1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 /* 45 * online_page_callback contains pointer to current page onlining function. 46 * Initially it is generic_online_page(). If it is required it could be 47 * changed by calling set_online_page_callback() for callback registration 48 * and restore_online_page_callback() for generic callback restore. 49 */ 50 51 static void generic_online_page(struct page *page, unsigned int order); 52 53 static online_page_callback_t online_page_callback = generic_online_page; 54 static DEFINE_MUTEX(online_page_callback_lock); 55 56 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 57 58 void get_online_mems(void) 59 { 60 percpu_down_read(&mem_hotplug_lock); 61 } 62 63 void put_online_mems(void) 64 { 65 percpu_up_read(&mem_hotplug_lock); 66 } 67 68 bool movable_node_enabled = false; 69 70 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 71 bool memhp_auto_online; 72 #else 73 bool memhp_auto_online = true; 74 #endif 75 EXPORT_SYMBOL_GPL(memhp_auto_online); 76 77 static int __init setup_memhp_default_state(char *str) 78 { 79 if (!strcmp(str, "online")) 80 memhp_auto_online = true; 81 else if (!strcmp(str, "offline")) 82 memhp_auto_online = false; 83 84 return 1; 85 } 86 __setup("memhp_default_state=", setup_memhp_default_state); 87 88 void mem_hotplug_begin(void) 89 { 90 cpus_read_lock(); 91 percpu_down_write(&mem_hotplug_lock); 92 } 93 94 void mem_hotplug_done(void) 95 { 96 percpu_up_write(&mem_hotplug_lock); 97 cpus_read_unlock(); 98 } 99 100 u64 max_mem_size = U64_MAX; 101 102 /* add this memory to iomem resource */ 103 static struct resource *register_memory_resource(u64 start, u64 size) 104 { 105 struct resource *res; 106 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 107 char *resource_name = "System RAM"; 108 109 if (start + size > max_mem_size) 110 return ERR_PTR(-E2BIG); 111 112 /* 113 * Request ownership of the new memory range. This might be 114 * a child of an existing resource that was present but 115 * not marked as busy. 116 */ 117 res = __request_region(&iomem_resource, start, size, 118 resource_name, flags); 119 120 if (!res) { 121 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 122 start, start + size); 123 return ERR_PTR(-EEXIST); 124 } 125 return res; 126 } 127 128 static void release_memory_resource(struct resource *res) 129 { 130 if (!res) 131 return; 132 release_resource(res); 133 kfree(res); 134 return; 135 } 136 137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 138 void get_page_bootmem(unsigned long info, struct page *page, 139 unsigned long type) 140 { 141 page->freelist = (void *)type; 142 SetPagePrivate(page); 143 set_page_private(page, info); 144 page_ref_inc(page); 145 } 146 147 void put_page_bootmem(struct page *page) 148 { 149 unsigned long type; 150 151 type = (unsigned long) page->freelist; 152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 154 155 if (page_ref_dec_return(page) == 1) { 156 page->freelist = NULL; 157 ClearPagePrivate(page); 158 set_page_private(page, 0); 159 INIT_LIST_HEAD(&page->lru); 160 free_reserved_page(page); 161 } 162 } 163 164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 165 #ifndef CONFIG_SPARSEMEM_VMEMMAP 166 static void register_page_bootmem_info_section(unsigned long start_pfn) 167 { 168 unsigned long *usemap, mapsize, section_nr, i; 169 struct mem_section *ms; 170 struct page *page, *memmap; 171 172 section_nr = pfn_to_section_nr(start_pfn); 173 ms = __nr_to_section(section_nr); 174 175 /* Get section's memmap address */ 176 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 177 178 /* 179 * Get page for the memmap's phys address 180 * XXX: need more consideration for sparse_vmemmap... 181 */ 182 page = virt_to_page(memmap); 183 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 184 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 185 186 /* remember memmap's page */ 187 for (i = 0; i < mapsize; i++, page++) 188 get_page_bootmem(section_nr, page, SECTION_INFO); 189 190 usemap = ms->pageblock_flags; 191 page = virt_to_page(usemap); 192 193 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 194 195 for (i = 0; i < mapsize; i++, page++) 196 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 197 198 } 199 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 200 static void register_page_bootmem_info_section(unsigned long start_pfn) 201 { 202 unsigned long *usemap, mapsize, section_nr, i; 203 struct mem_section *ms; 204 struct page *page, *memmap; 205 206 section_nr = pfn_to_section_nr(start_pfn); 207 ms = __nr_to_section(section_nr); 208 209 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 210 211 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 212 213 usemap = ms->pageblock_flags; 214 page = virt_to_page(usemap); 215 216 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 217 218 for (i = 0; i < mapsize; i++, page++) 219 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 220 } 221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 222 223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 224 { 225 unsigned long i, pfn, end_pfn, nr_pages; 226 int node = pgdat->node_id; 227 struct page *page; 228 229 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 230 page = virt_to_page(pgdat); 231 232 for (i = 0; i < nr_pages; i++, page++) 233 get_page_bootmem(node, page, NODE_INFO); 234 235 pfn = pgdat->node_start_pfn; 236 end_pfn = pgdat_end_pfn(pgdat); 237 238 /* register section info */ 239 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 240 /* 241 * Some platforms can assign the same pfn to multiple nodes - on 242 * node0 as well as nodeN. To avoid registering a pfn against 243 * multiple nodes we check that this pfn does not already 244 * reside in some other nodes. 245 */ 246 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 247 register_page_bootmem_info_section(pfn); 248 } 249 } 250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 251 252 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 253 struct vmem_altmap *altmap, bool want_memblock) 254 { 255 int ret; 256 257 if (pfn_valid(phys_start_pfn)) 258 return -EEXIST; 259 260 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 261 if (ret < 0) 262 return ret; 263 264 if (!want_memblock) 265 return 0; 266 267 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 268 } 269 270 /* 271 * Reasonably generic function for adding memory. It is 272 * expected that archs that support memory hotplug will 273 * call this function after deciding the zone to which to 274 * add the new pages. 