the section is biggest section in the zone, it need 400 * shrink zone->spanned_pages. 401 * In this case, we find second biggest valid mem_section for 402 * shrinking zone. 403 */ 404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 405 start_pfn); 406 if (pfn) 407 zone->spanned_pages = pfn - zone_start_pfn + 1; 408 } 409 410 /* 411 * The section is not biggest or smallest mem_section in the zone, it 412 * only creates a hole in the zone. So in this case, we need not 413 * change the zone. But perhaps, the zone has only hole data. Thus 414 * it check the zone has only hole or not. 415 */ 416 pfn = zone_start_pfn; 417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) { 418 if (unlikely(!pfn_valid(pfn))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* Skip range to be removed */ 425 if (pfn >= start_pfn && pfn < end_pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void shrink_pgdat_span(struct pglist_data *pgdat, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 444 unsigned long pgdat_end_pfn = p; 445 unsigned long pfn; 446 int nid = pgdat->node_id; 447 448 if (pgdat_start_pfn == start_pfn) { 449 /* 450 * If the section is smallest section in the pgdat, it need 451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 452 * In this case, we find second smallest valid mem_section 453 * for shrinking zone. 454 */ 455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 456 pgdat_end_pfn); 457 if (pfn) { 458 pgdat->node_start_pfn = pfn; 459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 460 } 461 } else if (pgdat_end_pfn == end_pfn) { 462 /* 463 * If the section is biggest section in the pgdat, it need 464 * shrink pgdat->node_spanned_pages. 465 * In this case, we find second biggest valid mem_section for 466 * shrinking zone. 467 */ 468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 469 start_pfn); 470 if (pfn) 471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 472 } 473 474 /* 475 * If the section is not biggest or smallest mem_section in the pgdat, 476 * it only creates a hole in the pgdat. So in this case, we need not 477 * change the pgdat. 478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 479 * has only hole or not. 480 */ 481 pfn = pgdat_start_pfn; 482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) { 483 if (unlikely(!pfn_valid(pfn))) 484 continue; 485 486 if (pfn_to_nid(pfn) != nid) 487 continue; 488 489 /* Skip range to be removed */ 490 if (pfn >= start_pfn && pfn < end_pfn) 491 continue; 492 493 /* If we find valid section, we have nothing to do */ 494 return; 495 } 496 497 /* The pgdat has no valid section */ 498 pgdat->node_start_pfn = 0; 499 pgdat->node_spanned_pages = 0; 500 } 501 502 static void __remove_zone(struct zone *zone, unsigned long start_pfn, 503 unsigned long nr_pages) 504 { 505 struct pglist_data *pgdat = zone->zone_pgdat; 506 unsigned long flags; 507 508 pgdat_resize_lock(zone->zone_pgdat, &flags); 509 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 510 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 511 pgdat_resize_unlock(zone->zone_pgdat, &flags); 512 } 513 514 static void __remove_section(struct zone *zone, unsigned long pfn, 515 unsigned long nr_pages, unsigned long map_offset, 516 struct vmem_altmap *altmap) 517 { 518 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn)); 519 520 if (WARN_ON_ONCE(!valid_section(ms))) 521 return; 522 523 __remove_zone(zone, pfn, nr_pages); 524 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 525 } 526 527 /** 528 * __remove_pages() - remove sections of pages from a zone 529 * @zone: zone from which pages need to be removed 530 * @pfn: starting pageframe (must be aligned to start of a section) 531 * @nr_pages: number of pages to remove (must be multiple of section size) 532 * @altmap: alternative device page map or %NULL if default memmap is used 533 * 534 * Generic helper function to remove section mappings and sysfs entries 535 * for the section of the memory we are removing. Caller needs to make 536 * sure that pages are marked reserved and zones are adjust properly by 537 * calling offline_pages(). 538 */ 539 void __remove_pages(struct zone *zone, unsigned long pfn, 540 unsigned long nr_pages, struct vmem_altmap *altmap) 541 { 542 unsigned long map_offset = 0; 543 unsigned long nr, start_sec, end_sec; 544 545 map_offset = vmem_altmap_offset(altmap); 546 547 clear_zone_contiguous(zone); 548 549 if (check_pfn_span(pfn, nr_pages, "remove")) 550 return; 551 552 start_sec = pfn_to_section_nr(pfn); 553 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 554 for (nr = start_sec; nr <= end_sec; nr++) { 555 unsigned long pfns; 556 557 cond_resched(); 558 pfns = min(nr_pages, PAGES_PER_SECTION 559 - (pfn & ~PAGE_SECTION_MASK)); 560 __remove_section(zone, pfn, pfns, map_offset, altmap); 561 pfn += pfns; 562 nr_pages -= pfns; 563 map_offset = 0; 564 } 565 566 set_zone_contiguous(zone); 567 } 568 569 int set_online_page_callback(online_page_callback_t callback) 570 { 571 int rc = -EINVAL; 572 573 get_online_mems(); 574 mutex_lock(&online_page_callback_lock); 575 576 if (online_page_callback == generic_online_page) { 577 online_page_callback = callback; 578 rc = 0; 579 } 580 581 mutex_unlock(&online_page_callback_lock); 582 put_online_mems(); 583 584 return rc; 585 } 586 EXPORT_SYMBOL_GPL(set_online_page_callback); 587 588 int restore_online_page_callback(online_page_callback_t callback) 589 { 590 int rc = -EINVAL; 591 592 get_online_mems(); 593 mutex_lock(&online_page_callback_lock); 594 595 if (online_page_callback == callback) { 596 online_page_callback = generic_online_page; 597 rc = 0; 598 } 599 600 mutex_unlock(&online_page_callback_lock); 601 put_online_mems(); 602 603 return rc; 604 } 605 EXPORT_SYMBOL_GPL(restore_online_page_callback); 606 607 void __online_page_set_limits(struct page *page) 608 { 609 } 610 EXPORT_SYMBOL_GPL(__online_page_set_limits); 611 612 void __online_page_increment_counters(struct page *page) 613 { 614 adjust_managed_page_count(page, 1); 615 } 616 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 617 618 void __online_page_free(struct page *page) 619 { 620 __free_reserved_page(page); 621 } 622 EXPORT_SYMBOL_GPL(__online_page_free); 623 624 static void generic_online_page(struct page *page, unsigned int order) 625 { 626 kernel_map_pages(page, 1 << order, 1); 627 __free_pages_core(page, order); 628 totalram_pages_add(1UL << order); 629 #ifdef CONFIG_HIGHMEM 630 if (PageHighMem(page)) 631 totalhigh_pages_add(1UL << order); 632 #endif 633 } 634 635 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 636 { 637 unsigned long end = start + nr_pages; 638 int order, onlined_pages = 0; 639 640 while (start < end) { 641 order = min(MAX_ORDER - 1, 642 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 643 (*online_page_callback)(pfn_to_page(start), order); 644 645 onlined_pages += (1UL << order); 646 start += (1UL << order); 647 } 648 return onlined_pages; 649 } 650 651 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 652 void *arg) 653 { 654 unsigned long onlined_pages = *(unsigned long *)arg; 655 656 if (PageReserved(pfn_to_page(start_pfn))) 657 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 658 659 online_mem_sections(start_pfn, start_pfn + nr_pages); 660 661 *(unsigned long *)arg = onlined_pages; 662 return 0; 663 } 664 665 /* check which state of node_states will be changed when online memory */ 666 static void node_states_check_changes_online(unsigned long nr_pages, 667 struct zone *zone, struct memory_notify *arg) 668 { 669 int nid = zone_to_nid(zone); 670 671 arg->status_change_nid = NUMA_NO_NODE; 672 arg->status_change_nid_normal = NUMA_NO_NODE; 673 arg->status_change_nid_high = NUMA_NO_NODE; 674 675 if (!node_state(nid, N_MEMORY)) 676 arg->status_change_nid = nid; 677 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 678 arg->status_change_nid_normal = nid; 679 #ifdef CONFIG_HIGHMEM 680 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 681 arg->status_change_nid_high = nid; 682 #endif 683 } 684 685 static void node_states_set_node(int node, struct memory_notify *arg) 686 { 687 if (arg->status_change_nid_normal >= 0) 688 node_set_state(node, N_NORMAL_MEMORY); 689 690 if (arg->status_change_nid_high >= 0) 691 node_set_state(node, N_HIGH_MEMORY); 692 693 if (arg->status_change_nid >= 0) 694 node_set_state(node, N_MEMORY); 695 } 696 697 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 698 unsigned long nr_pages) 699 { 700 unsigned long old_end_pfn = zone_end_pfn(zone); 701 702 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 703 zone->zone_start_pfn = start_pfn; 704 705 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 706 } 707 708 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 709 unsigned long nr_pages) 710 { 711 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 712 713 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 714 pgdat->node_start_pfn = start_pfn; 715 716 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 717 } 718 719 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 720 unsigned long nr_pages, struct vmem_altmap *altmap) 721 { 722 struct pglist_data *pgdat = zone->zone_pgdat; 723 int nid = pgdat->node_id; 724 unsigned long flags; 725 726 clear_zone_contiguous(zone); 727 728 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 729 pgdat_resize_lock(pgdat, &flags); 730 zone_span_writelock(zone); 731 if (zone_is_empty(zone)) 732 init_currently_empty_zone(zone, start_pfn, nr_pages); 733 resize_zone_range(zone, start_pfn, nr_pages); 734 zone_span_writeunlock(zone); 735 resize_pgdat_range(pgdat, start_pfn, nr_pages); 736 pgdat_resize_unlock(pgdat, &flags); 737 738 /* 739 * TODO now we have a visible range of pages which are not associated 740 * with their zone properly. Not nice but set_pfnblock_flags_mask 741 * expects the zone spans the pfn range. All the pages in the range 742 * are reserved so nobody should be touching them so we should be safe 743 */ 744 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 745 MEMMAP_HOTPLUG, altmap); 746 747 set_zone_contiguous(zone); 748 } 749 750 /* 751 * Returns a default kernel memory zone for the given pfn range. 752 * If no kernel zone covers this pfn range it will automatically go 753 * to the ZONE_NORMAL. 