xref: /openbmc/linux/mm/memory_hotplug.c (revision cb1aaebe)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 /*
45  * online_page_callback contains pointer to current page onlining function.
46  * Initially it is generic_online_page(). If it is required it could be
47  * changed by calling set_online_page_callback() for callback registration
48  * and restore_online_page_callback() for generic callback restore.
49  */
50 
51 static void generic_online_page(struct page *page, unsigned int order);
52 
53 static online_page_callback_t online_page_callback = generic_online_page;
54 static DEFINE_MUTEX(online_page_callback_lock);
55 
56 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 
58 void get_online_mems(void)
59 {
60 	percpu_down_read(&mem_hotplug_lock);
61 }
62 
63 void put_online_mems(void)
64 {
65 	percpu_up_read(&mem_hotplug_lock);
66 }
67 
68 bool movable_node_enabled = false;
69 
70 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
71 bool memhp_auto_online;
72 #else
73 bool memhp_auto_online = true;
74 #endif
75 EXPORT_SYMBOL_GPL(memhp_auto_online);
76 
77 static int __init setup_memhp_default_state(char *str)
78 {
79 	if (!strcmp(str, "online"))
80 		memhp_auto_online = true;
81 	else if (!strcmp(str, "offline"))
82 		memhp_auto_online = false;
83 
84 	return 1;
85 }
86 __setup("memhp_default_state=", setup_memhp_default_state);
87 
88 void mem_hotplug_begin(void)
89 {
90 	cpus_read_lock();
91 	percpu_down_write(&mem_hotplug_lock);
92 }
93 
94 void mem_hotplug_done(void)
95 {
96 	percpu_up_write(&mem_hotplug_lock);
97 	cpus_read_unlock();
98 }
99 
100 u64 max_mem_size = U64_MAX;
101 
102 /* add this memory to iomem resource */
103 static struct resource *register_memory_resource(u64 start, u64 size)
104 {
105 	struct resource *res;
106 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
107 	char *resource_name = "System RAM";
108 
109 	if (start + size > max_mem_size)
110 		return ERR_PTR(-E2BIG);
111 
112 	/*
113 	 * Request ownership of the new memory range.  This might be
114 	 * a child of an existing resource that was present but
115 	 * not marked as busy.
116 	 */
117 	res = __request_region(&iomem_resource, start, size,
118 			       resource_name, flags);
119 
120 	if (!res) {
121 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
122 				start, start + size);
123 		return ERR_PTR(-EEXIST);
124 	}
125 	return res;
126 }
127 
128 static void release_memory_resource(struct resource *res)
129 {
130 	if (!res)
131 		return;
132 	release_resource(res);
133 	kfree(res);
134 	return;
135 }
136 
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info,  struct page *page,
139 		      unsigned long type)
140 {
141 	page->freelist = (void *)type;
142 	SetPagePrivate(page);
143 	set_page_private(page, info);
144 	page_ref_inc(page);
145 }
146 
147 void put_page_bootmem(struct page *page)
148 {
149 	unsigned long type;
150 
151 	type = (unsigned long) page->freelist;
152 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154 
155 	if (page_ref_dec_return(page) == 1) {
156 		page->freelist = NULL;
157 		ClearPagePrivate(page);
158 		set_page_private(page, 0);
159 		INIT_LIST_HEAD(&page->lru);
160 		free_reserved_page(page);
161 	}
162 }
163 
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 	unsigned long *usemap, mapsize, section_nr, i;
169 	struct mem_section *ms;
170 	struct page *page, *memmap;
171 
172 	section_nr = pfn_to_section_nr(start_pfn);
173 	ms = __nr_to_section(section_nr);
174 
175 	/* Get section's memmap address */
176 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
177 
178 	/*
179 	 * Get page for the memmap's phys address
180 	 * XXX: need more consideration for sparse_vmemmap...
181 	 */
182 	page = virt_to_page(memmap);
183 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
184 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
185 
186 	/* remember memmap's page */
187 	for (i = 0; i < mapsize; i++, page++)
188 		get_page_bootmem(section_nr, page, SECTION_INFO);
189 
190 	usemap = ms->pageblock_flags;
191 	page = virt_to_page(usemap);
192 
193 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
194 
195 	for (i = 0; i < mapsize; i++, page++)
196 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
197 
198 }
199 #else /* CONFIG_SPARSEMEM_VMEMMAP */
200 static void register_page_bootmem_info_section(unsigned long start_pfn)
201 {
202 	unsigned long *usemap, mapsize, section_nr, i;
203 	struct mem_section *ms;
204 	struct page *page, *memmap;
205 
206 	section_nr = pfn_to_section_nr(start_pfn);
207 	ms = __nr_to_section(section_nr);
208 
209 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
210 
211 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
212 
213 	usemap = ms->pageblock_flags;
214 	page = virt_to_page(usemap);
215 
216 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
217 
218 	for (i = 0; i < mapsize; i++, page++)
219 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
220 }
221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
222 
223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
224 {
225 	unsigned long i, pfn, end_pfn, nr_pages;
226 	int node = pgdat->node_id;
227 	struct page *page;
228 
229 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
230 	page = virt_to_page(pgdat);
231 
232 	for (i = 0; i < nr_pages; i++, page++)
233 		get_page_bootmem(node, page, NODE_INFO);
234 
235 	pfn = pgdat->node_start_pfn;
236 	end_pfn = pgdat_end_pfn(pgdat);
237 
238 	/* register section info */
239 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 		/*
241 		 * Some platforms can assign the same pfn to multiple nodes - on
242 		 * node0 as well as nodeN.  To avoid registering a pfn against
243 		 * multiple nodes we check that this pfn does not already
244 		 * reside in some other nodes.
245 		 */
246 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
247 			register_page_bootmem_info_section(pfn);
248 	}
249 }
250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
251 
252 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
253 		struct vmem_altmap *altmap, bool want_memblock)
254 {
255 	int ret;
256 
257 	if (pfn_valid(phys_start_pfn))
258 		return -EEXIST;
259 
260 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
261 	if (ret < 0)
262 		return ret;
263 
264 	if (!want_memblock)
265 		return 0;
266 
267 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
268 }
269 
270 /*
271  * Reasonably generic function for adding memory.  It is
272  * expected that archs that support memory hotplug will
273  * call this function after deciding the zone to which to
274  * add the new pages.