275 */ 276 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 277 unsigned long nr_pages, struct mhp_restrictions *restrictions) 278 { 279 unsigned long i; 280 int err = 0; 281 int start_sec, end_sec; 282 struct vmem_altmap *altmap = restrictions->altmap; 283 284 /* during initialize mem_map, align hot-added range to section */ 285 start_sec = pfn_to_section_nr(phys_start_pfn); 286 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 287 288 if (altmap) { 289 /* 290 * Validate altmap is within bounds of the total request 291 */ 292 if (altmap->base_pfn != phys_start_pfn 293 || vmem_altmap_offset(altmap) > nr_pages) { 294 pr_warn_once("memory add fail, invalid altmap\n"); 295 err = -EINVAL; 296 goto out; 297 } 298 altmap->alloc = 0; 299 } 300 301 for (i = start_sec; i <= end_sec; i++) { 302 err = __add_section(nid, section_nr_to_pfn(i), altmap, 303 restrictions->flags & MHP_MEMBLOCK_API); 304 305 /* 306 * EEXIST is finally dealt with by ioresource collision 307 * check. see add_memory() => register_memory_resource() 308 * Warning will be printed if there is collision. 309 */ 310 if (err && (err != -EEXIST)) 311 break; 312 err = 0; 313 cond_resched(); 314 } 315 vmemmap_populate_print_last(); 316 out: 317 return err; 318 } 319 320 #ifdef CONFIG_MEMORY_HOTREMOVE 321 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 322 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 323 unsigned long start_pfn, 324 unsigned long end_pfn) 325 { 326 struct mem_section *ms; 327 328 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 329 ms = __pfn_to_section(start_pfn); 330 331 if (unlikely(!valid_section(ms))) 332 continue; 333 334 if (unlikely(pfn_to_nid(start_pfn) != nid)) 335 continue; 336 337 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 338 continue; 339 340 return start_pfn; 341 } 342 343 return 0; 344 } 345 346 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 347 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 348 unsigned long start_pfn, 349 unsigned long end_pfn) 350 { 351 struct mem_section *ms; 352 unsigned long pfn; 353 354 /* pfn is the end pfn of a memory section. */ 355 pfn = end_pfn - 1; 356 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 357 ms = __pfn_to_section(pfn); 358 359 if (unlikely(!valid_section(ms))) 360 continue; 361 362 if (unlikely(pfn_to_nid(pfn) != nid)) 363 continue; 364 365 if (zone && zone != page_zone(pfn_to_page(pfn))) 366 continue; 367 368 return pfn; 369 } 370 371 return 0; 372 } 373 374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 375 unsigned long end_pfn) 376 { 377 unsigned long zone_start_pfn = zone->zone_start_pfn; 378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 379 unsigned long zone_end_pfn = z; 380 unsigned long pfn; 381 struct mem_section *ms; 382 int nid = zone_to_nid(zone); 383 384 zone_span_writelock(zone); 385 if (zone_start_pfn == start_pfn) { 386 /* 387 * If the section is smallest section in the zone, it need 388 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 389 * In this case, we find second smallest valid mem_section 390 * for shrinking zone. 391 */ 392 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 393 zone_end_pfn); 394 if (pfn) { 395 zone->zone_start_pfn = pfn; 396 zone->spanned_pages = zone_end_pfn - pfn; 397 } 398 } else if (zone_end_pfn == end_pfn) { 399 /* 400 * If the section is biggest section in the zone, it need 401 * shrink zone->spanned_pages. 402 * In this case, we find second biggest valid mem_section for 403 * shrinking zone. 404 */ 405 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 406 start_pfn); 407 if (pfn) 408 zone->spanned_pages = pfn - zone_start_pfn + 1; 409 } 410 411 /* 412 * The section is not biggest or smallest mem_section in the zone, it 413 * only creates a hole in the zone. So in this case, we need not 414 * change the zone. But perhaps, the zone has only hole data. Thus 415 * it check the zone has only hole or not. 416 */ 417 pfn = zone_start_pfn; 418 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 419 ms = __pfn_to_section(pfn); 420 421 if (unlikely(!valid_section(ms))) 422 continue; 423 424 if (page_zone(pfn_to_page(pfn)) != zone) 425 continue; 426 427 /* If the section is current section, it continues the loop */ 428 if (start_pfn == pfn) 429 continue; 430 431 /* If we find valid section, we have nothing to do */ 432 zone_span_writeunlock(zone); 433 return; 434 } 435 436 /* The zone has no valid section */ 437 zone->zone_start_pfn = 0; 438 zone->spanned_pages = 0; 439 zone_span_writeunlock(zone); 440 } 441 442 static void shrink_pgdat_span(struct pglist_data *pgdat, 443 unsigned long start_pfn, unsigned long end_pfn) 444 { 445 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 446 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 447 unsigned long pgdat_end_pfn = p; 448 unsigned long pfn; 449 struct mem_section *ms; 450 int nid = pgdat->node_id; 451 452 if (pgdat_start_pfn == start_pfn) { 453 /* 454 * If the section is smallest section in the pgdat, it need 455 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 456 * In this case, we find second smallest valid mem_section 457 * for shrinking zone. 458 */ 459 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 460 pgdat_end_pfn); 461 if (pfn) { 462 pgdat->node_start_pfn = pfn; 463 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 464 } 465 } else if (pgdat_end_pfn == end_pfn) { 466 /* 467 * If the section is biggest section in the pgdat, it need 468 * shrink pgdat->node_spanned_pages. 469 * In this case, we find second biggest valid mem_section for 470 * shrinking zone. 471 */ 472 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 473 start_pfn); 474 if (pfn) 475 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 476 } 477 478 /* 479 * If the section is not biggest or smallest mem_section in the pgdat, 480 * it only creates a hole in the pgdat. So in this case, we need not 481 * change the pgdat. 