xref: /openbmc/linux/mm/memory_hotplug.c (revision d3964221)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 	struct resource *res, *conflict;
103 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 	if (!res)
105 		return ERR_PTR(-ENOMEM);
106 
107 	res->name = "System RAM";
108 	res->start = start;
109 	res->end = start + size - 1;
110 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 	conflict =  request_resource_conflict(&iomem_resource, res);
112 	if (conflict) {
113 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 			pr_debug("Device unaddressable memory block "
115 				 "memory hotplug at %#010llx !\n",
116 				 (unsigned long long)start);
117 		}
118 		pr_debug("System RAM resource %pR cannot be added\n", res);
119 		kfree(res);
120 		return ERR_PTR(-EEXIST);
121 	}
122 	return res;
123 }
124 
125 static void release_memory_resource(struct resource *res)
126 {
127 	if (!res)
128 		return;
129 	release_resource(res);
130 	kfree(res);
131 	return;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info,  struct page *page,
136 		      unsigned long type)
137 {
138 	page->freelist = (void *)type;
139 	SetPagePrivate(page);
140 	set_page_private(page, info);
141 	page_ref_inc(page);
142 }
143 
144 void put_page_bootmem(struct page *page)
145 {
146 	unsigned long type;
147 
148 	type = (unsigned long) page->freelist;
149 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151 
152 	if (page_ref_dec_return(page) == 1) {
153 		page->freelist = NULL;
154 		ClearPagePrivate(page);
155 		set_page_private(page, 0);
156 		INIT_LIST_HEAD(&page->lru);
157 		free_reserved_page(page);
158 	}
159 }
160 
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 	unsigned long *usemap, mapsize, section_nr, i;
166 	struct mem_section *ms;
167 	struct page *page, *memmap;
168 
169 	section_nr = pfn_to_section_nr(start_pfn);
170 	ms = __nr_to_section(section_nr);
171 
172 	/* Get section's memmap address */
173 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174 
175 	/*
176 	 * Get page for the memmap's phys address
177 	 * XXX: need more consideration for sparse_vmemmap...
178 	 */
179 	page = virt_to_page(memmap);
180 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182 
183 	/* remember memmap's page */
184 	for (i = 0; i < mapsize; i++, page++)
185 		get_page_bootmem(section_nr, page, SECTION_INFO);
186 
187 	usemap = __nr_to_section(section_nr)->pageblock_flags;
188 	page = virt_to_page(usemap);
189 
190 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191 
192 	for (i = 0; i < mapsize; i++, page++)
193 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194 
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 	unsigned long *usemap, mapsize, section_nr, i;
200 	struct mem_section *ms;
201 	struct page *page, *memmap;
202 
203 	if (!pfn_valid(start_pfn))
204 		return;
205 
206 	section_nr = pfn_to_section_nr(start_pfn);
207 	ms = __nr_to_section(section_nr);
208 
209 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
210 
211 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
212 
213 	usemap = __nr_to_section(section_nr)->pageblock_flags;
214 	page = virt_to_page(usemap);
215 
216 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
217 
218 	for (i = 0; i < mapsize; i++, page++)
219 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
220 }
221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
222 
223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
224 {
225 	unsigned long i, pfn, end_pfn, nr_pages;
226 	int node = pgdat->node_id;
227 	struct page *page;
228 
229 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
230 	page = virt_to_page(pgdat);
231 
232 	for (i = 0; i < nr_pages; i++, page++)
233 		get_page_bootmem(node, page, NODE_INFO);
234 
235 	pfn = pgdat->node_start_pfn;
236 	end_pfn = pgdat_end_pfn(pgdat);
237 
238 	/* register section info */
239 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 		/*
241 		 * Some platforms can assign the same pfn to multiple nodes - on
242 		 * node0 as well as nodeN.  To avoid registering a pfn against
243 		 * multiple nodes we check that this pfn does not already
244 		 * reside in some other nodes.
245 		 */
246 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
247 			register_page_bootmem_info_section(pfn);
248 	}
249 }
250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
251 
252 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
253 		bool want_memblock)
254 {
255 	int ret;
256 	int i;
257 
258 	if (pfn_valid(phys_start_pfn))
259 		return -EEXIST;
260 
261 	ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn);
262 	if (ret < 0)
263 		return ret;
264 
265 	/*
266 	 * Make all the pages reserved so that nobody will stumble over half
267 	 * initialized state.
268 	 * FIXME: We also have to associate it with a node because pfn_to_node
269 	 * relies on having page with the proper node.
270 	 */
271 	for (i = 0; i < PAGES_PER_SECTION; i++) {
272 		unsigned long pfn = phys_start_pfn + i;
273 		struct page *page;
274 		if (!pfn_valid(pfn))
275 			continue;
276 
277 		page = pfn_to_page(pfn);
278 		set_page_node(page, nid);
279 		SetPageReserved(page);
280 	}
281 
282 	if (!want_memblock)
283 		return 0;
284 
285 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
286 }
287 
288 /*
289  * Reasonably generic function for adding memory.  It is
290  * expected that archs that support memory hotplug will
291  * call this function after deciding the zone to which to
292  * add the new pages.
293  */
294 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
295 			unsigned long nr_pages, bool want_memblock)
296 {
297 	unsigned long i;
298 	int err = 0;
299 	int start_sec, end_sec;
300 	struct vmem_altmap *altmap;
301 
302 	/* during initialize mem_map, align hot-added range to section */
303 	start_sec = pfn_to_section_nr(phys_start_pfn);
304 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
305 
306 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
307 	if (altmap) {
308 		/*
309 		 * Validate altmap is within bounds of the total request
310 		 */
311 		if (altmap->base_pfn != phys_start_pfn
312 				|| vmem_altmap_offset(altmap) > nr_pages) {
313 			pr_warn_once("memory add fail, invalid altmap\n");
314 			err = -EINVAL;
315 			goto out;
316 		}
317 		altmap->alloc = 0;
318 	}
319 
320 	for (i = start_sec; i <= end_sec; i++) {
321 		err = __add_section(nid, section_nr_to_pfn(i), want_memblock);
322 
323 		/*
324 		 * EEXIST is finally dealt with by ioresource collision
325 		 * check. see add_memory() => register_memory_resource()
326 		 * Warning will be printed if there is collision.
