1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 enum { 45 MEMMAP_ON_MEMORY_DISABLE = 0, 46 MEMMAP_ON_MEMORY_ENABLE, 47 MEMMAP_ON_MEMORY_FORCE, 48 }; 49 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 51 52 static inline unsigned long memory_block_memmap_size(void) 53 { 54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 55 } 56 57 static inline unsigned long memory_block_memmap_on_memory_pages(void) 58 { 59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 60 61 /* 62 * In "forced" memmap_on_memory mode, we add extra pages to align the 63 * vmemmap size to cover full pageblocks. That way, we can add memory 64 * even if the vmemmap size is not properly aligned, however, we might waste 65 * memory. 66 */ 67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 68 return pageblock_align(nr_pages); 69 return nr_pages; 70 } 71 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 73 /* 74 * memory_hotplug.memmap_on_memory parameter 75 */ 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 77 { 78 int ret, mode; 79 bool enabled; 80 81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 82 mode = MEMMAP_ON_MEMORY_FORCE; 83 } else { 84 ret = kstrtobool(val, &enabled); 85 if (ret < 0) 86 return ret; 87 if (enabled) 88 mode = MEMMAP_ON_MEMORY_ENABLE; 89 else 90 mode = MEMMAP_ON_MEMORY_DISABLE; 91 } 92 *((int *)kp->arg) = mode; 93 if (mode == MEMMAP_ON_MEMORY_FORCE) { 94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 95 96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 97 memmap_pages - PFN_UP(memory_block_memmap_size())); 98 } 99 return 0; 100 } 101 102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 103 { 104 int mode = *((int *)kp->arg); 105 106 if (mode == MEMMAP_ON_MEMORY_FORCE) 107 return sprintf(buffer, "force\n"); 108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N'); 109 } 110 111 static const struct kernel_param_ops memmap_mode_ops = { 112 .set = set_memmap_mode, 113 .get = get_memmap_mode, 114 }; 115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 117 "With value \"force\" it could result in memory wastage due " 118 "to memmap size limitations (Y/N/force)"); 119 120 static inline bool mhp_memmap_on_memory(void) 121 { 122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 123 } 124 #else 125 static inline bool mhp_memmap_on_memory(void) 126 { 127 return false; 128 } 129 #endif 130 131 enum { 132 ONLINE_POLICY_CONTIG_ZONES = 0, 133 ONLINE_POLICY_AUTO_MOVABLE, 134 }; 135 136 static const char * const online_policy_to_str[] = { 137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 139 }; 140 141 static int set_online_policy(const char *val, const struct kernel_param *kp) 142 { 143 int ret = sysfs_match_string(online_policy_to_str, val); 144 145 if (ret < 0) 146 return ret; 147 *((int *)kp->arg) = ret; 148 return 0; 149 } 150 151 static int get_online_policy(char *buffer, const struct kernel_param *kp) 152 { 153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 154 } 155 156 /* 157 * memory_hotplug.online_policy: configure online behavior when onlining without 158 * specifying a zone (MMOP_ONLINE) 159 * 160 * "contig-zones": keep zone contiguous 161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 163 */ 164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 165 static const struct kernel_param_ops online_policy_ops = { 166 .set = set_online_policy, 167 .get = get_online_policy, 168 }; 169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 170 MODULE_PARM_DESC(online_policy, 171 "Set the online policy (\"contig-zones\", \"auto-movable\") " 172 "Default: \"contig-zones\""); 173 174 /* 175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 176 * 177 * The ratio represent an upper limit and the kernel might decide to not 178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 179 * doesn't allow for more MOVABLE memory. 180 */ 181 static unsigned int auto_movable_ratio __read_mostly = 301; 182 module_param(auto_movable_ratio, uint, 0644); 183 MODULE_PARM_DESC(auto_movable_ratio, 184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 185 "in percent for \"auto-movable\" online policy. Default: 301"); 186 187 /* 188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 189 */ 190 #ifdef CONFIG_NUMA 191 static bool auto_movable_numa_aware __read_mostly = true; 192 module_param(auto_movable_numa_aware, bool, 0644); 193 MODULE_PARM_DESC(auto_movable_numa_aware, 194 "Consider numa node stats in addition to global stats in " 195 "\"auto-movable\" online policy. Default: true"); 196 #endif /* CONFIG_NUMA */ 197 198 /* 199 * online_page_callback contains pointer to current page onlining function. 200 * Initially it is generic_online_page(). If it is required it could be 201 * changed by calling set_online_page_callback() for callback registration 202 * and restore_online_page_callback() for generic callback restore. 203 */ 204 205 static online_page_callback_t online_page_callback = generic_online_page; 206 static DEFINE_MUTEX(online_page_callback_lock); 207 208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 209 210 void get_online_mems(void) 211 { 212 percpu_down_read(&mem_hotplug_lock); 213 } 214 215 void put_online_mems(void) 216 { 217 percpu_up_read(&mem_hotplug_lock); 218 } 219 220 bool movable_node_enabled = false; 221 222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 223 int mhp_default_online_type = MMOP_OFFLINE; 224 #else 225 int mhp_default_online_type = MMOP_ONLINE; 226 #endif 227 228 static int __init setup_memhp_default_state(char *str) 229 { 230 const int online_type = mhp_online_type_from_str(str); 231 232 if (online_type >= 0) 233 mhp_default_online_type = online_type; 234 235 return 1; 236 } 237 __setup("memhp_default_state=", setup_memhp_default_state); 238 239 void mem_hotplug_begin(void) 240 { 241 cpus_read_lock(); 242 percpu_down_write(&mem_hotplug_lock); 243 } 244 245 void mem_hotplug_done(void) 246 { 247 percpu_up_write(&mem_hotplug_lock); 248 cpus_read_unlock(); 249 } 250 251 u64 max_mem_size = U64_MAX; 252 253 /* add this memory to iomem resource */ 254 static struct resource *register_memory_resource(u64 start, u64 size, 255 const char *resource_name) 256 { 257 struct resource *res; 258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 259 260 if (strcmp(resource_name, "System RAM")) 261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 262 263 if (!mhp_range_allowed(start, size, true)) 264 return ERR_PTR(-E2BIG); 265 266 /* 267 * Make sure value parsed from 'mem=' only restricts memory adding 268 * while booting, so that memory hotplug won't be impacted. Please 269 * refer to document of 'mem=' in kernel-parameters.txt for more 270 * details. 271 */ 272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 273 return ERR_PTR(-E2BIG); 274 275 /* 276 * Request ownership of the new memory range. This might be 277 * a child of an existing resource that was present but 278 * not marked as busy. 279 */ 280 res = __request_region(&iomem_resource, start, size, 281 resource_name, flags); 282 283 if (!res) { 284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 285 start, start + size); 286 return ERR_PTR(-EEXIST); 287 } 288 return res; 289 } 290 291 static void release_memory_resource(struct resource *res) 292 { 293 if (!res) 294 return; 295 release_resource(res); 296 kfree(res); 297 } 298 299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 300 { 301 /* 302 * Disallow all operations smaller than a sub-section and only 303 * allow operations smaller than a section for 304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 305 * enforces a larger memory_block_size_bytes() granularity for 306 * memory that will be marked online, so this check should only 307 * fire for direct arch_{add,remove}_memory() users outside of 308 * add_memory_resource(). 309 */ 310 unsigned long min_align; 311 312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 313 min_align = PAGES_PER_SUBSECTION; 314 else 315 min_align = PAGES_PER_SECTION; 316 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 317 return -EINVAL; 318 return 0; 319 } 320 321 /* 322 * Return page for the valid pfn only if the page is online. All pfn 323 * walkers which rely on the fully initialized page->flags and others 324 * should use this rather than pfn_valid && pfn_to_page 325 */ 326 struct page *pfn_to_online_page(unsigned long pfn) 327 { 328 unsigned long nr = pfn_to_section_nr(pfn); 329 struct dev_pagemap *pgmap; 330 struct mem_section *ms; 331 332 if (nr >= NR_MEM_SECTIONS) 333 return NULL; 334 335 ms = __nr_to_section(nr); 336 if (!online_section(ms)) 337 return NULL; 338 339 /* 340 * Save some code text when online_section() + 341 * pfn_section_valid() are sufficient. 342 */ 343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 344 return NULL; 345 346 if (!pfn_section_valid(ms, pfn)) 347 return NULL; 348 349 if (!online_device_section(ms)) 350 return pfn_to_page(pfn); 351 352 /* 353 * Slowpath: when ZONE_DEVICE collides with 354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 355 * the section may be 'offline' but 'valid'. Only 356 * get_dev_pagemap() can determine sub-section online status. 