275  */
276 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
277 		unsigned long nr_pages, struct mhp_restrictions *restrictions)
278 {
279 	unsigned long i;
280 	int err = 0;
281 	int start_sec, end_sec;
282 	struct vmem_altmap *altmap = restrictions->altmap;
283 
284 	/* during initialize mem_map, align hot-added range to section */
285 	start_sec = pfn_to_section_nr(phys_start_pfn);
286 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
287 
288 	if (altmap) {
289 		/*
290 		 * Validate altmap is within bounds of the total request
291 		 */
292 		if (altmap->base_pfn != phys_start_pfn
293 				|| vmem_altmap_offset(altmap) > nr_pages) {
294 			pr_warn_once("memory add fail, invalid altmap\n");
295 			err = -EINVAL;
296 			goto out;
297 		}
298 		altmap->alloc = 0;
299 	}
300 
301 	for (i = start_sec; i <= end_sec; i++) {
302 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
303 				restrictions->flags & MHP_MEMBLOCK_API);
304 
305 		/*
306 		 * EEXIST is finally dealt with by ioresource collision
307 		 * check. see add_memory() => register_memory_resource()
308 		 * Warning will be printed if there is collision.
309 		 */
310 		if (err && (err != -EEXIST))
311 			break;
312 		err = 0;
313 		cond_resched();
314 	}
315 	vmemmap_populate_print_last();
316 out:
317 	return err;
318 }
319 
320 #ifdef CONFIG_MEMORY_HOTREMOVE
321 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
322 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
323 				     unsigned long start_pfn,
324 				     unsigned long end_pfn)
325 {
326 	struct mem_section *ms;
327 
328 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
329 		ms = __pfn_to_section(start_pfn);
330 
331 		if (unlikely(!valid_section(ms)))
332 			continue;
333 
334 		if (unlikely(pfn_to_nid(start_pfn) != nid))
335 			continue;
336 
337 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
338 			continue;
339 
340 		return start_pfn;
341 	}
342 
343 	return 0;
344 }
345 
346 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
347 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
348 				    unsigned long start_pfn,
349 				    unsigned long end_pfn)
350 {
351 	struct mem_section *ms;
352 	unsigned long pfn;
353 
354 	/* pfn is the end pfn of a memory section. */
355 	pfn = end_pfn - 1;
356 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
357 		ms = __pfn_to_section(pfn);
358 
359 		if (unlikely(!valid_section(ms)))
360 			continue;
361 
362 		if (unlikely(pfn_to_nid(pfn) != nid))
363 			continue;
364 
365 		if (zone && zone != page_zone(pfn_to_page(pfn)))
366 			continue;
367 
368 		return pfn;
369 	}
370 
371 	return 0;
372 }
373 
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 			     unsigned long end_pfn)
376 {
377 	unsigned long zone_start_pfn = zone->zone_start_pfn;
378 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 	unsigned long zone_end_pfn = z;
380 	unsigned long pfn;
381 	struct mem_section *ms;
382 	int nid = zone_to_nid(zone);
383 
384 	zone_span_writelock(zone);
385 	if (zone_start_pfn == start_pfn) {
386 		/*
387 		 * If the section is smallest section in the zone, it need
388 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
389 		 * In this case, we find second smallest valid mem_section
390 		 * for shrinking zone.
391 		 */
392 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
393 						zone_end_pfn);
394 		if (pfn) {
395 			zone->zone_start_pfn = pfn;
396 			zone->spanned_pages = zone_end_pfn - pfn;
397 		}
398 	} else if (zone_end_pfn == end_pfn) {
399 		/*
400 		 * If the section is biggest section in the zone, it need
401 		 * shrink zone->spanned_pages.
402 		 * In this case, we find second biggest valid mem_section for
403 		 * shrinking zone.
404 		 */
405 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
406 					       start_pfn);
407 		if (pfn)
408 			zone->spanned_pages = pfn - zone_start_pfn + 1;
409 	}
410 
411 	/*
412 	 * The section is not biggest or smallest mem_section in the zone, it
413 	 * only creates a hole in the zone. So in this case, we need not
414 	 * change the zone. But perhaps, the zone has only hole data. Thus
415 	 * it check the zone has only hole or not.
416 	 */
417 	pfn = zone_start_pfn;
418 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
419 		ms = __pfn_to_section(pfn);
420 
421 		if (unlikely(!valid_section(ms)))
422 			continue;
423 
424 		if (page_zone(pfn_to_page(pfn)) != zone)
425 			continue;
426 
427 		 /* If the section is current section, it continues the loop */
428 		if (start_pfn == pfn)
429 			continue;
430 
431 		/* If we find valid section, we have nothing to do */
432 		zone_span_writeunlock(zone);
433 		return;
434 	}
435 
436 	/* The zone has no valid section */
437 	zone->zone_start_pfn = 0;
438 	zone->spanned_pages = 0;
439 	zone_span_writeunlock(zone);
440 }
441 
442 static void shrink_pgdat_span(struct pglist_data *pgdat,
443 			      unsigned long start_pfn, unsigned long end_pfn)
444 {
445 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
446 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
447 	unsigned long pgdat_end_pfn = p;
448 	unsigned long pfn;
449 	struct mem_section *ms;
450 	int nid = pgdat->node_id;
451 
452 	if (pgdat_start_pfn == start_pfn) {
453 		/*
454 		 * If the section is smallest section in the pgdat, it need
455 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
456 		 * In this case, we find second smallest valid mem_section
457 		 * for shrinking zone.
458 		 */
459 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
460 						pgdat_end_pfn);
461 		if (pfn) {
462 			pgdat->node_start_pfn = pfn;
463 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
464 		}
465 	} else if (pgdat_end_pfn == end_pfn) {
466 		/*
467 		 * If the section is biggest section in the pgdat, it need
468 		 * shrink pgdat->node_spanned_pages.
469 		 * In this case, we find second biggest valid mem_section for
470 		 * shrinking zone.
471 		 */
472 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
473 					       start_pfn);
474 		if (pfn)
475 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
476 	}
477 
478 	/*
479 	 * If the section is not biggest or smallest mem_section in the pgdat,
480 	 * it only creates a hole in the pgdat. So in this case, we need not
481 	 * change the pgdat.
482 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
483 	 * has only hole or not.
484 	 */
485 	pfn = pgdat_start_pfn;
486 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
487 		ms = __pfn_to_section(pfn);
488 
489 		if (unlikely(!valid_section(ms)))
490 			continue;
491 
492 		if (pfn_to_nid(pfn) != nid)
493 			continue;
494 
495 		 /* If the section is current section, it continues the loop */
496 		if (start_pfn == pfn)
497 			continue;
498 
499 		/* If we find valid section, we have nothing to do */
500 		return;
501 	}
502 
503 	/* The pgdat has no valid section */
504 	pgdat->node_start_pfn = 0;
505 	pgdat->node_spanned_pages = 0;
506 }
507 
508 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
509 {
510 	struct pglist_data *pgdat = zone->zone_pgdat;
511 	int nr_pages = PAGES_PER_SECTION;
512 	unsigned long flags;
513 
514 	pgdat_resize_lock(zone->zone_pgdat, &flags);
515 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
516 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
517 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
518 }
519 
520 static void __remove_section(struct zone *zone, struct mem_section *ms,
521 			     unsigned long map_offset,
522 			     struct vmem_altmap *altmap)
523 {
524 	unsigned long start_pfn;
525 	int scn_nr;
526 
527 	if (WARN_ON_ONCE(!valid_section(ms)))
528 		return;
529 
530 	unregister_memory_section(ms);
531 
532 	scn_nr = __section_nr(ms);
533 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
534 	__remove_zone(zone, start_pfn);
535 
536 	sparse_remove_one_section(zone, ms, map_offset, altmap);
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages from a zone
541  * @zone: zone from which pages need to be removed
542  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543  * @nr_pages: number of pages to remove (must be multiple of section size)
544  * @altmap: alternative device page map or %NULL if default memmap is used
545  *
546  * Generic helper function to remove section mappings and sysfs entries
547  * for the section of the memory we are removing. Caller needs to make
548  * sure that pages are marked reserved and zones are adjust properly by
549  * calling offline_pages().