754 */ 755 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 756 unsigned long nr_pages) 757 { 758 struct pglist_data *pgdat = NODE_DATA(nid); 759 int zid; 760 761 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 762 struct zone *zone = &pgdat->node_zones[zid]; 763 764 if (zone_intersects(zone, start_pfn, nr_pages)) 765 return zone; 766 } 767 768 return &pgdat->node_zones[ZONE_NORMAL]; 769 } 770 771 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 772 unsigned long nr_pages) 773 { 774 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 775 nr_pages); 776 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 777 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 778 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 779 780 /* 781 * We inherit the existing zone in a simple case where zones do not 782 * overlap in the given range 783 */ 784 if (in_kernel ^ in_movable) 785 return (in_kernel) ? kernel_zone : movable_zone; 786 787 /* 788 * If the range doesn't belong to any zone or two zones overlap in the 789 * given range then we use movable zone only if movable_node is 790 * enabled because we always online to a kernel zone by default. 791 */ 792 return movable_node_enabled ? movable_zone : kernel_zone; 793 } 794 795 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 796 unsigned long nr_pages) 797 { 798 if (online_type == MMOP_ONLINE_KERNEL) 799 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 800 801 if (online_type == MMOP_ONLINE_MOVABLE) 802 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 803 804 return default_zone_for_pfn(nid, start_pfn, nr_pages); 805 } 806 807 /* 808 * Associates the given pfn range with the given node and the zone appropriate 809 * for the given online type. 810 */ 811 static struct zone * __meminit move_pfn_range(int online_type, int nid, 812 unsigned long start_pfn, unsigned long nr_pages) 813 { 814 struct zone *zone; 815 816 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 817 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 818 return zone; 819 } 820 821 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 822 { 823 unsigned long flags; 824 unsigned long onlined_pages = 0; 825 struct zone *zone; 826 int need_zonelists_rebuild = 0; 827 int nid; 828 int ret; 829 struct memory_notify arg; 830 struct memory_block *mem; 831 832 mem_hotplug_begin(); 833 834 /* 835 * We can't use pfn_to_nid() because nid might be stored in struct page 836 * which is not yet initialized. Instead, we find nid from memory block. 837 */ 838 mem = find_memory_block(__pfn_to_section(pfn)); 839 nid = mem->nid; 840 put_device(&mem->dev); 841 842 /* associate pfn range with the zone */ 843 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 844 845 arg.start_pfn = pfn; 846 arg.nr_pages = nr_pages; 847 node_states_check_changes_online(nr_pages, zone, &arg); 848 849 ret = memory_notify(MEM_GOING_ONLINE, &arg); 850 ret = notifier_to_errno(ret); 851 if (ret) 852 goto failed_addition; 853 854 /* 855 * If this zone is not populated, then it is not in zonelist. 856 * This means the page allocator ignores this zone. 857 * So, zonelist must be updated after online. 858 */ 859 if (!populated_zone(zone)) { 860 need_zonelists_rebuild = 1; 861 setup_zone_pageset(zone); 862 } 863 864 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 865 online_pages_range); 866 if (ret) { 867 if (need_zonelists_rebuild) 868 zone_pcp_reset(zone); 869 goto failed_addition; 870 } 871 872 zone->present_pages += onlined_pages; 873 874 pgdat_resize_lock(zone->zone_pgdat, &flags); 875 zone->zone_pgdat->node_present_pages += onlined_pages; 876 pgdat_resize_unlock(zone->zone_pgdat, &flags); 877 878 shuffle_zone(zone); 879 880 if (onlined_pages) { 881 node_states_set_node(nid, &arg); 882 if (need_zonelists_rebuild) 883 build_all_zonelists(NULL); 884 else 885 zone_pcp_update(zone); 886 } 887 888 init_per_zone_wmark_min(); 889 890 if (onlined_pages) { 891 kswapd_run(nid); 892 kcompactd_run(nid); 893 } 894 895 vm_total_pages = nr_free_pagecache_pages(); 896 897 writeback_set_ratelimit(); 898 899 if (onlined_pages) 900 memory_notify(MEM_ONLINE, &arg); 901 mem_hotplug_done(); 902 return 0; 903 904 failed_addition: 905 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 906 (unsigned long long) pfn << PAGE_SHIFT, 907 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 908 memory_notify(MEM_CANCEL_ONLINE, &arg); 909 mem_hotplug_done(); 910 return ret; 911 } 912 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 913 914 static void reset_node_present_pages(pg_data_t *pgdat) 915 { 916 struct zone *z; 917 918 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 919 z->present_pages = 0; 920 921 pgdat->node_present_pages = 0; 922 } 923 924 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 925 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 926 { 927 struct pglist_data *pgdat; 928 unsigned long start_pfn = PFN_DOWN(start); 929 930 pgdat = NODE_DATA(nid); 931 if (!pgdat) { 932 pgdat = arch_alloc_nodedata(nid); 933 if (!pgdat) 934 return NULL; 935 936 arch_refresh_nodedata(nid, pgdat); 937 } else { 938 /* 939 * Reset the nr_zones, order and classzone_idx before reuse. 