1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memremap.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/highmem.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/bootmem.h> 36 #include <linux/compaction.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 /* 43 * online_page_callback contains pointer to current page onlining function. 44 * Initially it is generic_online_page(). If it is required it could be 45 * changed by calling set_online_page_callback() for callback registration 46 * and restore_online_page_callback() for generic callback restore. 47 */ 48 49 static void generic_online_page(struct page *page); 50 51 static online_page_callback_t online_page_callback = generic_online_page; 52 static DEFINE_MUTEX(online_page_callback_lock); 53 54 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 55 static struct { 56 struct task_struct *active_writer; 57 struct mutex lock; /* Synchronizes accesses to refcount, */ 58 /* 59 * Also blocks the new readers during 60 * an ongoing mem hotplug operation. 61 */ 62 int refcount; 63 64 #ifdef CONFIG_DEBUG_LOCK_ALLOC 65 struct lockdep_map dep_map; 66 #endif 67 } mem_hotplug = { 68 .active_writer = NULL, 69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 70 .refcount = 0, 71 #ifdef CONFIG_DEBUG_LOCK_ALLOC 72 .dep_map = {.name = "mem_hotplug.lock" }, 73 #endif 74 }; 75 76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 78 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 79 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 80 81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 82 bool memhp_auto_online; 83 #else 84 bool memhp_auto_online = true; 85 #endif 86 EXPORT_SYMBOL_GPL(memhp_auto_online); 87 88 static int __init setup_memhp_default_state(char *str) 89 { 90 if (!strcmp(str, "online")) 91 memhp_auto_online = true; 92 else if (!strcmp(str, "offline")) 93 memhp_auto_online = false; 94 95 return 1; 96 } 97 __setup("memhp_default_state=", setup_memhp_default_state); 98 99 void get_online_mems(void) 100 { 101 might_sleep(); 102 if (mem_hotplug.active_writer == current) 103 return; 104 memhp_lock_acquire_read(); 105 mutex_lock(&mem_hotplug.lock); 106 mem_hotplug.refcount++; 107 mutex_unlock(&mem_hotplug.lock); 108 109 } 110 111 void put_online_mems(void) 112 { 113 if (mem_hotplug.active_writer == current) 114 return; 115 mutex_lock(&mem_hotplug.lock); 116 117 if (WARN_ON(!mem_hotplug.refcount)) 118 mem_hotplug.refcount++; /* try to fix things up */ 119 120 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 121 wake_up_process(mem_hotplug.active_writer); 122 mutex_unlock(&mem_hotplug.lock); 123 memhp_lock_release(); 124 125 } 126 127 void mem_hotplug_begin(void) 128 { 129 mem_hotplug.active_writer = current; 130 131 memhp_lock_acquire(); 132 for (;;) { 133 mutex_lock(&mem_hotplug.lock); 134 if (likely(!mem_hotplug.refcount)) 135 break; 136 __set_current_state(TASK_UNINTERRUPTIBLE); 137 mutex_unlock(&mem_hotplug.lock); 138 schedule(); 139 } 140 } 141 142 void mem_hotplug_done(void) 143 { 144 mem_hotplug.active_writer = NULL; 145 mutex_unlock(&mem_hotplug.lock); 146 memhp_lock_release(); 147 } 148 149 /* add this memory to iomem resource */ 150 static struct resource *register_memory_resource(u64 start, u64 size) 151 { 152 struct resource *res; 153 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 154 if (!res) 155 return ERR_PTR(-ENOMEM); 156 157 res->name = "System RAM"; 158 res->start = start; 159 res->end = start + size - 1; 160 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 161 if (request_resource(&iomem_resource, res) < 0) { 162 pr_debug("System RAM resource %pR cannot be added\n", res); 163 kfree(res); 164 return ERR_PTR(-EEXIST); 165 } 166 return res; 167 } 168 169 static void release_memory_resource(struct resource *res) 170 { 171 if (!res) 