xref: /openbmc/linux/mm/memory_hotplug.c (revision d236d361)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 /* The same as the cpu_hotplug lock, but for memory hotplug. */
56 static struct {
57 	struct task_struct *active_writer;
58 	struct mutex lock; /* Synchronizes accesses to refcount, */
59 	/*
60 	 * Also blocks the new readers during
61 	 * an ongoing mem hotplug operation.
62 	 */
63 	int refcount;
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 	struct lockdep_map dep_map;
67 #endif
68 } mem_hotplug = {
69 	.active_writer = NULL,
70 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
71 	.refcount = 0,
72 #ifdef CONFIG_DEBUG_LOCK_ALLOC
73 	.dep_map = {.name = "mem_hotplug.lock" },
74 #endif
75 };
76 
77 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
78 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
79 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
80 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
81 
82 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
83 bool memhp_auto_online;
84 #else
85 bool memhp_auto_online = true;
86 #endif
87 EXPORT_SYMBOL_GPL(memhp_auto_online);
88 
89 static int __init setup_memhp_default_state(char *str)
90 {
91 	if (!strcmp(str, "online"))
92 		memhp_auto_online = true;
93 	else if (!strcmp(str, "offline"))
94 		memhp_auto_online = false;
95 
96 	return 1;
97 }
98 __setup("memhp_default_state=", setup_memhp_default_state);
99 
100 void get_online_mems(void)
101 {
102 	might_sleep();
103 	if (mem_hotplug.active_writer == current)
104 		return;
105 	memhp_lock_acquire_read();
106 	mutex_lock(&mem_hotplug.lock);
107 	mem_hotplug.refcount++;
108 	mutex_unlock(&mem_hotplug.lock);
109 
110 }
111 
112 void put_online_mems(void)
113 {
114 	if (mem_hotplug.active_writer == current)
115 		return;
116 	mutex_lock(&mem_hotplug.lock);
117 
118 	if (WARN_ON(!mem_hotplug.refcount))
119 		mem_hotplug.refcount++; /* try to fix things up */
120 
121 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
122 		wake_up_process(mem_hotplug.active_writer);
123 	mutex_unlock(&mem_hotplug.lock);
124 	memhp_lock_release();
125 
126 }
127 
128 /* Serializes write accesses to mem_hotplug.active_writer. */
129 static DEFINE_MUTEX(memory_add_remove_lock);
130 
131 void mem_hotplug_begin(void)
132 {
133 	mutex_lock(&memory_add_remove_lock);
134 
135 	mem_hotplug.active_writer = current;
136 
137 	memhp_lock_acquire();
138 	for (;;) {
139 		mutex_lock(&mem_hotplug.lock);
140 		if (likely(!mem_hotplug.refcount))
141 			break;
142 		__set_current_state(TASK_UNINTERRUPTIBLE);
143 		mutex_unlock(&mem_hotplug.lock);
144 		schedule();
145 	}
146 }
147 
148 void mem_hotplug_done(void)
149 {
150 	mem_hotplug.active_writer = NULL;
151 	mutex_unlock(&mem_hotplug.lock);
152 	memhp_lock_release();
153 	mutex_unlock(&memory_add_remove_lock);
154 }
155 
156 /* add this memory to iomem resource */
157 static struct resource *register_memory_resource(u64 start, u64 size)
158 {
159 	struct resource *res;
160 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
161 	if (!res)
162 		return ERR_PTR(-ENOMEM);
163 
164 	res->name = "System RAM";
165 	res->start = start;
166 	res->end = start + size - 1;
167 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
168 	if (request_resource(&iomem_resource, res) < 0) {
169 		pr_debug("System RAM resource %pR cannot be added\n", res);
170 		kfree(res);
171 		return ERR_PTR(-EEXIST);
172 	}
173 	return res;
174 }
175 
176 static void release_memory_resource(struct resource *res)
177 {
178 	if (!res)
179 		return;
180 	release_resource(res);
181 	kfree(res);
182 	return;
183 }
184 
185 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
186 void get_page_bootmem(unsigned long info,  struct page *page,
187 		      unsigned long type)
188 {
189 	page->freelist = (void *)type;
190 	SetPagePrivate(page);
191 	set_page_private(page, info);
192 	page_ref_inc(page);
193 }
194 
195 void put_page_bootmem(struct page *page)
196 {
197 	unsigned long type;
198 
199 	type = (unsigned long) page->freelist;
200 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
201 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
202 
203 	if (page_ref_dec_return(page) == 1) {
204 		page->freelist = NULL;
205 		ClearPagePrivate(page);
206 		set_page_private(page, 0);
207 		INIT_LIST_HEAD(&page->lru);
208 		free_reserved_page(page);
209 	}
210 }
211 
212 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
213 #ifndef CONFIG_SPARSEMEM_VMEMMAP
214 static void register_page_bootmem_info_section(unsigned long start_pfn)
215 {
216 	unsigned long *usemap, mapsize, section_nr, i;
217 	struct mem_section *ms;
218 	struct page *page, *memmap;
219 
220 	section_nr = pfn_to_section_nr(start_pfn);
221 	ms = __nr_to_section(section_nr);
222 
223 	/* Get section's memmap address */
224 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
225 
226 	/*
227 	 * Get page for the memmap's phys address
228 	 * XXX: need more consideration for sparse_vmemmap...
229 	 */
230 	page = virt_to_page(memmap);
231 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
232 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
233 
234 	/* remember memmap's page */
235 	for (i = 0; i < mapsize; i++, page++)
236 		get_page_bootmem(section_nr, page, SECTION_INFO);
237 
238 	usemap = __nr_to_section(section_nr)->pageblock_flags;
239 	page = virt_to_page(usemap);
240 
241 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
242 
243 	for (i = 0; i < mapsize; i++, page++)
244 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
245 
246 }
247 #else /* CONFIG_SPARSEMEM_VMEMMAP */
248 static void register_page_bootmem_info_section(unsigned long start_pfn)
249 {
250 	unsigned long *usemap, mapsize, section_nr, i;
251 	struct mem_section *ms;
252 	struct page *page, *memmap;
253 
254 	if (!pfn_valid(start_pfn))
255 		return;
256 
257 	section_nr = pfn_to_section_nr(start_pfn);
258 	ms = __nr_to_section(section_nr);
259 
260 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
261 
262 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
263 
264 	usemap = __nr_to_section(section_nr)->pageblock_flags;
265 	page = virt_to_page(usemap);
266 
267 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
268 
269 	for (i = 0; i < mapsize; i++, page++)
270 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
271 }
272 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
273 
274 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
275 {
276 	unsigned long i, pfn, end_pfn, nr_pages;
277 	int node = pgdat->node_id;
278 	struct page *page;
279 
280 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
281 	page = virt_to_page(pgdat);
282 
283 	for (i = 0; i < nr_pages; i++, page++)
284 		get_page_bootmem(node, page, NODE_INFO);
285 
286 	pfn = pgdat->node_start_pfn;
287 	end_pfn = pgdat_end_pfn(pgdat);
288 
289 	/* register section info */
290 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
291 		/*
292 		 * Some platforms can assign the same pfn to multiple nodes - on
293 		 * node0 as well as nodeN.  To avoid registering a pfn against
294 		 * multiple nodes we check that this pfn does not already
295 		 * reside in some other nodes.