940 * Note that kswapd will init kswapd_classzone_idx properly 941 * when it starts in the near future. 942 */ 943 pgdat->nr_zones = 0; 944 pgdat->kswapd_order = 0; 945 pgdat->kswapd_classzone_idx = 0; 946 } 947 948 /* we can use NODE_DATA(nid) from here */ 949 950 pgdat->node_id = nid; 951 pgdat->node_start_pfn = start_pfn; 952 953 /* init node's zones as empty zones, we don't have any present pages.*/ 954 free_area_init_core_hotplug(nid); 955 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 956 957 /* 958 * The node we allocated has no zone fallback lists. For avoiding 959 * to access not-initialized zonelist, build here. 960 */ 961 build_all_zonelists(pgdat); 962 963 /* 964 * When memory is hot-added, all the memory is in offline state. So 965 * clear all zones' present_pages because they will be updated in 966 * online_pages() and offline_pages(). 967 */ 968 reset_node_managed_pages(pgdat); 969 reset_node_present_pages(pgdat); 970 971 return pgdat; 972 } 973 974 static void rollback_node_hotadd(int nid) 975 { 976 pg_data_t *pgdat = NODE_DATA(nid); 977 978 arch_refresh_nodedata(nid, NULL); 979 free_percpu(pgdat->per_cpu_nodestats); 980 arch_free_nodedata(pgdat); 981 } 982 983 984 /** 985 * try_online_node - online a node if offlined 986 * @nid: the node ID 987 * @start: start addr of the node 988 * @set_node_online: Whether we want to online the node 989 * called by cpu_up() to online a node without onlined memory. 990 * 991 * Returns: 992 * 1 -> a new node has been allocated 993 * 0 -> the node is already online 994 * -ENOMEM -> the node could not be allocated 995 */ 996 static int __try_online_node(int nid, u64 start, bool set_node_online) 997 { 998 pg_data_t *pgdat; 999 int ret = 1; 1000 1001 if (node_online(nid)) 1002 return 0; 1003 1004 pgdat = hotadd_new_pgdat(nid, start); 1005 if (!pgdat) { 1006 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1007 ret = -ENOMEM; 1008 goto out; 1009 } 1010 1011 if (set_node_online) { 1012 node_set_online(nid); 1013 ret = register_one_node(nid); 1014 BUG_ON(ret); 1015 } 1016 out: 1017 return ret; 1018 } 1019 1020 /* 1021 * Users of this function always want to online/register the node 1022 */ 1023 int try_online_node(int nid) 1024 { 1025 int ret; 1026 1027 mem_hotplug_begin(); 1028 ret = __try_online_node(nid, 0, true); 1029 mem_hotplug_done(); 1030 return ret; 1031 } 1032 1033 static int check_hotplug_memory_range(u64 start, u64 size) 1034 { 1035 /* memory range must be block size aligned */ 1036 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1037 !IS_ALIGNED(size, memory_block_size_bytes())) { 1038 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1039 memory_block_size_bytes(), start, size); 1040 return -EINVAL; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static int online_memory_block(struct memory_block *mem, void *arg) 1047 { 1048 return device_online(&mem->dev); 1049 } 1050 1051 /* 1052 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1053 * and online/offline operations (triggered e.g. by sysfs). 1054 * 1055 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1056 */ 1057 int __ref add_memory_resource(int nid, struct resource *res) 1058 { 1059 struct mhp_restrictions restrictions = {}; 1060 u64 start, size; 1061 bool new_node = false; 1062 int ret; 1063 1064 start = res->start; 1065 size = resource_size(res); 1066 1067 ret = check_hotplug_memory_range(start, size); 1068 if (ret) 1069 return ret; 1070 1071 mem_hotplug_begin(); 1072 1073 /* 1074 * Add new range to memblock so that when hotadd_new_pgdat() is called 1075 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1076 * this new range and calculate total pages correctly. The range will 1077 * be removed at hot-remove time. 1078 */ 1079 memblock_add_node(start, size, nid); 1080 1081 ret = __try_online_node(nid, start, false); 1082 if (ret < 0) 1083 goto error; 1084 new_node = ret; 1085 1086 /* call arch's memory hotadd */ 1087 ret = arch_add_memory(nid, start, size, &restrictions); 1088 if (ret < 0) 1089 goto error; 1090 1091 /* create memory block devices after memory was added */ 1092 ret = create_memory_block_devices(start, size); 1093 if (ret) { 1094 arch_remove_memory(nid, start, size, NULL); 1095 goto error; 1096 } 1097 1098 if (new_node) { 1099 /* If sysfs file of new node can't be created, cpu on the node 1100 * can't be hot-added. There is no rollback way now. 1101 * So, check by BUG_ON() to catch it reluctantly.. 1102 * We online node here. We can't roll back from here. 1103 */ 1104 node_set_online(nid); 1105 ret = __register_one_node(nid); 1106 BUG_ON(ret); 1107 } 1108 1109 /* link memory sections under this node.