327 		 */
328 		if (err && (err != -EEXIST))
329 			break;
330 		err = 0;
331 		cond_resched();
332 	}
333 	vmemmap_populate_print_last();
334 out:
335 	return err;
336 }
337 EXPORT_SYMBOL_GPL(__add_pages);
338 
339 #ifdef CONFIG_MEMORY_HOTREMOVE
340 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
341 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
342 				     unsigned long start_pfn,
343 				     unsigned long end_pfn)
344 {
345 	struct mem_section *ms;
346 
347 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
348 		ms = __pfn_to_section(start_pfn);
349 
350 		if (unlikely(!valid_section(ms)))
351 			continue;
352 
353 		if (unlikely(pfn_to_nid(start_pfn) != nid))
354 			continue;
355 
356 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
357 			continue;
358 
359 		return start_pfn;
360 	}
361 
362 	return 0;
363 }
364 
365 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
366 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
367 				    unsigned long start_pfn,
368 				    unsigned long end_pfn)
369 {
370 	struct mem_section *ms;
371 	unsigned long pfn;
372 
373 	/* pfn is the end pfn of a memory section. */
374 	pfn = end_pfn - 1;
375 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
376 		ms = __pfn_to_section(pfn);
377 
378 		if (unlikely(!valid_section(ms)))
379 			continue;
380 
381 		if (unlikely(pfn_to_nid(pfn) != nid))
382 			continue;
383 
384 		if (zone && zone != page_zone(pfn_to_page(pfn)))
385 			continue;
386 
387 		return pfn;
388 	}
389 
390 	return 0;
391 }
392 
393 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
394 			     unsigned long end_pfn)
395 {
396 	unsigned long zone_start_pfn = zone->zone_start_pfn;
397 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
398 	unsigned long zone_end_pfn = z;
399 	unsigned long pfn;
400 	struct mem_section *ms;
401 	int nid = zone_to_nid(zone);
402 
403 	zone_span_writelock(zone);
404 	if (zone_start_pfn == start_pfn) {
405 		/*
406 		 * If the section is smallest section in the zone, it need
407 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
408 		 * In this case, we find second smallest valid mem_section
409 		 * for shrinking zone.
410 		 */
411 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
412 						zone_end_pfn);
413 		if (pfn) {
414 			zone->zone_start_pfn = pfn;
415 			zone->spanned_pages = zone_end_pfn - pfn;
416 		}
417 	} else if (zone_end_pfn == end_pfn) {
418 		/*
419 		 * If the section is biggest section in the zone, it need
420 		 * shrink zone->spanned_pages.
421 		 * In this case, we find second biggest valid mem_section for
422 		 * shrinking zone.
423 		 */
424 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
425 					       start_pfn);
426 		if (pfn)
427 			zone->spanned_pages = pfn - zone_start_pfn + 1;
428 	}
429 
430 	/*
431 	 * The section is not biggest or smallest mem_section in the zone, it
432 	 * only creates a hole in the zone. So in this case, we need not
433 	 * change the zone. But perhaps, the zone has only hole data. Thus
434 	 * it check the zone has only hole or not.
435 	 */
436 	pfn = zone_start_pfn;
437 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
438 		ms = __pfn_to_section(pfn);
439 
440 		if (unlikely(!valid_section(ms)))
441 			continue;
442 
443 		if (page_zone(pfn_to_page(pfn)) != zone)
444 			continue;
445 
446 		 /* If the section is current section, it continues the loop */
447 		if (start_pfn == pfn)
448 			continue;
449 
450 		/* If we find valid section, we have nothing to do */
451 		zone_span_writeunlock(zone);
452 		return;
453 	}
454 
455 	/* The zone has no valid section */
456 	zone->zone_start_pfn = 0;
457 	zone->spanned_pages = 0;
458 	zone_span_writeunlock(zone);
459 }
460 
461 static void shrink_pgdat_span(struct pglist_data *pgdat,
462 			      unsigned long start_pfn, unsigned long end_pfn)
463 {
464 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
465 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
466 	unsigned long pgdat_end_pfn = p;
467 	unsigned long pfn;
468 	struct mem_section *ms;
469 	int nid = pgdat->node_id;
470 
471 	if (pgdat_start_pfn == start_pfn) {
472 		/*
473 		 * If the section is smallest section in the pgdat, it need
474 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
475 		 * In this case, we find second smallest valid mem_section
476 		 * for shrinking zone.
477 		 */
478 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
479 						pgdat_end_pfn);
480 		if (pfn) {
481 			pgdat->node_start_pfn = pfn;
482 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
483 		}
484 	} else if (pgdat_end_pfn == end_pfn) {
485 		/*
486 		 * If the section is biggest section in the pgdat, it need
487 		 * shrink pgdat->node_spanned_pages.
488 		 * In this case, we find second biggest valid mem_section for
489 		 * shrinking zone.
490 		 */
491 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
492 					       start_pfn);
493 		if (pfn)
494 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
495 	}
496 
497 	/*
498 	 * If the section is not biggest or smallest mem_section in the pgdat,
499 	 * it only creates a hole in the pgdat. So in this case, we need not
500 	 * change the pgdat.
501 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
502 	 * has only hole or not.
503 	 */
504 	pfn = pgdat_start_pfn;
505 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
506 		ms = __pfn_to_section(pfn);
507 
508 		if (unlikely(!valid_section(ms)))
509 			continue;
510 
511 		if (pfn_to_nid(pfn) != nid)
512 			continue;
513 
514 		 /* If the section is current section, it continues the loop */
515 		if (start_pfn == pfn)
516 			continue;
517 
518 		/* If we find valid section, we have nothing to do */
519 		return;
520 	}
521 
522 	/* The pgdat has no valid section */
523 	pgdat->node_start_pfn = 0;
524 	pgdat->node_spanned_pages = 0;
525 }
526 
527 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
528 {
529 	struct pglist_data *pgdat = zone->zone_pgdat;
530 	int nr_pages = PAGES_PER_SECTION;
531 	unsigned long flags;
532 
533 	pgdat_resize_lock(zone->zone_pgdat, &flags);
534 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
535 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
536 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
537 }
538 
539 static int __remove_section(struct zone *zone, struct mem_section *ms,
540 		unsigned long map_offset)
541 {
542 	unsigned long start_pfn;
543 	int scn_nr;
544 	int ret = -EINVAL;
545 
546 	if (!valid_section(ms))
547 		return ret;
548 
549 	ret = unregister_memory_section(ms);
550 	if (ret)
551 		return ret;
552 
553 	scn_nr = __section_nr(ms);
554 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
555 	__remove_zone(zone, start_pfn);
556 
557 	sparse_remove_one_section(zone, ms, map_offset);
558 	return 0;
559 }
560 
561 /**
562  * __remove_pages() - remove sections of pages from a zone
563  * @zone: zone from which pages need to be removed
564  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
565  * @nr_pages: number of pages to remove (must be multiple of section size)
566  *
567  * Generic helper function to remove section mappings and sysfs entries
568  * for the section of the memory we are removing. Caller needs to make
569  * sure that pages are marked reserved and zones are adjust properly by
570  * calling offline_pages().