296 		 */
297 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
298 			register_page_bootmem_info_section(pfn);
299 	}
300 }
301 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
302 
303 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
304 				     unsigned long end_pfn)
305 {
306 	unsigned long old_zone_end_pfn;
307 
308 	zone_span_writelock(zone);
309 
310 	old_zone_end_pfn = zone_end_pfn(zone);
311 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
312 		zone->zone_start_pfn = start_pfn;
313 
314 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
315 				zone->zone_start_pfn;
316 
317 	zone_span_writeunlock(zone);
318 }
319 
320 static void resize_zone(struct zone *zone, unsigned long start_pfn,
321 		unsigned long end_pfn)
322 {
323 	zone_span_writelock(zone);
324 
325 	if (end_pfn - start_pfn) {
326 		zone->zone_start_pfn = start_pfn;
327 		zone->spanned_pages = end_pfn - start_pfn;
328 	} else {
329 		/*
330 		 * make it consist as free_area_init_core(),
331 		 * if spanned_pages = 0, then keep start_pfn = 0
332 		 */
333 		zone->zone_start_pfn = 0;
334 		zone->spanned_pages = 0;
335 	}
336 
337 	zone_span_writeunlock(zone);
338 }
339 
340 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
341 		unsigned long end_pfn)
342 {
343 	enum zone_type zid = zone_idx(zone);
344 	int nid = zone->zone_pgdat->node_id;
345 	unsigned long pfn;
346 
347 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
348 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
349 }
350 
351 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
352  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
353 static int __ref ensure_zone_is_initialized(struct zone *zone,
354 			unsigned long start_pfn, unsigned long num_pages)
355 {
356 	if (!zone_is_initialized(zone))
357 		return init_currently_empty_zone(zone, start_pfn, num_pages);
358 
359 	return 0;
360 }
361 
362 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
363 		unsigned long start_pfn, unsigned long end_pfn)
364 {
365 	int ret;
366 	unsigned long flags;
367 	unsigned long z1_start_pfn;
368 
369 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
370 	if (ret)
371 		return ret;
372 
373 	pgdat_resize_lock(z1->zone_pgdat, &flags);
374 
375 	/* can't move pfns which are higher than @z2 */
376 	if (end_pfn > zone_end_pfn(z2))
377 		goto out_fail;
378 	/* the move out part must be at the left most of @z2 */
379 	if (start_pfn > z2->zone_start_pfn)
380 		goto out_fail;
381 	/* must included/overlap */
382 	if (end_pfn <= z2->zone_start_pfn)
383 		goto out_fail;
384 
385 	/* use start_pfn for z1's start_pfn if z1 is empty */
386 	if (!zone_is_empty(z1))
387 		z1_start_pfn = z1->zone_start_pfn;
388 	else
389 		z1_start_pfn = start_pfn;
390 
391 	resize_zone(z1, z1_start_pfn, end_pfn);
392 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
393 
394 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
395 
396 	fix_zone_id(z1, start_pfn, end_pfn);
397 
398 	return 0;
399 out_fail:
400 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
401 	return -1;
402 }
403 
404 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
405 		unsigned long start_pfn, unsigned long end_pfn)
406 {
407 	int ret;
408 	unsigned long flags;
409 	unsigned long z2_end_pfn;
410 
411 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
412 	if (ret)
413 		return ret;
414 
415 	pgdat_resize_lock(z1->zone_pgdat, &flags);
416 
417 	/* can't move pfns which are lower than @z1 */
418 	if (z1->zone_start_pfn > start_pfn)
419 		goto out_fail;
420 	/* the move out part mast at the right most of @z1 */
421 	if (zone_end_pfn(z1) >  end_pfn)
422 		goto out_fail;
423 	/* must included/overlap */
424 	if (start_pfn >= zone_end_pfn(z1))
425 		goto out_fail;
426 
427 	/* use end_pfn for z2's end_pfn if z2 is empty */
428 	if (!zone_is_empty(z2))
429 		z2_end_pfn = zone_end_pfn(z2);
430 	else
431 		z2_end_pfn = end_pfn;
432 
433 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
434 	resize_zone(z2, start_pfn, z2_end_pfn);
435 
436 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
437 
438 	fix_zone_id(z2, start_pfn, end_pfn);
439 
440 	return 0;
441 out_fail:
442 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
443 	return -1;
444 }
445 
446 static struct zone * __meminit move_pfn_range(int zone_shift,
447 		unsigned long start_pfn, unsigned long end_pfn)
448 {
449 	struct zone *zone = page_zone(pfn_to_page(start_pfn));
450 	int ret = 0;
451 
452 	if (zone_shift < 0)
453 		ret = move_pfn_range_left(zone + zone_shift, zone,
454 					  start_pfn, end_pfn);
455 	else if (zone_shift)
456 		ret = move_pfn_range_right(zone, zone + zone_shift,
457 					   start_pfn, end_pfn);
458 
459 	if (ret)
460 		return NULL;
461 
462 	return zone + zone_shift;
463 }
464 
465 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
466 				      unsigned long end_pfn)
467 {
468 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
469 
470 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
471 		pgdat->node_start_pfn = start_pfn;
472 
473 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
474 					pgdat->node_start_pfn;
475 }
476 
477 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
478 {
479 	struct pglist_data *pgdat = zone->zone_pgdat;
480 	int nr_pages = PAGES_PER_SECTION;
481 	int nid = pgdat->node_id;
482 	int zone_type;
483 	unsigned long flags, pfn;
484 	int ret;
485 
486 	zone_type = zone - pgdat->node_zones;
487 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
488 	if (ret)
489 		return ret;
490 
491 	pgdat_resize_lock(zone->zone_pgdat, &flags);
492 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
493 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
494 			phys_start_pfn + nr_pages);
495 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
496 	memmap_init_zone(nr_pages, nid, zone_type,
497 			 phys_start_pfn, MEMMAP_HOTPLUG);
498 
499 	/* online_page_range is called later and expects pages reserved */
500 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
501 		if (!pfn_valid(pfn))
502 			continue;
503 
504 		SetPageReserved(pfn_to_page(pfn));
505 	}
506 	return 0;
507 }
508 
509 static int __meminit __add_section(int nid, struct zone *zone,
510 					unsigned long phys_start_pfn)
511 {
512 	int ret;
513 
514 	if (pfn_valid(phys_start_pfn))
515 		return -EEXIST;
516 
517 	ret = sparse_add_one_section(zone, phys_start_pfn);
518 
519 	if (ret < 0)
520 		return ret;
521 
522 	ret = __add_zone(zone, phys_start_pfn);
523 
524 	if (ret < 0)
525 		return ret;
526 
527 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
528 }
529 
530 /*
531  * Reasonably generic function for adding memory.  It is
532  * expected that archs that support memory hotplug will
533  * call this function after deciding the zone to which to
534  * add the new pages.
535  */
536 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
537 			unsigned long nr_pages)
538 {
539 	unsigned long i;
540 	int err = 0;
541 	int start_sec, end_sec;
542 	struct vmem_altmap *altmap;
543 
544 	clear_zone_contiguous(zone);
545 
546 	/* during initialize mem_map, align hot-added range to section */
547 	start_sec = pfn_to_section_nr(phys_start_pfn);
548 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
549 
550 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
551 	if (altmap) {
552 		/*
553 		 * Validate altmap is within bounds of the total request
554 		 */
555 		if (altmap->base_pfn != phys_start_pfn
556 				|| vmem_altmap_offset(altmap) > nr_pages) {
557 			pr_warn_once("memory add fail, invalid altmap\n");
558 			err = -EINVAL;
559 			goto out;
560 		}
561 		altmap->alloc = 0;
562 	}
563 
564 	for (i = start_sec; i <= end_sec; i++) {
565 		err = __add_section(nid, zone, section_nr_to_pfn(i));
566 
567 		/*
568 		 * EEXIST is finally dealt with by ioresource collision
569 		 * check. see add_memory() => register_memory_resource()
570 		 * Warning will be printed if there is collision.