*/ 1110 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1111 BUG_ON(ret); 1112 1113 /* create new memmap entry */ 1114 firmware_map_add_hotplug(start, start + size, "System RAM"); 1115 1116 /* device_online() will take the lock when calling online_pages() */ 1117 mem_hotplug_done(); 1118 1119 /* online pages if requested */ 1120 if (memhp_auto_online) 1121 walk_memory_blocks(start, size, NULL, online_memory_block); 1122 1123 return ret; 1124 error: 1125 /* rollback pgdat allocation and others */ 1126 if (new_node) 1127 rollback_node_hotadd(nid); 1128 memblock_remove(start, size); 1129 mem_hotplug_done(); 1130 return ret; 1131 } 1132 1133 /* requires device_hotplug_lock, see add_memory_resource() */ 1134 int __ref __add_memory(int nid, u64 start, u64 size) 1135 { 1136 struct resource *res; 1137 int ret; 1138 1139 res = register_memory_resource(start, size); 1140 if (IS_ERR(res)) 1141 return PTR_ERR(res); 1142 1143 ret = add_memory_resource(nid, res); 1144 if (ret < 0) 1145 release_memory_resource(res); 1146 return ret; 1147 } 1148 1149 int add_memory(int nid, u64 start, u64 size) 1150 { 1151 int rc; 1152 1153 lock_device_hotplug(); 1154 rc = __add_memory(nid, start, size); 1155 unlock_device_hotplug(); 1156 1157 return rc; 1158 } 1159 EXPORT_SYMBOL_GPL(add_memory); 1160 1161 #ifdef CONFIG_MEMORY_HOTREMOVE 1162 /* 1163 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1164 * set and the size of the free page is given by page_order(). Using this, 1165 * the function determines if the pageblock contains only free pages. 1166 * Due to buddy contraints, a free page at least the size of a pageblock will 1167 * be located at the start of the pageblock 1168 */ 1169 static inline int pageblock_free(struct page *page) 1170 { 1171 return PageBuddy(page) && page_order(page) >= pageblock_order; 1172 } 1173 1174 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1175 static unsigned long next_active_pageblock(unsigned long pfn) 1176 { 1177 struct page *page = pfn_to_page(pfn); 1178 1179 /* Ensure the starting page is pageblock-aligned */ 1180 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1181 1182 /* If the entire pageblock is free, move to the end of free page */ 1183 if (pageblock_free(page)) { 1184 int order; 1185 /* be careful. we don't have locks, page_order can be changed.*/ 1186 order = page_order(page); 1187 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1188 return pfn + (1 << order); 1189 } 1190 1191 return pfn + pageblock_nr_pages; 1192 } 1193 1194 static bool is_pageblock_removable_nolock(unsigned long pfn) 1195 { 1196 struct page *page = pfn_to_page(pfn); 1197 struct zone *zone; 1198 1199 /* 1200 * We have to be careful here because we are iterating over memory 1201 * sections which are not zone aware so we might end up outside of 1202 * the zone but still within the section. 1203 * We have to take care about the node as well. If the node is offline 1204 * its NODE_DATA will be NULL - see page_zone. 1205 */ 1206 if (!node_online(page_to_nid(page))) 1207 return false; 1208 1209 zone = page_zone(page); 1210 pfn = page_to_pfn(page); 1211 if (!zone_spans_pfn(zone, pfn)) 1212 return false; 1213 1214 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1215 } 1216 1217 /* Checks if this range of memory is likely to be hot-removable. */ 1218 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1219 { 1220 unsigned long end_pfn, pfn; 1221 1222 end_pfn = min(start_pfn + nr_pages, 1223 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1224 1225 /* Check the starting page of each pageblock within the range */ 1226 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1227 if (!is_pageblock_removable_nolock(pfn)) 1228 return false; 1229 cond_resched(); 1230 } 1231 1232 /* All pageblocks in the memory block are likely to be hot-removable */ 1233 return true; 1234 } 1235 1236 /* 1237 * Confirm all pages in a range [start, end) belong to the same zone. 1238 * When true, return its valid [start, end). 1239 */ 1240 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1241 unsigned long *valid_start, unsigned long *valid_end) 1242 { 1243 unsigned long pfn, sec_end_pfn; 1244 unsigned long start, end; 1245 struct zone *zone = NULL; 1246 struct page *page; 1247 int i; 1248 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1249 pfn < end_pfn; 1250 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1251 /* Make sure the memory section is present first */ 1252 if (!present_section_nr(pfn_to_section_nr(pfn))) 1253 continue; 1254 for (; pfn < sec_end_pfn && pfn < end_pfn; 1255 pfn += MAX_ORDER_NR_PAGES) { 1256 i = 0; 1257 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1258 while ((i < MAX_ORDER_NR_PAGES) && 1259 !pfn_valid_within(pfn + i)) 1260 i++; 1261 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1262 continue; 1263 /* Check if we got outside of the zone */ 1264 if (zone && !zone_spans_pfn(zone, pfn + i)) 1265 return 0; 1266 page = pfn_to_page(pfn + i); 1267 if (zone && page_zone(page) != zone) 1268 return 0; 1269 if (!zone) 1270 start = pfn + i; 1271 zone = page_zone(page); 1272 end = pfn + MAX_ORDER_NR_PAGES; 1273 } 1274 } 1275 1276 if (zone) { 1277 *valid_start = start; 1278 *valid_end = min(end, end_pfn); 1279 return 1; 1280 } else { 1281 return 0; 1282 } 1283 } 1284 1285 /* 1286 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1287 * non-lru movable pages and hugepages). We scan pfn because it's much 1288 * easier than scanning over linked list. This function returns the pfn 1289 * of the first found movable page if it's found, otherwise 0. 