571  */
572 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
573 		 unsigned long nr_pages)
574 {
575 	unsigned long i;
576 	unsigned long map_offset = 0;
577 	int sections_to_remove, ret = 0;
578 
579 	/* In the ZONE_DEVICE case device driver owns the memory region */
580 	if (is_dev_zone(zone)) {
581 		struct page *page = pfn_to_page(phys_start_pfn);
582 		struct vmem_altmap *altmap;
583 
584 		altmap = to_vmem_altmap((unsigned long) page);
585 		if (altmap)
586 			map_offset = vmem_altmap_offset(altmap);
587 	} else {
588 		resource_size_t start, size;
589 
590 		start = phys_start_pfn << PAGE_SHIFT;
591 		size = nr_pages * PAGE_SIZE;
592 
593 		ret = release_mem_region_adjustable(&iomem_resource, start,
594 					size);
595 		if (ret) {
596 			resource_size_t endres = start + size - 1;
597 
598 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
599 					&start, &endres, ret);
600 		}
601 	}
602 
603 	clear_zone_contiguous(zone);
604 
605 	/*
606 	 * We can only remove entire sections
607 	 */
608 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
609 	BUG_ON(nr_pages % PAGES_PER_SECTION);
610 
611 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
612 	for (i = 0; i < sections_to_remove; i++) {
613 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
614 
615 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
616 		map_offset = 0;
617 		if (ret)
618 			break;
619 	}
620 
621 	set_zone_contiguous(zone);
622 
623 	return ret;
624 }
625 #endif /* CONFIG_MEMORY_HOTREMOVE */
626 
627 int set_online_page_callback(online_page_callback_t callback)
628 {
629 	int rc = -EINVAL;
630 
631 	get_online_mems();
632 	mutex_lock(&online_page_callback_lock);
633 
634 	if (online_page_callback == generic_online_page) {
635 		online_page_callback = callback;
636 		rc = 0;
637 	}
638 
639 	mutex_unlock(&online_page_callback_lock);
640 	put_online_mems();
641 
642 	return rc;
643 }
644 EXPORT_SYMBOL_GPL(set_online_page_callback);
645 
646 int restore_online_page_callback(online_page_callback_t callback)
647 {
648 	int rc = -EINVAL;
649 
650 	get_online_mems();
651 	mutex_lock(&online_page_callback_lock);
652 
653 	if (online_page_callback == callback) {
654 		online_page_callback = generic_online_page;
655 		rc = 0;
656 	}
657 
658 	mutex_unlock(&online_page_callback_lock);
659 	put_online_mems();
660 
661 	return rc;
662 }
663 EXPORT_SYMBOL_GPL(restore_online_page_callback);
664 
665 void __online_page_set_limits(struct page *page)
666 {
667 }
668 EXPORT_SYMBOL_GPL(__online_page_set_limits);
669 
670 void __online_page_increment_counters(struct page *page)
671 {
672 	adjust_managed_page_count(page, 1);
673 }
674 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
675 
676 void __online_page_free(struct page *page)
677 {
678 	__free_reserved_page(page);
679 }
680 EXPORT_SYMBOL_GPL(__online_page_free);
681 
682 static void generic_online_page(struct page *page)
683 {
684 	__online_page_set_limits(page);
685 	__online_page_increment_counters(page);
686 	__online_page_free(page);
687 }
688 
689 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
690 			void *arg)
691 {
692 	unsigned long i;
693 	unsigned long onlined_pages = *(unsigned long *)arg;
694 	struct page *page;
695 
696 	if (PageReserved(pfn_to_page(start_pfn)))
697 		for (i = 0; i < nr_pages; i++) {
698 			page = pfn_to_page(start_pfn + i);
699 			(*online_page_callback)(page);
700 			onlined_pages++;
701 		}
702 
703 	online_mem_sections(start_pfn, start_pfn + nr_pages);
704 
705 	*(unsigned long *)arg = onlined_pages;
706 	return 0;
707 }
708 
709 /* check which state of node_states will be changed when online memory */
710 static void node_states_check_changes_online(unsigned long nr_pages,
711 	struct zone *zone, struct memory_notify *arg)
712 {
713 	int nid = zone_to_nid(zone);
714 	enum zone_type zone_last = ZONE_NORMAL;
715 
716 	/*
717 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
718 	 * contains nodes which have zones of 0...ZONE_NORMAL,
719 	 * set zone_last to ZONE_NORMAL.
720 	 *
721 	 * If we don't have HIGHMEM nor movable node,
722 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
723 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
724 	 */
725 	if (N_MEMORY == N_NORMAL_MEMORY)
726 		zone_last = ZONE_MOVABLE;
727 
728 	/*
729 	 * if the memory to be online is in a zone of 0...zone_last, and
730 	 * the zones of 0...zone_last don't have memory before online, we will
731 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
732 	 * the memory is online.
733 	 */
734 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
735 		arg->status_change_nid_normal = nid;
736 	else
737 		arg->status_change_nid_normal = -1;
738 
739 #ifdef CONFIG_HIGHMEM
740 	/*
741 	 * If we have movable node, node_states[N_HIGH_MEMORY]
742 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
743 	 * set zone_last to ZONE_HIGHMEM.
744 	 *
745 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
746 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
747 	 * set zone_last to ZONE_MOVABLE.
748 	 */
749 	zone_last = ZONE_HIGHMEM;
750 	if (N_MEMORY == N_HIGH_MEMORY)
751 		zone_last = ZONE_MOVABLE;
752 
753 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
754 		arg->status_change_nid_high = nid;
755 	else
756 		arg->status_change_nid_high = -1;
757 #else
758 	arg->status_change_nid_high = arg->status_change_nid_normal;
759 #endif
760 
761 	/*
762 	 * if the node don't have memory befor online, we will need to
763 	 * set the node to node_states[N_MEMORY] after the memory
764 	 * is online.
765 	 */
766 	if (!node_state(nid, N_MEMORY))
767 		arg->status_change_nid = nid;
768 	else
769 		arg->status_change_nid = -1;
770 }
771 
772 static void node_states_set_node(int node, struct memory_notify *arg)
773 {
774 	if (arg->status_change_nid_normal >= 0)
775 		node_set_state(node, N_NORMAL_MEMORY);
776 
777 	if (arg->status_change_nid_high >= 0)
778 		node_set_state(node, N_HIGH_MEMORY);
779 
780 	node_set_state(node, N_MEMORY);
781 }
782 
783 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
784 		unsigned long nr_pages)
785 {
786 	unsigned long old_end_pfn = zone_end_pfn(zone);
787 
788 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
789 		zone->zone_start_pfn = start_pfn;
790 
791 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
792 }
793 
794 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
795                                      unsigned long nr_pages)
796 {
797 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
798 
799 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
800 		pgdat->node_start_pfn = start_pfn;
801 
802 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
803 }
804 
805 void __ref move_pfn_range_to_zone(struct zone *zone,
806 		unsigned long start_pfn, unsigned long nr_pages)
807 {
808 	struct pglist_data *pgdat = zone->zone_pgdat;
809 	int nid = pgdat->node_id;
810 	unsigned long flags;
811 
812 	if (zone_is_empty(zone))
813 		init_currently_empty_zone(zone, start_pfn, nr_pages);
814 
815 	clear_zone_contiguous(zone);
816 
817 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
818 	pgdat_resize_lock(pgdat, &flags);
819 	zone_span_writelock(zone);
820 	resize_zone_range(zone, start_pfn, nr_pages);
821 	zone_span_writeunlock(zone);
822 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
823 	pgdat_resize_unlock(pgdat, &flags);
824 
825 	/*
826 	 * TODO now we have a visible range of pages which are not associated
827 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
828 	 * expects the zone spans the pfn range. All the pages in the range
829 	 * are reserved so nobody should be touching them so we should be safe
830 	 */
831 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, MEMMAP_HOTPLUG);
832 
833 	set_zone_contiguous(zone);
834 }
835 
836 /*
837  * Returns a default kernel memory zone for the given pfn range.