571 		 */
572 		if (err && (err != -EEXIST))
573 			break;
574 		err = 0;
575 	}
576 	vmemmap_populate_print_last();
577 out:
578 	set_zone_contiguous(zone);
579 	return err;
580 }
581 EXPORT_SYMBOL_GPL(__add_pages);
582 
583 #ifdef CONFIG_MEMORY_HOTREMOVE
584 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
585 static int find_smallest_section_pfn(int nid, struct zone *zone,
586 				     unsigned long start_pfn,
587 				     unsigned long end_pfn)
588 {
589 	struct mem_section *ms;
590 
591 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
592 		ms = __pfn_to_section(start_pfn);
593 
594 		if (unlikely(!valid_section(ms)))
595 			continue;
596 
597 		if (unlikely(pfn_to_nid(start_pfn) != nid))
598 			continue;
599 
600 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
601 			continue;
602 
603 		return start_pfn;
604 	}
605 
606 	return 0;
607 }
608 
609 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
610 static int find_biggest_section_pfn(int nid, struct zone *zone,
611 				    unsigned long start_pfn,
612 				    unsigned long end_pfn)
613 {
614 	struct mem_section *ms;
615 	unsigned long pfn;
616 
617 	/* pfn is the end pfn of a memory section. */
618 	pfn = end_pfn - 1;
619 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
620 		ms = __pfn_to_section(pfn);
621 
622 		if (unlikely(!valid_section(ms)))
623 			continue;
624 
625 		if (unlikely(pfn_to_nid(pfn) != nid))
626 			continue;
627 
628 		if (zone && zone != page_zone(pfn_to_page(pfn)))
629 			continue;
630 
631 		return pfn;
632 	}
633 
634 	return 0;
635 }
636 
637 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
638 			     unsigned long end_pfn)
639 {
640 	unsigned long zone_start_pfn = zone->zone_start_pfn;
641 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
642 	unsigned long zone_end_pfn = z;
643 	unsigned long pfn;
644 	struct mem_section *ms;
645 	int nid = zone_to_nid(zone);
646 
647 	zone_span_writelock(zone);
648 	if (zone_start_pfn == start_pfn) {
649 		/*
650 		 * If the section is smallest section in the zone, it need
651 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
652 		 * In this case, we find second smallest valid mem_section
653 		 * for shrinking zone.
654 		 */
655 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
656 						zone_end_pfn);
657 		if (pfn) {
658 			zone->zone_start_pfn = pfn;
659 			zone->spanned_pages = zone_end_pfn - pfn;
660 		}
661 	} else if (zone_end_pfn == end_pfn) {
662 		/*
663 		 * If the section is biggest section in the zone, it need
664 		 * shrink zone->spanned_pages.
665 		 * In this case, we find second biggest valid mem_section for
666 		 * shrinking zone.
667 		 */
668 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
669 					       start_pfn);
670 		if (pfn)
671 			zone->spanned_pages = pfn - zone_start_pfn + 1;
672 	}
673 
674 	/*
675 	 * The section is not biggest or smallest mem_section in the zone, it
676 	 * only creates a hole in the zone. So in this case, we need not
677 	 * change the zone. But perhaps, the zone has only hole data. Thus
678 	 * it check the zone has only hole or not.
679 	 */
680 	pfn = zone_start_pfn;
681 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
682 		ms = __pfn_to_section(pfn);
683 
684 		if (unlikely(!valid_section(ms)))
685 			continue;
686 
687 		if (page_zone(pfn_to_page(pfn)) != zone)
688 			continue;
689 
690 		 /* If the section is current section, it continues the loop */
691 		if (start_pfn == pfn)
692 			continue;
693 
694 		/* If we find valid section, we have nothing to do */
695 		zone_span_writeunlock(zone);
696 		return;
697 	}
698 
699 	/* The zone has no valid section */
700 	zone->zone_start_pfn = 0;
701 	zone->spanned_pages = 0;
702 	zone_span_writeunlock(zone);
703 }
704 
705 static void shrink_pgdat_span(struct pglist_data *pgdat,
706 			      unsigned long start_pfn, unsigned long end_pfn)
707 {
708 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
709 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
710 	unsigned long pgdat_end_pfn = p;
711 	unsigned long pfn;
712 	struct mem_section *ms;
713 	int nid = pgdat->node_id;
714 
715 	if (pgdat_start_pfn == start_pfn) {
716 		/*
717 		 * If the section is smallest section in the pgdat, it need
718 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
719 		 * In this case, we find second smallest valid mem_section
720 		 * for shrinking zone.
721 		 */
722 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
723 						pgdat_end_pfn);
724 		if (pfn) {
725 			pgdat->node_start_pfn = pfn;
726 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
727 		}
728 	} else if (pgdat_end_pfn == end_pfn) {
729 		/*
730 		 * If the section is biggest section in the pgdat, it need
731 		 * shrink pgdat->node_spanned_pages.
732 		 * In this case, we find second biggest valid mem_section for
733 		 * shrinking zone.
734 		 */
735 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
736 					       start_pfn);
737 		if (pfn)
738 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
739 	}
740 
741 	/*
742 	 * If the section is not biggest or smallest mem_section in the pgdat,
743 	 * it only creates a hole in the pgdat. So in this case, we need not
744 	 * change the pgdat.
745 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
746 	 * has only hole or not.
747 	 */
748 	pfn = pgdat_start_pfn;
749 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
750 		ms = __pfn_to_section(pfn);
751 
752 		if (unlikely(!valid_section(ms)))
753 			continue;
754 
755 		if (pfn_to_nid(pfn) != nid)
756 			continue;
757 
758 		 /* If the section is current section, it continues the loop */
759 		if (start_pfn == pfn)
760 			continue;
761 
762 		/* If we find valid section, we have nothing to do */
763 		return;
764 	}
765 
766 	/* The pgdat has no valid section */
767 	pgdat->node_start_pfn = 0;
768 	pgdat->node_spanned_pages = 0;
769 }
770 
771 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
772 {
773 	struct pglist_data *pgdat = zone->zone_pgdat;
774 	int nr_pages = PAGES_PER_SECTION;
775 	int zone_type;
776 	unsigned long flags;
777 
778 	zone_type = zone - pgdat->node_zones;
779 
780 	pgdat_resize_lock(zone->zone_pgdat, &flags);
781 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
782 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
783 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
784 }
785 
786 static int __remove_section(struct zone *zone, struct mem_section *ms,
787 		unsigned long map_offset)
788 {
789 	unsigned long start_pfn;
790 	int scn_nr;
791 	int ret = -EINVAL;
792 
793 	if (!valid_section(ms))
794 		return ret;
795 
796 	ret = unregister_memory_section(ms);
797 	if (ret)
798 		return ret;
799 
800 	scn_nr = __section_nr(ms);
801 	start_pfn = section_nr_to_pfn(scn_nr);
802 	__remove_zone(zone, start_pfn);
803 
804 	sparse_remove_one_section(zone, ms, map_offset);
805 	return 0;
806 }
807 
808 /**
809  * __remove_pages() - remove sections of pages from a zone
810  * @zone: zone from which pages need to be removed
811  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
812  * @nr_pages: number of pages to remove (must be multiple of section size)
813  *
814  * Generic helper function to remove section mappings and sysfs entries
815  * for the section of the memory we are removing. Caller needs to make
816  * sure that pages are marked reserved and zones are adjust properly by
817  * calling offline_pages().