357 */ 358 pgmap = get_dev_pagemap(pfn, NULL); 359 put_dev_pagemap(pgmap); 360 361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 362 if (pgmap) 363 return NULL; 364 365 return pfn_to_page(pfn); 366 } 367 EXPORT_SYMBOL_GPL(pfn_to_online_page); 368 369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 370 struct mhp_params *params) 371 { 372 const unsigned long end_pfn = pfn + nr_pages; 373 unsigned long cur_nr_pages; 374 int err; 375 struct vmem_altmap *altmap = params->altmap; 376 377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 378 return -EINVAL; 379 380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 381 382 if (altmap) { 383 /* 384 * Validate altmap is within bounds of the total request 385 */ 386 if (altmap->base_pfn != pfn 387 || vmem_altmap_offset(altmap) > nr_pages) { 388 pr_warn_once("memory add fail, invalid altmap\n"); 389 return -EINVAL; 390 } 391 altmap->alloc = 0; 392 } 393 394 if (check_pfn_span(pfn, nr_pages)) { 395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 396 return -EINVAL; 397 } 398 399 for (; pfn < end_pfn; pfn += cur_nr_pages) { 400 /* Select all remaining pages up to the next section boundary */ 401 cur_nr_pages = min(end_pfn - pfn, 402 SECTION_ALIGN_UP(pfn + 1) - pfn); 403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 404 params->pgmap); 405 if (err) 406 break; 407 cond_resched(); 408 } 409 vmemmap_populate_print_last(); 410 return err; 411 } 412 413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 415 unsigned long start_pfn, 416 unsigned long end_pfn) 417 { 418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 419 if (unlikely(!pfn_to_online_page(start_pfn))) 420 continue; 421 422 if (unlikely(pfn_to_nid(start_pfn) != nid)) 423 continue; 424 425 if (zone != page_zone(pfn_to_page(start_pfn))) 426 continue; 427 428 return start_pfn; 429 } 430 431 return 0; 432 } 433 434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 436 unsigned long start_pfn, 437 unsigned long end_pfn) 438 { 439 unsigned long pfn; 440 441 /* pfn is the end pfn of a memory section. */ 442 pfn = end_pfn - 1; 443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 444 if (unlikely(!pfn_to_online_page(pfn))) 445 continue; 446 447 if (unlikely(pfn_to_nid(pfn) != nid)) 448 continue; 449 450 if (zone != page_zone(pfn_to_page(pfn))) 451 continue; 452 453 return pfn; 454 } 455 456 return 0; 457 } 458 459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 460 unsigned long end_pfn) 461 { 462 unsigned long pfn; 463 int nid = zone_to_nid(zone); 464 465 if (zone->zone_start_pfn == start_pfn) { 466 /* 467 * If the section is smallest section in the zone, it need 468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 469 * In this case, we find second smallest valid mem_section 470 * for shrinking zone. 471 */ 472 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 473 zone_end_pfn(zone)); 474 if (pfn) { 475 zone->spanned_pages = zone_end_pfn(zone) - pfn; 476 zone->zone_start_pfn = pfn; 477 } else { 478 zone->zone_start_pfn = 0; 479 zone->spanned_pages = 0; 480 } 481 } else if (zone_end_pfn(zone) == end_pfn) { 482 /* 483 * If the section is biggest section in the zone, it need 484 * shrink zone->spanned_pages. 485 * In this case, we find second biggest valid mem_section for 486 * shrinking zone. 487 */ 488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 489 start_pfn); 490 if (pfn) 491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 492 else { 493 zone->zone_start_pfn = 0; 494 zone->spanned_pages = 0; 495 } 496 } 497 } 498 499 static void update_pgdat_span(struct pglist_data *pgdat) 500 { 501 unsigned long node_start_pfn = 0, node_end_pfn = 0; 502 struct zone *zone; 503 504 for (zone = pgdat->node_zones; 505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 506 unsigned long end_pfn = zone_end_pfn(zone); 507 508 /* No need to lock the zones, they can't change. */ 509 if (!zone->spanned_pages) 510 continue; 511 if (!node_end_pfn) { 512 node_start_pfn = zone->zone_start_pfn; 513 node_end_pfn = end_pfn; 514 continue; 515 } 516 517 if (end_pfn > node_end_pfn) 518 node_end_pfn = end_pfn; 519 if (zone->zone_start_pfn < node_start_pfn) 520 node_start_pfn = zone->zone_start_pfn; 521 } 522 523 pgdat->node_start_pfn = node_start_pfn; 524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 525 } 526 527 void __ref remove_pfn_range_from_zone(struct zone *zone, 528 unsigned long start_pfn, 529 unsigned long nr_pages) 530 { 531 const unsigned long end_pfn = start_pfn + nr_pages; 532 struct pglist_data *pgdat = zone->zone_pgdat; 533 unsigned long pfn, cur_nr_pages; 534 535 /* Poison struct pages because they are now uninitialized again. */ 536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 537 cond_resched(); 538 539 /* Select all remaining pages up to the next section boundary */ 540 cur_nr_pages = 541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 542 page_init_poison(pfn_to_page(pfn), 543 sizeof(struct page) * cur_nr_pages); 544 } 545 546 /* 547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 548 * we will not try to shrink the zones - which is okay as 549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 550 */ 551 if (zone_is_zone_device(zone)) 552 return; 553 554 clear_zone_contiguous(zone); 555 556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 557 update_pgdat_span(pgdat); 558 559 set_zone_contiguous(zone); 560 } 561 562 /** 563 * __remove_pages() - remove sections of pages 564 * @pfn: starting pageframe (must be aligned to start of a section) 565 * @nr_pages: number of pages to remove (must be multiple of section size) 566 * @altmap: alternative device page map or %NULL if default memmap is used 567 * 568 * Generic helper function to remove section mappings and sysfs entries 569 * for the section of the memory we are removing. Caller needs to make 570 * sure that pages are marked reserved and zones are adjust properly by 571 * calling offline_pages(). 572 */ 573 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 574 struct vmem_altmap *altmap) 575 { 576 const unsigned long end_pfn = pfn + nr_pages; 577 unsigned long cur_nr_pages; 578 579 if (check_pfn_span(pfn, nr_pages)) { 580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 581 return; 582 } 583 584 for (; pfn < end_pfn; pfn += cur_nr_pages) { 585 cond_resched(); 586 /* Select all remaining pages up to the next section boundary */ 587 cur_nr_pages = min(end_pfn - pfn, 588 SECTION_ALIGN_UP(pfn + 1) - pfn); 589 sparse_remove_section(pfn, cur_nr_pages, altmap); 590 } 591 } 592 593 int set_online_page_callback(online_page_callback_t callback) 594 { 595 int rc = -EINVAL; 596 597 get_online_mems(); 598 mutex_lock(&online_page_callback_lock); 599 600 if (online_page_callback == generic_online_page) { 601 online_page_callback = callback; 602 rc = 0; 603 } 604 605 mutex_unlock(&online_page_callback_lock); 606 put_online_mems(); 607 608 return rc; 609 } 610 EXPORT_SYMBOL_GPL(set_online_page_callback); 611 612 int restore_online_page_callback(online_page_callback_t callback) 613 { 614 int rc = -EINVAL; 615 616 get_online_mems(); 617 mutex_lock(&online_page_callback_lock); 618 619 if (online_page_callback == callback) { 620 online_page_callback = generic_online_page; 621 rc = 0; 622 } 623 624 mutex_unlock(&online_page_callback_lock); 625 put_online_mems(); 626 627 return rc; 628 } 629 EXPORT_SYMBOL_GPL(restore_online_page_callback); 630 631 void generic_online_page(struct page *page, unsigned int order) 632 { 633 /* 634 * Freeing the page with debug_pagealloc enabled will try to unmap it, 635 * so we should map it first. This is better than introducing a special 636 * case in page freeing fast path. 637 */ 638 debug_pagealloc_map_pages(page, 1 << order); 639 __free_pages_core(page, order); 640 totalram_pages_add(1UL << order); 641 } 642 EXPORT_SYMBOL_GPL(generic_online_page); 643 644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 645 { 646 const unsigned long end_pfn = start_pfn + nr_pages; 647 unsigned long pfn; 648 649 /* 650 * Online the pages in MAX_ORDER aligned chunks. The callback might 651 * decide to not expose all pages to the buddy (e.g., expose them 652 * later). We account all pages as being online and belonging to this 653 * zone ("present"). 654 * When using memmap_on_memory, the range might not be aligned to 655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 656 * this and the first chunk to online will be pageblock_nr_pages. 657 */ 658 for (pfn = start_pfn; pfn < end_pfn;) { 659 int order; 660 661 /* 662 * Free to online pages in the largest chunks alignment allows. 