838  * If no kernel zone covers this pfn range it will automatically go
839  * to the ZONE_NORMAL.
840  */
841 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
842 		unsigned long nr_pages)
843 {
844 	struct pglist_data *pgdat = NODE_DATA(nid);
845 	int zid;
846 
847 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
848 		struct zone *zone = &pgdat->node_zones[zid];
849 
850 		if (zone_intersects(zone, start_pfn, nr_pages))
851 			return zone;
852 	}
853 
854 	return &pgdat->node_zones[ZONE_NORMAL];
855 }
856 
857 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
858 		unsigned long nr_pages)
859 {
860 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
861 			nr_pages);
862 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
863 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
864 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
865 
866 	/*
867 	 * We inherit the existing zone in a simple case where zones do not
868 	 * overlap in the given range
869 	 */
870 	if (in_kernel ^ in_movable)
871 		return (in_kernel) ? kernel_zone : movable_zone;
872 
873 	/*
874 	 * If the range doesn't belong to any zone or two zones overlap in the
875 	 * given range then we use movable zone only if movable_node is
876 	 * enabled because we always online to a kernel zone by default.
877 	 */
878 	return movable_node_enabled ? movable_zone : kernel_zone;
879 }
880 
881 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
882 		unsigned long nr_pages)
883 {
884 	if (online_type == MMOP_ONLINE_KERNEL)
885 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
886 
887 	if (online_type == MMOP_ONLINE_MOVABLE)
888 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
889 
890 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
891 }
892 
893 /*
894  * Associates the given pfn range with the given node and the zone appropriate
895  * for the given online type.
896  */
897 static struct zone * __meminit move_pfn_range(int online_type, int nid,
898 		unsigned long start_pfn, unsigned long nr_pages)
899 {
900 	struct zone *zone;
901 
902 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
903 	move_pfn_range_to_zone(zone, start_pfn, nr_pages);
904 	return zone;
905 }
906 
907 /* Must be protected by mem_hotplug_begin() or a device_lock */
908 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
909 {
910 	unsigned long flags;
911 	unsigned long onlined_pages = 0;
912 	struct zone *zone;
913 	int need_zonelists_rebuild = 0;
914 	int nid;
915 	int ret;
916 	struct memory_notify arg;
917 
918 	nid = pfn_to_nid(pfn);
919 	/* associate pfn range with the zone */
920 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
921 
922 	arg.start_pfn = pfn;
923 	arg.nr_pages = nr_pages;
924 	node_states_check_changes_online(nr_pages, zone, &arg);
925 
926 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
927 	ret = notifier_to_errno(ret);
928 	if (ret)
929 		goto failed_addition;
930 
931 	/*
932 	 * If this zone is not populated, then it is not in zonelist.
933 	 * This means the page allocator ignores this zone.
934 	 * So, zonelist must be updated after online.
935 	 */
936 	if (!populated_zone(zone)) {
937 		need_zonelists_rebuild = 1;
938 		setup_zone_pageset(zone);
939 	}
940 
941 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
942 		online_pages_range);
943 	if (ret) {
944 		if (need_zonelists_rebuild)
945 			zone_pcp_reset(zone);
946 		goto failed_addition;
947 	}
948 
949 	zone->present_pages += onlined_pages;
950 
951 	pgdat_resize_lock(zone->zone_pgdat, &flags);
952 	zone->zone_pgdat->node_present_pages += onlined_pages;
953 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
954 
955 	if (onlined_pages) {
956 		node_states_set_node(nid, &arg);
957 		if (need_zonelists_rebuild)
958 			build_all_zonelists(NULL);
959 		else
960 			zone_pcp_update(zone);
961 	}
962 
963 	init_per_zone_wmark_min();
964 
965 	if (onlined_pages) {
966 		kswapd_run(nid);
967 		kcompactd_run(nid);
968 	}
969 
970 	vm_total_pages = nr_free_pagecache_pages();
971 
972 	writeback_set_ratelimit();
973 
974 	if (onlined_pages)
975 		memory_notify(MEM_ONLINE, &arg);
976 	return 0;
977 
978 failed_addition:
979 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
980 		 (unsigned long long) pfn << PAGE_SHIFT,
981 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
982 	memory_notify(MEM_CANCEL_ONLINE, &arg);
983 	return ret;
984 }
985 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
986 
987 static void reset_node_present_pages(pg_data_t *pgdat)
988 {
989 	struct zone *z;
990 
991 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
992 		z->present_pages = 0;
993 
994 	pgdat->node_present_pages = 0;
995 }
996 
997 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
998 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
999 {
1000 	struct pglist_data *pgdat;
1001 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1002 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1003 	unsigned long start_pfn = PFN_DOWN(start);
1004 
1005 	pgdat = NODE_DATA(nid);
1006 	if (!pgdat) {
1007 		pgdat = arch_alloc_nodedata(nid);
1008 		if (!pgdat)
1009 			return NULL;
1010 
1011 		arch_refresh_nodedata(nid, pgdat);
1012 	} else {
1013 		/*
1014 		 * Reset the nr_zones, order and classzone_idx before reuse.
1015 		 * Note that kswapd will init kswapd_classzone_idx properly
1016 		 * when it starts in the near future.
1017 		 */
1018 		pgdat->nr_zones = 0;
1019 		pgdat->kswapd_order = 0;
1020 		pgdat->kswapd_classzone_idx = 0;
1021 	}
1022 
1023 	/* we can use NODE_DATA(nid) from here */
1024 
1025 	/* init node's zones as empty zones, we don't have any present pages.*/
1026 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1027 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1028 
1029 	/*
1030 	 * The node we allocated has no zone fallback lists. For avoiding
1031 	 * to access not-initialized zonelist, build here.
1032 	 */
1033 	build_all_zonelists(pgdat);
1034 
1035 	/*
1036 	 * zone->managed_pages is set to an approximate value in
1037 	 * free_area_init_core(), which will cause
1038 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1039 	 * So reset it to 0 before any memory is onlined.