818  */
819 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
820 		 unsigned long nr_pages)
821 {
822 	unsigned long i;
823 	unsigned long map_offset = 0;
824 	int sections_to_remove, ret = 0;
825 
826 	/* In the ZONE_DEVICE case device driver owns the memory region */
827 	if (is_dev_zone(zone)) {
828 		struct page *page = pfn_to_page(phys_start_pfn);
829 		struct vmem_altmap *altmap;
830 
831 		altmap = to_vmem_altmap((unsigned long) page);
832 		if (altmap)
833 			map_offset = vmem_altmap_offset(altmap);
834 	} else {
835 		resource_size_t start, size;
836 
837 		start = phys_start_pfn << PAGE_SHIFT;
838 		size = nr_pages * PAGE_SIZE;
839 
840 		ret = release_mem_region_adjustable(&iomem_resource, start,
841 					size);
842 		if (ret) {
843 			resource_size_t endres = start + size - 1;
844 
845 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
846 					&start, &endres, ret);
847 		}
848 	}
849 
850 	clear_zone_contiguous(zone);
851 
852 	/*
853 	 * We can only remove entire sections
854 	 */
855 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
856 	BUG_ON(nr_pages % PAGES_PER_SECTION);
857 
858 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
859 	for (i = 0; i < sections_to_remove; i++) {
860 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
861 
862 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
863 		map_offset = 0;
864 		if (ret)
865 			break;
866 	}
867 
868 	set_zone_contiguous(zone);
869 
870 	return ret;
871 }
872 #endif /* CONFIG_MEMORY_HOTREMOVE */
873 
874 int set_online_page_callback(online_page_callback_t callback)
875 {
876 	int rc = -EINVAL;
877 
878 	get_online_mems();
879 	mutex_lock(&online_page_callback_lock);
880 
881 	if (online_page_callback == generic_online_page) {
882 		online_page_callback = callback;
883 		rc = 0;
884 	}
885 
886 	mutex_unlock(&online_page_callback_lock);
887 	put_online_mems();
888 
889 	return rc;
890 }
891 EXPORT_SYMBOL_GPL(set_online_page_callback);
892 
893 int restore_online_page_callback(online_page_callback_t callback)
894 {
895 	int rc = -EINVAL;
896 
897 	get_online_mems();
898 	mutex_lock(&online_page_callback_lock);
899 
900 	if (online_page_callback == callback) {
901 		online_page_callback = generic_online_page;
902 		rc = 0;
903 	}
904 
905 	mutex_unlock(&online_page_callback_lock);
906 	put_online_mems();
907 
908 	return rc;
909 }
910 EXPORT_SYMBOL_GPL(restore_online_page_callback);
911 
912 void __online_page_set_limits(struct page *page)
913 {
914 }
915 EXPORT_SYMBOL_GPL(__online_page_set_limits);
916 
917 void __online_page_increment_counters(struct page *page)
918 {
919 	adjust_managed_page_count(page, 1);
920 }
921 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
922 
923 void __online_page_free(struct page *page)
924 {
925 	__free_reserved_page(page);
926 }
927 EXPORT_SYMBOL_GPL(__online_page_free);
928 
929 static void generic_online_page(struct page *page)
930 {
931 	__online_page_set_limits(page);
932 	__online_page_increment_counters(page);
933 	__online_page_free(page);
934 }
935 
936 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
937 			void *arg)
938 {
939 	unsigned long i;
940 	unsigned long onlined_pages = *(unsigned long *)arg;
941 	struct page *page;
942 	if (PageReserved(pfn_to_page(start_pfn)))
943 		for (i = 0; i < nr_pages; i++) {
944 			page = pfn_to_page(start_pfn + i);
945 			(*online_page_callback)(page);
946 			onlined_pages++;
947 		}
948 	*(unsigned long *)arg = onlined_pages;
949 	return 0;
950 }
951 
952 #ifdef CONFIG_MOVABLE_NODE
953 /*
954  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
955  * normal memory.
956  */
957 static bool can_online_high_movable(struct zone *zone)
958 {
959 	return true;
960 }
961 #else /* CONFIG_MOVABLE_NODE */
962 /* ensure every online node has NORMAL memory */
963 static bool can_online_high_movable(struct zone *zone)
964 {
965 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
966 }
967 #endif /* CONFIG_MOVABLE_NODE */
968 
969 /* check which state of node_states will be changed when online memory */
970 static void node_states_check_changes_online(unsigned long nr_pages,
971 	struct zone *zone, struct memory_notify *arg)
972 {
973 	int nid = zone_to_nid(zone);
974 	enum zone_type zone_last = ZONE_NORMAL;
975 
976 	/*
977 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
978 	 * contains nodes which have zones of 0...ZONE_NORMAL,
979 	 * set zone_last to ZONE_NORMAL.
980 	 *
981 	 * If we don't have HIGHMEM nor movable node,
982 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
983 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
984 	 */
985 	if (N_MEMORY == N_NORMAL_MEMORY)
986 		zone_last = ZONE_MOVABLE;
987 
988 	/*
989 	 * if the memory to be online is in a zone of 0...zone_last, and
990 	 * the zones of 0...zone_last don't have memory before online, we will
991 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
992 	 * the memory is online.
993 	 */
994 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
995 		arg->status_change_nid_normal = nid;
996 	else
997 		arg->status_change_nid_normal = -1;
998 
999 #ifdef CONFIG_HIGHMEM
1000 	/*
1001 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1002 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1003 	 * set zone_last to ZONE_HIGHMEM.
1004 	 *
1005 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1006 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1007 	 * set zone_last to ZONE_MOVABLE.
1008 	 */
1009 	zone_last = ZONE_HIGHMEM;
1010 	if (N_MEMORY == N_HIGH_MEMORY)
1011 		zone_last = ZONE_MOVABLE;
1012 
1013 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1014 		arg->status_change_nid_high = nid;
1015 	else
1016 		arg->status_change_nid_high = -1;
1017 #else
1018 	arg->status_change_nid_high = arg->status_change_nid_normal;
1019 #endif
1020 
1021 	/*
1022 	 * if the node don't have memory befor online, we will need to
1023 	 * set the node to node_states[N_MEMORY] after the memory
1024 	 * is online.
1025 	 */
1026 	if (!node_state(nid, N_MEMORY))
1027 		arg->status_change_nid = nid;
1028 	else
1029 		arg->status_change_nid = -1;
1030 }
1031 
1032 static void node_states_set_node(int node, struct memory_notify *arg)
1033 {
1034 	if (arg->status_change_nid_normal >= 0)
1035 		node_set_state(node, N_NORMAL_MEMORY);
1036 
1037 	if (arg->status_change_nid_high >= 0)
1038 		node_set_state(node, N_HIGH_MEMORY);
1039 
1040 	node_set_state(node, N_MEMORY);
1041 }
1042 
1043 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1044 		   enum zone_type target, int *zone_shift)
1045 {
1046 	struct zone *zone = page_zone(pfn_to_page(pfn));
1047 	enum zone_type idx = zone_idx(zone);
1048 	int i;
1049 
1050 	*zone_shift = 0;
1051 
1052 	if (idx < target) {
1053 		/* pages must be at end of current zone */
1054 		if (pfn + nr_pages != zone_end_pfn(zone))
1055 			return false;
1056 
1057 		/* no zones in use between current zone and target */
1058 		for (i = idx + 1; i < target; i++)
1059 			if (zone_is_initialized(zone - idx + i))
1060 				return false;
1061 	}
1062 
1063 	if (target < idx) {
1064 		/* pages must be at beginning of current zone */
1065 		if (pfn != zone->zone_start_pfn)
1066 			return false;
1067 
1068 		/* no zones in use between current zone and target */
1069 		for (i = target + 1; i < idx; i++)
1070 			if (zone_is_initialized(zone - idx + i))
1071 				return false;
1072 	}
1073 
1074 	*zone_shift = target - idx;
1075 	return true;
1076 }
1077 
1078 /* Must be protected by mem_hotplug_begin() */
1079 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1080 {
1081 	unsigned long flags;
1082 	unsigned long onlined_pages = 0;
1083 	struct zone *zone;
1084 	int need_zonelists_rebuild = 0;
1085 	int nid;
1086 	int ret;
1087 	struct memory_notify arg;
1088 	int zone_shift = 0;
1089 
1090 	/*
1091 	 * This doesn't need a lock to do pfn_to_page().
1092 	 * The section can't be removed here because of the
1093 	 * memory_block->state_mutex.
1094 	 */
1095 	zone = page_zone(pfn_to_page(pfn));
1096 
1097 	if ((zone_idx(zone) > ZONE_NORMAL ||
1098 	    online_type == MMOP_ONLINE_MOVABLE) &&
1099 	    !can_online_high_movable(zone))
1100 		return -EINVAL;
1101 
1102 	if (online_type == MMOP_ONLINE_KERNEL) {
1103 		if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1104 			return -EINVAL;
1105 	} else if (online_type == MMOP_ONLINE_MOVABLE) {
1106 		if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1107 			return -EINVAL;
1108 	}
1109 
1110 	zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1111 	if (!zone)
1112 		return -EINVAL;
1113 
1114 	arg.start_pfn = pfn;
1115 	arg.nr_pages = nr_pages;
1116 	node_states_check_changes_online(nr_pages, zone, &arg);
1117 
1118 	nid = zone_to_nid(zone);
1119 
1120 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1121 	ret = notifier_to_errno(ret);
1122 	if (ret)
1123 		goto failed_addition;
1124 
1125 	/*
1126 	 * If this zone is not populated, then it is not in zonelist.
1127 	 * This means the page allocator ignores this zone.
1128 	 * So, zonelist must be updated after online.