663 * 664 * __ffs() behaviour is undefined for 0. start == 0 is 665 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case. 666 */ 667 if (pfn) 668 order = min_t(int, MAX_ORDER, __ffs(pfn)); 669 else 670 order = MAX_ORDER; 671 672 (*online_page_callback)(pfn_to_page(pfn), order); 673 pfn += (1UL << order); 674 } 675 676 /* mark all involved sections as online */ 677 online_mem_sections(start_pfn, end_pfn); 678 } 679 680 /* check which state of node_states will be changed when online memory */ 681 static void node_states_check_changes_online(unsigned long nr_pages, 682 struct zone *zone, struct memory_notify *arg) 683 { 684 int nid = zone_to_nid(zone); 685 686 arg->status_change_nid = NUMA_NO_NODE; 687 arg->status_change_nid_normal = NUMA_NO_NODE; 688 689 if (!node_state(nid, N_MEMORY)) 690 arg->status_change_nid = nid; 691 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 692 arg->status_change_nid_normal = nid; 693 } 694 695 static void node_states_set_node(int node, struct memory_notify *arg) 696 { 697 if (arg->status_change_nid_normal >= 0) 698 node_set_state(node, N_NORMAL_MEMORY); 699 700 if (arg->status_change_nid >= 0) 701 node_set_state(node, N_MEMORY); 702 } 703 704 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 705 unsigned long nr_pages) 706 { 707 unsigned long old_end_pfn = zone_end_pfn(zone); 708 709 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 710 zone->zone_start_pfn = start_pfn; 711 712 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 713 } 714 715 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 716 unsigned long nr_pages) 717 { 718 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 719 720 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 721 pgdat->node_start_pfn = start_pfn; 722 723 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 724 725 } 726 727 #ifdef CONFIG_ZONE_DEVICE 728 static void section_taint_zone_device(unsigned long pfn) 729 { 730 struct mem_section *ms = __pfn_to_section(pfn); 731 732 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 733 } 734 #else 735 static inline void section_taint_zone_device(unsigned long pfn) 736 { 737 } 738 #endif 739 740 /* 741 * Associate the pfn range with the given zone, initializing the memmaps 742 * and resizing the pgdat/zone data to span the added pages. After this 743 * call, all affected pages are PG_reserved. 744 * 745 * All aligned pageblocks are initialized to the specified migratetype 746 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 747 * zone stats (e.g., nr_isolate_pageblock) are touched. 748 */ 749 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 750 unsigned long nr_pages, 751 struct vmem_altmap *altmap, int migratetype) 752 { 753 struct pglist_data *pgdat = zone->zone_pgdat; 754 int nid = pgdat->node_id; 755 756 clear_zone_contiguous(zone); 757 758 if (zone_is_empty(zone)) 759 init_currently_empty_zone(zone, start_pfn, nr_pages); 760 resize_zone_range(zone, start_pfn, nr_pages); 761 resize_pgdat_range(pgdat, start_pfn, nr_pages); 762 763 /* 764 * Subsection population requires care in pfn_to_online_page(). 765 * Set the taint to enable the slow path detection of 766 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 767 * section. 768 */ 769 if (zone_is_zone_device(zone)) { 770 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 771 section_taint_zone_device(start_pfn); 772 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 773 section_taint_zone_device(start_pfn + nr_pages); 774 } 775 776 /* 777 * TODO now we have a visible range of pages which are not associated 778 * with their zone properly. Not nice but set_pfnblock_flags_mask 779 * expects the zone spans the pfn range. All the pages in the range 780 * are reserved so nobody should be touching them so we should be safe 781 */ 782 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 783 MEMINIT_HOTPLUG, altmap, migratetype); 784 785 set_zone_contiguous(zone); 786 } 787 788 struct auto_movable_stats { 789 unsigned long kernel_early_pages; 790 unsigned long movable_pages; 791 }; 792 793 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 794 struct zone *zone) 795 { 796 if (zone_idx(zone) == ZONE_MOVABLE) { 797 stats->movable_pages += zone->present_pages; 798 } else { 799 stats->kernel_early_pages += zone->present_early_pages; 800 #ifdef CONFIG_CMA 801 /* 802 * CMA pages (never on hotplugged memory) behave like 803 * ZONE_MOVABLE. 804 */ 805 stats->movable_pages += zone->cma_pages; 806 stats->kernel_early_pages -= zone->cma_pages; 807 #endif /* CONFIG_CMA */ 808 } 809 } 810 struct auto_movable_group_stats { 811 unsigned long movable_pages; 812 unsigned long req_kernel_early_pages; 813 }; 814 815 static int auto_movable_stats_account_group(struct memory_group *group, 816 void *arg) 817 { 818 const int ratio = READ_ONCE(auto_movable_ratio); 819 struct auto_movable_group_stats *stats = arg; 820 long pages; 821 822 /* 823 * We don't support modifying the config while the auto-movable online 824 * policy is already enabled. Just avoid the division by zero below. 825 */ 826 if (!ratio) 827 return 0; 828 829 /* 830 * Calculate how many early kernel pages this group requires to 831 * satisfy the configured zone ratio. 832 */ 833 pages = group->present_movable_pages * 100 / ratio; 834 pages -= group->present_kernel_pages; 835 836 if (pages > 0) 837 stats->req_kernel_early_pages += pages; 838 stats->movable_pages += group->present_movable_pages; 839 return 0; 840 } 841 842 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 843 unsigned long nr_pages) 844 { 845 unsigned long kernel_early_pages, movable_pages; 846 struct auto_movable_group_stats group_stats = {}; 847 struct auto_movable_stats stats = {}; 848 pg_data_t *pgdat = NODE_DATA(nid); 849 struct zone *zone; 850 int i; 851 852 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 853 if (nid == NUMA_NO_NODE) { 854 /* TODO: cache values */ 855 for_each_populated_zone(zone) 856 auto_movable_stats_account_zone(&stats, zone); 857 } else { 858 for (i = 0; i < MAX_NR_ZONES; i++) { 859 zone = pgdat->node_zones + i; 860 if (populated_zone(zone)) 861 auto_movable_stats_account_zone(&stats, zone); 862 } 863 } 864 865 kernel_early_pages = stats.kernel_early_pages; 866 movable_pages = stats.movable_pages; 867 868 /* 869 * Kernel memory inside dynamic memory group allows for more MOVABLE 870 * memory within the same group. Remove the effect of all but the 871 * current group from the stats. 872 */ 873 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 874 group, &group_stats); 875 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 876 return false; 877 kernel_early_pages -= group_stats.req_kernel_early_pages; 878 movable_pages -= group_stats.movable_pages; 879 880 if (group && group->is_dynamic) 881 kernel_early_pages += group->present_kernel_pages; 882 883 /* 884 * Test if we could online the given number of pages to ZONE_MOVABLE 885 * and still stay in the configured ratio. 886 */ 887 movable_pages += nr_pages; 888 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 889 } 890 891 /* 892 * Returns a default kernel memory zone for the given pfn range. 893 * If no kernel zone covers this pfn range it will automatically go 894 * to the ZONE_NORMAL. 895 */ 896 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 897 unsigned long nr_pages) 898 { 899 struct pglist_data *pgdat = NODE_DATA(nid); 900 int zid; 901 902 for (zid = 0; zid < ZONE_NORMAL; zid++) { 903 struct zone *zone = &pgdat->node_zones[zid]; 904 905 if (zone_intersects(zone, start_pfn, nr_pages)) 906 return zone; 907 } 908 909 return &pgdat->node_zones[ZONE_NORMAL]; 910 } 911 912 /* 913 * Determine to which zone to online memory dynamically based on user 914 * configuration and system stats. We care about the following ratio: 915 * 916 * MOVABLE : KERNEL 917 * 918 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 919 * one of the kernel zones. CMA pages inside one of the kernel zones really 920 * behaves like ZONE_MOVABLE, so we treat them accordingly. 921 * 922 * We don't allow for hotplugged memory in a KERNEL zone to increase the 923 * amount of MOVABLE memory we can have, so we end up with: 924 * 925 * MOVABLE : KERNEL_EARLY 926 * 927 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 928 * boot. We base our calculation on KERNEL_EARLY internally, because: 929 * 930 * a) Hotplugged memory in one of the kernel zones can sometimes still get 931 * hotunplugged, especially when hot(un)plugging individual memory blocks. 932 * There is no coordination across memory devices, therefore "automatic" 933 * hotunplugging, as implemented in hypervisors, could result in zone 934 * imbalances. 935 * b) Early/boot memory in one of the kernel zones can usually not get 936 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 937 * with unmovable allocations). While there are corner cases where it might 938 * still work, it is barely relevant in practice. 939 * 940 * Exceptions are dynamic memory groups, which allow for more MOVABLE 941 * memory within the same memory group -- because in that case, there is 942 * coordination within the single memory device managed by a single driver. 