172 return; 173 release_resource(res); 174 kfree(res); 175 return; 176 } 177 178 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 179 void get_page_bootmem(unsigned long info, struct page *page, 180 unsigned long type) 181 { 182 page->lru.next = (struct list_head *) type; 183 SetPagePrivate(page); 184 set_page_private(page, info); 185 page_ref_inc(page); 186 } 187 188 void put_page_bootmem(struct page *page) 189 { 190 unsigned long type; 191 192 type = (unsigned long) page->lru.next; 193 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 194 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 195 196 if (page_ref_dec_return(page) == 1) { 197 ClearPagePrivate(page); 198 set_page_private(page, 0); 199 INIT_LIST_HEAD(&page->lru); 200 free_reserved_page(page); 201 } 202 } 203 204 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 205 #ifndef CONFIG_SPARSEMEM_VMEMMAP 206 static void register_page_bootmem_info_section(unsigned long start_pfn) 207 { 208 unsigned long *usemap, mapsize, section_nr, i; 209 struct mem_section *ms; 210 struct page *page, *memmap; 211 212 section_nr = pfn_to_section_nr(start_pfn); 213 ms = __nr_to_section(section_nr); 214 215 /* Get section's memmap address */ 216 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 217 218 /* 219 * Get page for the memmap's phys address 220 * XXX: need more consideration for sparse_vmemmap... 221 */ 222 page = virt_to_page(memmap); 223 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 224 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 225 226 /* remember memmap's page */ 227 for (i = 0; i < mapsize; i++, page++) 228 get_page_bootmem(section_nr, page, SECTION_INFO); 229 230 usemap = __nr_to_section(section_nr)->pageblock_flags; 231 page = virt_to_page(usemap); 232 233 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 234 235 for (i = 0; i < mapsize; i++, page++) 236 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 237 238 } 239 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 240 static void register_page_bootmem_info_section(unsigned long start_pfn) 241 { 242 unsigned long *usemap, mapsize, section_nr, i; 243 struct mem_section *ms; 244 struct page *page, *memmap; 245 246 if (!pfn_valid(start_pfn)) 247 return; 248 249 section_nr = pfn_to_section_nr(start_pfn); 250 ms = __nr_to_section(section_nr); 251 252 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 253 254 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 255 256 usemap = __nr_to_section(section_nr)->pageblock_flags; 257 page = virt_to_page(usemap); 258 259 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 260 261 for (i = 0; i < mapsize; i++, page++) 262 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 263 } 264 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 265 266 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 267 { 268 unsigned long i, pfn, end_pfn, nr_pages; 269 int node = pgdat->node_id; 270 struct page *page; 271 struct zone *zone; 272 273 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 274 page = virt_to_page(pgdat); 275 276 for (i = 0; i < nr_pages; i++, page++) 277 get_page_bootmem(node, page, NODE_INFO); 278 279 zone = &pgdat->node_zones[0]; 280 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 281 if (zone_is_initialized(zone)) { 282 nr_pages = zone->wait_table_hash_nr_entries 283 * sizeof(wait_queue_head_t); 284 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 285 page = virt_to_page(zone->wait_table); 286 287 for (i = 0; i < nr_pages; i++, page++) 288 get_page_bootmem(node, page, NODE_INFO); 289 } 290 } 291 292 pfn = pgdat->node_start_pfn; 293 end_pfn = pgdat_end_pfn(pgdat); 294 295 /* register section info */ 296 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 297 /* 298 * Some platforms can assign the same pfn to multiple nodes - on 299 * node0 as well as nodeN. To avoid registering a pfn against 300 * multiple nodes we check that this pfn does not already 301 * reside in some other nodes. 