1129 	 */
1130 	mutex_lock(&zonelists_mutex);
1131 	if (!populated_zone(zone)) {
1132 		need_zonelists_rebuild = 1;
1133 		build_all_zonelists(NULL, zone);
1134 	}
1135 
1136 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1137 		online_pages_range);
1138 	if (ret) {
1139 		if (need_zonelists_rebuild)
1140 			zone_pcp_reset(zone);
1141 		mutex_unlock(&zonelists_mutex);
1142 		goto failed_addition;
1143 	}
1144 
1145 	zone->present_pages += onlined_pages;
1146 
1147 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1148 	zone->zone_pgdat->node_present_pages += onlined_pages;
1149 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1150 
1151 	if (onlined_pages) {
1152 		node_states_set_node(nid, &arg);
1153 		if (need_zonelists_rebuild)
1154 			build_all_zonelists(NULL, NULL);
1155 		else
1156 			zone_pcp_update(zone);
1157 	}
1158 
1159 	mutex_unlock(&zonelists_mutex);
1160 
1161 	init_per_zone_wmark_min();
1162 
1163 	if (onlined_pages) {
1164 		kswapd_run(nid);
1165 		kcompactd_run(nid);
1166 	}
1167 
1168 	vm_total_pages = nr_free_pagecache_pages();
1169 
1170 	writeback_set_ratelimit();
1171 
1172 	if (onlined_pages)
1173 		memory_notify(MEM_ONLINE, &arg);
1174 	return 0;
1175 
1176 failed_addition:
1177 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1178 		 (unsigned long long) pfn << PAGE_SHIFT,
1179 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1180 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1181 	return ret;
1182 }
1183 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1184 
1185 static void reset_node_present_pages(pg_data_t *pgdat)
1186 {
1187 	struct zone *z;
1188 
1189 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1190 		z->present_pages = 0;
1191 
1192 	pgdat->node_present_pages = 0;
1193 }
1194 
1195 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1196 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1197 {
1198 	struct pglist_data *pgdat;
1199 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1200 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1201 	unsigned long start_pfn = PFN_DOWN(start);
1202 
1203 	pgdat = NODE_DATA(nid);
1204 	if (!pgdat) {
1205 		pgdat = arch_alloc_nodedata(nid);
1206 		if (!pgdat)
1207 			return NULL;
1208 
1209 		arch_refresh_nodedata(nid, pgdat);
1210 	} else {
1211 		/*
1212 		 * Reset the nr_zones, order and classzone_idx before reuse.
1213 		 * Note that kswapd will init kswapd_classzone_idx properly
1214 		 * when it starts in the near future.
1215 		 */
1216 		pgdat->nr_zones = 0;
1217 		pgdat->kswapd_order = 0;
1218 		pgdat->kswapd_classzone_idx = 0;
1219 	}
1220 
1221 	/* we can use NODE_DATA(nid) from here */
1222 
1223 	/* init node's zones as empty zones, we don't have any present pages.*/
1224 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1225 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1226 
1227 	/*
1228 	 * The node we allocated has no zone fallback lists. For avoiding
1229 	 * to access not-initialized zonelist, build here.
1230 	 */
1231 	mutex_lock(&zonelists_mutex);
1232 	build_all_zonelists(pgdat, NULL);
1233 	mutex_unlock(&zonelists_mutex);
1234 
1235 	/*
1236 	 * zone->managed_pages is set to an approximate value in
1237 	 * free_area_init_core(), which will cause
1238 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1239 	 * So reset it to 0 before any memory is onlined.
1240 	 */
1241 	reset_node_managed_pages(pgdat);
1242 
1243 	/*
1244 	 * When memory is hot-added, all the memory is in offline state. So
1245 	 * clear all zones' present_pages because they will be updated in
1246 	 * online_pages() and offline_pages().
1247 	 */
1248 	reset_node_present_pages(pgdat);
1249 
1250 	return pgdat;
1251 }
1252 
1253 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1254 {
1255 	arch_refresh_nodedata(nid, NULL);
1256 	free_percpu(pgdat->per_cpu_nodestats);
1257 	arch_free_nodedata(pgdat);
1258 	return;
1259 }
1260 
1261 
1262 /**
1263  * try_online_node - online a node if offlined
1264  *
1265  * called by cpu_up() to online a node without onlined memory.
1266  */
1267 int try_online_node(int nid)
1268 {
1269 	pg_data_t	*pgdat;
1270 	int	ret;
1271 
1272 	if (node_online(nid))
1273 		return 0;
1274 
1275 	mem_hotplug_begin();
1276 	pgdat = hotadd_new_pgdat(nid, 0);
1277 	if (!pgdat) {
1278 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1279 		ret = -ENOMEM;
1280 		goto out;
1281 	}
1282 	node_set_online(nid);
1283 	ret = register_one_node(nid);
1284 	BUG_ON(ret);
1285 
1286 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1287 		mutex_lock(&zonelists_mutex);
1288 		build_all_zonelists(NULL, NULL);
1289 		mutex_unlock(&zonelists_mutex);
1290 	}
1291 
1292 out:
1293 	mem_hotplug_done();
1294 	return ret;
1295 }
1296 
1297 static int check_hotplug_memory_range(u64 start, u64 size)
1298 {
1299 	u64 start_pfn = PFN_DOWN(start);
1300 	u64 nr_pages = size >> PAGE_SHIFT;
1301 
1302 	/* Memory range must be aligned with section */
1303 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1304 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1305 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1306 				(unsigned long long)start,
1307 				(unsigned long long)size);
1308 		return -EINVAL;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * If movable zone has already been setup, newly added memory should be check.
1316  * If its address is higher than movable zone, it should be added as movable.
1317  * Without this check, movable zone may overlap with other zone.
1318  */
1319 static int should_add_memory_movable(int nid, u64 start, u64 size)
1320 {
1321 	unsigned long start_pfn = start >> PAGE_SHIFT;
1322 	pg_data_t *pgdat = NODE_DATA(nid);
1323 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1324 
1325 	if (zone_is_empty(movable_zone))
1326 		return 0;
1327 
1328 	if (movable_zone->zone_start_pfn <= start_pfn)
1329 		return 1;
1330 
1331 	return 0;
1332 }
1333 
1334 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1335 		bool for_device)
1336 {
1337 #ifdef CONFIG_ZONE_DEVICE
1338 	if (for_device)
1339 		return ZONE_DEVICE;
1340 #endif
1341 	if (should_add_memory_movable(nid, start, size))
1342 		return ZONE_MOVABLE;
1343 
1344 	return zone_default;
1345 }
1346 
1347 static int online_memory_block(struct memory_block *mem, void *arg)
1348 {
1349 	return device_online(&mem->dev);
1350 }
1351 
1352 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1353 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1354 {
1355 	u64 start, size;
1356 	pg_data_t *pgdat = NULL;
1357 	bool new_pgdat;
1358 	bool new_node;
1359 	int ret;
1360 
1361 	start = res->start;
1362 	size = resource_size(res);
1363 
1364 	ret = check_hotplug_memory_range(start, size);
1365 	if (ret)
1366 		return ret;
1367 
1368 	{	/* Stupid hack to suppress address-never-null warning */
1369 		void *p = NODE_DATA(nid);
1370 		new_pgdat = !p;
1371 	}
1372 
1373 	mem_hotplug_begin();
1374 
1375 	/*
1376 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1377 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1378 	 * this new range and calculate total pages correctly.  The range will
1379 	 * be removed at hot-remove time.
1380 	 */
1381 	memblock_add_node(start, size, nid);
1382 
1383 	new_node = !node_online(nid);
1384 	if (new_node) {
1385 		pgdat = hotadd_new_pgdat(nid, start);
1386 		ret = -ENOMEM;
1387 		if (!pgdat)
1388 			goto error;
1389 	}
1390 
1391 	/* call arch's memory hotadd */
1392 	ret = arch_add_memory(nid, start, size, false);
1393 
1394 	if (ret < 0)
1395 		goto error;
1396 
1397 	/* we online node here. we can't roll back from here. */
1398 	node_set_online(nid);
1399 
1400 	if (new_node) {
1401 		ret = register_one_node(nid);
1402 		/*
1403 		 * If sysfs file of new node can't create, cpu on the node
1404 		 * can't be hot-added. There is no rollback way now.
1405 		 * So, check by BUG_ON() to catch it reluctantly..