482 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 483 * has only hole or not. 484 */ 485 pfn = pgdat_start_pfn; 486 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 487 ms = __pfn_to_section(pfn); 488 489 if (unlikely(!valid_section(ms))) 490 continue; 491 492 if (pfn_to_nid(pfn) != nid) 493 continue; 494 495 /* If the section is current section, it continues the loop */ 496 if (start_pfn == pfn) 497 continue; 498 499 /* If we find valid section, we have nothing to do */ 500 return; 501 } 502 503 /* The pgdat has no valid section */ 504 pgdat->node_start_pfn = 0; 505 pgdat->node_spanned_pages = 0; 506 } 507 508 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 509 { 510 struct pglist_data *pgdat = zone->zone_pgdat; 511 int nr_pages = PAGES_PER_SECTION; 512 unsigned long flags; 513 514 pgdat_resize_lock(zone->zone_pgdat, &flags); 515 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 516 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 517 pgdat_resize_unlock(zone->zone_pgdat, &flags); 518 } 519 520 static void __remove_section(struct zone *zone, struct mem_section *ms, 521 unsigned long map_offset, 522 struct vmem_altmap *altmap) 523 { 524 unsigned long start_pfn; 525 int scn_nr; 526 527 if (WARN_ON_ONCE(!valid_section(ms))) 528 return; 529 530 unregister_memory_section(ms); 531 532 scn_nr = __section_nr(ms); 533 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 534 __remove_zone(zone, start_pfn); 535 536 sparse_remove_one_section(zone, ms, map_offset, altmap); 537 } 538 539 /** 540 * __remove_pages() - remove sections of pages from a zone 541 * @zone: zone from which pages need to be removed 542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 543 * @nr_pages: number of pages to remove (must be multiple of section size) 544 * @altmap: alternative device page map or %NULL if default memmap is used 545 * 546 * Generic helper function to remove section mappings and sysfs entries 547 * for the section of the memory we are removing. Caller needs to make 548 * sure that pages are marked reserved and zones are adjust properly by 549 * calling offline_pages(). 550 */ 551 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 552 unsigned long nr_pages, struct vmem_altmap *altmap) 553 { 554 unsigned long i; 555 unsigned long map_offset = 0; 556 int sections_to_remove; 557 558 /* In the ZONE_DEVICE case device driver owns the memory region */ 559 if (is_dev_zone(zone)) { 560 if (altmap) 561 map_offset = vmem_altmap_offset(altmap); 562 } 563 564 clear_zone_contiguous(zone); 565 566 /* 567 * We can only remove entire sections 568 */ 569 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 570 BUG_ON(nr_pages % PAGES_PER_SECTION); 571 572 sections_to_remove = nr_pages / PAGES_PER_SECTION; 573 for (i = 0; i < sections_to_remove; i++) { 574 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 575 576 cond_resched(); 577 __remove_section(zone, __pfn_to_section(pfn), map_offset, 578 altmap); 579 map_offset = 0; 580 } 581 582 set_zone_contiguous(zone); 583 } 584 #endif /* CONFIG_MEMORY_HOTREMOVE */ 585 586 int set_online_page_callback(online_page_callback_t callback) 587 { 588 int rc = -EINVAL; 589 590 get_online_mems(); 591 mutex_lock(&online_page_callback_lock); 592 593 if (online_page_callback == generic_online_page) { 594 online_page_callback = callback; 595 rc = 0; 596 } 597 598 mutex_unlock(&online_page_callback_lock); 599 put_online_mems(); 600 601 return rc; 602 } 603 EXPORT_SYMBOL_GPL(set_online_page_callback); 604 605 int restore_online_page_callback(online_page_callback_t callback) 606 { 607 int rc = -EINVAL; 608 609 get_online_mems(); 610 mutex_lock(&online_page_callback_lock); 611 612 if (online_page_callback == callback) { 613 online_page_callback = generic_online_page; 614 rc = 0; 615 } 616 617 mutex_unlock(&online_page_callback_lock); 618 put_online_mems(); 619 620 return rc; 621 } 622 EXPORT_SYMBOL_GPL(restore_online_page_callback); 623 624 void __online_page_set_limits(struct page *page) 625 { 626 } 627 EXPORT_SYMBOL_GPL(__online_page_set_limits); 628 629 void __online_page_increment_counters(struct page *page) 630 { 631 adjust_managed_page_count(page, 1); 632 } 633 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 634 635 void __online_page_free(struct page *page) 636 { 637 __free_reserved_page(page); 638 } 639 EXPORT_SYMBOL_GPL(__online_page_free); 640 641 static void generic_online_page(struct page *page, unsigned int order) 642 { 643 kernel_map_pages(page, 1 << order, 1); 644 __free_pages_core(page, order); 645 totalram_pages_add(1UL << order); 646 #ifdef CONFIG_HIGHMEM 647 if (PageHighMem(page)) 648 totalhigh_pages_add(1UL << order); 649 #endif 650 } 651 652 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 653 { 654 unsigned long end = start + nr_pages; 655 int order, onlined_pages = 0; 656 657 while (start < end) { 658 order = min(MAX_ORDER - 1, 659 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 660 (*online_page_callback)(pfn_to_page(start), order); 661 662 onlined_pages += (1UL << order); 663 start += (1UL << order); 664 } 665 return onlined_pages; 666 } 667 668 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 669 void *arg) 670 { 671 unsigned long onlined_pages = *(unsigned long *)arg; 672 673 if (PageReserved(pfn_to_page(start_pfn))) 674 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 675 676 online_mem_sections(start_pfn, start_pfn + nr_pages); 677 678 *(unsigned long *)arg = onlined_pages; 679 return 0; 680 } 681 682 /* check which state of node_states will be changed when online memory */ 683 static void node_states_check_changes_online(unsigned long nr_pages, 684 struct zone *zone, struct memory_notify *arg) 685 { 686 int nid = zone_to_nid(zone); 687 688 arg->status_change_nid = NUMA_NO_NODE; 689 arg->status_change_nid_normal = NUMA_NO_NODE; 690 arg->status_change_nid_high = NUMA_NO_NODE; 691 692 if (!node_state(nid, N_MEMORY)) 693 arg->status_change_nid = nid; 694 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 695 arg->status_change_nid_normal = nid; 696 #ifdef CONFIG_HIGHMEM 697 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 698 arg->status_change_nid_high = nid; 699 #endif 700 } 701 702 static void node_states_set_node(int node, struct memory_notify *arg) 703 { 704 if (arg->status_change_nid_normal >= 0) 705 node_set_state(node, N_NORMAL_MEMORY); 706 707 if (arg->status_change_nid_high >= 0) 708 node_set_state(node, N_HIGH_MEMORY); 709 710 if (arg->status_change_nid >= 0) 711 node_set_state(node, N_MEMORY); 712 } 713 714 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 715 unsigned long nr_pages) 716 { 717 unsigned long old_end_pfn = zone_end_pfn(zone); 718 719 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 720 zone->zone_start_pfn = start_pfn; 721 722 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 723 } 724 725 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 726 unsigned long nr_pages) 727 { 728 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 729 730 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 731 pgdat->node_start_pfn = start_pfn; 732 733 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 734 } 735 736 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 737 unsigned long nr_pages, struct vmem_altmap *altmap) 738 { 739 struct pglist_data *pgdat = zone->zone_pgdat; 740 