1290 */ 1291 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1292 { 1293 unsigned long pfn; 1294 1295 for (pfn = start; pfn < end; pfn++) { 1296 struct page *page, *head; 1297 unsigned long skip; 1298 1299 if (!pfn_valid(pfn)) 1300 continue; 1301 page = pfn_to_page(pfn); 1302 if (PageLRU(page)) 1303 return pfn; 1304 if (__PageMovable(page)) 1305 return pfn; 1306 1307 if (!PageHuge(page)) 1308 continue; 1309 head = compound_head(page); 1310 if (page_huge_active(head)) 1311 return pfn; 1312 skip = (1 << compound_order(head)) - (page - head); 1313 pfn += skip - 1; 1314 } 1315 return 0; 1316 } 1317 1318 static struct page *new_node_page(struct page *page, unsigned long private) 1319 { 1320 int nid = page_to_nid(page); 1321 nodemask_t nmask = node_states[N_MEMORY]; 1322 1323 /* 1324 * try to allocate from a different node but reuse this node if there 1325 * are no other online nodes to be used (e.g. we are offlining a part 1326 * of the only existing node) 1327 */ 1328 node_clear(nid, nmask); 1329 if (nodes_empty(nmask)) 1330 node_set(nid, nmask); 1331 1332 return new_page_nodemask(page, nid, &nmask); 1333 } 1334 1335 static int 1336 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1337 { 1338 unsigned long pfn; 1339 struct page *page; 1340 int ret = 0; 1341 LIST_HEAD(source); 1342 1343 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1344 if (!pfn_valid(pfn)) 1345 continue; 1346 page = pfn_to_page(pfn); 1347 1348 if (PageHuge(page)) { 1349 struct page *head = compound_head(page); 1350 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1351 isolate_huge_page(head, &source); 1352 continue; 1353 } else if (PageTransHuge(page)) 1354 pfn = page_to_pfn(compound_head(page)) 1355 + hpage_nr_pages(page) - 1; 1356 1357 /* 1358 * HWPoison pages have elevated reference counts so the migration would 1359 * fail on them. It also doesn't make any sense to migrate them in the 1360 * first place. Still try to unmap such a page in case it is still mapped 1361 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1362 * the unmap as the catch all safety net). 1363 */ 1364 if (PageHWPoison(page)) { 1365 if (WARN_ON(PageLRU(page))) 1366 isolate_lru_page(page); 1367 if (page_mapped(page)) 1368 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1369 continue; 1370 } 1371 1372 if (!get_page_unless_zero(page)) 1373 continue; 1374 /* 1375 * We can skip free pages. And we can deal with pages on 1376 * LRU and non-lru movable pages. 1377 */ 1378 if (PageLRU(page)) 1379 ret = isolate_lru_page(page); 1380 else 1381 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1382 if (!ret) { /* Success */ 1383 list_add_tail(&page->lru, &source); 1384 if (!__PageMovable(page)) 1385 inc_node_page_state(page, NR_ISOLATED_ANON + 1386 page_is_file_cache(page)); 1387 1388 } else { 1389 pr_warn("failed to isolate pfn %lx\n", pfn); 1390 dump_page(page, "isolation failed"); 1391 } 1392 put_page(page); 1393 } 1394 if (!list_empty(&source)) { 1395 /* Allocate a new page from the nearest neighbor node */ 1396 ret = migrate_pages(&source, new_node_page, NULL, 0, 1397 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1398 if (ret) { 1399 list_for_each_entry(page, &source, lru) { 1400 pr_warn("migrating pfn %lx failed ret:%d ", 1401 page_to_pfn(page), ret); 1402 dump_page(page, "migration failure"); 1403 } 1404 putback_movable_pages(&source); 1405 } 1406 } 1407 1408 return ret; 1409 } 1410 1411 /* 1412 * remove from free_area[] and mark all as Reserved. 1413 */ 1414 static int 1415 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1416 void *data) 1417 { 1418 unsigned long *offlined_pages = (unsigned long *)data; 1419 1420 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1421 return 0; 1422 } 1423 1424 /* 1425 * Check all pages in range, recoreded as memory resource, are isolated. 1426 */ 1427 static int 1428 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1429 void *data) 1430 { 1431 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1432 } 1433 1434 static int __init cmdline_parse_movable_node(char *p) 1435 { 1436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1437 movable_node_enabled = true; 1438 #else 1439 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1440 #endif 1441 return 0; 1442 } 1443 early_param("movable_node", cmdline_parse_movable_node); 1444 1445 /* check which state of node_states will be changed when offline memory */ 1446 static void node_states_check_changes_offline(unsigned long nr_pages, 1447 struct zone *zone, struct memory_notify *arg) 1448 { 1449 struct pglist_data *pgdat = zone->zone_pgdat; 1450 unsigned long present_pages = 0; 1451 enum zone_type zt; 1452 1453 arg->status_change_nid = NUMA_NO_NODE; 1454 arg->status_change_nid_normal = NUMA_NO_NODE; 1455 arg->status_change_nid_high = NUMA_NO_NODE; 1456 1457 /* 1458 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1459 * If the memory to be offline is within the range 1460 * [0..ZONE_NORMAL], and it is the last present memory there, 1461 * the zones in that range will become empty after the offlining, 1462 * thus we can determine that we need to clear the node from 1463 * node_states[N_NORMAL_MEMORY]. 