1040 	 */
1041 	reset_node_managed_pages(pgdat);
1042 
1043 	/*
1044 	 * When memory is hot-added, all the memory is in offline state. So
1045 	 * clear all zones' present_pages because they will be updated in
1046 	 * online_pages() and offline_pages().
1047 	 */
1048 	reset_node_present_pages(pgdat);
1049 
1050 	return pgdat;
1051 }
1052 
1053 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1054 {
1055 	arch_refresh_nodedata(nid, NULL);
1056 	free_percpu(pgdat->per_cpu_nodestats);
1057 	arch_free_nodedata(pgdat);
1058 	return;
1059 }
1060 
1061 
1062 /**
1063  * try_online_node - online a node if offlined
1064  *
1065  * called by cpu_up() to online a node without onlined memory.
1066  */
1067 int try_online_node(int nid)
1068 {
1069 	pg_data_t	*pgdat;
1070 	int	ret;
1071 
1072 	if (node_online(nid))
1073 		return 0;
1074 
1075 	mem_hotplug_begin();
1076 	pgdat = hotadd_new_pgdat(nid, 0);
1077 	if (!pgdat) {
1078 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1079 		ret = -ENOMEM;
1080 		goto out;
1081 	}
1082 	node_set_online(nid);
1083 	ret = register_one_node(nid);
1084 	BUG_ON(ret);
1085 out:
1086 	mem_hotplug_done();
1087 	return ret;
1088 }
1089 
1090 static int check_hotplug_memory_range(u64 start, u64 size)
1091 {
1092 	u64 start_pfn = PFN_DOWN(start);
1093 	u64 nr_pages = size >> PAGE_SHIFT;
1094 
1095 	/* Memory range must be aligned with section */
1096 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1097 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1098 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1099 				(unsigned long long)start,
1100 				(unsigned long long)size);
1101 		return -EINVAL;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static int online_memory_block(struct memory_block *mem, void *arg)
1108 {
1109 	return device_online(&mem->dev);
1110 }
1111 
1112 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1113 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1114 {
1115 	u64 start, size;
1116 	pg_data_t *pgdat = NULL;
1117 	bool new_pgdat;
1118 	bool new_node;
1119 	int ret;
1120 
1121 	start = res->start;
1122 	size = resource_size(res);
1123 
1124 	ret = check_hotplug_memory_range(start, size);
1125 	if (ret)
1126 		return ret;
1127 
1128 	{	/* Stupid hack to suppress address-never-null warning */
1129 		void *p = NODE_DATA(nid);
1130 		new_pgdat = !p;
1131 	}
1132 
1133 	mem_hotplug_begin();
1134 
1135 	/*
1136 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1137 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1138 	 * this new range and calculate total pages correctly.  The range will
1139 	 * be removed at hot-remove time.
1140 	 */
1141 	memblock_add_node(start, size, nid);
1142 
1143 	new_node = !node_online(nid);
1144 	if (new_node) {
1145 		pgdat = hotadd_new_pgdat(nid, start);
1146 		ret = -ENOMEM;
1147 		if (!pgdat)
1148 			goto error;
1149 	}
1150 
1151 	/* call arch's memory hotadd */
1152 	ret = arch_add_memory(nid, start, size, true);
1153 
1154 	if (ret < 0)
1155 		goto error;
1156 
1157 	/* we online node here. we can't roll back from here. */
1158 	node_set_online(nid);
1159 
1160 	if (new_node) {
1161 		unsigned long start_pfn = start >> PAGE_SHIFT;
1162 		unsigned long nr_pages = size >> PAGE_SHIFT;
1163 
1164 		ret = __register_one_node(nid);
1165 		if (ret)
1166 			goto register_fail;
1167 
1168 		/*
1169 		 * link memory sections under this node. This is already
1170 		 * done when creatig memory section in register_new_memory
1171 		 * but that depends to have the node registered so offline
1172 		 * nodes have to go through register_node.
1173 		 * TODO clean up this mess.
1174 		 */
1175 		ret = link_mem_sections(nid, start_pfn, nr_pages);
1176 register_fail:
1177 		/*
1178 		 * If sysfs file of new node can't create, cpu on the node
1179 		 * can't be hot-added. There is no rollback way now.
1180 		 * So, check by BUG_ON() to catch it reluctantly..
1181 		 */
1182 		BUG_ON(ret);
1183 	}
1184 
1185 	/* create new memmap entry */
1186 	firmware_map_add_hotplug(start, start + size, "System RAM");
1187 
1188 	/* online pages if requested */
1189 	if (online)
1190 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1191 				  NULL, online_memory_block);
1192 
1193 	goto out;
1194 
1195 error:
1196 	/* rollback pgdat allocation and others */
1197 	if (new_pgdat && pgdat)
1198 		rollback_node_hotadd(nid, pgdat);
1199 	memblock_remove(start, size);
1200 
1201 out:
1202 	mem_hotplug_done();
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL_GPL(add_memory_resource);
1206 
1207 int __ref add_memory(int nid, u64 start, u64 size)
1208 {
1209 	struct resource *res;
1210 	int ret;
1211 
1212 	res = register_memory_resource(start, size);
1213 	if (IS_ERR(res))
1214 		return PTR_ERR(res);
1215 
1216 	ret = add_memory_resource(nid, res, memhp_auto_online);
1217 	if (ret < 0)
1218 		release_memory_resource(res);
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(add_memory);
1222 
1223 #ifdef CONFIG_MEMORY_HOTREMOVE
1224 /*
1225  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1226  * set and the size of the free page is given by page_order(). Using this,
1227  * the function determines if the pageblock contains only free pages.
1228  * Due to buddy contraints, a free page at least the size of a pageblock will
1229  * be located at the start of the pageblock
1230  */
1231 static inline int pageblock_free(struct page *page)
1232 {
1233 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1234 }
1235 
1236 /* Return the start of the next active pageblock after a given page */
1237 static struct page *next_active_pageblock(struct page *page)
1238 {
1239 	/* Ensure the starting page is pageblock-aligned */
1240 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1241 
1242 	/* If the entire pageblock is free, move to the end of free page */
1243 	if (pageblock_free(page)) {
1244 		int order;
1245 		/* be careful. we don't have locks, page_order can be changed.*/
1246 		order = page_order(page);
1247 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1248 			return page + (1 << order);
1249 	}
1250 
1251 	return page + pageblock_nr_pages;
1252 }
1253 
1254 /* Checks if this range of memory is likely to be hot-removable. */
1255 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1256 {
1257 	struct page *page = pfn_to_page(start_pfn);
1258 	struct page *end_page = page + nr_pages;
1259 
1260 	/* Check the starting page of each pageblock within the range */
1261 	for (; page < end_page; page = next_active_pageblock(page)) {
1262 		if (!is_pageblock_removable_nolock(page))
1263 			return false;
1264 		cond_resched();
1265 	}
1266 
1267 	/* All pageblocks in the memory block are likely to be hot-removable */
1268 	return true;
1269 }
1270 
1271 /*
1272  * Confirm all pages in a range [start, end) belong to the same zone.