302 */ 303 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 304 register_page_bootmem_info_section(pfn); 305 } 306 } 307 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 308 309 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 310 unsigned long end_pfn) 311 { 312 unsigned long old_zone_end_pfn; 313 314 zone_span_writelock(zone); 315 316 old_zone_end_pfn = zone_end_pfn(zone); 317 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 318 zone->zone_start_pfn = start_pfn; 319 320 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 321 zone->zone_start_pfn; 322 323 zone_span_writeunlock(zone); 324 } 325 326 static void resize_zone(struct zone *zone, unsigned long start_pfn, 327 unsigned long end_pfn) 328 { 329 zone_span_writelock(zone); 330 331 if (end_pfn - start_pfn) { 332 zone->zone_start_pfn = start_pfn; 333 zone->spanned_pages = end_pfn - start_pfn; 334 } else { 335 /* 336 * make it consist as free_area_init_core(), 337 * if spanned_pages = 0, then keep start_pfn = 0 338 */ 339 zone->zone_start_pfn = 0; 340 zone->spanned_pages = 0; 341 } 342 343 zone_span_writeunlock(zone); 344 } 345 346 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 347 unsigned long end_pfn) 348 { 349 enum zone_type zid = zone_idx(zone); 350 int nid = zone->zone_pgdat->node_id; 351 unsigned long pfn; 352 353 for (pfn = start_pfn; pfn < end_pfn; pfn++) 354 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 355 } 356 357 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 358 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 359 static int __ref ensure_zone_is_initialized(struct zone *zone, 360 unsigned long start_pfn, unsigned long num_pages) 361 { 362 if (!zone_is_initialized(zone)) 363 return init_currently_empty_zone(zone, start_pfn, num_pages); 364 365 return 0; 366 } 367 368 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 369 unsigned long start_pfn, unsigned long end_pfn) 370 { 371 int ret; 372 unsigned long flags; 373 unsigned long z1_start_pfn; 374 375 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 376 if (ret) 377 return ret; 378 379 pgdat_resize_lock(z1->zone_pgdat, &flags); 380 381 /* can't move pfns which are higher than @z2 */ 382 if (end_pfn > zone_end_pfn(z2)) 383 goto out_fail; 384 /* the move out part must be at the left most of @z2 */ 385 if (start_pfn > z2->zone_start_pfn) 386 goto out_fail; 387 /* must included/overlap */ 388 if (end_pfn <= z2->zone_start_pfn) 389 goto out_fail; 390 391 /* use start_pfn for z1's start_pfn if z1 is empty */ 392 if (!zone_is_empty(z1)) 393 z1_start_pfn = z1->zone_start_pfn; 394 else 395 z1_start_pfn = start_pfn; 396 397 resize_zone(z1, z1_start_pfn, end_pfn); 398 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 399 400 pgdat_resize_unlock(z1->zone_pgdat, &flags); 401 402 fix_zone_id(z1, start_pfn, end_pfn); 403 404 return 0; 405 out_fail: 406 pgdat_resize_unlock(z1->zone_pgdat, &flags); 407 return -1; 408 } 409 410 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 411 unsigned long start_pfn, unsigned long end_pfn) 412 { 413 int ret; 414 unsigned long flags; 415 unsigned long z2_end_pfn; 416 417 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 418 if (ret) 419 return ret; 420 421 pgdat_resize_lock(z1->zone_pgdat, &flags); 422 423 /* can't move pfns which are lower than @z1 */ 424 if (z1->zone_start_pfn > start_pfn) 425 goto out_fail; 426 /* the move out part mast at the right most of @z1 */ 427 if (zone_end_pfn(z1) > end_pfn) 428 goto out_fail; 429 /* must included/overlap */ 430 if (start_pfn >= zone_end_pfn(z1)) 431 goto out_fail; 432 433 /* use end_pfn for z2's end_pfn if z2 is empty */ 434 