1464 */ 1465 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1466 present_pages += pgdat->node_zones[zt].present_pages; 1467 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1468 arg->status_change_nid_normal = zone_to_nid(zone); 1469 1470 #ifdef CONFIG_HIGHMEM 1471 /* 1472 * node_states[N_HIGH_MEMORY] contains nodes which 1473 * have normal memory or high memory. 1474 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1475 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1476 * we determine that the zones in that range become empty, 1477 * we need to clear the node for N_HIGH_MEMORY. 1478 */ 1479 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1480 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1481 arg->status_change_nid_high = zone_to_nid(zone); 1482 #endif 1483 1484 /* 1485 * We have accounted the pages from [0..ZONE_NORMAL), and 1486 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1487 * as well. 1488 * Here we count the possible pages from ZONE_MOVABLE. 1489 * If after having accounted all the pages, we see that the nr_pages 1490 * to be offlined is over or equal to the accounted pages, 1491 * we know that the node will become empty, and so, we can clear 1492 * it for N_MEMORY as well. 1493 */ 1494 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1495 1496 if (nr_pages >= present_pages) 1497 arg->status_change_nid = zone_to_nid(zone); 1498 } 1499 1500 static void node_states_clear_node(int node, struct memory_notify *arg) 1501 { 1502 if (arg->status_change_nid_normal >= 0) 1503 node_clear_state(node, N_NORMAL_MEMORY); 1504 1505 if (arg->status_change_nid_high >= 0) 1506 node_clear_state(node, N_HIGH_MEMORY); 1507 1508 if (arg->status_change_nid >= 0) 1509 node_clear_state(node, N_MEMORY); 1510 } 1511 1512 static int __ref __offline_pages(unsigned long start_pfn, 1513 unsigned long end_pfn) 1514 { 1515 unsigned long pfn, nr_pages; 1516 unsigned long offlined_pages = 0; 1517 int ret, node, nr_isolate_pageblock; 1518 unsigned long flags; 1519 unsigned long valid_start, valid_end; 1520 struct zone *zone; 1521 struct memory_notify arg; 1522 char *reason; 1523 1524 mem_hotplug_begin(); 1525 1526 /* This makes hotplug much easier...and readable. 1527 we assume this for now. .*/ 1528 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1529 &valid_end)) { 1530 ret = -EINVAL; 1531 reason = "multizone range"; 1532 goto failed_removal; 1533 } 1534 1535 zone = page_zone(pfn_to_page(valid_start)); 1536 node = zone_to_nid(zone); 1537 nr_pages = end_pfn - start_pfn; 1538 1539 /* set above range as isolated */ 1540 ret = start_isolate_page_range(start_pfn, end_pfn, 1541 MIGRATE_MOVABLE, 1542 SKIP_HWPOISON | REPORT_FAILURE); 1543 if (ret < 0) { 1544 reason = "failure to isolate range"; 1545 goto failed_removal; 1546 } 1547 nr_isolate_pageblock = ret; 1548 1549 arg.start_pfn = start_pfn; 1550 arg.nr_pages = nr_pages; 1551 node_states_check_changes_offline(nr_pages, zone, &arg); 1552 1553 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1554 ret = notifier_to_errno(ret); 1555 if (ret) { 1556 reason = "notifier failure"; 1557 goto failed_removal_isolated; 1558 } 1559 1560 do { 1561 for (pfn = start_pfn; pfn;) { 1562 if (signal_pending(current)) { 1563 ret = -EINTR; 1564 reason = "signal backoff"; 1565 goto failed_removal_isolated; 1566 } 1567 1568 cond_resched(); 1569 lru_add_drain_all(); 1570 1571 pfn = scan_movable_pages(pfn, end_pfn); 1572 if (pfn) { 1573 /* 1574 * TODO: fatal migration failures should bail 1575 * out 1576 */ 1577 do_migrate_range(pfn, end_pfn); 1578 } 1579 } 1580 1581 /* 1582 * Dissolve free hugepages in the memory block before doing 1583 * offlining actually in order to make hugetlbfs's object 1584 * counting consistent. 1585 */ 1586 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1587 if (ret) { 1588 reason = "failure to dissolve huge pages"; 1589 goto failed_removal_isolated; 1590 } 1591 /* check again */ 1592 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1593 NULL, check_pages_isolated_cb); 1594 } while (ret); 1595 1596 /* Ok, all of our target is isolated. 1597 We cannot do rollback at this point. */ 1598 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1599 &offlined_pages, offline_isolated_pages_cb); 1600 pr_info("Offlined Pages %ld\n", offlined_pages); 1601 /* 1602 * Onlining will reset pagetype flags and makes migrate type 1603 * MOVABLE, so just need to decrease the number of isolated 1604 * pageblocks zone counter here. 1605 */ 1606 spin_lock_irqsave(&zone->lock, flags); 1607 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1608 spin_unlock_irqrestore(&zone->lock, flags); 1609 1610 /* removal success */ 1611 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1612 zone->present_pages -= offlined_pages; 1613 1614 pgdat_resize_lock(zone->zone_pgdat, &flags); 1615 zone->zone_pgdat->node_present_pages -= offlined_pages; 1616 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1617 1618 init_per_zone_wmark_min(); 1619 1620 if (!populated_zone(zone)) { 1621 zone_pcp_reset(zone); 1622 build_all_zonelists(NULL); 1623 } else 1624 zone_pcp_update(zone); 1625 1626 node_states_clear_node(node, &arg); 1627 if (arg.status_change_nid >= 0) { 1628 kswapd_stop(node); 1629 kcompactd_stop(node); 1630 } 