1273  * When true, return its valid [start, end).
1274  */
1275 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1276 			 unsigned long *valid_start, unsigned long *valid_end)
1277 {
1278 	unsigned long pfn, sec_end_pfn;
1279 	unsigned long start, end;
1280 	struct zone *zone = NULL;
1281 	struct page *page;
1282 	int i;
1283 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1284 	     pfn < end_pfn;
1285 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1286 		/* Make sure the memory section is present first */
1287 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1288 			continue;
1289 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1290 		     pfn += MAX_ORDER_NR_PAGES) {
1291 			i = 0;
1292 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1293 			while ((i < MAX_ORDER_NR_PAGES) &&
1294 				!pfn_valid_within(pfn + i))
1295 				i++;
1296 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1297 				continue;
1298 			page = pfn_to_page(pfn + i);
1299 			if (zone && page_zone(page) != zone)
1300 				return 0;
1301 			if (!zone)
1302 				start = pfn + i;
1303 			zone = page_zone(page);
1304 			end = pfn + MAX_ORDER_NR_PAGES;
1305 		}
1306 	}
1307 
1308 	if (zone) {
1309 		*valid_start = start;
1310 		*valid_end = min(end, end_pfn);
1311 		return 1;
1312 	} else {
1313 		return 0;
1314 	}
1315 }
1316 
1317 /*
1318  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1319  * non-lru movable pages and hugepages). We scan pfn because it's much
1320  * easier than scanning over linked list. This function returns the pfn
1321  * of the first found movable page if it's found, otherwise 0.
1322  */
1323 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1324 {
1325 	unsigned long pfn;
1326 	struct page *page;
1327 	for (pfn = start; pfn < end; pfn++) {
1328 		if (pfn_valid(pfn)) {
1329 			page = pfn_to_page(pfn);
1330 			if (PageLRU(page))
1331 				return pfn;
1332 			if (__PageMovable(page))
1333 				return pfn;
1334 			if (PageHuge(page)) {
1335 				if (page_huge_active(page))
1336 					return pfn;
1337 				else
1338 					pfn = round_up(pfn + 1,
1339 						1 << compound_order(page)) - 1;
1340 			}
1341 		}
1342 	}
1343 	return 0;
1344 }
1345 
1346 static struct page *new_node_page(struct page *page, unsigned long private,
1347 		int **result)
1348 {
1349 	int nid = page_to_nid(page);
1350 	nodemask_t nmask = node_states[N_MEMORY];
1351 
1352 	/*
1353 	 * try to allocate from a different node but reuse this node if there
1354 	 * are no other online nodes to be used (e.g. we are offlining a part
1355 	 * of the only existing node)
1356 	 */
1357 	node_clear(nid, nmask);
1358 	if (nodes_empty(nmask))
1359 		node_set(nid, nmask);
1360 
1361 	return new_page_nodemask(page, nid, &nmask);
1362 }
1363 
1364 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1365 static int
1366 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1367 {
1368 	unsigned long pfn;
1369 	struct page *page;
1370 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1371 	int not_managed = 0;
1372 	int ret = 0;
1373 	LIST_HEAD(source);
1374 
1375 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1376 		if (!pfn_valid(pfn))
1377 			continue;
1378 		page = pfn_to_page(pfn);
1379 
1380 		if (PageHuge(page)) {
1381 			struct page *head = compound_head(page);
1382 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1383 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1384 				ret = -EBUSY;
1385 				break;
1386 			}
1387 			if (isolate_huge_page(page, &source))
1388 				move_pages -= 1 << compound_order(head);
1389 			continue;
1390 		} else if (thp_migration_supported() && PageTransHuge(page))
1391 			pfn = page_to_pfn(compound_head(page))
1392 				+ hpage_nr_pages(page) - 1;
1393 
1394 		if (!get_page_unless_zero(page))
1395 			continue;
1396 		/*
1397 		 * We can skip free pages. And we can deal with pages on
1398 		 * LRU and non-lru movable pages.
1399 		 */
1400 		if (PageLRU(page))
1401 			ret = isolate_lru_page(page);
1402 		else
1403 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1404 		if (!ret) { /* Success */
1405 			put_page(page);
1406 			list_add_tail(&page->lru, &source);
1407 			move_pages--;
1408 			if (!__PageMovable(page))
1409 				inc_node_page_state(page, NR_ISOLATED_ANON +
1410 						    page_is_file_cache(page));
1411 
1412 		} else {
1413 #ifdef CONFIG_DEBUG_VM
1414 			pr_alert("failed to isolate pfn %lx\n", pfn);
1415 			dump_page(page, "isolation failed");
1416 #endif
1417 			put_page(page);
1418 			/* Because we don't have big zone->lock. we should
1419 			   check this again here. */
1420 			if (page_count(page)) {
1421 				not_managed++;
1422 				ret = -EBUSY;
1423 				break;
1424 			}
1425 		}
1426 	}
1427 	if (!list_empty(&source)) {
1428 		if (not_managed) {
1429 			putback_movable_pages(&source);
1430 			goto out;
1431 		}
1432 
1433 		/* Allocate a new page from the nearest neighbor node */
1434 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1435 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1436 		if (ret)
1437 			putback_movable_pages(&source);
1438 	}
1439 out:
1440 	return ret;
1441 }
1442 
1443 /*
1444  * remove from free_area[] and mark all as Reserved.
1445  */
1446 static int
1447 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1448 			void *data)
1449 {
1450 	__offline_isolated_pages(start, start + nr_pages);
1451 	return 0;
1452 }
1453 
1454 static void
1455 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1456 {
1457 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1458 				offline_isolated_pages_cb);
1459 }
1460 
1461 /*
1462  * Check all pages in range, recoreded as memory resource, are isolated.
1463  */
1464 static int
1465 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1466 			void *data)
1467 {
1468 	int ret;
1469 	long offlined = *(long *)data;
1470 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1471 	offlined = nr_pages;
1472 	if (!ret)
1473 		*(long *)data += offlined;
1474 	return ret;
1475 }
1476 
1477 static long
1478 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1479 {
1480 	long offlined = 0;
1481 	int ret;
1482 
1483 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1484 			check_pages_isolated_cb);
1485 	if (ret < 0)
1486 		offlined = (long)ret;
1487 	return offlined;
1488 }
1489 
1490 static int __init cmdline_parse_movable_node(char *p)
1491 {
1492 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1493 	movable_node_enabled = true;
1494 #else
1495 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1496 #endif
1497 	return 0;
1498 }
1499 early_param("movable_node", cmdline_parse_movable_node);
1500 
1501 /* check which state of node_states will be changed when offline memory */
1502 static void node_states_check_changes_offline(unsigned long nr_pages,
1503 		struct zone *zone, struct memory_notify *arg)
1504 {
1505 	struct pglist_data *pgdat = zone->zone_pgdat;
1506 	unsigned long present_pages = 0;
1507 	enum zone_type zt, zone_last = ZONE_NORMAL;
1508 
1509 	/*
1510 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1511 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1512 	 * set zone_last to ZONE_NORMAL.