550  */
551 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 		    unsigned long nr_pages, struct vmem_altmap *altmap)
553 {
554 	unsigned long i;
555 	unsigned long map_offset = 0;
556 	int sections_to_remove;
557 
558 	/* In the ZONE_DEVICE case device driver owns the memory region */
559 	if (is_dev_zone(zone)) {
560 		if (altmap)
561 			map_offset = vmem_altmap_offset(altmap);
562 	}
563 
564 	clear_zone_contiguous(zone);
565 
566 	/*
567 	 * We can only remove entire sections
568 	 */
569 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
570 	BUG_ON(nr_pages % PAGES_PER_SECTION);
571 
572 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
573 	for (i = 0; i < sections_to_remove; i++) {
574 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
575 
576 		cond_resched();
577 		__remove_section(zone, __pfn_to_section(pfn), map_offset,
578 				 altmap);
579 		map_offset = 0;
580 	}
581 
582 	set_zone_contiguous(zone);
583 }
584 #endif /* CONFIG_MEMORY_HOTREMOVE */
585 
586 int set_online_page_callback(online_page_callback_t callback)
587 {
588 	int rc = -EINVAL;
589 
590 	get_online_mems();
591 	mutex_lock(&online_page_callback_lock);
592 
593 	if (online_page_callback == generic_online_page) {
594 		online_page_callback = callback;
595 		rc = 0;
596 	}
597 
598 	mutex_unlock(&online_page_callback_lock);
599 	put_online_mems();
600 
601 	return rc;
602 }
603 EXPORT_SYMBOL_GPL(set_online_page_callback);
604 
605 int restore_online_page_callback(online_page_callback_t callback)
606 {
607 	int rc = -EINVAL;
608 
609 	get_online_mems();
610 	mutex_lock(&online_page_callback_lock);
611 
612 	if (online_page_callback == callback) {
613 		online_page_callback = generic_online_page;
614 		rc = 0;
615 	}
616 
617 	mutex_unlock(&online_page_callback_lock);
618 	put_online_mems();
619 
620 	return rc;
621 }
622 EXPORT_SYMBOL_GPL(restore_online_page_callback);
623 
624 void __online_page_set_limits(struct page *page)
625 {
626 }
627 EXPORT_SYMBOL_GPL(__online_page_set_limits);
628 
629 void __online_page_increment_counters(struct page *page)
630 {
631 	adjust_managed_page_count(page, 1);
632 }
633 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
634 
635 void __online_page_free(struct page *page)
636 {
637 	__free_reserved_page(page);
638 }
639 EXPORT_SYMBOL_GPL(__online_page_free);
640 
641 static void generic_online_page(struct page *page, unsigned int order)
642 {
643 	kernel_map_pages(page, 1 << order, 1);
644 	__free_pages_core(page, order);
645 	totalram_pages_add(1UL << order);
646 #ifdef CONFIG_HIGHMEM
647 	if (PageHighMem(page))
648 		totalhigh_pages_add(1UL << order);
649 #endif
650 }
651 
652 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
653 {
654 	unsigned long end = start + nr_pages;
655 	int order, onlined_pages = 0;
656 
657 	while (start < end) {
658 		order = min(MAX_ORDER - 1,
659 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
660 		(*online_page_callback)(pfn_to_page(start), order);
661 
662 		onlined_pages += (1UL << order);
663 		start += (1UL << order);
664 	}
665 	return onlined_pages;
666 }
667 
668 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
669 			void *arg)
670 {
671 	unsigned long onlined_pages = *(unsigned long *)arg;
672 
673 	if (PageReserved(pfn_to_page(start_pfn)))
674 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
675 
676 	online_mem_sections(start_pfn, start_pfn + nr_pages);
677 
678 	*(unsigned long *)arg = onlined_pages;
679 	return 0;
680 }
681 
682 /* check which state of node_states will be changed when online memory */
683 static void node_states_check_changes_online(unsigned long nr_pages,
684 	struct zone *zone, struct memory_notify *arg)
685 {
686 	int nid = zone_to_nid(zone);
687 
688 	arg->status_change_nid = NUMA_NO_NODE;
689 	arg->status_change_nid_normal = NUMA_NO_NODE;
690 	arg->status_change_nid_high = NUMA_NO_NODE;
691 
692 	if (!node_state(nid, N_MEMORY))
693 		arg->status_change_nid = nid;
694 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
695 		arg->status_change_nid_normal = nid;
696 #ifdef CONFIG_HIGHMEM
697 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
698 		arg->status_change_nid_high = nid;
699 #endif
700 }
701 
702 static void node_states_set_node(int node, struct memory_notify *arg)
703 {
704 	if (arg->status_change_nid_normal >= 0)
705 		node_set_state(node, N_NORMAL_MEMORY);
706 
707 	if (arg->status_change_nid_high >= 0)
708 		node_set_state(node, N_HIGH_MEMORY);
709 
710 	if (arg->status_change_nid >= 0)
711 		node_set_state(node, N_MEMORY);
712 }
713 
714 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
715 		unsigned long nr_pages)
716 {
717 	unsigned long old_end_pfn = zone_end_pfn(zone);
718 
719 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
720 		zone->zone_start_pfn = start_pfn;
721 
722 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
723 }
724 
725 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
726                                      unsigned long nr_pages)
727 {
728 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
729 
730 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
731 		pgdat->node_start_pfn = start_pfn;
732 
733 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
734 }
735 
736 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
737 		unsigned long nr_pages, struct vmem_altmap *altmap)
738 {
739 	struct pglist_data *pgdat = zone->zone_pgdat;
740 	int nid = pgdat->node_id;
741 	unsigned long flags;
742 
743 	clear_zone_contiguous(zone);
744 
745 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
746 	pgdat_resize_lock(pgdat, &flags);
747 	zone_span_writelock(zone);
748 	if (zone_is_empty(zone))
749 		init_currently_empty_zone(zone, start_pfn, nr_pages);
750 	resize_zone_range(zone, start_pfn, nr_pages);
751 	zone_span_writeunlock(zone);
752 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
753 	pgdat_resize_unlock(pgdat, &flags);
754 
755 	/*
756 	 * TODO now we have a visible range of pages which are not associated
757 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
758 	 * expects the zone spans the pfn range. All the pages in the range
759 	 * are reserved so nobody should be touching them so we should be safe
760 	 */
761 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
762 			MEMMAP_HOTPLUG, altmap);
763 
764 	set_zone_contiguous(zone);
765 }
766 
767 /*
768  * Returns a default kernel memory zone for the given pfn range.