if (!zone_is_empty(z2)) 435 z2_end_pfn = zone_end_pfn(z2); 436 else 437 z2_end_pfn = end_pfn; 438 439 resize_zone(z1, z1->zone_start_pfn, start_pfn); 440 resize_zone(z2, start_pfn, z2_end_pfn); 441 442 pgdat_resize_unlock(z1->zone_pgdat, &flags); 443 444 fix_zone_id(z2, start_pfn, end_pfn); 445 446 return 0; 447 out_fail: 448 pgdat_resize_unlock(z1->zone_pgdat, &flags); 449 return -1; 450 } 451 452 static struct zone * __meminit move_pfn_range(int zone_shift, 453 unsigned long start_pfn, unsigned long end_pfn) 454 { 455 struct zone *zone = page_zone(pfn_to_page(start_pfn)); 456 int ret = 0; 457 458 if (zone_shift < 0) 459 ret = move_pfn_range_left(zone + zone_shift, zone, 460 start_pfn, end_pfn); 461 else if (zone_shift) 462 ret = move_pfn_range_right(zone, zone + zone_shift, 463 start_pfn, end_pfn); 464 465 if (ret) 466 return NULL; 467 468 return zone + zone_shift; 469 } 470 471 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 472 unsigned long end_pfn) 473 { 474 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 475 476 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 477 pgdat->node_start_pfn = start_pfn; 478 479 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 480 pgdat->node_start_pfn; 481 } 482 483 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 484 { 485 struct pglist_data *pgdat = zone->zone_pgdat; 486 int nr_pages = PAGES_PER_SECTION; 487 int nid = pgdat->node_id; 488 int zone_type; 489 unsigned long flags, pfn; 490 int ret; 491 492 zone_type = zone - pgdat->node_zones; 493 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 494 if (ret) 495 return ret; 496 497 pgdat_resize_lock(zone->zone_pgdat, &flags); 498 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 499 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 500 phys_start_pfn + nr_pages); 501 pgdat_resize_unlock(zone->zone_pgdat, &flags); 502 memmap_init_zone(nr_pages, nid, zone_type, 503 phys_start_pfn, MEMMAP_HOTPLUG); 504 505 /* online_page_range is called later and expects pages reserved */ 506 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 507 if (!pfn_valid(pfn)) 508 continue; 509 510 SetPageReserved(pfn_to_page(pfn)); 511 } 512 return 0; 513 } 514 515 static int __meminit __add_section(int nid, struct zone *zone, 516 unsigned long phys_start_pfn) 517 { 518 int ret; 519 520 if (pfn_valid(phys_start_pfn)) 521 return -EEXIST; 522 523 ret = sparse_add_one_section(zone, phys_start_pfn); 524 525 if (ret < 0) 526 return ret; 527 528 ret = __add_zone(zone, phys_start_pfn); 529 530 if (ret < 0) 531 return ret; 532 533 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 534 } 535 536 /* 537 * Reasonably generic function for adding memory. It is 538 * expected that archs that support memory hotplug will 539 * call this function after deciding the zone to which to 540 * add the new pages. 541 */ 542 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 543 unsigned long nr_pages) 544 { 545 unsigned long i; 546 int err = 0; 547 int start_sec, end_sec; 548 struct vmem_altmap *altmap; 549 550 clear_zone_contiguous(zone); 551 552 /* during initialize mem_map, align hot-added range to section */ 553 start_sec = pfn_to_section_nr(phys_start_pfn); 554 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 555 556 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 557 if (altmap) { 558 /* 559 * Validate altmap is within bounds of the total request 560 */ 561 if (altmap->base_pfn != phys_start_pfn 562 || vmem_altmap_offset(altmap) > nr_pages) { 563 pr_warn_once("memory add fail, invalid altmap\n"); 564 err = -EINVAL; 565 goto out; 566 } 567 altmap->alloc = 0; 568 } 569 570 for (i = start_sec; i <= end_sec; i++) { 571 err = __add_section(nid, zone, section_nr_to_pfn(i)); 572 573 /* 574 * EEXIST is finally dealt with by ioresource collision 575 * check. see add_memory() => register_memory_resource() 576 * Warning will be printed if there is collision. 