1406 		 */
1407 		BUG_ON(ret);
1408 	}
1409 
1410 	/* create new memmap entry */
1411 	firmware_map_add_hotplug(start, start + size, "System RAM");
1412 
1413 	/* online pages if requested */
1414 	if (online)
1415 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1416 				  NULL, online_memory_block);
1417 
1418 	goto out;
1419 
1420 error:
1421 	/* rollback pgdat allocation and others */
1422 	if (new_pgdat)
1423 		rollback_node_hotadd(nid, pgdat);
1424 	memblock_remove(start, size);
1425 
1426 out:
1427 	mem_hotplug_done();
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL_GPL(add_memory_resource);
1431 
1432 int __ref add_memory(int nid, u64 start, u64 size)
1433 {
1434 	struct resource *res;
1435 	int ret;
1436 
1437 	res = register_memory_resource(start, size);
1438 	if (IS_ERR(res))
1439 		return PTR_ERR(res);
1440 
1441 	ret = add_memory_resource(nid, res, memhp_auto_online);
1442 	if (ret < 0)
1443 		release_memory_resource(res);
1444 	return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(add_memory);
1447 
1448 #ifdef CONFIG_MEMORY_HOTREMOVE
1449 /*
1450  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1451  * set and the size of the free page is given by page_order(). Using this,
1452  * the function determines if the pageblock contains only free pages.
1453  * Due to buddy contraints, a free page at least the size of a pageblock will
1454  * be located at the start of the pageblock
1455  */
1456 static inline int pageblock_free(struct page *page)
1457 {
1458 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1459 }
1460 
1461 /* Return the start of the next active pageblock after a given page */
1462 static struct page *next_active_pageblock(struct page *page)
1463 {
1464 	/* Ensure the starting page is pageblock-aligned */
1465 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1466 
1467 	/* If the entire pageblock is free, move to the end of free page */
1468 	if (pageblock_free(page)) {
1469 		int order;
1470 		/* be careful. we don't have locks, page_order can be changed.*/
1471 		order = page_order(page);
1472 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1473 			return page + (1 << order);
1474 	}
1475 
1476 	return page + pageblock_nr_pages;
1477 }
1478 
1479 /* Checks if this range of memory is likely to be hot-removable. */
1480 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1481 {
1482 	struct page *page = pfn_to_page(start_pfn);
1483 	struct page *end_page = page + nr_pages;
1484 
1485 	/* Check the starting page of each pageblock within the range */
1486 	for (; page < end_page; page = next_active_pageblock(page)) {
1487 		if (!is_pageblock_removable_nolock(page))
1488 			return false;
1489 		cond_resched();
1490 	}
1491 
1492 	/* All pageblocks in the memory block are likely to be hot-removable */
1493 	return true;
1494 }
1495 
1496 /*
1497  * Confirm all pages in a range [start, end) belong to the same zone.
1498  * When true, return its valid [start, end).
1499  */
1500 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1501 			 unsigned long *valid_start, unsigned long *valid_end)
1502 {
1503 	unsigned long pfn, sec_end_pfn;
1504 	unsigned long start, end;
1505 	struct zone *zone = NULL;
1506 	struct page *page;
1507 	int i;
1508 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1509 	     pfn < end_pfn;
1510 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1511 		/* Make sure the memory section is present first */
1512 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1513 			continue;
1514 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1515 		     pfn += MAX_ORDER_NR_PAGES) {
1516 			i = 0;
1517 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1518 			while ((i < MAX_ORDER_NR_PAGES) &&
1519 				!pfn_valid_within(pfn + i))
1520 				i++;
1521 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1522 				continue;
1523 			page = pfn_to_page(pfn + i);
1524 			if (zone && page_zone(page) != zone)
1525 				return 0;
1526 			if (!zone)
1527 				start = pfn + i;
1528 			zone = page_zone(page);
1529 			end = pfn + MAX_ORDER_NR_PAGES;
1530 		}
1531 	}
1532 
1533 	if (zone) {
1534 		*valid_start = start;
1535 		*valid_end = min(end, end_pfn);
1536 		return 1;
1537 	} else {
1538 		return 0;
1539 	}
1540 }
1541 
1542 /*
1543  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1544  * non-lru movable pages and hugepages). We scan pfn because it's much
1545  * easier than scanning over linked list. This function returns the pfn
1546  * of the first found movable page if it's found, otherwise 0.
1547  */
1548 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1549 {
1550 	unsigned long pfn;
1551 	struct page *page;
1552 	for (pfn = start; pfn < end; pfn++) {
1553 		if (pfn_valid(pfn)) {
1554 			page = pfn_to_page(pfn);
1555 			if (PageLRU(page))
1556 				return pfn;
1557 			if (__PageMovable(page))
1558 				return pfn;
1559 			if (PageHuge(page)) {
1560 				if (page_huge_active(page))
1561 					return pfn;
1562 				else
1563 					pfn = round_up(pfn + 1,
1564 						1 << compound_order(page)) - 1;
1565 			}
1566 		}
1567 	}
1568 	return 0;
1569 }
1570 
1571 static struct page *new_node_page(struct page *page, unsigned long private,
1572 		int **result)
1573 {
1574 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1575 	int nid = page_to_nid(page);
1576 	nodemask_t nmask = node_states[N_MEMORY];
1577 	struct page *new_page = NULL;
1578 
1579 	/*
1580 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
1581 	 * accordance with memory policy of the user process if possible. For
1582 	 * now as a simple work-around, we use the next node for destination.
1583 	 */
1584 	if (PageHuge(page))
1585 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1586 					next_node_in(nid, nmask));
1587 
1588 	node_clear(nid, nmask);
1589 
1590 	if (PageHighMem(page)
1591 	    || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1592 		gfp_mask |= __GFP_HIGHMEM;
1593 
1594 	if (!nodes_empty(nmask))
1595 		new_page = __alloc_pages_nodemask(gfp_mask, 0,
1596 					node_zonelist(nid, gfp_mask), &nmask);
1597 	if (!new_page)
1598 		new_page = __alloc_pages(gfp_mask, 0,
1599 					node_zonelist(nid, gfp_mask));
1600 
1601 	return new_page;
1602 }
1603 
1604 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1605 static int
1606 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1607 {
1608 	unsigned long pfn;
1609 	struct page *page;
1610 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1611 	int not_managed = 0;
1612 	int ret = 0;
1613 	LIST_HEAD(source);
1614 
1615 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1616 		if (!pfn_valid(pfn))
1617 			continue;
1618 		page = pfn_to_page(pfn);
1619 
1620 		if (PageHuge(page)) {
1621 			struct page *head = compound_head(page);
1622 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1623 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1624 				ret = -EBUSY;
1625 				break;
1626 			}
1627 			if (isolate_huge_page(page, &source))
1628 				move_pages -= 1 << compound_order(head);
1629 			continue;
1630 		}
1631 
1632 		if (!get_page_unless_zero(page))
1633 			continue;
1634 		/*
1635 		 * We can skip free pages. And we can deal with pages on
1636 		 * LRU and non-lru movable pages.
1637 		 */
1638 		if (PageLRU(page))
1639 			ret = isolate_lru_page(page);
1640 		else
1641 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1642 		if (!ret) { /* Success */
1643 			put_page(page);
1644 			list_add_tail(&page->lru, &source);
1645 			move_pages--;
1646 			if (!__PageMovable(page))
1647 				inc_node_page_state(page, NR_ISOLATED_ANON +
1648 						    page_is_file_cache(page));
1649 
1650 		} else {
1651 #ifdef CONFIG_DEBUG_VM
1652 			pr_alert("failed to isolate pfn %lx\n", pfn);
1653 			dump_page(page, "isolation failed");
1654 #endif
1655 			put_page(page);
1656 			/* Because we don't have big zone->lock. we should
1657 			   check this again here. */
1658 			if (page_count(page)) {
1659 				not_managed++;
1660 				ret = -EBUSY;
1661 				break;
1662 			}
1663 		}
1664 	}
1665 	if (!list_empty(&source)) {
1666 		if (not_managed) {
1667 			putback_movable_pages(&source);
1668 			goto out;
1669 		}
1670 
1671 		/* Allocate a new page from the nearest neighbor node */
1672 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1673 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1674 		if (ret)
1675 			putback_movable_pages(&source);
1676 	}
1677 out:
1678 	return ret;
1679 }
1680 
1681 /*
1682  * remove from free_area[] and mark all as Reserved.