769  * If no kernel zone covers this pfn range it will automatically go
770  * to the ZONE_NORMAL.
771  */
772 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
773 		unsigned long nr_pages)
774 {
775 	struct pglist_data *pgdat = NODE_DATA(nid);
776 	int zid;
777 
778 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
779 		struct zone *zone = &pgdat->node_zones[zid];
780 
781 		if (zone_intersects(zone, start_pfn, nr_pages))
782 			return zone;
783 	}
784 
785 	return &pgdat->node_zones[ZONE_NORMAL];
786 }
787 
788 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
789 		unsigned long nr_pages)
790 {
791 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
792 			nr_pages);
793 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
794 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
795 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
796 
797 	/*
798 	 * We inherit the existing zone in a simple case where zones do not
799 	 * overlap in the given range
800 	 */
801 	if (in_kernel ^ in_movable)
802 		return (in_kernel) ? kernel_zone : movable_zone;
803 
804 	/*
805 	 * If the range doesn't belong to any zone or two zones overlap in the
806 	 * given range then we use movable zone only if movable_node is
807 	 * enabled because we always online to a kernel zone by default.
808 	 */
809 	return movable_node_enabled ? movable_zone : kernel_zone;
810 }
811 
812 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
813 		unsigned long nr_pages)
814 {
815 	if (online_type == MMOP_ONLINE_KERNEL)
816 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
817 
818 	if (online_type == MMOP_ONLINE_MOVABLE)
819 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
820 
821 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
822 }
823 
824 /*
825  * Associates the given pfn range with the given node and the zone appropriate
826  * for the given online type.
827  */
828 static struct zone * __meminit move_pfn_range(int online_type, int nid,
829 		unsigned long start_pfn, unsigned long nr_pages)
830 {
831 	struct zone *zone;
832 
833 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
834 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
835 	return zone;
836 }
837 
838 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
839 {
840 	unsigned long flags;
841 	unsigned long onlined_pages = 0;
842 	struct zone *zone;
843 	int need_zonelists_rebuild = 0;
844 	int nid;
845 	int ret;
846 	struct memory_notify arg;
847 	struct memory_block *mem;
848 
849 	mem_hotplug_begin();
850 
851 	/*
852 	 * We can't use pfn_to_nid() because nid might be stored in struct page
853 	 * which is not yet initialized. Instead, we find nid from memory block.
854 	 */
855 	mem = find_memory_block(__pfn_to_section(pfn));
856 	nid = mem->nid;
857 	put_device(&mem->dev);
858 
859 	/* associate pfn range with the zone */
860 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
861 
862 	arg.start_pfn = pfn;
863 	arg.nr_pages = nr_pages;
864 	node_states_check_changes_online(nr_pages, zone, &arg);
865 
866 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
867 	ret = notifier_to_errno(ret);
868 	if (ret)
869 		goto failed_addition;
870 
871 	/*
872 	 * If this zone is not populated, then it is not in zonelist.
873 	 * This means the page allocator ignores this zone.
874 	 * So, zonelist must be updated after online.
875 	 */
876 	if (!populated_zone(zone)) {
877 		need_zonelists_rebuild = 1;
878 		setup_zone_pageset(zone);
879 	}
880 
881 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
882 		online_pages_range);
883 	if (ret) {
884 		if (need_zonelists_rebuild)
885 			zone_pcp_reset(zone);
886 		goto failed_addition;
887 	}
888 
889 	zone->present_pages += onlined_pages;
890 
891 	pgdat_resize_lock(zone->zone_pgdat, &flags);
892 	zone->zone_pgdat->node_present_pages += onlined_pages;
893 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
894 
895 	shuffle_zone(zone);
896 
897 	if (onlined_pages) {
898 		node_states_set_node(nid, &arg);
899 		if (need_zonelists_rebuild)
900 			build_all_zonelists(NULL);
901 		else
902 			zone_pcp_update(zone);
903 	}
904 
905 	init_per_zone_wmark_min();
906 
907 	if (onlined_pages) {
908 		kswapd_run(nid);
909 		kcompactd_run(nid);
910 	}
911 
912 	vm_total_pages = nr_free_pagecache_pages();
913 
914 	writeback_set_ratelimit();
915 
916 	if (onlined_pages)
917 		memory_notify(MEM_ONLINE, &arg);
918 	mem_hotplug_done();
919 	return 0;
920 
921 failed_addition:
922 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
923 		 (unsigned long long) pfn << PAGE_SHIFT,
924 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
925 	memory_notify(MEM_CANCEL_ONLINE, &arg);
926 	mem_hotplug_done();
927 	return ret;
928 }
929 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
930 
931 static void reset_node_present_pages(pg_data_t *pgdat)
932 {
933 	struct zone *z;
934 
935 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
936 		z->present_pages = 0;
937 
938 	pgdat->node_present_pages = 0;
939 }
940 
941 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
942 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
943 {
944 	struct pglist_data *pgdat;
945 	unsigned long start_pfn = PFN_DOWN(start);
946 
947 	pgdat = NODE_DATA(nid);
948 	if (!pgdat) {
949 		pgdat = arch_alloc_nodedata(nid);
950 		if (!pgdat)
951 			return NULL;
952 
953 		arch_refresh_nodedata(nid, pgdat);
954 	} else {
955 		/*
956 		 * Reset the nr_zones, order and classzone_idx before reuse.
957 		 * Note that kswapd will init kswapd_classzone_idx properly
958 		 * when it starts in the near future.
959 		 */
960 		pgdat->nr_zones = 0;
961 		pgdat->kswapd_order = 0;
962 		pgdat->kswapd_classzone_idx = 0;
963 	}
964 
965 	/* we can use NODE_DATA(nid) from here */
966 
967 	pgdat->node_id = nid;
968 	pgdat->node_start_pfn = start_pfn;
969 
970 	/* init node's zones as empty zones, we don't have any present pages.*/
971 	free_area_init_core_hotplug(nid);
972 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
973 
974 	/*
975 	 * The node we allocated has no zone fallback lists. For avoiding
976 	 * to access not-initialized zonelist, build here.
977 	 */
978 	build_all_zonelists(pgdat);
979 
980 	/*
981 	 * When memory is hot-added, all the memory is in offline state. So
982 	 * clear all zones' present_pages because they will be updated in
983 	 * online_pages() and offline_pages().