943 * 944 * We rely on "present pages" instead of "managed pages", as the latter is 945 * highly unreliable and dynamic in virtualized environments, and does not 946 * consider boot time allocations. For example, memory ballooning adjusts the 947 * managed pages when inflating/deflating the balloon, and balloon compaction 948 * can even migrate inflated pages between zones. 949 * 950 * Using "present pages" is better but some things to keep in mind are: 951 * 952 * a) Some memblock allocations, such as for the crashkernel area, are 953 * effectively unused by the kernel, yet they account to "present pages". 954 * Fortunately, these allocations are comparatively small in relevant setups 955 * (e.g., fraction of system memory). 956 * b) Some hotplugged memory blocks in virtualized environments, esecially 957 * hotplugged by virtio-mem, look like they are completely present, however, 958 * only parts of the memory block are actually currently usable. 959 * "present pages" is an upper limit that can get reached at runtime. As 960 * we base our calculations on KERNEL_EARLY, this is not an issue. 961 */ 962 static struct zone *auto_movable_zone_for_pfn(int nid, 963 struct memory_group *group, 964 unsigned long pfn, 965 unsigned long nr_pages) 966 { 967 unsigned long online_pages = 0, max_pages, end_pfn; 968 struct page *page; 969 970 if (!auto_movable_ratio) 971 goto kernel_zone; 972 973 if (group && !group->is_dynamic) { 974 max_pages = group->s.max_pages; 975 online_pages = group->present_movable_pages; 976 977 /* If anything is !MOVABLE online the rest !MOVABLE. */ 978 if (group->present_kernel_pages) 979 goto kernel_zone; 980 } else if (!group || group->d.unit_pages == nr_pages) { 981 max_pages = nr_pages; 982 } else { 983 max_pages = group->d.unit_pages; 984 /* 985 * Take a look at all online sections in the current unit. 986 * We can safely assume that all pages within a section belong 987 * to the same zone, because dynamic memory groups only deal 988 * with hotplugged memory. 989 */ 990 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 991 end_pfn = pfn + group->d.unit_pages; 992 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 993 page = pfn_to_online_page(pfn); 994 if (!page) 995 continue; 996 /* If anything is !MOVABLE online the rest !MOVABLE. */ 997 if (!is_zone_movable_page(page)) 998 goto kernel_zone; 999 online_pages += PAGES_PER_SECTION; 1000 } 1001 } 1002 1003 /* 1004 * Online MOVABLE if we could *currently* online all remaining parts 1005 * MOVABLE. We expect to (add+) online them immediately next, so if 1006 * nobody interferes, all will be MOVABLE if possible. 1007 */ 1008 nr_pages = max_pages - online_pages; 1009 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1010 goto kernel_zone; 1011 1012 #ifdef CONFIG_NUMA 1013 if (auto_movable_numa_aware && 1014 !auto_movable_can_online_movable(nid, group, nr_pages)) 1015 goto kernel_zone; 1016 #endif /* CONFIG_NUMA */ 1017 1018 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1019 kernel_zone: 1020 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1021 } 1022 1023 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1024 unsigned long nr_pages) 1025 { 1026 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1027 nr_pages); 1028 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1029 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1030 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1031 1032 /* 1033 * We inherit the existing zone in a simple case where zones do not 1034 * overlap in the given range 1035 */ 1036 if (in_kernel ^ in_movable) 1037 return (in_kernel) ? kernel_zone : movable_zone; 1038 1039 /* 1040 * If the range doesn't belong to any zone or two zones overlap in the 1041 * given range then we use movable zone only if movable_node is 1042 * enabled because we always online to a kernel zone by default. 1043 */ 1044 return movable_node_enabled ? movable_zone : kernel_zone; 1045 } 1046 1047 struct zone *zone_for_pfn_range(int online_type, int nid, 1048 struct memory_group *group, unsigned long start_pfn, 1049 unsigned long nr_pages) 1050 { 1051 if (online_type == MMOP_ONLINE_KERNEL) 1052 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1053 1054 if (online_type == MMOP_ONLINE_MOVABLE) 1055 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1056 1057 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1058 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1059 1060 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1061 } 1062 1063 /* 1064 * This function should only be called by memory_block_{online,offline}, 1065 * and {online,offline}_pages. 1066 */ 1067 void adjust_present_page_count(struct page *page, struct memory_group *group, 1068 long nr_pages) 1069 { 1070 struct zone *zone = page_zone(page); 1071 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1072 1073 /* 1074 * We only support onlining/offlining/adding/removing of complete 1075 * memory blocks; therefore, either all is either early or hotplugged. 1076 */ 1077 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1078 zone->present_early_pages += nr_pages; 1079 zone->present_pages += nr_pages; 1080 zone->zone_pgdat->node_present_pages += nr_pages; 1081 1082 if (group && movable) 1083 group->present_movable_pages += nr_pages; 1084 else if (group && !movable) 1085 group->present_kernel_pages += nr_pages; 1086 } 1087 1088 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1089 struct zone *zone) 1090 { 1091 unsigned long end_pfn = pfn + nr_pages; 1092 int ret, i; 1093 1094 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1095 if (ret) 1096 return ret; 1097 1098 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1099 1100 for (i = 0; i < nr_pages; i++) 1101 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i)); 1102 1103 /* 1104 * It might be that the vmemmap_pages fully span sections. If that is 1105 * the case, mark those sections online here as otherwise they will be 1106 * left offline. 1107 */ 1108 if (nr_pages >= PAGES_PER_SECTION) 1109 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1110 1111 return ret; 1112 } 1113 1114 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1115 { 1116 unsigned long end_pfn = pfn + nr_pages; 1117 1118 /* 1119 * It might be that the vmemmap_pages fully span sections. If that is 1120 * the case, mark those sections offline here as otherwise they will be 1121 * left online. 1122 */ 1123 if (nr_pages >= PAGES_PER_SECTION) 1124 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1125 1126 /* 1127 * The pages associated with this vmemmap have been offlined, so 1128 * we can reset its state here. 1129 */ 1130 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1131 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1132 } 1133 1134 /* 1135 * Must be called with mem_hotplug_lock in write mode. 1136 */ 1137 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1138 struct zone *zone, struct memory_group *group) 1139 { 1140 unsigned long flags; 1141 int need_zonelists_rebuild = 0; 1142 const int nid = zone_to_nid(zone); 1143 int ret; 1144 struct memory_notify arg; 1145 1146 /* 1147 * {on,off}lining is constrained to full memory sections (or more 1148 * precisely to memory blocks from the user space POV). 1149 * memmap_on_memory is an exception because it reserves initial part 1150 * of the physical memory space for vmemmaps. That space is pageblock 1151 * aligned. 1152 */ 1153 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1154 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1155 return -EINVAL; 1156 1157 1158 /* associate pfn range with the zone */ 1159 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1160 1161 arg.start_pfn = pfn; 1162 arg.nr_pages = nr_pages; 1163 node_states_check_changes_online(nr_pages, zone, &arg); 1164 1165 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1166 ret = notifier_to_errno(ret); 1167 if (ret) 1168 goto failed_addition; 1169 1170 /* 1171 * Fixup the number of isolated pageblocks before marking the sections 1172 * onlining, such that undo_isolate_page_range() works correctly. 1173 */ 1174 spin_lock_irqsave(&zone->lock, flags); 1175 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1176 spin_unlock_irqrestore(&zone->lock, flags); 1177 1178 /* 1179 * If this zone is not populated, then it is not in zonelist. 1180 * This means the page allocator ignores this zone. 1181 * So, zonelist must be updated after online. 1182 */ 1183 if (!populated_zone(zone)) { 1184 need_zonelists_rebuild = 1; 1185 setup_zone_pageset(zone); 1186 } 1187 1188 online_pages_range(pfn, nr_pages); 1189 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1190 1191 node_states_set_node(nid, &arg); 1192 if (need_zonelists_rebuild) 1193 build_all_zonelists(NULL); 1194 1195 /* Basic onlining is complete, allow allocation of onlined pages. */ 1196 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1197 1198 /* 1199 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1200 * the tail of the freelist when undoing isolation). Shuffle the whole 1201 * zone to make sure the just onlined pages are properly distributed 1202 * across the whole freelist - to create an initial shuffle. 