1513 	 *
1514 	 * If we don't have HIGHMEM nor movable node,
1515 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1516 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1517 	 */
1518 	if (N_MEMORY == N_NORMAL_MEMORY)
1519 		zone_last = ZONE_MOVABLE;
1520 
1521 	/*
1522 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1523 	 * If the memory to be offline is in a zone of 0...zone_last,
1524 	 * and it is the last present memory, 0...zone_last will
1525 	 * become empty after offline , thus we can determind we will
1526 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1527 	 */
1528 	for (zt = 0; zt <= zone_last; zt++)
1529 		present_pages += pgdat->node_zones[zt].present_pages;
1530 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1531 		arg->status_change_nid_normal = zone_to_nid(zone);
1532 	else
1533 		arg->status_change_nid_normal = -1;
1534 
1535 #ifdef CONFIG_HIGHMEM
1536 	/*
1537 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1538 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1539 	 * set zone_last to ZONE_HIGHMEM.
1540 	 *
1541 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1542 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1543 	 * set zone_last to ZONE_MOVABLE.
1544 	 */
1545 	zone_last = ZONE_HIGHMEM;
1546 	if (N_MEMORY == N_HIGH_MEMORY)
1547 		zone_last = ZONE_MOVABLE;
1548 
1549 	for (; zt <= zone_last; zt++)
1550 		present_pages += pgdat->node_zones[zt].present_pages;
1551 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1552 		arg->status_change_nid_high = zone_to_nid(zone);
1553 	else
1554 		arg->status_change_nid_high = -1;
1555 #else
1556 	arg->status_change_nid_high = arg->status_change_nid_normal;
1557 #endif
1558 
1559 	/*
1560 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1561 	 */
1562 	zone_last = ZONE_MOVABLE;
1563 
1564 	/*
1565 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1566 	 * If we try to offline the last present @nr_pages from the node,
1567 	 * we can determind we will need to clear the node from
1568 	 * node_states[N_HIGH_MEMORY].
1569 	 */
1570 	for (; zt <= zone_last; zt++)
1571 		present_pages += pgdat->node_zones[zt].present_pages;
1572 	if (nr_pages >= present_pages)
1573 		arg->status_change_nid = zone_to_nid(zone);
1574 	else
1575 		arg->status_change_nid = -1;
1576 }
1577 
1578 static void node_states_clear_node(int node, struct memory_notify *arg)
1579 {
1580 	if (arg->status_change_nid_normal >= 0)
1581 		node_clear_state(node, N_NORMAL_MEMORY);
1582 
1583 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1584 	    (arg->status_change_nid_high >= 0))
1585 		node_clear_state(node, N_HIGH_MEMORY);
1586 
1587 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1588 	    (arg->status_change_nid >= 0))
1589 		node_clear_state(node, N_MEMORY);
1590 }
1591 
1592 static int __ref __offline_pages(unsigned long start_pfn,
1593 		  unsigned long end_pfn, unsigned long timeout)
1594 {
1595 	unsigned long pfn, nr_pages, expire;
1596 	long offlined_pages;
1597 	int ret, drain, retry_max, node;
1598 	unsigned long flags;
1599 	unsigned long valid_start, valid_end;
1600 	struct zone *zone;
1601 	struct memory_notify arg;
1602 
1603 	/* at least, alignment against pageblock is necessary */
1604 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1605 		return -EINVAL;
1606 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1607 		return -EINVAL;
1608 	/* This makes hotplug much easier...and readable.
1609 	   we assume this for now. .*/
1610 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1611 		return -EINVAL;
1612 
1613 	zone = page_zone(pfn_to_page(valid_start));
1614 	node = zone_to_nid(zone);
1615 	nr_pages = end_pfn - start_pfn;
1616 
1617 	/* set above range as isolated */
1618 	ret = start_isolate_page_range(start_pfn, end_pfn,
1619 				       MIGRATE_MOVABLE, true);
1620 	if (ret)
1621 		return ret;
1622 
1623 	arg.start_pfn = start_pfn;
1624 	arg.nr_pages = nr_pages;
1625 	node_states_check_changes_offline(nr_pages, zone, &arg);
1626 
1627 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1628 	ret = notifier_to_errno(ret);
1629 	if (ret)
1630 		goto failed_removal;
1631 
1632 	pfn = start_pfn;
1633 	expire = jiffies + timeout;
1634 	drain = 0;
1635 	retry_max = 5;
1636 repeat:
1637 	/* start memory hot removal */
1638 	ret = -EAGAIN;
1639 	if (time_after(jiffies, expire))
1640 		goto failed_removal;
1641 	ret = -EINTR;
1642 	if (signal_pending(current))
1643 		goto failed_removal;
1644 	ret = 0;
1645 	if (drain) {
1646 		lru_add_drain_all_cpuslocked();
1647 		cond_resched();
1648 		drain_all_pages(zone);
1649 	}
1650 
1651 	pfn = scan_movable_pages(start_pfn, end_pfn);
1652 	if (pfn) { /* We have movable pages */
1653 		ret = do_migrate_range(pfn, end_pfn);
1654 		if (!ret) {
1655 			drain = 1;
1656 			goto repeat;
1657 		} else {
1658 			if (ret < 0)
1659 				if (--retry_max == 0)
1660 					goto failed_removal;
1661 			yield();
1662 			drain = 1;
1663 			goto repeat;
1664 		}
1665 	}
1666 	/* drain all zone's lru pagevec, this is asynchronous... */
1667 	lru_add_drain_all_cpuslocked();
1668 	yield();
1669 	/* drain pcp pages, this is synchronous. */
1670 	drain_all_pages(zone);
1671 	/*
1672 	 * dissolve free hugepages in the memory block before doing offlining
1673 	 * actually in order to make hugetlbfs's object counting consistent.
1674 	 */
1675 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1676 	if (ret)
1677 		goto failed_removal;
1678 	/* check again */
1679 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1680 	if (offlined_pages < 0) {
1681 		ret = -EBUSY;
1682 		goto failed_removal;
1683 	}
1684 	pr_info("Offlined Pages %ld\n", offlined_pages);
1685 	/* Ok, all of our target is isolated.