984 	 */
985 	reset_node_managed_pages(pgdat);
986 	reset_node_present_pages(pgdat);
987 
988 	return pgdat;
989 }
990 
991 static void rollback_node_hotadd(int nid)
992 {
993 	pg_data_t *pgdat = NODE_DATA(nid);
994 
995 	arch_refresh_nodedata(nid, NULL);
996 	free_percpu(pgdat->per_cpu_nodestats);
997 	arch_free_nodedata(pgdat);
998 	return;
999 }
1000 
1001 
1002 /**
1003  * try_online_node - online a node if offlined
1004  * @nid: the node ID
1005  * @start: start addr of the node
1006  * @set_node_online: Whether we want to online the node
1007  * called by cpu_up() to online a node without onlined memory.
1008  *
1009  * Returns:
1010  * 1 -> a new node has been allocated
1011  * 0 -> the node is already online
1012  * -ENOMEM -> the node could not be allocated
1013  */
1014 static int __try_online_node(int nid, u64 start, bool set_node_online)
1015 {
1016 	pg_data_t *pgdat;
1017 	int ret = 1;
1018 
1019 	if (node_online(nid))
1020 		return 0;
1021 
1022 	pgdat = hotadd_new_pgdat(nid, start);
1023 	if (!pgdat) {
1024 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1025 		ret = -ENOMEM;
1026 		goto out;
1027 	}
1028 
1029 	if (set_node_online) {
1030 		node_set_online(nid);
1031 		ret = register_one_node(nid);
1032 		BUG_ON(ret);
1033 	}
1034 out:
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Users of this function always want to online/register the node
1040  */
1041 int try_online_node(int nid)
1042 {
1043 	int ret;
1044 
1045 	mem_hotplug_begin();
1046 	ret =  __try_online_node(nid, 0, true);
1047 	mem_hotplug_done();
1048 	return ret;
1049 }
1050 
1051 static int check_hotplug_memory_range(u64 start, u64 size)
1052 {
1053 	unsigned long block_sz = memory_block_size_bytes();
1054 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1055 	u64 nr_pages = size >> PAGE_SHIFT;
1056 	u64 start_pfn = PFN_DOWN(start);
1057 
1058 	/* memory range must be block size aligned */
1059 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1060 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1061 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1062 		       block_sz, start, size);
1063 		return -EINVAL;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static int online_memory_block(struct memory_block *mem, void *arg)
1070 {
1071 	return device_online(&mem->dev);
1072 }
1073 
1074 /*
1075  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1076  * and online/offline operations (triggered e.g. by sysfs).
1077  *
1078  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1079  */
1080 int __ref add_memory_resource(int nid, struct resource *res)
1081 {
1082 	struct mhp_restrictions restrictions = {
1083 		.flags = MHP_MEMBLOCK_API,
1084 	};
1085 	u64 start, size;
1086 	bool new_node = false;
1087 	int ret;
1088 
1089 	start = res->start;
1090 	size = resource_size(res);
1091 
1092 	ret = check_hotplug_memory_range(start, size);
1093 	if (ret)
1094 		return ret;
1095 
1096 	mem_hotplug_begin();
1097 
1098 	/*
1099 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1100 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1101 	 * this new range and calculate total pages correctly.  The range will
1102 	 * be removed at hot-remove time.
1103 	 */
1104 	memblock_add_node(start, size, nid);
1105 
1106 	ret = __try_online_node(nid, start, false);
1107 	if (ret < 0)
1108 		goto error;
1109 	new_node = ret;
1110 
1111 	/* call arch's memory hotadd */
1112 	ret = arch_add_memory(nid, start, size, &restrictions);
1113 	if (ret < 0)
1114 		goto error;
1115 
1116 	if (new_node) {
1117 		/* If sysfs file of new node can't be created, cpu on the node
1118 		 * can't be hot-added. There is no rollback way now.
1119 		 * So, check by BUG_ON() to catch it reluctantly..
1120 		 * We online node here. We can't roll back from here.
1121 		 */
1122 		node_set_online(nid);
1123 		ret = __register_one_node(nid);
1124 		BUG_ON(ret);
1125 	}
1126 
1127 	/* link memory sections under this node.*/
1128 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1129 	BUG_ON(ret);
1130 
1131 	/* create new memmap entry */
1132 	firmware_map_add_hotplug(start, start + size, "System RAM");
1133 
1134 	/* device_online() will take the lock when calling online_pages() */
1135 	mem_hotplug_done();
1136 
1137 	/* online pages if requested */
1138 	if (memhp_auto_online)
1139 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1140 				  NULL, online_memory_block);
1141 
1142 	return ret;
1143 error:
1144 	/* rollback pgdat allocation and others */
1145 	if (new_node)
1146 		rollback_node_hotadd(nid);
1147 	memblock_remove(start, size);
1148 	mem_hotplug_done();
1149 	return ret;
1150 }
1151 
1152 /* requires device_hotplug_lock, see add_memory_resource() */
1153 int __ref __add_memory(int nid, u64 start, u64 size)
1154 {
1155 	struct resource *res;
1156 	int ret;
1157 
1158 	res = register_memory_resource(start, size);
1159 	if (IS_ERR(res))
1160 		return PTR_ERR(res);
1161 
1162 	ret = add_memory_resource(nid, res);
1163 	if (ret < 0)
1164 		release_memory_resource(res);
1165 	return ret;
1166 }
1167 
1168 int add_memory(int nid, u64 start, u64 size)
1169 {
1170 	int rc;
1171 
1172 	lock_device_hotplug();
1173 	rc = __add_memory(nid, start, size);
1174 	unlock_device_hotplug();
1175 
1176 	return rc;
1177 }
1178 EXPORT_SYMBOL_GPL(add_memory);
1179 
1180 #ifdef CONFIG_MEMORY_HOTREMOVE
1181 /*
1182  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1183  * set and the size of the free page is given by page_order(). Using this,
1184  * the function determines if the pageblock contains only free pages.
1185  * Due to buddy contraints, a free page at least the size of a pageblock will
1186  * be located at the start of the pageblock
1187  */
1188 static inline int pageblock_free(struct page *page)
1189 {
1190 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1191 }
1192 
1193 /* Return the pfn of the start of the next active pageblock after a given pfn */
1194 static unsigned long next_active_pageblock(unsigned long pfn)
1195 {
1196 	struct page *page = pfn_to_page(pfn);
1197 
1198 	/* Ensure the starting page is pageblock-aligned */
1199 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1200 
1201 	/* If the entire pageblock is free, move to the end of free page */
1202 	if (pageblock_free(page)) {
1203 		int order;
1204 		/* be careful. we don't have locks, page_order can be changed.*/
1205 		order = page_order(page);
1206 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1207 			return pfn + (1 << order);
1208 	}
1209 
1210 	return pfn + pageblock_nr_pages;
1211 }
1212 
1213 static bool is_pageblock_removable_nolock(unsigned long pfn)
1214 {
1215 	struct page *page = pfn_to_page(pfn);
1216 	struct zone *zone;
1217 
1218 	/*
1219 	 * We have to be careful here because we are iterating over memory
1220 	 * sections which are not zone aware so we might end up outside of
1221 	 * the zone but still within the section.