int nid = pgdat->node_id; 741 unsigned long flags; 742 743 clear_zone_contiguous(zone); 744 745 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 746 pgdat_resize_lock(pgdat, &flags); 747 zone_span_writelock(zone); 748 if (zone_is_empty(zone)) 749 init_currently_empty_zone(zone, start_pfn, nr_pages); 750 resize_zone_range(zone, start_pfn, nr_pages); 751 zone_span_writeunlock(zone); 752 resize_pgdat_range(pgdat, start_pfn, nr_pages); 753 pgdat_resize_unlock(pgdat, &flags); 754 755 /* 756 * TODO now we have a visible range of pages which are not associated 757 * with their zone properly. Not nice but set_pfnblock_flags_mask 758 * expects the zone spans the pfn range. All the pages in the range 759 * are reserved so nobody should be touching them so we should be safe 760 */ 761 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 762 MEMMAP_HOTPLUG, altmap); 763 764 set_zone_contiguous(zone); 765 } 766 767 /* 768 * Returns a default kernel memory zone for the given pfn range. 769 * If no kernel zone covers this pfn range it will automatically go 770 * to the ZONE_NORMAL. 771 */ 772 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 773 unsigned long nr_pages) 774 { 775 struct pglist_data *pgdat = NODE_DATA(nid); 776 int zid; 777 778 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 779 struct zone *zone = &pgdat->node_zones[zid]; 780 781 if (zone_intersects(zone, start_pfn, nr_pages)) 782 return zone; 783 } 784 785 return &pgdat->node_zones[ZONE_NORMAL]; 786 } 787 788 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 789 unsigned long nr_pages) 790 { 791 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 792 nr_pages); 793 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 794 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 795 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 796 797 /* 798 * We inherit the existing zone in a simple case where zones do not 799 * overlap in the given range 800 */ 801 if (in_kernel ^ in_movable) 802 return (in_kernel) ? kernel_zone : movable_zone; 803 804 /* 805 * If the range doesn't belong to any zone or two zones overlap in the 806 * given range then we use movable zone only if movable_node is 807 * enabled because we always online to a kernel zone by default. 808 */ 809 return movable_node_enabled ? movable_zone : kernel_zone; 810 } 811 812 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 813 unsigned long nr_pages) 814 { 815 if (online_type == MMOP_ONLINE_KERNEL) 816 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 817 818 if (online_type == MMOP_ONLINE_MOVABLE) 819 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 820 821 return default_zone_for_pfn(nid, start_pfn, nr_pages); 822 } 823 824 /* 825 * Associates the given pfn range with the given node and the zone appropriate 826 * for the given online type. 827 */ 828 static struct zone * __meminit move_pfn_range(int online_type, int nid, 829 unsigned long start_pfn, unsigned long nr_pages) 830 { 831 struct zone *zone; 832 833 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 834 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 835 return zone; 836 } 837 838 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 839 { 840 unsigned long flags; 841 unsigned long onlined_pages = 0; 842 struct zone *zone; 843 int need_zonelists_rebuild = 0; 844 int nid; 845 int ret; 846 struct memory_notify arg; 847 struct memory_block *mem; 848 849 mem_hotplug_begin(); 850 851 /* 852 * We can't use pfn_to_nid() because nid might be stored in struct page 853 * which is not yet initialized. Instead, we find nid from memory block. 854 */ 855 mem = find_memory_block(__pfn_to_section(pfn)); 856 nid = mem->nid; 857 put_device(&mem->dev); 858 859 /* associate pfn range with the zone */ 860 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 861 862 arg.start_pfn = pfn; 863 arg.nr_pages = nr_pages; 864 node_states_check_changes_online(nr_pages, zone, &arg); 865 866 ret = memory_notify(MEM_GOING_ONLINE, &arg); 867 ret = notifier_to_errno(ret); 868 if (ret) 869 goto failed_addition; 870 871 /* 872 * If this zone is not populated, then it is not in zonelist. 873 * This means the page allocator ignores this zone. 874 * So, zonelist must be updated after online. 875 */ 876 if (!populated_zone(zone)) { 877 need_zonelists_rebuild = 1; 878 setup_zone_pageset(zone); 879 } 880 881 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 882 online_pages_range); 883 if (ret) { 884 if (need_zonelists_rebuild) 885 zone_pcp_reset(zone); 886 goto failed_addition; 887 } 888 889 zone->present_pages += onlined_pages; 890 891 pgdat_resize_lock(zone->zone_pgdat, &flags); 892 zone->zone_pgdat->node_present_pages += onlined_pages; 893 pgdat_resize_unlock(zone->zone_pgdat, &flags); 894 895 shuffle_zone(zone); 896 897 if (onlined_pages) { 898 node_states_set_node(nid, &arg); 899 if (need_zonelists_rebuild) 900 build_all_zonelists(NULL); 901 else 902 zone_pcp_update(zone); 903 } 904 905 init_per_zone_wmark_min(); 906 907 if (onlined_pages) { 908 kswapd_run(nid); 909 kcompactd_run(nid); 910 } 911 912 vm_total_pages = nr_free_pagecache_pages(); 913 914 writeback_set_ratelimit(); 915 916 if (onlined_pages) 917 memory_notify(MEM_ONLINE, &arg); 918 mem_hotplug_done(); 919 return 0; 920 921 failed_addition: 922 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 923 (unsigned long long) pfn << PAGE_SHIFT, 924 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 925 memory_notify(MEM_CANCEL_ONLINE, &arg); 926 mem_hotplug_done(); 927 return ret; 928 } 929 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 930 931 static void reset_node_present_pages(pg_data_t *pgdat) 932 { 933 struct zone *z; 934 935 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 936 z->present_pages = 0; 937 938 pgdat->node_present_pages = 0; 939 } 940 941 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 942 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 943 { 944 struct pglist_data *pgdat; 945 unsigned long start_pfn = PFN_DOWN(start); 946 947 pgdat = NODE_DATA(nid); 948 if (!pgdat) { 949 pgdat = arch_alloc_nodedata(nid); 950 if (!pgdat) 951 return NULL; 952 953 arch_refresh_nodedata(nid, pgdat); 954 } else { 955 /* 956 * Reset the nr_zones, order and classzone_idx before reuse. 957 * Note that kswapd will init kswapd_classzone_idx properly 958 * when it starts in the near future. 959 */ 960 pgdat->nr_zones = 0; 961 pgdat->kswapd_order = 0; 962 pgdat->kswapd_classzone_idx = 0; 963 } 964 965 /* we can use NODE_DATA(nid) from here */ 966 967 pgdat->node_id = nid; 968 pgdat->node_start_pfn = start_pfn; 969 970 /* init node's zones as empty zones, we don't have any present pages.