1631 1632 vm_total_pages = nr_free_pagecache_pages(); 1633 writeback_set_ratelimit(); 1634 1635 memory_notify(MEM_OFFLINE, &arg); 1636 mem_hotplug_done(); 1637 return 0; 1638 1639 failed_removal_isolated: 1640 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1641 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1642 failed_removal: 1643 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1644 (unsigned long long) start_pfn << PAGE_SHIFT, 1645 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1646 reason); 1647 /* pushback to free area */ 1648 mem_hotplug_done(); 1649 return ret; 1650 } 1651 1652 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1653 { 1654 return __offline_pages(start_pfn, start_pfn + nr_pages); 1655 } 1656 1657 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1658 { 1659 int ret = !is_memblock_offlined(mem); 1660 1661 if (unlikely(ret)) { 1662 phys_addr_t beginpa, endpa; 1663 1664 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1665 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1666 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1667 &beginpa, &endpa); 1668 1669 return -EBUSY; 1670 } 1671 return 0; 1672 } 1673 1674 static int check_cpu_on_node(pg_data_t *pgdat) 1675 { 1676 int cpu; 1677 1678 for_each_present_cpu(cpu) { 1679 if (cpu_to_node(cpu) == pgdat->node_id) 1680 /* 1681 * the cpu on this node isn't removed, and we can't 1682 * offline this node. 1683 */ 1684 return -EBUSY; 1685 } 1686 1687 return 0; 1688 } 1689 1690 /** 1691 * try_offline_node 1692 * @nid: the node ID 1693 * 1694 * Offline a node if all memory sections and cpus of the node are removed. 1695 * 1696 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1697 * and online/offline operations before this call. 1698 */ 1699 void try_offline_node(int nid) 1700 { 1701 pg_data_t *pgdat = NODE_DATA(nid); 1702 unsigned long start_pfn = pgdat->node_start_pfn; 1703 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1704 unsigned long pfn; 1705 1706 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1707 unsigned long section_nr = pfn_to_section_nr(pfn); 1708 1709 if (!present_section_nr(section_nr)) 1710 continue; 1711 1712 if (pfn_to_nid(pfn) != nid) 1713 continue; 1714 1715 /* 1716 * some memory sections of this node are not removed, and we 1717 * can't offline node now. 1718 */ 1719 return; 1720 } 1721 1722 if (check_cpu_on_node(pgdat)) 1723 return; 1724 1725 /* 1726 * all memory/cpu of this node are removed, we can offline this 1727 * node now. 1728 */ 1729 node_set_offline(nid); 1730 unregister_one_node(nid); 1731 } 1732 EXPORT_SYMBOL(try_offline_node); 1733 1734 static void __release_memory_resource(resource_size_t start, 1735 resource_size_t size) 1736 { 1737 int ret; 1738 1739 /* 1740 * When removing memory in the same granularity as it was added, 1741 * this function never fails. It might only fail if resources 1742 * have to be adjusted or split. We'll ignore the error, as 1743 * removing of memory cannot fail. 1744 */ 1745 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1746 if (ret) { 1747 resource_size_t endres = start + size - 1; 1748 1749 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1750 &start, &endres, ret); 1751 } 1752 } 1753 1754 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1755 { 1756 int rc = 0; 1757 1758 BUG_ON(check_hotplug_memory_range(start, size)); 1759 1760 mem_hotplug_begin(); 1761 1762 /* 1763 * All memory blocks must be offlined before removing memory. Check 1764 * whether all memory blocks in question are offline and return error 1765 * if this is not the case. 1766 */ 1767 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1768 if (rc) 1769 goto done; 1770 1771 /* remove memmap entry */ 1772 firmware_map_remove(start, start + size, "System RAM"); 1773 memblock_free(start, size); 1774 memblock_remove(start, size); 1775 1776 /* remove memory block devices before removing memory */ 1777 remove_memory_block_devices(start, size); 1778 1779 arch_remove_memory(nid, start, size, NULL); 1780 __release_memory_resource(start, size); 1781 1782 try_offline_node(nid); 1783 1784 done: 1785 mem_hotplug_done(); 1786 return rc; 1787 } 1788 1789 /** 1790 * remove_memory 1791 * @nid: the node ID 1792 * @start: physical address of the region to remove 1793 * @size: size of the region to remove 1794 * 1795 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1796 * and online/offline operations before this call, as required by 1797 * try_offline_node(). 1798 */ 1799 void __remove_memory(int nid, u64 start, u64 size) 1800 { 1801 1802 /* 1803 * trigger BUG() is some memory is not offlined prior to calling this 1804 * function 1805 */ 1806 if (try_remove_memory(nid, start, size)) 1807 BUG(); 1808 } 1809 1810 /* 1811 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1812 * some memory is not offline 1813 */ 1814 int remove_memory(int nid, u64 start, u64 size) 1815 { 1816 int rc; 1817 1818 lock_device_hotplug(); 1819 rc = try_remove_memory(nid, start, size); 1820 unlock_device_hotplug(); 1821 1822 return rc; 1823 } 1824 EXPORT_SYMBOL_GPL(remove_memory); 1825 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1826