1222 	 * We have to take care about the node as well. If the node is offline
1223 	 * its NODE_DATA will be NULL - see page_zone.
1224 	 */
1225 	if (!node_online(page_to_nid(page)))
1226 		return false;
1227 
1228 	zone = page_zone(page);
1229 	pfn = page_to_pfn(page);
1230 	if (!zone_spans_pfn(zone, pfn))
1231 		return false;
1232 
1233 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1234 }
1235 
1236 /* Checks if this range of memory is likely to be hot-removable. */
1237 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1238 {
1239 	unsigned long end_pfn, pfn;
1240 
1241 	end_pfn = min(start_pfn + nr_pages,
1242 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1243 
1244 	/* Check the starting page of each pageblock within the range */
1245 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1246 		if (!is_pageblock_removable_nolock(pfn))
1247 			return false;
1248 		cond_resched();
1249 	}
1250 
1251 	/* All pageblocks in the memory block are likely to be hot-removable */
1252 	return true;
1253 }
1254 
1255 /*
1256  * Confirm all pages in a range [start, end) belong to the same zone.
1257  * When true, return its valid [start, end).
1258  */
1259 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1260 			 unsigned long *valid_start, unsigned long *valid_end)
1261 {
1262 	unsigned long pfn, sec_end_pfn;
1263 	unsigned long start, end;
1264 	struct zone *zone = NULL;
1265 	struct page *page;
1266 	int i;
1267 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1268 	     pfn < end_pfn;
1269 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1270 		/* Make sure the memory section is present first */
1271 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1272 			continue;
1273 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1274 		     pfn += MAX_ORDER_NR_PAGES) {
1275 			i = 0;
1276 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1277 			while ((i < MAX_ORDER_NR_PAGES) &&
1278 				!pfn_valid_within(pfn + i))
1279 				i++;
1280 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1281 				continue;
1282 			/* Check if we got outside of the zone */
1283 			if (zone && !zone_spans_pfn(zone, pfn + i))
1284 				return 0;
1285 			page = pfn_to_page(pfn + i);
1286 			if (zone && page_zone(page) != zone)
1287 				return 0;
1288 			if (!zone)
1289 				start = pfn + i;
1290 			zone = page_zone(page);
1291 			end = pfn + MAX_ORDER_NR_PAGES;
1292 		}
1293 	}
1294 
1295 	if (zone) {
1296 		*valid_start = start;
1297 		*valid_end = min(end, end_pfn);
1298 		return 1;
1299 	} else {
1300 		return 0;
1301 	}
1302 }
1303 
1304 /*
1305  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1306  * non-lru movable pages and hugepages). We scan pfn because it's much
1307  * easier than scanning over linked list. This function returns the pfn
1308  * of the first found movable page if it's found, otherwise 0.
1309  */
1310 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1311 {
1312 	unsigned long pfn;
1313 
1314 	for (pfn = start; pfn < end; pfn++) {
1315 		struct page *page, *head;
1316 		unsigned long skip;
1317 
1318 		if (!pfn_valid(pfn))
1319 			continue;
1320 		page = pfn_to_page(pfn);
1321 		if (PageLRU(page))
1322 			return pfn;
1323 		if (__PageMovable(page))
1324 			return pfn;
1325 
1326 		if (!PageHuge(page))
1327 			continue;
1328 		head = compound_head(page);
1329 		if (page_huge_active(head))
1330 			return pfn;
1331 		skip = (1 << compound_order(head)) - (page - head);
1332 		pfn += skip - 1;
1333 	}
1334 	return 0;
1335 }
1336 
1337 static struct page *new_node_page(struct page *page, unsigned long private)
1338 {
1339 	int nid = page_to_nid(page);
1340 	nodemask_t nmask = node_states[N_MEMORY];
1341 
1342 	/*
1343 	 * try to allocate from a different node but reuse this node if there
1344 	 * are no other online nodes to be used (e.g. we are offlining a part
1345 	 * of the only existing node)
1346 	 */
1347 	node_clear(nid, nmask);
1348 	if (nodes_empty(nmask))
1349 		node_set(nid, nmask);
1350 
1351 	return new_page_nodemask(page, nid, &nmask);
1352 }
1353 
1354 static int
1355 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1356 {
1357 	unsigned long pfn;
1358 	struct page *page;
1359 	int ret = 0;
1360 	LIST_HEAD(source);
1361 
1362 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1363 		if (!pfn_valid(pfn))
1364 			continue;
1365 		page = pfn_to_page(pfn);
1366 
1367 		if (PageHuge(page)) {
1368 			struct page *head = compound_head(page);
1369 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1370 			isolate_huge_page(head, &source);
1371 			continue;
1372 		} else if (PageTransHuge(page))
1373 			pfn = page_to_pfn(compound_head(page))
1374 				+ hpage_nr_pages(page) - 1;
1375 
1376 		/*
1377 		 * HWPoison pages have elevated reference counts so the migration would
1378 		 * fail on them. It also doesn't make any sense to migrate them in the
1379 		 * first place. Still try to unmap such a page in case it is still mapped
1380 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1381 		 * the unmap as the catch all safety net).
1382 		 */
1383 		if (PageHWPoison(page)) {
1384 			if (WARN_ON(PageLRU(page)))
1385 				isolate_lru_page(page);
1386 			if (page_mapped(page))
1387 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1388 			continue;
1389 		}
1390 
1391 		if (!get_page_unless_zero(page))
1392 			continue;
1393 		/*
1394 		 * We can skip free pages. And we can deal with pages on
1395 		 * LRU and non-lru movable pages.
1396 		 */
1397 		if (PageLRU(page))
1398 			ret = isolate_lru_page(page);
1399 		else
1400 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1401 		if (!ret) { /* Success */
1402 			list_add_tail(&page->lru, &source);
1403 			if (!__PageMovable(page))
1404 				inc_node_page_state(page, NR_ISOLATED_ANON +
1405 						    page_is_file_cache(page));
1406 
1407 		} else {
1408 			pr_warn("failed to isolate pfn %lx\n", pfn);
1409 			dump_page(page, "isolation failed");
1410 		}
1411 		put_page(page);
1412 	}
1413 	if (!list_empty(&source)) {
1414 		/* Allocate a new page from the nearest neighbor node */
1415 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1416 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1417 		if (ret) {
1418 			list_for_each_entry(page, &source, lru) {
1419 				pr_warn("migrating pfn %lx failed ret:%d ",
1420 				       page_to_pfn(page), ret);
1421 				dump_page(page, "migration failure");
1422 			}
1423 			putback_movable_pages(&source);
1424 		}
1425 	}
1426 
1427 	return ret;
1428 }
1429 
1430 /*
1431  * remove from free_area[] and mark all as Reserved.