*/ 971 free_area_init_core_hotplug(nid); 972 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 973 974 /* 975 * The node we allocated has no zone fallback lists. For avoiding 976 * to access not-initialized zonelist, build here. 977 */ 978 build_all_zonelists(pgdat); 979 980 /* 981 * When memory is hot-added, all the memory is in offline state. So 982 * clear all zones' present_pages because they will be updated in 983 * online_pages() and offline_pages(). 984 */ 985 reset_node_managed_pages(pgdat); 986 reset_node_present_pages(pgdat); 987 988 return pgdat; 989 } 990 991 static void rollback_node_hotadd(int nid) 992 { 993 pg_data_t *pgdat = NODE_DATA(nid); 994 995 arch_refresh_nodedata(nid, NULL); 996 free_percpu(pgdat->per_cpu_nodestats); 997 arch_free_nodedata(pgdat); 998 return; 999 } 1000 1001 1002 /** 1003 * try_online_node - online a node if offlined 1004 * @nid: the node ID 1005 * @start: start addr of the node 1006 * @set_node_online: Whether we want to online the node 1007 * called by cpu_up() to online a node without onlined memory. 1008 * 1009 * Returns: 1010 * 1 -> a new node has been allocated 1011 * 0 -> the node is already online 1012 * -ENOMEM -> the node could not be allocated 1013 */ 1014 static int __try_online_node(int nid, u64 start, bool set_node_online) 1015 { 1016 pg_data_t *pgdat; 1017 int ret = 1; 1018 1019 if (node_online(nid)) 1020 return 0; 1021 1022 pgdat = hotadd_new_pgdat(nid, start); 1023 if (!pgdat) { 1024 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1025 ret = -ENOMEM; 1026 goto out; 1027 } 1028 1029 if (set_node_online) { 1030 node_set_online(nid); 1031 ret = register_one_node(nid); 1032 BUG_ON(ret); 1033 } 1034 out: 1035 return ret; 1036 } 1037 1038 /* 1039 * Users of this function always want to online/register the node 1040 */ 1041 int try_online_node(int nid) 1042 { 1043 int ret; 1044 1045 mem_hotplug_begin(); 1046 ret = __try_online_node(nid, 0, true); 1047 mem_hotplug_done(); 1048 return ret; 1049 } 1050 1051 static int check_hotplug_memory_range(u64 start, u64 size) 1052 { 1053 unsigned long block_sz = memory_block_size_bytes(); 1054 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1055 u64 nr_pages = size >> PAGE_SHIFT; 1056 u64 start_pfn = PFN_DOWN(start); 1057 1058 /* memory range must be block size aligned */ 1059 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1060 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1061 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1062 block_sz, start, size); 1063 return -EINVAL; 1064 } 1065 1066 return 0; 1067 } 1068 1069 static int online_memory_block(struct memory_block *mem, void *arg) 1070 { 1071 return device_online(&mem->dev); 1072 } 1073 1074 /* 1075 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1076 * and online/offline operations (triggered e.g. by sysfs). 1077 * 1078 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1079 */ 1080 int __ref add_memory_resource(int nid, struct resource *res) 1081 { 1082 struct mhp_restrictions restrictions = { 1083 .flags = MHP_MEMBLOCK_API, 1084 }; 1085 u64 start, size; 1086 bool new_node = false; 1087 int ret; 1088 1089 start = res->start; 1090 size = resource_size(res); 1091 1092 ret = check_hotplug_memory_range(start, size); 1093 if (ret) 1094 return ret; 1095 1096 mem_hotplug_begin(); 1097 1098 /* 1099 * Add new range to memblock so that when hotadd_new_pgdat() is called 1100 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1101 * this new range and calculate total pages correctly. The range will 1102 * be removed at hot-remove time. 1103 */ 1104 memblock_add_node(start, size, nid); 1105 1106 ret = __try_online_node(nid, start, false); 1107 if (ret < 0) 1108 goto error; 1109 new_node = ret; 1110 1111 /* call arch's memory hotadd */ 1112 ret = arch_add_memory(nid, start, size, &restrictions); 1113 if (ret < 0) 1114 goto error; 1115 1116 if (new_node) { 1117 /* If sysfs file of new node can't be created, cpu on the node 1118 * can't be hot-added. There is no rollback way now. 1119 * So, check by BUG_ON() to catch it reluctantly.. 1120 * We online node here. We can't roll back from here. 1121 */ 1122 node_set_online(nid); 1123 ret = __register_one_node(nid); 1124 BUG_ON(ret); 1125 } 1126 1127 /* link memory sections under this node.*/ 1128 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1129 BUG_ON(ret); 1130 1131 /* create new memmap entry */ 1132 firmware_map_add_hotplug(start, start + size, "System RAM"); 1133 1134 /* device_online() will take the lock when calling online_pages() */ 1135 mem_hotplug_done(); 1136 1137 /* online pages if requested */ 1138 if (memhp_auto_online) 1139 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1140 NULL, online_memory_block); 1141 1142 return ret; 1143 error: 1144 /* rollback pgdat allocation and others */ 1145 if (new_node) 1146 rollback_node_hotadd(nid); 1147 memblock_remove(start, size); 1148 mem_hotplug_done(); 1149 return ret; 1150 } 1151 1152 /* requires device_hotplug_lock, see add_memory_resource() */ 1153 int __ref __add_memory(int nid, u64 start, u64 size) 1154 { 1155 struct resource *res; 1156 int ret; 1157 1158 res = register_memory_resource(start, size); 1159 if (IS_ERR(res)) 1160 return PTR_ERR(res); 1161 1162 ret = add_memory_resource(nid, res); 1163 if (ret < 0) 1164 release_memory_resource(res); 1165 return ret; 1166 } 1167 1168 int add_memory(int nid, u64 start, u64 size) 1169 { 1170 int rc; 1171 1172 lock_device_hotplug(); 1173 rc = __add_memory(nid, start, size); 1174 unlock_device_hotplug(); 1175 1176 return rc; 1177 } 1178 EXPORT_SYMBOL_GPL(add_memory); 1179 1180 #ifdef CONFIG_MEMORY_HOTREMOVE 1181 /* 1182 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1183 * set and the size of the free page is given by page_order(). Using this, 1184 * the function determines if the pageblock contains only free pages. 1185 * Due to buddy contraints, a free page at least the size of a pageblock will 1186 * be located at the start of the pageblock 1187 */ 1188 static inline int pageblock_free(struct page *page) 1189 { 1190 return PageBuddy(page) && page_order(page) >= pageblock_order; 1191 } 1192 1193 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1194 static unsigned long next_active_pageblock(unsigned long pfn) 1195 { 1196 struct page *page = pfn_to_page(pfn); 1197 1198 /* Ensure the starting page is pageblock-aligned */ 1199 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1200 1201 /* If the entire pageblock is free, move to the end of free page */ 1202 if (pageblock_free(page)) { 1203 int order; 1204 /* be careful. we don't have locks, page_order can be changed.