1203 */ 1204 shuffle_zone(zone); 1205 1206 /* reinitialise watermarks and update pcp limits */ 1207 init_per_zone_wmark_min(); 1208 1209 kswapd_run(nid); 1210 kcompactd_run(nid); 1211 1212 writeback_set_ratelimit(); 1213 1214 memory_notify(MEM_ONLINE, &arg); 1215 return 0; 1216 1217 failed_addition: 1218 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1219 (unsigned long long) pfn << PAGE_SHIFT, 1220 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1221 memory_notify(MEM_CANCEL_ONLINE, &arg); 1222 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1223 return ret; 1224 } 1225 1226 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1227 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1228 { 1229 struct pglist_data *pgdat; 1230 1231 /* 1232 * NODE_DATA is preallocated (free_area_init) but its internal 1233 * state is not allocated completely. Add missing pieces. 1234 * Completely offline nodes stay around and they just need 1235 * reintialization. 1236 */ 1237 pgdat = NODE_DATA(nid); 1238 1239 /* init node's zones as empty zones, we don't have any present pages.*/ 1240 free_area_init_core_hotplug(pgdat); 1241 1242 /* 1243 * The node we allocated has no zone fallback lists. For avoiding 1244 * to access not-initialized zonelist, build here. 1245 */ 1246 build_all_zonelists(pgdat); 1247 1248 return pgdat; 1249 } 1250 1251 /* 1252 * __try_online_node - online a node if offlined 1253 * @nid: the node ID 1254 * @set_node_online: Whether we want to online the node 1255 * called by cpu_up() to online a node without onlined memory. 1256 * 1257 * Returns: 1258 * 1 -> a new node has been allocated 1259 * 0 -> the node is already online 1260 * -ENOMEM -> the node could not be allocated 1261 */ 1262 static int __try_online_node(int nid, bool set_node_online) 1263 { 1264 pg_data_t *pgdat; 1265 int ret = 1; 1266 1267 if (node_online(nid)) 1268 return 0; 1269 1270 pgdat = hotadd_init_pgdat(nid); 1271 if (!pgdat) { 1272 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1273 ret = -ENOMEM; 1274 goto out; 1275 } 1276 1277 if (set_node_online) { 1278 node_set_online(nid); 1279 ret = register_one_node(nid); 1280 BUG_ON(ret); 1281 } 1282 out: 1283 return ret; 1284 } 1285 1286 /* 1287 * Users of this function always want to online/register the node 1288 */ 1289 int try_online_node(int nid) 1290 { 1291 int ret; 1292 1293 mem_hotplug_begin(); 1294 ret = __try_online_node(nid, true); 1295 mem_hotplug_done(); 1296 return ret; 1297 } 1298 1299 static int check_hotplug_memory_range(u64 start, u64 size) 1300 { 1301 /* memory range must be block size aligned */ 1302 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1303 !IS_ALIGNED(size, memory_block_size_bytes())) { 1304 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1305 memory_block_size_bytes(), start, size); 1306 return -EINVAL; 1307 } 1308 1309 return 0; 1310 } 1311 1312 static int online_memory_block(struct memory_block *mem, void *arg) 1313 { 1314 mem->online_type = mhp_default_online_type; 1315 return device_online(&mem->dev); 1316 } 1317 1318 #ifndef arch_supports_memmap_on_memory 1319 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1320 { 1321 /* 1322 * As default, we want the vmemmap to span a complete PMD such that we 1323 * can map the vmemmap using a single PMD if supported by the 1324 * architecture. 1325 */ 1326 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1327 } 1328 #endif 1329 1330 static bool mhp_supports_memmap_on_memory(unsigned long size) 1331 { 1332 unsigned long vmemmap_size = memory_block_memmap_size(); 1333 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1334 1335 /* 1336 * Besides having arch support and the feature enabled at runtime, we 1337 * need a few more assumptions to hold true: 1338 * 1339 * a) We span a single memory block: memory onlining/offlinin;g happens 1340 * in memory block granularity. We don't want the vmemmap of online 1341 * memory blocks to reside on offline memory blocks. In the future, 1342 * we might want to support variable-sized memory blocks to make the 1343 * feature more versatile. 1344 * 1345 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1346 * to populate memory from the altmap for unrelated parts (i.e., 1347 * other memory blocks) 1348 * 1349 * c) The vmemmap pages (and thereby the pages that will be exposed to 1350 * the buddy) have to cover full pageblocks: memory onlining/offlining 1351 * code requires applicable ranges to be page-aligned, for example, to 1352 * set the migratetypes properly. 1353 * 1354 * TODO: Although we have a check here to make sure that vmemmap pages 1355 * fully populate a PMD, it is not the right place to check for 1356 * this. A much better solution involves improving vmemmap code 1357 * to fallback to base pages when trying to populate vmemmap using 1358 * altmap as an alternative source of memory, and we do not exactly 1359 * populate a single PMD. 1360 */ 1361 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes()) 1362 return false; 1363 1364 /* 1365 * Make sure the vmemmap allocation is fully contained 1366 * so that we always allocate vmemmap memory from altmap area. 1367 */ 1368 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1369 return false; 1370 1371 /* 1372 * start pfn should be pageblock_nr_pages aligned for correctly 1373 * setting migrate types 1374 */ 1375 if (!pageblock_aligned(memmap_pages)) 1376 return false; 1377 1378 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1379 /* No effective hotplugged memory doesn't make sense. */ 1380 return false; 1381 1382 return arch_supports_memmap_on_memory(vmemmap_size); 1383 } 1384 1385 /* 1386 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1387 * and online/offline operations (triggered e.g. by sysfs). 1388 * 1389 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1390 */ 1391 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1392 { 1393 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1394 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1395 struct vmem_altmap mhp_altmap = { 1396 .base_pfn = PHYS_PFN(res->start), 1397 .end_pfn = PHYS_PFN(res->end), 1398 }; 1399 struct memory_group *group = NULL; 1400 u64 start, size; 1401 bool new_node = false; 1402 int ret; 1403 1404 start = res->start; 1405 size = resource_size(res); 1406 1407 ret = check_hotplug_memory_range(start, size); 1408 if (ret) 1409 return ret; 1410 1411 if (mhp_flags & MHP_NID_IS_MGID) { 1412 group = memory_group_find_by_id(nid); 1413 if (!group) 1414 return -EINVAL; 1415 nid = group->nid; 1416 } 1417 1418 if (!node_possible(nid)) { 1419 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1420 return -EINVAL; 1421 } 1422 1423 mem_hotplug_begin(); 1424 1425 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1426 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1427 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1428 ret = memblock_add_node(start, size, nid, memblock_flags); 1429 if (ret) 1430 goto error_mem_hotplug_end; 1431 } 1432 1433 ret = __try_online_node(nid, false); 1434 if (ret < 0) 1435 goto error; 1436 new_node = ret; 1437 1438 /* 1439 * Self hosted memmap array 1440 */ 1441 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1442 if (mhp_supports_memmap_on_memory(size)) { 1443 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1444 params.altmap = kmalloc(sizeof(struct vmem_altmap), GFP_KERNEL); 1445 if (!params.altmap) { 1446 ret = -ENOMEM; 1447 goto error; 1448 } 1449 1450 memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap)); 1451 } 1452 /* fallback to not using altmap */ 1453 } 1454 1455 /* call arch's memory hotadd */ 1456 ret = arch_add_memory(nid, start, size, ¶ms); 1457 if (ret < 0) 1458 goto error_free; 1459 1460 /* create memory block devices after memory was added */ 1461 ret = create_memory_block_devices(start, size, params.altmap, group); 1462 if (ret) { 1463 arch_remove_memory(start, size, params.altmap); 1464 goto error_free; 1465 } 1466 1467 if (new_node) { 1468 /* If sysfs file of new node can't be created, cpu on the node 1469 * can't be hot-added. There is no rollback way now. 1470 * So, check by BUG_ON() to catch it reluctantly.. 1471 * We online node here. We can't roll back from here. 1472 */ 1473 node_set_online(nid); 1474 ret = __register_one_node(nid); 1475 BUG_ON(ret); 1476 } 1477 1478 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1479 PFN_UP(start + size - 1), 1480 MEMINIT_HOTPLUG); 1481 1482 /* create new memmap entry */ 1483 if (!strcmp(res->name, "System RAM")) 1484 firmware_map_add_hotplug(start, start + size, "System RAM"); 1485 1486 /* device_online() will take the lock when calling online_pages() */ 1487 mem_hotplug_done(); 1488 1489 /* 1490 * In case we're allowed to merge the resource, flag it and trigger 1491 * merging now that adding succeeded. 