1686 	   We cannot do rollback at this point. */
1687 	offline_isolated_pages(start_pfn, end_pfn);
1688 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1689 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1690 	/* removal success */
1691 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1692 	zone->present_pages -= offlined_pages;
1693 
1694 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1695 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1696 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1697 
1698 	init_per_zone_wmark_min();
1699 
1700 	if (!populated_zone(zone)) {
1701 		zone_pcp_reset(zone);
1702 		build_all_zonelists(NULL);
1703 	} else
1704 		zone_pcp_update(zone);
1705 
1706 	node_states_clear_node(node, &arg);
1707 	if (arg.status_change_nid >= 0) {
1708 		kswapd_stop(node);
1709 		kcompactd_stop(node);
1710 	}
1711 
1712 	vm_total_pages = nr_free_pagecache_pages();
1713 	writeback_set_ratelimit();
1714 
1715 	memory_notify(MEM_OFFLINE, &arg);
1716 	return 0;
1717 
1718 failed_removal:
1719 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1720 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1721 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1722 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1723 	/* pushback to free area */
1724 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1725 	return ret;
1726 }
1727 
1728 /* Must be protected by mem_hotplug_begin() or a device_lock */
1729 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1730 {
1731 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1732 }
1733 #endif /* CONFIG_MEMORY_HOTREMOVE */
1734 
1735 /**
1736  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1737  * @start_pfn: start pfn of the memory range
1738  * @end_pfn: end pfn of the memory range
1739  * @arg: argument passed to func
1740  * @func: callback for each memory section walked
1741  *
1742  * This function walks through all present mem sections in range
1743  * [start_pfn, end_pfn) and call func on each mem section.
1744  *
1745  * Returns the return value of func.
1746  */
1747 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1748 		void *arg, int (*func)(struct memory_block *, void *))
1749 {
1750 	struct memory_block *mem = NULL;
1751 	struct mem_section *section;
1752 	unsigned long pfn, section_nr;
1753 	int ret;
1754 
1755 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1756 		section_nr = pfn_to_section_nr(pfn);
1757 		if (!present_section_nr(section_nr))
1758 			continue;
1759 
1760 		section = __nr_to_section(section_nr);
1761 		/* same memblock? */
1762 		if (mem)
1763 			if ((section_nr >= mem->start_section_nr) &&
1764 			    (section_nr <= mem->end_section_nr))
1765 				continue;
1766 
1767 		mem = find_memory_block_hinted(section, mem);
1768 		if (!mem)
1769 			continue;
1770 
1771 		ret = func(mem, arg);
1772 		if (ret) {
1773 			kobject_put(&mem->dev.kobj);
1774 			return ret;
1775 		}
1776 	}
1777 
1778 	if (mem)
1779 		kobject_put(&mem->dev.kobj);
1780 
1781 	return 0;
1782 }
1783 
1784 #ifdef CONFIG_MEMORY_HOTREMOVE
1785 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1786 {
1787 	int ret = !is_memblock_offlined(mem);
1788 
1789 	if (unlikely(ret)) {
1790 		phys_addr_t beginpa, endpa;
1791 
1792 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1793 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1794 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1795 			&beginpa, &endpa);
1796 	}
1797 
1798 	return ret;
1799 }
1800 
1801 static int check_cpu_on_node(pg_data_t *pgdat)
1802 {
1803 	int cpu;
1804 
1805 	for_each_present_cpu(cpu) {
1806 		if (cpu_to_node(cpu) == pgdat->node_id)
1807 			/*
1808 			 * the cpu on this node isn't removed, and we can't
1809 			 * offline this node.
1810 			 */
1811 			return -EBUSY;
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static void unmap_cpu_on_node(pg_data_t *pgdat)
1818 {
1819 #ifdef CONFIG_ACPI_NUMA
1820 	int cpu;
1821 
1822 	for_each_possible_cpu(cpu)
1823 		if (cpu_to_node(cpu) == pgdat->node_id)
1824 			numa_clear_node(cpu);
1825 #endif
1826 }
1827 
1828 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1829 {
1830 	int ret;
1831 
1832 	ret = check_cpu_on_node(pgdat);
1833 	if (ret)
1834 		return ret;
1835 
1836 	/*
1837 	 * the node will be offlined when we come here, so we can clear
1838 	 * the cpu_to_node() now.
1839 	 */
1840 
1841 	unmap_cpu_on_node(pgdat);
1842 	return 0;
1843 }
1844 
1845 /**
1846  * try_offline_node
1847  *
1848  * Offline a node if all memory sections and cpus of the node are removed.
1849  *
1850  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1851  * and online/offline operations before this call.
1852  */
1853 void try_offline_node(int nid)
1854 {
1855 	pg_data_t *pgdat = NODE_DATA(nid);
1856 	unsigned long start_pfn = pgdat->node_start_pfn;
1857 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1858 	unsigned long pfn;
1859 
1860 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1861 		unsigned long section_nr = pfn_to_section_nr(pfn);
1862 
1863 		if (!present_section_nr(section_nr))
1864 			continue;
1865 
1866 		if (pfn_to_nid(pfn) != nid)
1867 			continue;
1868 
1869 		/*
1870 		 * some memory sections of this node are not removed, and we
1871 		 * can't offline node now.
1872 		 */
1873 		return;
1874 	}
1875 
1876 	if (check_and_unmap_cpu_on_node(pgdat))
1877 		return;
1878 
1879 	/*
1880 	 * all memory/cpu of this node are removed, we can offline this
1881 	 * node now.
1882 	 */
1883 	node_set_offline(nid);
1884 	unregister_one_node(nid);
1885 }
1886 EXPORT_SYMBOL(try_offline_node);
1887 
1888 /**
1889  * remove_memory
1890  *
1891  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1892  * and online/offline operations before this call, as required by
1893  * try_offline_node().
1894  */
1895 void __ref remove_memory(int nid, u64 start, u64 size)
1896 {
1897 	int ret;
1898 
1899 	BUG_ON(check_hotplug_memory_range(start, size));
1900 
1901 	mem_hotplug_begin();
1902 
1903 	/*
1904 	 * All memory blocks must be offlined before removing memory.  Check
1905 	 * whether all memory blocks in question are offline and trigger a BUG()
1906 	 * if this is not the case.
1907 	 */
1908 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1909 				check_memblock_offlined_cb);
1910 	if (ret)
1911 		BUG();
1912 
1913 	/* remove memmap entry */
1914 	firmware_map_remove(start, start + size, "System RAM");
1915 	memblock_free(start, size);
1916 	memblock_remove(start, size);
1917 
1918 	arch_remove_memory(start, size);
1919 
1920 	try_offline_node(nid);
1921 
1922 	mem_hotplug_done();
1923 }
1924 EXPORT_SYMBOL_GPL(remove_memory);
1925 #endif /* CONFIG_MEMORY_HOTREMOVE */
1926