*/ 1205 order = page_order(page); 1206 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1207 return pfn + (1 << order); 1208 } 1209 1210 return pfn + pageblock_nr_pages; 1211 } 1212 1213 static bool is_pageblock_removable_nolock(unsigned long pfn) 1214 { 1215 struct page *page = pfn_to_page(pfn); 1216 struct zone *zone; 1217 1218 /* 1219 * We have to be careful here because we are iterating over memory 1220 * sections which are not zone aware so we might end up outside of 1221 * the zone but still within the section. 1222 * We have to take care about the node as well. If the node is offline 1223 * its NODE_DATA will be NULL - see page_zone. 1224 */ 1225 if (!node_online(page_to_nid(page))) 1226 return false; 1227 1228 zone = page_zone(page); 1229 pfn = page_to_pfn(page); 1230 if (!zone_spans_pfn(zone, pfn)) 1231 return false; 1232 1233 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1234 } 1235 1236 /* Checks if this range of memory is likely to be hot-removable. */ 1237 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1238 { 1239 unsigned long end_pfn, pfn; 1240 1241 end_pfn = min(start_pfn + nr_pages, 1242 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1243 1244 /* Check the starting page of each pageblock within the range */ 1245 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1246 if (!is_pageblock_removable_nolock(pfn)) 1247 return false; 1248 cond_resched(); 1249 } 1250 1251 /* All pageblocks in the memory block are likely to be hot-removable */ 1252 return true; 1253 } 1254 1255 /* 1256 * Confirm all pages in a range [start, end) belong to the same zone. 1257 * When true, return its valid [start, end). 1258 */ 1259 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1260 unsigned long *valid_start, unsigned long *valid_end) 1261 { 1262 unsigned long pfn, sec_end_pfn; 1263 unsigned long start, end; 1264 struct zone *zone = NULL; 1265 struct page *page; 1266 int i; 1267 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1268 pfn < end_pfn; 1269 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1270 /* Make sure the memory section is present first */ 1271 if (!present_section_nr(pfn_to_section_nr(pfn))) 1272 continue; 1273 for (; pfn < sec_end_pfn && pfn < end_pfn; 1274 pfn += MAX_ORDER_NR_PAGES) { 1275 i = 0; 1276 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1277 while ((i < MAX_ORDER_NR_PAGES) && 1278 !pfn_valid_within(pfn + i)) 1279 i++; 1280 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1281 continue; 1282 /* Check if we got outside of the zone */ 1283 if (zone && !zone_spans_pfn(zone, pfn + i)) 1284 return 0; 1285 page = pfn_to_page(pfn + i); 1286 if (zone && page_zone(page) != zone) 1287 return 0; 1288 if (!zone) 1289 start = pfn + i; 1290 zone = page_zone(page); 1291 end = pfn + MAX_ORDER_NR_PAGES; 1292 } 1293 } 1294 1295 if (zone) { 1296 *valid_start = start; 1297 *valid_end = min(end, end_pfn); 1298 return 1; 1299 } else { 1300 return 0; 1301 } 1302 } 1303 1304 /* 1305 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1306 * non-lru movable pages and hugepages). We scan pfn because it's much 1307 * easier than scanning over linked list. This function returns the pfn 1308 * of the first found movable page if it's found, otherwise 0. 1309 */ 1310 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1311 { 1312 unsigned long pfn; 1313 1314 for (pfn = start; pfn < end; pfn++) { 1315 struct page *page, *head; 1316 unsigned long skip; 1317 1318 if (!pfn_valid(pfn)) 1319 continue; 1320 page = pfn_to_page(pfn); 1321 if (PageLRU(page)) 1322 return pfn; 1323 if (__PageMovable(page)) 1324 return pfn; 1325 1326 if (!PageHuge(page)) 1327 continue; 1328 head = compound_head(page); 1329 if (page_huge_active(head)) 1330 return pfn; 1331 skip = (1 << compound_order(head)) - (page - head); 1332 pfn += skip - 1; 1333 } 1334 return 0; 1335 } 1336 1337 static struct page *new_node_page(struct page *page, unsigned long private) 1338 { 1339 int nid = page_to_nid(page); 1340 nodemask_t nmask = node_states[N_MEMORY]; 1341 1342 /* 1343 * try to allocate from a different node but reuse this node if there 1344 * are no other online nodes to be used (e.g. we are offlining a part 1345 * of the only existing node) 1346 */ 1347 node_clear(nid, nmask); 1348 if (nodes_empty(nmask)) 1349 node_set(nid, nmask); 1350 1351 return new_page_nodemask(page, nid, &nmask); 1352 } 1353 1354 static int 1355 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1356 { 1357 unsigned long pfn; 1358 struct page *page; 1359 int ret = 0; 1360 LIST_HEAD(source); 1361 1362 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1363 if (!pfn_valid(pfn)) 1364 continue; 1365 page = pfn_to_page(pfn); 1366 1367 if (PageHuge(page)) { 1368 struct page *head = compound_head(page); 1369 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1370 isolate_huge_page(head, &source); 1371 continue; 1372 } else if (PageTransHuge(page)) 1373 pfn = page_to_pfn(compound_head(page)) 1374 + hpage_nr_pages(page) - 1; 1375 1376 /* 1377 * HWPoison pages have elevated reference counts so the migration would 1378 * fail on them. It also doesn't make any sense to migrate them in the 1379 * first place. Still try to unmap such a page in case it is still mapped 1380 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1381 * the unmap as the catch all safety net). 1382 */ 1383 if (PageHWPoison(page)) { 1384 if (WARN_ON(PageLRU(page))) 1385 isolate_lru_page(page); 1386 if (page_mapped(page)) 1387 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1388 continue; 1389 } 1390 1391 if (!get_page_unless_zero(page)) 1392 continue; 1393 /* 1394 * We can skip free pages. And we can deal with pages on 1395 * LRU and non-lru movable pages. 1396 */ 1397 if (PageLRU(page)) 1398 ret = isolate_lru_page(page); 1399 else 1400 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1401 if (!ret) { /* Success */ 1402 list_add_tail(&page->lru, &source); 1403 if (!__PageMovable(page)) 1404 inc_node_page_state(page, NR_ISOLATED_ANON + 1405 page_is_file_cache(page)); 1406 1407 } else { 1408 pr_warn("failed to isolate pfn %lx\n", pfn); 1409 dump_page(page, "isolation failed"); 1410 } 1411 put_page(page); 1412 } 1413 if (!list_empty(&source)) { 1414 /* Allocate a new page from the nearest neighbor node */ 1415 ret = migrate_pages(&source, new_node_page, NULL, 0, 1416 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1417 if (ret) { 1418 list_for_each_entry(page, &source, lru) { 1419 pr_warn("migrating pfn %lx failed ret:%d ", 1420 page_to_pfn(page), ret); 1421 dump_page(page, "migration failure"); 1422 } 1423 putback_movable_pages(&source); 1424 } 1425 } 1426 1427 return ret; 1428 } 1429 1430 /* 1431 * remove from free_area[] and mark all as Reserved. 