1492 */ 1493 if (mhp_flags & MHP_MERGE_RESOURCE) 1494 merge_system_ram_resource(res); 1495 1496 /* online pages if requested */ 1497 if (mhp_default_online_type != MMOP_OFFLINE) 1498 walk_memory_blocks(start, size, NULL, online_memory_block); 1499 1500 return ret; 1501 error_free: 1502 kfree(params.altmap); 1503 error: 1504 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1505 memblock_remove(start, size); 1506 error_mem_hotplug_end: 1507 mem_hotplug_done(); 1508 return ret; 1509 } 1510 1511 /* requires device_hotplug_lock, see add_memory_resource() */ 1512 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1513 { 1514 struct resource *res; 1515 int ret; 1516 1517 res = register_memory_resource(start, size, "System RAM"); 1518 if (IS_ERR(res)) 1519 return PTR_ERR(res); 1520 1521 ret = add_memory_resource(nid, res, mhp_flags); 1522 if (ret < 0) 1523 release_memory_resource(res); 1524 return ret; 1525 } 1526 1527 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1528 { 1529 int rc; 1530 1531 lock_device_hotplug(); 1532 rc = __add_memory(nid, start, size, mhp_flags); 1533 unlock_device_hotplug(); 1534 1535 return rc; 1536 } 1537 EXPORT_SYMBOL_GPL(add_memory); 1538 1539 /* 1540 * Add special, driver-managed memory to the system as system RAM. Such 1541 * memory is not exposed via the raw firmware-provided memmap as system 1542 * RAM, instead, it is detected and added by a driver - during cold boot, 1543 * after a reboot, and after kexec. 1544 * 1545 * Reasons why this memory should not be used for the initial memmap of a 1546 * kexec kernel or for placing kexec images: 1547 * - The booting kernel is in charge of determining how this memory will be 1548 * used (e.g., use persistent memory as system RAM) 1549 * - Coordination with a hypervisor is required before this memory 1550 * can be used (e.g., inaccessible parts). 1551 * 1552 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1553 * memory map") are created. Also, the created memory resource is flagged 1554 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1555 * this memory as well (esp., not place kexec images onto it). 1556 * 1557 * The resource_name (visible via /proc/iomem) has to have the format 1558 * "System RAM ($DRIVER)". 1559 */ 1560 int add_memory_driver_managed(int nid, u64 start, u64 size, 1561 const char *resource_name, mhp_t mhp_flags) 1562 { 1563 struct resource *res; 1564 int rc; 1565 1566 if (!resource_name || 1567 strstr(resource_name, "System RAM (") != resource_name || 1568 resource_name[strlen(resource_name) - 1] != ')') 1569 return -EINVAL; 1570 1571 lock_device_hotplug(); 1572 1573 res = register_memory_resource(start, size, resource_name); 1574 if (IS_ERR(res)) { 1575 rc = PTR_ERR(res); 1576 goto out_unlock; 1577 } 1578 1579 rc = add_memory_resource(nid, res, mhp_flags); 1580 if (rc < 0) 1581 release_memory_resource(res); 1582 1583 out_unlock: 1584 unlock_device_hotplug(); 1585 return rc; 1586 } 1587 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1588 1589 /* 1590 * Platforms should define arch_get_mappable_range() that provides 1591 * maximum possible addressable physical memory range for which the 1592 * linear mapping could be created. The platform returned address 1593 * range must adhere to these following semantics. 1594 * 1595 * - range.start <= range.end 1596 * - Range includes both end points [range.start..range.end] 1597 * 1598 * There is also a fallback definition provided here, allowing the 1599 * entire possible physical address range in case any platform does 1600 * not define arch_get_mappable_range(). 1601 */ 1602 struct range __weak arch_get_mappable_range(void) 1603 { 1604 struct range mhp_range = { 1605 .start = 0UL, 1606 .end = -1ULL, 1607 }; 1608 return mhp_range; 1609 } 1610 1611 struct range mhp_get_pluggable_range(bool need_mapping) 1612 { 1613 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1614 struct range mhp_range; 1615 1616 if (need_mapping) { 1617 mhp_range = arch_get_mappable_range(); 1618 if (mhp_range.start > max_phys) { 1619 mhp_range.start = 0; 1620 mhp_range.end = 0; 1621 } 1622 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1623 } else { 1624 mhp_range.start = 0; 1625 mhp_range.end = max_phys; 1626 } 1627 return mhp_range; 1628 } 1629 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1630 1631 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1632 { 1633 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1634 u64 end = start + size; 1635 1636 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1637 return true; 1638 1639 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1640 start, end, mhp_range.start, mhp_range.end); 1641 return false; 1642 } 1643 1644 #ifdef CONFIG_MEMORY_HOTREMOVE 1645 /* 1646 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1647 * non-lru movable pages and hugepages). Will skip over most unmovable 1648 * pages (esp., pages that can be skipped when offlining), but bail out on 1649 * definitely unmovable pages. 1650 * 1651 * Returns: 1652 * 0 in case a movable page is found and movable_pfn was updated. 1653 * -ENOENT in case no movable page was found. 1654 * -EBUSY in case a definitely unmovable page was found. 1655 */ 1656 static int scan_movable_pages(unsigned long start, unsigned long end, 1657 unsigned long *movable_pfn) 1658 { 1659 unsigned long pfn; 1660 1661 for (pfn = start; pfn < end; pfn++) { 1662 struct page *page, *head; 1663 unsigned long skip; 1664 1665 if (!pfn_valid(pfn)) 1666 continue; 1667 page = pfn_to_page(pfn); 1668 if (PageLRU(page)) 1669 goto found; 1670 if (__PageMovable(page)) 1671 goto found; 1672 1673 /* 1674 * PageOffline() pages that are not marked __PageMovable() and 1675 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1676 * definitely unmovable. If their reference count would be 0, 1677 * they could at least be skipped when offlining memory. 1678 */ 1679 if (PageOffline(page) && page_count(page)) 1680 return -EBUSY; 1681 1682 if (!PageHuge(page)) 1683 continue; 1684 head = compound_head(page); 1685 /* 1686 * This test is racy as we hold no reference or lock. The 1687 * hugetlb page could have been free'ed and head is no longer 1688 * a hugetlb page before the following check. In such unlikely 1689 * cases false positives and negatives are possible. Calling 1690 * code must deal with these scenarios. 1691 */ 1692 if (HPageMigratable(head)) 1693 goto found; 1694 skip = compound_nr(head) - (pfn - page_to_pfn(head)); 1695 pfn += skip - 1; 1696 } 1697 return -ENOENT; 1698 found: 1699 *movable_pfn = pfn; 1700 return 0; 1701 } 1702 1703 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1704 { 1705 unsigned long pfn; 1706 struct page *page, *head; 1707 LIST_HEAD(source); 1708 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1709 DEFAULT_RATELIMIT_BURST); 1710 1711 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1712 struct folio *folio; 1713 bool isolated; 1714 1715 if (!pfn_valid(pfn)) 1716 continue; 1717 page = pfn_to_page(pfn); 1718 folio = page_folio(page); 1719 head = &folio->page; 1720 1721 if (PageHuge(page)) { 1722 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1723 isolate_hugetlb(folio, &source); 1724 continue; 1725 } else if (PageTransHuge(page)) 1726 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1727 1728 /* 1729 * HWPoison pages have elevated reference counts so the migration would 1730 * fail on them. It also doesn't make any sense to migrate them in the 1731 * first place. Still try to unmap such a page in case it is still mapped 1732 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1733 * the unmap as the catch all safety net). 1734 */ 1735 if (PageHWPoison(page)) { 1736 if (WARN_ON(folio_test_lru(folio))) 1737 folio_isolate_lru(folio); 1738 if (folio_mapped(folio)) 1739 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1740 continue; 1741 } 1742 1743 if (!get_page_unless_zero(page)) 1744 continue; 1745 /* 1746 * We can skip free pages. And we can deal with pages on 1747 * LRU and non-lru movable pages. 1748 */ 1749 if (PageLRU(page)) 1750 isolated = isolate_lru_page(page); 1751 else 1752 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1753 if (isolated) { 1754 list_add_tail(&page->lru, &source); 1755 if (!__PageMovable(page)) 1756 inc_node_page_state(page, NR_ISOLATED_ANON + 1757 page_is_file_lru(page)); 1758 1759 } else { 1760 if (__ratelimit(&migrate_rs)) { 1761 pr_warn("failed to isolate pfn %lx\n", pfn); 1762 dump_page(page, "isolation failed"); 1763 } 1764 } 1765 put_page(page); 1766 } 1767 if (!list_empty(&source)) { 1768 nodemask_t nmask = node_states[N_MEMORY]; 1769 struct migration_target_control mtc = { 1770 .nmask = &nmask, 1771 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1772 }; 1773 int ret; 1774 1775 /* 1776 * We have checked that migration range is on a single zone so 1777 * we can use the nid of the first page to all the others. 