1432  */
1433 static int
1434 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1435 			void *data)
1436 {
1437 	unsigned long *offlined_pages = (unsigned long *)data;
1438 
1439 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Check all pages in range, recoreded as memory resource, are isolated.
1445  */
1446 static int
1447 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1448 			void *data)
1449 {
1450 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1451 }
1452 
1453 static int __init cmdline_parse_movable_node(char *p)
1454 {
1455 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1456 	movable_node_enabled = true;
1457 #else
1458 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1459 #endif
1460 	return 0;
1461 }
1462 early_param("movable_node", cmdline_parse_movable_node);
1463 
1464 /* check which state of node_states will be changed when offline memory */
1465 static void node_states_check_changes_offline(unsigned long nr_pages,
1466 		struct zone *zone, struct memory_notify *arg)
1467 {
1468 	struct pglist_data *pgdat = zone->zone_pgdat;
1469 	unsigned long present_pages = 0;
1470 	enum zone_type zt;
1471 
1472 	arg->status_change_nid = NUMA_NO_NODE;
1473 	arg->status_change_nid_normal = NUMA_NO_NODE;
1474 	arg->status_change_nid_high = NUMA_NO_NODE;
1475 
1476 	/*
1477 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1478 	 * If the memory to be offline is within the range
1479 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1480 	 * the zones in that range will become empty after the offlining,
1481 	 * thus we can determine that we need to clear the node from
1482 	 * node_states[N_NORMAL_MEMORY].
1483 	 */
1484 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1485 		present_pages += pgdat->node_zones[zt].present_pages;
1486 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1487 		arg->status_change_nid_normal = zone_to_nid(zone);
1488 
1489 #ifdef CONFIG_HIGHMEM
1490 	/*
1491 	 * node_states[N_HIGH_MEMORY] contains nodes which
1492 	 * have normal memory or high memory.
1493 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1494 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1495 	 * we determine that the zones in that range become empty,
1496 	 * we need to clear the node for N_HIGH_MEMORY.
1497 	 */
1498 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1499 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1500 		arg->status_change_nid_high = zone_to_nid(zone);
1501 #endif
1502 
1503 	/*
1504 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1505 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1506 	 * as well.
1507 	 * Here we count the possible pages from ZONE_MOVABLE.
1508 	 * If after having accounted all the pages, we see that the nr_pages
1509 	 * to be offlined is over or equal to the accounted pages,
1510 	 * we know that the node will become empty, and so, we can clear
1511 	 * it for N_MEMORY as well.
1512 	 */
1513 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1514 
1515 	if (nr_pages >= present_pages)
1516 		arg->status_change_nid = zone_to_nid(zone);
1517 }
1518 
1519 static void node_states_clear_node(int node, struct memory_notify *arg)
1520 {
1521 	if (arg->status_change_nid_normal >= 0)
1522 		node_clear_state(node, N_NORMAL_MEMORY);
1523 
1524 	if (arg->status_change_nid_high >= 0)
1525 		node_clear_state(node, N_HIGH_MEMORY);
1526 
1527 	if (arg->status_change_nid >= 0)
1528 		node_clear_state(node, N_MEMORY);
1529 }
1530 
1531 static int __ref __offline_pages(unsigned long start_pfn,
1532 		  unsigned long end_pfn)
1533 {
1534 	unsigned long pfn, nr_pages;
1535 	unsigned long offlined_pages = 0;
1536 	int ret, node, nr_isolate_pageblock;
1537 	unsigned long flags;
1538 	unsigned long valid_start, valid_end;
1539 	struct zone *zone;
1540 	struct memory_notify arg;
1541 	char *reason;
1542 
1543 	mem_hotplug_begin();
1544 
1545 	/* This makes hotplug much easier...and readable.
1546 	   we assume this for now. .*/
1547 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1548 				  &valid_end)) {
1549 		ret = -EINVAL;
1550 		reason = "multizone range";
1551 		goto failed_removal;
1552 	}
1553 
1554 	zone = page_zone(pfn_to_page(valid_start));
1555 	node = zone_to_nid(zone);
1556 	nr_pages = end_pfn - start_pfn;
1557 
1558 	/* set above range as isolated */
1559 	ret = start_isolate_page_range(start_pfn, end_pfn,
1560 				       MIGRATE_MOVABLE,
1561 				       SKIP_HWPOISON | REPORT_FAILURE);
1562 	if (ret < 0) {
1563 		reason = "failure to isolate range";
1564 		goto failed_removal;
1565 	}
1566 	nr_isolate_pageblock = ret;
1567 
1568 	arg.start_pfn = start_pfn;
1569 	arg.nr_pages = nr_pages;
1570 	node_states_check_changes_offline(nr_pages, zone, &arg);
1571 
1572 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1573 	ret = notifier_to_errno(ret);
1574 	if (ret) {
1575 		reason = "notifier failure";
1576 		goto failed_removal_isolated;
1577 	}
1578 
1579 	do {
1580 		for (pfn = start_pfn; pfn;) {
1581 			if (signal_pending(current)) {
1582 				ret = -EINTR;
1583 				reason = "signal backoff";
1584 				goto failed_removal_isolated;
1585 			}
1586 
1587 			cond_resched();
1588 			lru_add_drain_all();
1589 
1590 			pfn = scan_movable_pages(pfn, end_pfn);
1591 			if (pfn) {
1592 				/*
1593 				 * TODO: fatal migration failures should bail
1594 				 * out
1595 				 */
1596 				do_migrate_range(pfn, end_pfn);
1597 			}
1598 		}
1599 
1600 		/*
1601 		 * Dissolve free hugepages in the memory block before doing
1602 		 * offlining actually in order to make hugetlbfs's object
1603 		 * counting consistent.
1604 		 */
1605 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1606 		if (ret) {
1607 			reason = "failure to dissolve huge pages";
1608 			goto failed_removal_isolated;
1609 		}
1610 		/* check again */
1611 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1612 					    NULL, check_pages_isolated_cb);
1613 	} while (ret);
1614 
1615 	/* Ok, all of our target is isolated.
1616 	   We cannot do rollback at this point. */
1617 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1618 			      &offlined_pages, offline_isolated_pages_cb);
1619 	pr_info("Offlined Pages %ld\n", offlined_pages);
1620 	/*
1621 	 * Onlining will reset pagetype flags and makes migrate type
1622 	 * MOVABLE, so just need to decrease the number of isolated
1623 	 * pageblocks zone counter here.