1432 */ 1433 static int 1434 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1435 void *data) 1436 { 1437 unsigned long *offlined_pages = (unsigned long *)data; 1438 1439 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1440 return 0; 1441 } 1442 1443 /* 1444 * Check all pages in range, recoreded as memory resource, are isolated. 1445 */ 1446 static int 1447 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1448 void *data) 1449 { 1450 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1451 } 1452 1453 static int __init cmdline_parse_movable_node(char *p) 1454 { 1455 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1456 movable_node_enabled = true; 1457 #else 1458 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1459 #endif 1460 return 0; 1461 } 1462 early_param("movable_node", cmdline_parse_movable_node); 1463 1464 /* check which state of node_states will be changed when offline memory */ 1465 static void node_states_check_changes_offline(unsigned long nr_pages, 1466 struct zone *zone, struct memory_notify *arg) 1467 { 1468 struct pglist_data *pgdat = zone->zone_pgdat; 1469 unsigned long present_pages = 0; 1470 enum zone_type zt; 1471 1472 arg->status_change_nid = NUMA_NO_NODE; 1473 arg->status_change_nid_normal = NUMA_NO_NODE; 1474 arg->status_change_nid_high = NUMA_NO_NODE; 1475 1476 /* 1477 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1478 * If the memory to be offline is within the range 1479 * [0..ZONE_NORMAL], and it is the last present memory there, 1480 * the zones in that range will become empty after the offlining, 1481 * thus we can determine that we need to clear the node from 1482 * node_states[N_NORMAL_MEMORY]. 1483 */ 1484 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1485 present_pages += pgdat->node_zones[zt].present_pages; 1486 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1487 arg->status_change_nid_normal = zone_to_nid(zone); 1488 1489 #ifdef CONFIG_HIGHMEM 1490 /* 1491 * node_states[N_HIGH_MEMORY] contains nodes which 1492 * have normal memory or high memory. 1493 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1494 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1495 * we determine that the zones in that range become empty, 1496 * we need to clear the node for N_HIGH_MEMORY. 1497 */ 1498 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1499 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1500 arg->status_change_nid_high = zone_to_nid(zone); 1501 #endif 1502 1503 /* 1504 * We have accounted the pages from [0..ZONE_NORMAL), and 1505 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1506 * as well. 1507 * Here we count the possible pages from ZONE_MOVABLE. 1508 * If after having accounted all the pages, we see that the nr_pages 1509 * to be offlined is over or equal to the accounted pages, 1510 * we know that the node will become empty, and so, we can clear 1511 * it for N_MEMORY as well. 1512 */ 1513 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1514 1515 if (nr_pages >= present_pages) 1516 arg->status_change_nid = zone_to_nid(zone); 1517 } 1518 1519 static void node_states_clear_node(int node, struct memory_notify *arg) 1520 { 1521 if (arg->status_change_nid_normal >= 0) 1522 node_clear_state(node, N_NORMAL_MEMORY); 1523 1524 if (arg->status_change_nid_high >= 0) 1525 node_clear_state(node, N_HIGH_MEMORY); 1526 1527 if (arg->status_change_nid >= 0) 1528 node_clear_state(node, N_MEMORY); 1529 } 1530 1531 static int __ref __offline_pages(unsigned long start_pfn, 1532 unsigned long end_pfn) 1533 { 1534 unsigned long pfn, nr_pages; 1535 unsigned long offlined_pages = 0; 1536 int ret, node, nr_isolate_pageblock; 1537 unsigned long flags; 1538 unsigned long valid_start, valid_end; 1539 struct zone *zone; 1540 struct memory_notify arg; 1541 char *reason; 1542 1543 mem_hotplug_begin(); 1544 1545 /* This makes hotplug much easier...and readable. 1546 we assume this for now. .*/ 1547 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1548 &valid_end)) { 1549 ret = -EINVAL; 1550 reason = "multizone range"; 1551 goto failed_removal; 1552 } 1553 1554 zone = page_zone(pfn_to_page(valid_start)); 1555 node = zone_to_nid(zone); 1556 nr_pages = end_pfn - start_pfn; 1557 1558 /* set above range as isolated */ 1559 ret = start_isolate_page_range(start_pfn, end_pfn, 1560 MIGRATE_MOVABLE, 1561 SKIP_HWPOISON | REPORT_FAILURE); 1562 if (ret < 0) { 1563 reason = "failure to isolate range"; 1564 goto failed_removal; 1565 } 1566 nr_isolate_pageblock = ret; 1567 1568 arg.start_pfn = start_pfn; 1569 arg.nr_pages = nr_pages; 1570 node_states_check_changes_offline(nr_pages, zone, &arg); 1571 1572 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1573 ret = notifier_to_errno(ret); 1574 if (ret) { 1575 reason = "notifier failure"; 1576 goto failed_removal_isolated; 1577 } 1578 1579 do { 1580 for (pfn = start_pfn; pfn;) { 1581 if (signal_pending(current)) { 1582 ret = -EINTR; 1583 reason = "signal backoff"; 1584 goto failed_removal_isolated; 1585 } 1586 1587 cond_resched(); 1588 lru_add_drain_all(); 1589 1590 pfn = scan_movable_pages(pfn, end_pfn); 1591 if (pfn) { 1592 /* 1593 * TODO: fatal migration failures should bail 1594 * out 1595 */ 1596 do_migrate_range(pfn, end_pfn); 1597 } 1598 } 1599 1600 /* 1601 * Dissolve free hugepages in the memory block before doing 1602 * offlining actually in order to make hugetlbfs's object 1603 * counting consistent. 1604 */ 1605 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1606 if (ret) { 1607 reason = "failure to dissolve huge pages"; 1608 goto failed_removal_isolated; 1609 } 1610 /* check again */ 1611 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1612 NULL, check_pages_isolated_cb); 1613 } while (ret); 1614 1615 /* Ok, all of our target is isolated. 