1683  */
1684 static int
1685 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1686 			void *data)
1687 {
1688 	__offline_isolated_pages(start, start + nr_pages);
1689 	return 0;
1690 }
1691 
1692 static void
1693 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1694 {
1695 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1696 				offline_isolated_pages_cb);
1697 }
1698 
1699 /*
1700  * Check all pages in range, recoreded as memory resource, are isolated.
1701  */
1702 static int
1703 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1704 			void *data)
1705 {
1706 	int ret;
1707 	long offlined = *(long *)data;
1708 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1709 	offlined = nr_pages;
1710 	if (!ret)
1711 		*(long *)data += offlined;
1712 	return ret;
1713 }
1714 
1715 static long
1716 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1717 {
1718 	long offlined = 0;
1719 	int ret;
1720 
1721 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1722 			check_pages_isolated_cb);
1723 	if (ret < 0)
1724 		offlined = (long)ret;
1725 	return offlined;
1726 }
1727 
1728 #ifdef CONFIG_MOVABLE_NODE
1729 /*
1730  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1731  * normal memory.
1732  */
1733 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1734 {
1735 	return true;
1736 }
1737 #else /* CONFIG_MOVABLE_NODE */
1738 /* ensure the node has NORMAL memory if it is still online */
1739 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1740 {
1741 	struct pglist_data *pgdat = zone->zone_pgdat;
1742 	unsigned long present_pages = 0;
1743 	enum zone_type zt;
1744 
1745 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1746 		present_pages += pgdat->node_zones[zt].present_pages;
1747 
1748 	if (present_pages > nr_pages)
1749 		return true;
1750 
1751 	present_pages = 0;
1752 	for (; zt <= ZONE_MOVABLE; zt++)
1753 		present_pages += pgdat->node_zones[zt].present_pages;
1754 
1755 	/*
1756 	 * we can't offline the last normal memory until all
1757 	 * higher memory is offlined.
1758 	 */
1759 	return present_pages == 0;
1760 }
1761 #endif /* CONFIG_MOVABLE_NODE */
1762 
1763 static int __init cmdline_parse_movable_node(char *p)
1764 {
1765 #ifdef CONFIG_MOVABLE_NODE
1766 	movable_node_enabled = true;
1767 #else
1768 	pr_warn("movable_node option not supported\n");
1769 #endif
1770 	return 0;
1771 }
1772 early_param("movable_node", cmdline_parse_movable_node);
1773 
1774 /* check which state of node_states will be changed when offline memory */
1775 static void node_states_check_changes_offline(unsigned long nr_pages,
1776 		struct zone *zone, struct memory_notify *arg)
1777 {
1778 	struct pglist_data *pgdat = zone->zone_pgdat;
1779 	unsigned long present_pages = 0;
1780 	enum zone_type zt, zone_last = ZONE_NORMAL;
1781 
1782 	/*
1783 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1784 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1785 	 * set zone_last to ZONE_NORMAL.
1786 	 *
1787 	 * If we don't have HIGHMEM nor movable node,
1788 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1789 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1790 	 */
1791 	if (N_MEMORY == N_NORMAL_MEMORY)
1792 		zone_last = ZONE_MOVABLE;
1793 
1794 	/*
1795 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1796 	 * If the memory to be offline is in a zone of 0...zone_last,
1797 	 * and it is the last present memory, 0...zone_last will
1798 	 * become empty after offline , thus we can determind we will
1799 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1800 	 */
1801 	for (zt = 0; zt <= zone_last; zt++)
1802 		present_pages += pgdat->node_zones[zt].present_pages;
1803 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1804 		arg->status_change_nid_normal = zone_to_nid(zone);
1805 	else
1806 		arg->status_change_nid_normal = -1;
1807 
1808 #ifdef CONFIG_HIGHMEM
1809 	/*
1810 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1811 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1812 	 * set zone_last to ZONE_HIGHMEM.
1813 	 *
1814 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1815 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1816 	 * set zone_last to ZONE_MOVABLE.
1817 	 */
1818 	zone_last = ZONE_HIGHMEM;
1819 	if (N_MEMORY == N_HIGH_MEMORY)
1820 		zone_last = ZONE_MOVABLE;
1821 
1822 	for (; zt <= zone_last; zt++)
1823 		present_pages += pgdat->node_zones[zt].present_pages;
1824 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1825 		arg->status_change_nid_high = zone_to_nid(zone);
1826 	else
1827 		arg->status_change_nid_high = -1;
1828 #else
1829 	arg->status_change_nid_high = arg->status_change_nid_normal;
1830 #endif
1831 
1832 	/*
1833 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1834 	 */
1835 	zone_last = ZONE_MOVABLE;
1836 
1837 	/*
1838 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1839 	 * If we try to offline the last present @nr_pages from the node,
1840 	 * we can determind we will need to clear the node from
1841 	 * node_states[N_HIGH_MEMORY].
1842 	 */
1843 	for (; zt <= zone_last; zt++)
1844 		present_pages += pgdat->node_zones[zt].present_pages;
1845 	if (nr_pages >= present_pages)
1846 		arg->status_change_nid = zone_to_nid(zone);
1847 	else
1848 		arg->status_change_nid = -1;
1849 }
1850 
1851 static void node_states_clear_node(int node, struct memory_notify *arg)
1852 {
1853 	if (arg->status_change_nid_normal >= 0)
1854 		node_clear_state(node, N_NORMAL_MEMORY);
1855 
1856 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1857 	    (arg->status_change_nid_high >= 0))
1858 		node_clear_state(node, N_HIGH_MEMORY);
1859 
1860 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1861 	    (arg->status_change_nid >= 0))
1862 		node_clear_state(node, N_MEMORY);
1863 }
1864 
1865 static int __ref __offline_pages(unsigned long start_pfn,
1866 		  unsigned long end_pfn, unsigned long timeout)
1867 {
1868 	unsigned long pfn, nr_pages, expire;
1869 	long offlined_pages;
1870 	int ret, drain, retry_max, node;
1871 	unsigned long flags;
1872 	unsigned long valid_start, valid_end;
1873 	struct zone *zone;
1874 	struct memory_notify arg;
1875 
1876 	/* at least, alignment against pageblock is necessary */
1877 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1878 		return -EINVAL;
1879 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1880 		return -EINVAL;
1881 	/* This makes hotplug much easier...and readable.
1882 	   we assume this for now. .*/
1883 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1884 		return -EINVAL;
1885 
1886 	zone = page_zone(pfn_to_page(valid_start));
1887 	node = zone_to_nid(zone);
1888 	nr_pages = end_pfn - start_pfn;
1889 
1890 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1891 		return -EINVAL;
1892 
1893 	/* set above range as isolated */
1894 	ret = start_isolate_page_range(start_pfn, end_pfn,
1895 				       MIGRATE_MOVABLE, true);
1896 	if (ret)
1897 		return ret;
1898 
1899 	arg.start_pfn = start_pfn;
1900 	arg.nr_pages = nr_pages;
1901 	node_states_check_changes_offline(nr_pages, zone, &arg);
1902 
1903 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1904 	ret = notifier_to_errno(ret);
1905 	if (ret)
1906 		goto failed_removal;
1907 
1908 	pfn = start_pfn;
1909 	expire = jiffies + timeout;
1910 	drain = 0;
1911 	retry_max = 5;
1912 repeat:
1913 	/* start memory hot removal */
1914 	ret = -EAGAIN;
1915 	if (time_after(jiffies, expire))
1916 		goto failed_removal;
1917 	ret = -EINTR;
1918 	if (signal_pending(current))
1919 		goto failed_removal;
1920 	ret = 0;
1921 	if (drain) {
1922 		lru_add_drain_all();
1923 		cond_resched();
1924 		drain_all_pages(zone);
1925 	}
1926 
1927 	pfn = scan_movable_pages(start_pfn, end_pfn);
1928 	if (pfn) { /* We have movable pages */
1929 		ret = do_migrate_range(pfn, end_pfn);
1930 		if (!ret) {
1931 			drain = 1;
1932 			goto repeat;
1933 		} else {
1934 			if (ret < 0)
1935 				if (--retry_max == 0)
1936 					goto failed_removal;
1937 			yield();
1938 			drain = 1;
1939 			goto repeat;
1940 		}
1941 	}
1942 	/* drain all zone's lru pagevec, this is asynchronous... */
1943 	lru_add_drain_all();
1944 	yield();
1945 	/* drain pcp pages, this is synchronous. */
1946 	drain_all_pages(zone);
1947 	/*
1948 	 * dissolve free hugepages in the memory block before doing offlining
1949 	 * actually in order to make hugetlbfs's object counting consistent.