1624 	 */
1625 	spin_lock_irqsave(&zone->lock, flags);
1626 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1627 	spin_unlock_irqrestore(&zone->lock, flags);
1628 
1629 	/* removal success */
1630 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1631 	zone->present_pages -= offlined_pages;
1632 
1633 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1634 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1635 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1636 
1637 	init_per_zone_wmark_min();
1638 
1639 	if (!populated_zone(zone)) {
1640 		zone_pcp_reset(zone);
1641 		build_all_zonelists(NULL);
1642 	} else
1643 		zone_pcp_update(zone);
1644 
1645 	node_states_clear_node(node, &arg);
1646 	if (arg.status_change_nid >= 0) {
1647 		kswapd_stop(node);
1648 		kcompactd_stop(node);
1649 	}
1650 
1651 	vm_total_pages = nr_free_pagecache_pages();
1652 	writeback_set_ratelimit();
1653 
1654 	memory_notify(MEM_OFFLINE, &arg);
1655 	mem_hotplug_done();
1656 	return 0;
1657 
1658 failed_removal_isolated:
1659 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1660 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1661 failed_removal:
1662 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1663 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1664 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1665 		 reason);
1666 	/* pushback to free area */
1667 	mem_hotplug_done();
1668 	return ret;
1669 }
1670 
1671 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1672 {
1673 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1674 }
1675 #endif /* CONFIG_MEMORY_HOTREMOVE */
1676 
1677 /**
1678  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1679  * @start_pfn: start pfn of the memory range
1680  * @end_pfn: end pfn of the memory range
1681  * @arg: argument passed to func
1682  * @func: callback for each memory section walked
1683  *
1684  * This function walks through all present mem sections in range
1685  * [start_pfn, end_pfn) and call func on each mem section.
1686  *
1687  * Returns the return value of func.
1688  */
1689 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1690 		void *arg, int (*func)(struct memory_block *, void *))
1691 {
1692 	struct memory_block *mem = NULL;
1693 	struct mem_section *section;
1694 	unsigned long pfn, section_nr;
1695 	int ret;
1696 
1697 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1698 		section_nr = pfn_to_section_nr(pfn);
1699 		if (!present_section_nr(section_nr))
1700 			continue;
1701 
1702 		section = __nr_to_section(section_nr);
1703 		/* same memblock? */
1704 		if (mem)
1705 			if ((section_nr >= mem->start_section_nr) &&
1706 			    (section_nr <= mem->end_section_nr))
1707 				continue;
1708 
1709 		mem = find_memory_block_hinted(section, mem);
1710 		if (!mem)
1711 			continue;
1712 
1713 		ret = func(mem, arg);
1714 		if (ret) {
1715 			kobject_put(&mem->dev.kobj);
1716 			return ret;
1717 		}
1718 	}
1719 
1720 	if (mem)
1721 		kobject_put(&mem->dev.kobj);
1722 
1723 	return 0;
1724 }
1725 
1726 #ifdef CONFIG_MEMORY_HOTREMOVE
1727 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1728 {
1729 	int ret = !is_memblock_offlined(mem);
1730 
1731 	if (unlikely(ret)) {
1732 		phys_addr_t beginpa, endpa;
1733 
1734 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1735 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1736 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1737 			&beginpa, &endpa);
1738 	}
1739 
1740 	return ret;
1741 }
1742 
1743 static int check_cpu_on_node(pg_data_t *pgdat)
1744 {
1745 	int cpu;
1746 
1747 	for_each_present_cpu(cpu) {
1748 		if (cpu_to_node(cpu) == pgdat->node_id)
1749 			/*
1750 			 * the cpu on this node isn't removed, and we can't
1751 			 * offline this node.
1752 			 */
1753 			return -EBUSY;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /**
1760  * try_offline_node
1761  * @nid: the node ID
1762  *
1763  * Offline a node if all memory sections and cpus of the node are removed.
1764  *
1765  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1766  * and online/offline operations before this call.
1767  */
1768 void try_offline_node(int nid)
1769 {
1770 	pg_data_t *pgdat = NODE_DATA(nid);
1771 	unsigned long start_pfn = pgdat->node_start_pfn;
1772 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1773 	unsigned long pfn;
1774 
1775 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1776 		unsigned long section_nr = pfn_to_section_nr(pfn);
1777 
1778 		if (!present_section_nr(section_nr))
1779 			continue;
1780 
1781 		if (pfn_to_nid(pfn) != nid)
1782 			continue;
1783 
1784 		/*
1785 		 * some memory sections of this node are not removed, and we
1786 		 * can't offline node now.
1787 		 */
1788 		return;
1789 	}
1790 
1791 	if (check_cpu_on_node(pgdat))
1792 		return;
1793 
1794 	/*
1795 	 * all memory/cpu of this node are removed, we can offline this
1796 	 * node now.
1797 	 */
1798 	node_set_offline(nid);
1799 	unregister_one_node(nid);
1800 }
1801 EXPORT_SYMBOL(try_offline_node);
1802 
1803 static void __release_memory_resource(resource_size_t start,
1804 				      resource_size_t size)
1805 {
1806 	int ret;
1807 
1808 	/*
1809 	 * When removing memory in the same granularity as it was added,
1810 	 * this function never fails. It might only fail if resources
1811 	 * have to be adjusted or split. We'll ignore the error, as
1812 	 * removing of memory cannot fail.
1813 	 */
1814 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1815 	if (ret) {
1816 		resource_size_t endres = start + size - 1;
1817 
1818 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1819 			&start, &endres, ret);
1820 	}
1821 }
1822 
1823 /**
1824  * remove_memory
1825  * @nid: the node ID
1826  * @start: physical address of the region to remove
1827  * @size: size of the region to remove
1828  *
1829  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1830  * and online/offline operations before this call, as required by
1831  * try_offline_node().
1832  */
1833 void __ref __remove_memory(int nid, u64 start, u64 size)
1834 {
1835 	int ret;
1836 
1837 	BUG_ON(check_hotplug_memory_range(start, size));
1838 
1839 	mem_hotplug_begin();
1840 
1841 	/*
1842 	 * All memory blocks must be offlined before removing memory.  Check
1843 	 * whether all memory blocks in question are offline and trigger a BUG()
1844 	 * if this is not the case.
1845 	 */
1846 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1847 				check_memblock_offlined_cb);
1848 	if (ret)
1849 		BUG();
1850 
1851 	/* remove memmap entry */
1852 	firmware_map_remove(start, start + size, "System RAM");
1853 	memblock_free(start, size);
1854 	memblock_remove(start, size);
1855 
1856 	arch_remove_memory(nid, start, size, NULL);
1857 	__release_memory_resource(start, size);
1858 
1859 	try_offline_node(nid);
1860 
1861 	mem_hotplug_done();
1862 }
1863 
1864 void remove_memory(int nid, u64 start, u64 size)
1865 {
1866 	lock_device_hotplug();
1867 	__remove_memory(nid, start, size);
1868 	unlock_device_hotplug();
1869 }
1870 EXPORT_SYMBOL_GPL(remove_memory);
1871 #endif /* CONFIG_MEMORY_HOTREMOVE */
1872