577 */ 578 if (err && (err != -EEXIST)) 579 break; 580 err = 0; 581 } 582 vmemmap_populate_print_last(); 583 out: 584 set_zone_contiguous(zone); 585 return err; 586 } 587 EXPORT_SYMBOL_GPL(__add_pages); 588 589 #ifdef CONFIG_MEMORY_HOTREMOVE 590 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 591 static int find_smallest_section_pfn(int nid, struct zone *zone, 592 unsigned long start_pfn, 593 unsigned long end_pfn) 594 { 595 struct mem_section *ms; 596 597 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 598 ms = __pfn_to_section(start_pfn); 599 600 if (unlikely(!valid_section(ms))) 601 continue; 602 603 if (unlikely(pfn_to_nid(start_pfn) != nid)) 604 continue; 605 606 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 607 continue; 608 609 return start_pfn; 610 } 611 612 return 0; 613 } 614 615 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 616 static int find_biggest_section_pfn(int nid, struct zone *zone, 617 unsigned long start_pfn, 618 unsigned long end_pfn) 619 { 620 struct mem_section *ms; 621 unsigned long pfn; 622 623 /* pfn is the end pfn of a memory section. */ 624 pfn = end_pfn - 1; 625 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 626 ms = __pfn_to_section(pfn); 627 628 if (unlikely(!valid_section(ms))) 629 continue; 630 631 if (unlikely(pfn_to_nid(pfn) != nid)) 632 continue; 633 634 if (zone && zone != page_zone(pfn_to_page(pfn))) 635 continue; 636 637 return pfn; 638 } 639 640 return 0; 641 } 642 643 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 644 unsigned long end_pfn) 645 { 646 unsigned long zone_start_pfn = zone->zone_start_pfn; 647 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 648 unsigned long zone_end_pfn = z; 649 unsigned long pfn; 650 struct mem_section *ms; 651 int nid = zone_to_nid(zone); 652 653 zone_span_writelock(zone); 654 if (zone_start_pfn == start_pfn) { 655 /* 656 * If the section is smallest section in the zone, it need 657 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 658 * In this case, we find second smallest valid mem_section 659 * for shrinking zone. 660 */ 661 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 662 zone_end_pfn); 663 if (pfn) { 664 zone->zone_start_pfn = pfn; 665 zone->spanned_pages = zone_end_pfn - pfn; 666 } 667 } else if (zone_end_pfn == end_pfn) { 668 /* 669 * If the section is biggest section in the zone, it need 670 * shrink zone->spanned_pages. 671 * In this case, we find second biggest valid mem_section for 672 * shrinking zone. 673 */ 674 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 675 start_pfn); 676 if (pfn) 677 zone->spanned_pages = pfn - zone_start_pfn + 1; 678 } 679 680 /* 681 * The section is not biggest or smallest mem_section in the zone, it 682 * only creates a hole in the zone. So in this case, we need not 683 * change the zone. But perhaps, the zone has only hole data. Thus 684 * it check the zone has only hole or not. 685 */ 686 pfn = zone_start_pfn; 687 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 688 ms = __pfn_to_section(pfn); 689 690 if (unlikely(!valid_section(ms))) 691 continue; 692 693 if (page_zone(pfn_to_page(pfn)) != zone) 694 continue; 695 696 /* If the section is current section, it continues the loop */ 697 if (start_pfn == pfn) 698 continue; 699 700 /* If we find valid section, we have nothing to do */ 701 zone_span_writeunlock(zone); 702 return; 703 } 704 705 /* The zone has no valid section */ 706 zone->zone_start_pfn = 0; 707 zone->spanned_pages = 0; 708 zone_span_writeunlock(zone); 709 } 710 711 static void shrink_pgdat_span(struct pglist_data *pgdat, 712 unsigned long start_pfn, unsigned long end_pfn) 713 { 714 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 715 