1616 We cannot do rollback at this point. */ 1617 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1618 &offlined_pages, offline_isolated_pages_cb); 1619 pr_info("Offlined Pages %ld\n", offlined_pages); 1620 /* 1621 * Onlining will reset pagetype flags and makes migrate type 1622 * MOVABLE, so just need to decrease the number of isolated 1623 * pageblocks zone counter here. 1624 */ 1625 spin_lock_irqsave(&zone->lock, flags); 1626 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1627 spin_unlock_irqrestore(&zone->lock, flags); 1628 1629 /* removal success */ 1630 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1631 zone->present_pages -= offlined_pages; 1632 1633 pgdat_resize_lock(zone->zone_pgdat, &flags); 1634 zone->zone_pgdat->node_present_pages -= offlined_pages; 1635 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1636 1637 init_per_zone_wmark_min(); 1638 1639 if (!populated_zone(zone)) { 1640 zone_pcp_reset(zone); 1641 build_all_zonelists(NULL); 1642 } else 1643 zone_pcp_update(zone); 1644 1645 node_states_clear_node(node, &arg); 1646 if (arg.status_change_nid >= 0) { 1647 kswapd_stop(node); 1648 kcompactd_stop(node); 1649 } 1650 1651 vm_total_pages = nr_free_pagecache_pages(); 1652 writeback_set_ratelimit(); 1653 1654 memory_notify(MEM_OFFLINE, &arg); 1655 mem_hotplug_done(); 1656 return 0; 1657 1658 failed_removal_isolated: 1659 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1660 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1661 failed_removal: 1662 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1663 (unsigned long long) start_pfn << PAGE_SHIFT, 1664 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1665 reason); 1666 /* pushback to free area */ 1667 mem_hotplug_done(); 1668 return ret; 1669 } 1670 1671 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1672 { 1673 return __offline_pages(start_pfn, start_pfn + nr_pages); 1674 } 1675 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1676 1677 /** 1678 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1679 * @start_pfn: start pfn of the memory range 1680 * @end_pfn: end pfn of the memory range 1681 * @arg: argument passed to func 1682 * @func: callback for each memory section walked 1683 * 1684 * This function walks through all present mem sections in range 1685 * [start_pfn, end_pfn) and call func on each mem section. 1686 * 1687 * Returns the return value of func. 1688 */ 1689 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1690 void *arg, int (*func)(struct memory_block *, void *)) 1691 { 1692 struct memory_block *mem = NULL; 1693 struct mem_section *section; 1694 unsigned long pfn, section_nr; 1695 int ret; 1696 1697 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1698 section_nr = pfn_to_section_nr(pfn); 1699 if (!present_section_nr(section_nr)) 1700 continue; 1701 1702 section = __nr_to_section(section_nr); 1703 /* same memblock? */ 1704 if (mem) 1705 if ((section_nr >= mem->start_section_nr) && 1706 (section_nr <= mem->end_section_nr)) 1707 continue; 1708 1709 mem = find_memory_block_hinted(section, mem); 1710 if (!mem) 1711 continue; 1712 1713 ret = func(mem, arg); 1714 if (ret) { 1715 kobject_put(&mem->dev.kobj); 1716 return ret; 1717 } 1718 } 1719 1720 if (mem) 1721 kobject_put(&mem->dev.kobj); 1722 1723 return 0; 1724 } 1725 1726 #ifdef CONFIG_MEMORY_HOTREMOVE 1727 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1728 { 1729 int ret = !is_memblock_offlined(mem); 1730 1731 if (unlikely(ret)) { 1732 phys_addr_t beginpa, endpa; 1733 1734 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1735 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1736 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1737 &beginpa, &endpa); 1738 } 1739 1740 return ret; 1741 } 1742 1743 static int check_cpu_on_node(pg_data_t *pgdat) 1744 { 1745 int cpu; 1746 1747 for_each_present_cpu(cpu) { 1748 if (cpu_to_node(cpu) == pgdat->node_id) 1749 /* 1750 * the cpu on this node isn't removed, and we can't 1751 * offline this node. 1752 */ 1753 return -EBUSY; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * try_offline_node 1761 * @nid: the node ID 1762 * 1763 * Offline a node if all memory sections and cpus of the node are removed. 1764 * 1765 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1766 * and online/offline operations before this call. 1767 */ 1768 void try_offline_node(int nid) 1769 { 1770 pg_data_t *pgdat = NODE_DATA(nid); 1771 unsigned long start_pfn = pgdat->node_start_pfn; 1772 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1773 unsigned long pfn; 1774 1775 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1776 unsigned long section_nr = pfn_to_section_nr(pfn); 1777 1778 if (!present_section_nr(section_nr)) 1779 continue; 1780 1781 if (pfn_to_nid(pfn) != nid) 1782 continue; 1783 1784 /* 1785 * some memory sections of this node are not removed, and we 1786 * can't offline node now. 1787 */ 1788 return; 1789 } 1790 1791 if (check_cpu_on_node(pgdat)) 1792 return; 1793 1794 /* 1795 * all memory/cpu of this node are removed, we can offline this 1796 * node now. 1797 */ 1798 node_set_offline(nid); 1799 unregister_one_node(nid); 1800 } 1801 EXPORT_SYMBOL(try_offline_node); 1802 1803 static void __release_memory_resource(resource_size_t start, 1804 resource_size_t size) 1805 { 1806 int ret; 1807 1808 /* 1809 * When removing memory in the same granularity as it was added, 1810 * this function never fails. It might only fail if resources 1811 * have to be adjusted or split. We'll ignore the error, as 1812 * removing of memory cannot fail. 1813 */ 1814 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1815 if (ret) { 1816 resource_size_t endres = start + size - 1; 1817 1818 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1819 &start, &endres, ret); 1820 } 1821 } 1822 1823 /** 1824 * remove_memory 1825 * @nid: the node ID 1826 * @start: physical address of the region to remove 1827 * @size: size of the region to remove 1828 * 1829 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1830 * and online/offline operations before this call, as required by 1831 * try_offline_node(). 1832 */ 1833 void __ref __remove_memory(int nid, u64 start, u64 size) 1834 { 1835 int ret; 1836 1837 BUG_ON(check_hotplug_memory_range(start, size)); 1838 1839 mem_hotplug_begin(); 1840 1841 /* 1842 * All memory blocks must be offlined before removing memory. Check 1843 * whether all memory blocks in question are offline and trigger a BUG() 1844 * if this is not the case. 1845 */ 1846 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1847 check_memblock_offlined_cb); 1848 if (ret) 1849 BUG(); 1850 1851 /* remove memmap entry */ 1852 firmware_map_remove(start, start + size, "System RAM"); 1853 memblock_free(start, size); 1854 memblock_remove(start, size); 1855 1856 arch_remove_memory(nid, start, size, NULL); 1857 __release_memory_resource(start, size); 1858 1859 try_offline_node(nid); 1860 1861 mem_hotplug_done(); 1862 } 1863 1864 void remove_memory(int nid, u64 start, u64 size) 1865 { 1866 lock_device_hotplug(); 1867 __remove_memory(nid, start, size); 1868 unlock_device_hotplug(); 1869 } 1870 EXPORT_SYMBOL_GPL(remove_memory); 1871 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1872