1778 */ 1779 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1780 1781 /* 1782 * try to allocate from a different node but reuse this node 1783 * if there are no other online nodes to be used (e.g. we are 1784 * offlining a part of the only existing node) 1785 */ 1786 node_clear(mtc.nid, nmask); 1787 if (nodes_empty(nmask)) 1788 node_set(mtc.nid, nmask); 1789 ret = migrate_pages(&source, alloc_migration_target, NULL, 1790 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1791 if (ret) { 1792 list_for_each_entry(page, &source, lru) { 1793 if (__ratelimit(&migrate_rs)) { 1794 pr_warn("migrating pfn %lx failed ret:%d\n", 1795 page_to_pfn(page), ret); 1796 dump_page(page, "migration failure"); 1797 } 1798 } 1799 putback_movable_pages(&source); 1800 } 1801 } 1802 } 1803 1804 static int __init cmdline_parse_movable_node(char *p) 1805 { 1806 movable_node_enabled = true; 1807 return 0; 1808 } 1809 early_param("movable_node", cmdline_parse_movable_node); 1810 1811 /* check which state of node_states will be changed when offline memory */ 1812 static void node_states_check_changes_offline(unsigned long nr_pages, 1813 struct zone *zone, struct memory_notify *arg) 1814 { 1815 struct pglist_data *pgdat = zone->zone_pgdat; 1816 unsigned long present_pages = 0; 1817 enum zone_type zt; 1818 1819 arg->status_change_nid = NUMA_NO_NODE; 1820 arg->status_change_nid_normal = NUMA_NO_NODE; 1821 1822 /* 1823 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1824 * If the memory to be offline is within the range 1825 * [0..ZONE_NORMAL], and it is the last present memory there, 1826 * the zones in that range will become empty after the offlining, 1827 * thus we can determine that we need to clear the node from 1828 * node_states[N_NORMAL_MEMORY]. 1829 */ 1830 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1831 present_pages += pgdat->node_zones[zt].present_pages; 1832 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1833 arg->status_change_nid_normal = zone_to_nid(zone); 1834 1835 /* 1836 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1837 * does not apply as we don't support 32bit. 1838 * Here we count the possible pages from ZONE_MOVABLE. 1839 * If after having accounted all the pages, we see that the nr_pages 1840 * to be offlined is over or equal to the accounted pages, 1841 * we know that the node will become empty, and so, we can clear 1842 * it for N_MEMORY as well. 1843 */ 1844 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1845 1846 if (nr_pages >= present_pages) 1847 arg->status_change_nid = zone_to_nid(zone); 1848 } 1849 1850 static void node_states_clear_node(int node, struct memory_notify *arg) 1851 { 1852 if (arg->status_change_nid_normal >= 0) 1853 node_clear_state(node, N_NORMAL_MEMORY); 1854 1855 if (arg->status_change_nid >= 0) 1856 node_clear_state(node, N_MEMORY); 1857 } 1858 1859 static int count_system_ram_pages_cb(unsigned long start_pfn, 1860 unsigned long nr_pages, void *data) 1861 { 1862 unsigned long *nr_system_ram_pages = data; 1863 1864 *nr_system_ram_pages += nr_pages; 1865 return 0; 1866 } 1867 1868 /* 1869 * Must be called with mem_hotplug_lock in write mode. 1870 */ 1871 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1872 struct zone *zone, struct memory_group *group) 1873 { 1874 const unsigned long end_pfn = start_pfn + nr_pages; 1875 unsigned long pfn, system_ram_pages = 0; 1876 const int node = zone_to_nid(zone); 1877 unsigned long flags; 1878 struct memory_notify arg; 1879 char *reason; 1880 int ret; 1881 1882 /* 1883 * {on,off}lining is constrained to full memory sections (or more 1884 * precisely to memory blocks from the user space POV). 1885 * memmap_on_memory is an exception because it reserves initial part 1886 * of the physical memory space for vmemmaps. That space is pageblock 1887 * aligned. 1888 */ 1889 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1890 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1891 return -EINVAL; 1892 1893 /* 1894 * Don't allow to offline memory blocks that contain holes. 1895 * Consequently, memory blocks with holes can never get onlined 1896 * via the hotplug path - online_pages() - as hotplugged memory has 1897 * no holes. This way, we e.g., don't have to worry about marking 1898 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1899 * avoid using walk_system_ram_range() later. 1900 */ 1901 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1902 count_system_ram_pages_cb); 1903 if (system_ram_pages != nr_pages) { 1904 ret = -EINVAL; 1905 reason = "memory holes"; 1906 goto failed_removal; 1907 } 1908 1909 /* 1910 * We only support offlining of memory blocks managed by a single zone, 1911 * checked by calling code. This is just a sanity check that we might 1912 * want to remove in the future. 1913 */ 1914 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1915 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1916 ret = -EINVAL; 1917 reason = "multizone range"; 1918 goto failed_removal; 1919 } 1920 1921 /* 1922 * Disable pcplists so that page isolation cannot race with freeing 1923 * in a way that pages from isolated pageblock are left on pcplists. 1924 */ 1925 zone_pcp_disable(zone); 1926 lru_cache_disable(); 1927 1928 /* set above range as isolated */ 1929 ret = start_isolate_page_range(start_pfn, end_pfn, 1930 MIGRATE_MOVABLE, 1931 MEMORY_OFFLINE | REPORT_FAILURE, 1932 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 1933 if (ret) { 1934 reason = "failure to isolate range"; 1935 goto failed_removal_pcplists_disabled; 1936 } 1937 1938 arg.start_pfn = start_pfn; 1939 arg.nr_pages = nr_pages; 1940 node_states_check_changes_offline(nr_pages, zone, &arg); 1941 1942 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1943 ret = notifier_to_errno(ret); 1944 if (ret) { 1945 reason = "notifier failure"; 1946 goto failed_removal_isolated; 1947 } 1948 1949 do { 1950 pfn = start_pfn; 1951 do { 1952 /* 1953 * Historically we always checked for any signal and 1954 * can't limit it to fatal signals without eventually 1955 * breaking user space. 1956 */ 1957 if (signal_pending(current)) { 1958 ret = -EINTR; 1959 reason = "signal backoff"; 1960 goto failed_removal_isolated; 1961 } 1962 1963 cond_resched(); 1964 1965 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1966 if (!ret) { 1967 /* 1968 * TODO: fatal migration failures should bail 1969 * out 1970 */ 1971 do_migrate_range(pfn, end_pfn); 1972 } 1973 } while (!ret); 1974 1975 if (ret != -ENOENT) { 1976 reason = "unmovable page"; 1977 goto failed_removal_isolated; 1978 } 1979 1980 /* 1981 * Dissolve free hugepages in the memory block before doing 1982 * offlining actually in order to make hugetlbfs's object 1983 * counting consistent. 1984 */ 1985 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1986 if (ret) { 1987 reason = "failure to dissolve huge pages"; 1988 goto failed_removal_isolated; 1989 } 1990 1991 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1992 1993 } while (ret); 1994 1995 /* Mark all sections offline and remove free pages from the buddy. */ 1996 __offline_isolated_pages(start_pfn, end_pfn); 1997 pr_debug("Offlined Pages %ld\n", nr_pages); 1998 1999 /* 2000 * The memory sections are marked offline, and the pageblock flags 2001 * effectively stale; nobody should be touching them. Fixup the number 2002 * of isolated pageblocks, memory onlining will properly revert this. 2003 */ 2004 spin_lock_irqsave(&zone->lock, flags); 2005 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2006 spin_unlock_irqrestore(&zone->lock, flags); 2007 2008 lru_cache_enable(); 2009 zone_pcp_enable(zone); 2010 2011 /* removal success */ 2012 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2013 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2014 2015 /* reinitialise watermarks and update pcp limits */ 2016 init_per_zone_wmark_min(); 2017 2018 if (!populated_zone(zone)) { 2019 zone_pcp_reset(zone); 2020 build_all_zonelists(NULL); 2021 } 2022 2023 node_states_clear_node(node, &arg); 2024 if (arg.status_change_nid >= 0) { 2025 kcompactd_stop(node); 2026 kswapd_stop(node); 2027 } 2028 2029 writeback_set_ratelimit(); 2030 2031 memory_notify(MEM_OFFLINE, &arg); 2032 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2033 return 0; 2034 2035 failed_removal_isolated: 2036 /* pushback to free area */ 2037 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2038 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2039 failed_removal_pcplists_disabled: 2040 lru_cache_enable(); 2041 zone_pcp_enable(zone); 2042 failed_removal: 2043 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2044 (unsigned long long) start_pfn << PAGE_SHIFT, 2045 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2046 reason); 2047 return ret; 2048 } 2049 2050 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2051 { 2052 int *nid = arg; 2053 2054 *nid = mem->nid; 2055 if (unlikely(mem->state != MEM_OFFLINE)) { 2056 phys_addr_t beginpa, endpa; 2057 2058 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2059 endpa = beginpa + memory_block_size_bytes() - 1; 2060 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2061 &beginpa, &endpa); 2062 2063 return -EBUSY; 2064 } 2065 return 0; 2066 } 2067 2068 static int test_has_altmap_cb(struct memory_block *mem, void *arg) 2069 { 2070 struct memory_block **mem_ptr = (struct memory_block **)arg; 2071 /* 2072 * return the memblock if we have altmap 2073 * and break callback. 