1950 	 */
1951 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1952 	if (ret)
1953 		goto failed_removal;
1954 	/* check again */
1955 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1956 	if (offlined_pages < 0) {
1957 		ret = -EBUSY;
1958 		goto failed_removal;
1959 	}
1960 	pr_info("Offlined Pages %ld\n", offlined_pages);
1961 	/* Ok, all of our target is isolated.
1962 	   We cannot do rollback at this point. */
1963 	offline_isolated_pages(start_pfn, end_pfn);
1964 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1965 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1966 	/* removal success */
1967 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1968 	zone->present_pages -= offlined_pages;
1969 
1970 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1971 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1972 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1973 
1974 	init_per_zone_wmark_min();
1975 
1976 	if (!populated_zone(zone)) {
1977 		zone_pcp_reset(zone);
1978 		mutex_lock(&zonelists_mutex);
1979 		build_all_zonelists(NULL, NULL);
1980 		mutex_unlock(&zonelists_mutex);
1981 	} else
1982 		zone_pcp_update(zone);
1983 
1984 	node_states_clear_node(node, &arg);
1985 	if (arg.status_change_nid >= 0) {
1986 		kswapd_stop(node);
1987 		kcompactd_stop(node);
1988 	}
1989 
1990 	vm_total_pages = nr_free_pagecache_pages();
1991 	writeback_set_ratelimit();
1992 
1993 	memory_notify(MEM_OFFLINE, &arg);
1994 	return 0;
1995 
1996 failed_removal:
1997 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1998 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1999 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
2000 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2001 	/* pushback to free area */
2002 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2003 	return ret;
2004 }
2005 
2006 /* Must be protected by mem_hotplug_begin() */
2007 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
2008 {
2009 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2010 }
2011 #endif /* CONFIG_MEMORY_HOTREMOVE */
2012 
2013 /**
2014  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2015  * @start_pfn: start pfn of the memory range
2016  * @end_pfn: end pfn of the memory range
2017  * @arg: argument passed to func
2018  * @func: callback for each memory section walked
2019  *
2020  * This function walks through all present mem sections in range
2021  * [start_pfn, end_pfn) and call func on each mem section.
2022  *
2023  * Returns the return value of func.
2024  */
2025 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2026 		void *arg, int (*func)(struct memory_block *, void *))
2027 {
2028 	struct memory_block *mem = NULL;
2029 	struct mem_section *section;
2030 	unsigned long pfn, section_nr;
2031 	int ret;
2032 
2033 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2034 		section_nr = pfn_to_section_nr(pfn);
2035 		if (!present_section_nr(section_nr))
2036 			continue;
2037 
2038 		section = __nr_to_section(section_nr);
2039 		/* same memblock? */
2040 		if (mem)
2041 			if ((section_nr >= mem->start_section_nr) &&
2042 			    (section_nr <= mem->end_section_nr))
2043 				continue;
2044 
2045 		mem = find_memory_block_hinted(section, mem);
2046 		if (!mem)
2047 			continue;
2048 
2049 		ret = func(mem, arg);
2050 		if (ret) {
2051 			kobject_put(&mem->dev.kobj);
2052 			return ret;
2053 		}
2054 	}
2055 
2056 	if (mem)
2057 		kobject_put(&mem->dev.kobj);
2058 
2059 	return 0;
2060 }
2061 
2062 #ifdef CONFIG_MEMORY_HOTREMOVE
2063 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2064 {
2065 	int ret = !is_memblock_offlined(mem);
2066 
2067 	if (unlikely(ret)) {
2068 		phys_addr_t beginpa, endpa;
2069 
2070 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2071 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2072 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2073 			&beginpa, &endpa);
2074 	}
2075 
2076 	return ret;
2077 }
2078 
2079 static int check_cpu_on_node(pg_data_t *pgdat)
2080 {
2081 	int cpu;
2082 
2083 	for_each_present_cpu(cpu) {
2084 		if (cpu_to_node(cpu) == pgdat->node_id)
2085 			/*
2086 			 * the cpu on this node isn't removed, and we can't
2087 			 * offline this node.
2088 			 */
2089 			return -EBUSY;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static void unmap_cpu_on_node(pg_data_t *pgdat)
2096 {
2097 #ifdef CONFIG_ACPI_NUMA
2098 	int cpu;
2099 
2100 	for_each_possible_cpu(cpu)
2101 		if (cpu_to_node(cpu) == pgdat->node_id)
2102 			numa_clear_node(cpu);
2103 #endif
2104 }
2105 
2106 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2107 {
2108 	int ret;
2109 
2110 	ret = check_cpu_on_node(pgdat);
2111 	if (ret)
2112 		return ret;
2113 
2114 	/*
2115 	 * the node will be offlined when we come here, so we can clear
2116 	 * the cpu_to_node() now.
2117 	 */
2118 
2119 	unmap_cpu_on_node(pgdat);
2120 	return 0;
2121 }
2122 
2123 /**
2124  * try_offline_node
2125  *
2126  * Offline a node if all memory sections and cpus of the node are removed.
2127  *
2128  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2129  * and online/offline operations before this call.
2130  */
2131 void try_offline_node(int nid)
2132 {
2133 	pg_data_t *pgdat = NODE_DATA(nid);
2134 	unsigned long start_pfn = pgdat->node_start_pfn;
2135 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2136 	unsigned long pfn;
2137 
2138 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2139 		unsigned long section_nr = pfn_to_section_nr(pfn);
2140 
2141 		if (!present_section_nr(section_nr))
2142 			continue;
2143 
2144 		if (pfn_to_nid(pfn) != nid)
2145 			continue;
2146 
2147 		/*
2148 		 * some memory sections of this node are not removed, and we
2149 		 * can't offline node now.
2150 		 */
2151 		return;
2152 	}
2153 
2154 	if (check_and_unmap_cpu_on_node(pgdat))
2155 		return;
2156 
2157 	/*
2158 	 * all memory/cpu of this node are removed, we can offline this
2159 	 * node now.
2160 	 */
2161 	node_set_offline(nid);
2162 	unregister_one_node(nid);
2163 }
2164 EXPORT_SYMBOL(try_offline_node);
2165 
2166 /**
2167  * remove_memory
2168  *
2169  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2170  * and online/offline operations before this call, as required by
2171  * try_offline_node().
2172  */
2173 void __ref remove_memory(int nid, u64 start, u64 size)
2174 {
2175 	int ret;
2176 
2177 	BUG_ON(check_hotplug_memory_range(start, size));
2178 
2179 	mem_hotplug_begin();
2180 
2181 	/*
2182 	 * All memory blocks must be offlined before removing memory.  Check
2183 	 * whether all memory blocks in question are offline and trigger a BUG()
2184 	 * if this is not the case.
2185 	 */
2186 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2187 				check_memblock_offlined_cb);
2188 	if (ret)
2189 		BUG();
2190 
2191 	/* remove memmap entry */
2192 	firmware_map_remove(start, start + size, "System RAM");
2193 	memblock_free(start, size);
2194 	memblock_remove(start, size);
2195 
2196 	arch_remove_memory(start, size);
2197 
2198 	try_offline_node(nid);
2199 
2200 	mem_hotplug_done();
2201 }
2202 EXPORT_SYMBOL_GPL(remove_memory);
2203 #endif /* CONFIG_MEMORY_HOTREMOVE */
2204