2074 */ 2075 if (mem->altmap) { 2076 *mem_ptr = mem; 2077 return 1; 2078 } 2079 return 0; 2080 } 2081 2082 static int check_cpu_on_node(int nid) 2083 { 2084 int cpu; 2085 2086 for_each_present_cpu(cpu) { 2087 if (cpu_to_node(cpu) == nid) 2088 /* 2089 * the cpu on this node isn't removed, and we can't 2090 * offline this node. 2091 */ 2092 return -EBUSY; 2093 } 2094 2095 return 0; 2096 } 2097 2098 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2099 { 2100 int nid = *(int *)arg; 2101 2102 /* 2103 * If a memory block belongs to multiple nodes, the stored nid is not 2104 * reliable. However, such blocks are always online (e.g., cannot get 2105 * offlined) and, therefore, are still spanned by the node. 2106 */ 2107 return mem->nid == nid ? -EEXIST : 0; 2108 } 2109 2110 /** 2111 * try_offline_node 2112 * @nid: the node ID 2113 * 2114 * Offline a node if all memory sections and cpus of the node are removed. 2115 * 2116 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2117 * and online/offline operations before this call. 2118 */ 2119 void try_offline_node(int nid) 2120 { 2121 int rc; 2122 2123 /* 2124 * If the node still spans pages (especially ZONE_DEVICE), don't 2125 * offline it. A node spans memory after move_pfn_range_to_zone(), 2126 * e.g., after the memory block was onlined. 2127 */ 2128 if (node_spanned_pages(nid)) 2129 return; 2130 2131 /* 2132 * Especially offline memory blocks might not be spanned by the 2133 * node. They will get spanned by the node once they get onlined. 2134 * However, they link to the node in sysfs and can get onlined later. 2135 */ 2136 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2137 if (rc) 2138 return; 2139 2140 if (check_cpu_on_node(nid)) 2141 return; 2142 2143 /* 2144 * all memory/cpu of this node are removed, we can offline this 2145 * node now. 2146 */ 2147 node_set_offline(nid); 2148 unregister_one_node(nid); 2149 } 2150 EXPORT_SYMBOL(try_offline_node); 2151 2152 static int __ref try_remove_memory(u64 start, u64 size) 2153 { 2154 struct memory_block *mem; 2155 int rc = 0, nid = NUMA_NO_NODE; 2156 struct vmem_altmap *altmap = NULL; 2157 2158 BUG_ON(check_hotplug_memory_range(start, size)); 2159 2160 /* 2161 * All memory blocks must be offlined before removing memory. Check 2162 * whether all memory blocks in question are offline and return error 2163 * if this is not the case. 2164 * 2165 * While at it, determine the nid. Note that if we'd have mixed nodes, 2166 * we'd only try to offline the last determined one -- which is good 2167 * enough for the cases we care about. 2168 */ 2169 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2170 if (rc) 2171 return rc; 2172 2173 /* 2174 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2175 * the same granularity it was added - a single memory block. 2176 */ 2177 if (mhp_memmap_on_memory()) { 2178 rc = walk_memory_blocks(start, size, &mem, test_has_altmap_cb); 2179 if (rc) { 2180 if (size != memory_block_size_bytes()) { 2181 pr_warn("Refuse to remove %#llx - %#llx," 2182 "wrong granularity\n", 2183 start, start + size); 2184 return -EINVAL; 2185 } 2186 altmap = mem->altmap; 2187 /* 2188 * Mark altmap NULL so that we can add a debug 2189 * check on memblock free. 2190 */ 2191 mem->altmap = NULL; 2192 } 2193 } 2194 2195 /* remove memmap entry */ 2196 firmware_map_remove(start, start + size, "System RAM"); 2197 2198 /* 2199 * Memory block device removal under the device_hotplug_lock is 2200 * a barrier against racing online attempts. 2201 */ 2202 remove_memory_block_devices(start, size); 2203 2204 mem_hotplug_begin(); 2205 2206 arch_remove_memory(start, size, altmap); 2207 2208 /* Verify that all vmemmap pages have actually been freed. */ 2209 if (altmap) { 2210 WARN(altmap->alloc, "Altmap not fully unmapped"); 2211 kfree(altmap); 2212 } 2213 2214 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2215 memblock_phys_free(start, size); 2216 memblock_remove(start, size); 2217 } 2218 2219 release_mem_region_adjustable(start, size); 2220 2221 if (nid != NUMA_NO_NODE) 2222 try_offline_node(nid); 2223 2224 mem_hotplug_done(); 2225 return 0; 2226 } 2227 2228 /** 2229 * __remove_memory - Remove memory if every memory block is offline 2230 * @start: physical address of the region to remove 2231 * @size: size of the region to remove 2232 * 2233 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2234 * and online/offline operations before this call, as required by 2235 * try_offline_node(). 2236 */ 2237 void __remove_memory(u64 start, u64 size) 2238 { 2239 2240 /* 2241 * trigger BUG() if some memory is not offlined prior to calling this 2242 * function 2243 */ 2244 if (try_remove_memory(start, size)) 2245 BUG(); 2246 } 2247 2248 /* 2249 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2250 * some memory is not offline 2251 */ 2252 int remove_memory(u64 start, u64 size) 2253 { 2254 int rc; 2255 2256 lock_device_hotplug(); 2257 rc = try_remove_memory(start, size); 2258 unlock_device_hotplug(); 2259 2260 return rc; 2261 } 2262 EXPORT_SYMBOL_GPL(remove_memory); 2263 2264 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2265 { 2266 uint8_t online_type = MMOP_ONLINE_KERNEL; 2267 uint8_t **online_types = arg; 2268 struct page *page; 2269 int rc; 2270 2271 /* 2272 * Sense the online_type via the zone of the memory block. Offlining 2273 * with multiple zones within one memory block will be rejected 2274 * by offlining code ... so we don't care about that. 2275 */ 2276 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2277 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2278 online_type = MMOP_ONLINE_MOVABLE; 2279 2280 rc = device_offline(&mem->dev); 2281 /* 2282 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2283 * so try_reonline_memory_block() can do the right thing. 2284 */ 2285 if (!rc) 2286 **online_types = online_type; 2287 2288 (*online_types)++; 2289 /* Ignore if already offline. */ 2290 return rc < 0 ? rc : 0; 2291 } 2292 2293 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2294 { 2295 uint8_t **online_types = arg; 2296 int rc; 2297 2298 if (**online_types != MMOP_OFFLINE) { 2299 mem->online_type = **online_types; 2300 rc = device_online(&mem->dev); 2301 if (rc < 0) 2302 pr_warn("%s: Failed to re-online memory: %d", 2303 __func__, rc); 2304 } 2305 2306 /* Continue processing all remaining memory blocks. */ 2307 (*online_types)++; 2308 return 0; 2309 } 2310 2311 /* 2312 * Try to offline and remove memory. Might take a long time to finish in case 2313 * memory is still in use. Primarily useful for memory devices that logically 2314 * unplugged all memory (so it's no longer in use) and want to offline + remove 2315 * that memory. 2316 */ 2317 int offline_and_remove_memory(u64 start, u64 size) 2318 { 2319 const unsigned long mb_count = size / memory_block_size_bytes(); 2320 uint8_t *online_types, *tmp; 2321 int rc; 2322 2323 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2324 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2325 return -EINVAL; 2326 2327 /* 2328 * We'll remember the old online type of each memory block, so we can 2329 * try to revert whatever we did when offlining one memory block fails 2330 * after offlining some others succeeded. 2331 */ 2332 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2333 GFP_KERNEL); 2334 if (!online_types) 2335 return -ENOMEM; 2336 /* 2337 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2338 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2339 * try_reonline_memory_block(). 2340 */ 2341 memset(online_types, MMOP_OFFLINE, mb_count); 2342 2343 lock_device_hotplug(); 2344 2345 tmp = online_types; 2346 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2347 2348 /* 2349 * In case we succeeded to offline all memory, remove it. 2350 * This cannot fail as it cannot get onlined in the meantime. 2351 */ 2352 if (!rc) { 2353 rc = try_remove_memory(start, size); 2354 if (rc) 2355 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2356 } 2357 2358 /* 2359 * Rollback what we did. While memory onlining might theoretically fail 2360 * (nacked by a notifier), it barely ever happens. 2361 */ 2362 if (rc) { 2363 tmp = online_types; 2364 walk_memory_blocks(start, size, &tmp, 2365 try_reonline_memory_block); 2366 } 2367 unlock_device_hotplug(); 2368 2369 kfree(online_types); 2370 return rc; 2371 } 2372 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2373 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2374