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 716 unsigned long pgdat_end_pfn = p; 717 unsigned long pfn; 718 struct mem_section *ms; 719 int nid = pgdat->node_id; 720 721 if (pgdat_start_pfn == start_pfn) { 722 /* 723 * If the section is smallest section in the pgdat, it need 724 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 725 * In this case, we find second smallest valid mem_section 726 * for shrinking zone. 727 */ 728 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 729 pgdat_end_pfn); 730 if (pfn) { 731 pgdat->node_start_pfn = pfn; 732 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 733 } 734 } else if (pgdat_end_pfn == end_pfn) { 735 /* 736 * If the section is biggest section in the pgdat, it need 737 * shrink pgdat->node_spanned_pages. 738 * In this case, we find second biggest valid mem_section for 739 * shrinking zone. 740 */ 741 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 742 start_pfn); 743 if (pfn) 744 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 745 } 746 747 /* 748 * If the section is not biggest or smallest mem_section in the pgdat, 749 * it only creates a hole in the pgdat. So in this case, we need not 750 * change the pgdat. 751 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 752 * has only hole or not. 753 */ 754 pfn = pgdat_start_pfn; 755 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 756 ms = __pfn_to_section(pfn); 757 758 if (unlikely(!valid_section(ms))) 759 continue; 760 761 if (pfn_to_nid(pfn) != nid) 762 continue; 763 764 /* If the section is current section, it continues the loop */ 765 if (start_pfn == pfn) 766 continue; 767 768 /* If we find valid section, we have nothing to do */ 769 return; 770 } 771 772 /* The pgdat has no valid section */ 773 pgdat->node_start_pfn = 0; 774 pgdat->node_spanned_pages = 0; 775 } 776 777 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 778 { 779 struct pglist_data *pgdat = zone->zone_pgdat; 780 int nr_pages = PAGES_PER_SECTION; 781 int zone_type; 782 unsigned long flags; 783 784 zone_type = zone - pgdat->node_zones; 785 786 pgdat_resize_lock(zone->zone_pgdat, &flags); 787 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 788 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 789 pgdat_resize_unlock(zone->zone_pgdat, &flags); 790 } 791 792 static int __remove_section(struct zone *zone, struct mem_section *ms, 793 unsigned long map_offset) 794 { 795 unsigned long start_pfn; 796 int scn_nr; 797 int ret = -EINVAL; 798 799 if (!valid_section(ms)) 800 return ret; 801 802 ret = unregister_memory_section(ms); 803 if (ret) 804 return ret; 805 806 scn_nr = __section_nr(ms); 807 start_pfn = section_nr_to_pfn(scn_nr); 808 __remove_zone(zone, start_pfn); 809 810 sparse_remove_one_section(zone, ms, map_offset); 811 return 0; 812 } 813 814 /** 815 * __remove_pages() - remove sections of pages from a zone 816 * @zone: zone from which pages need to be removed 817 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 818 * @nr_pages: number of pages to remove (must be multiple of section size) 819 * 820 * Generic helper function to remove section mappings and sysfs entries 821 * for the section of the memory we are removing. Caller needs to make 822 * sure that pages are marked reserved and zones are adjust properly by 823 * calling offline_pages(). 824 */ 825 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 826 unsigned long nr_pages) 827 { 828 unsigned long i; 829 unsigned long map_offset = 0; 830 int sections_to_remove, ret = 0; 831 832 /* In the ZONE_DEVICE case device driver owns the memory region */ 833 if (is_dev_zone(zone)) { 834 struct page *page = pfn_to_page(phys_start_pfn); 835 struct vmem_altmap *altmap; 836 837 altmap = to_vmem_altmap((unsigned long) page); 838 if (altmap) 839 map_offset = vmem_altmap_offset(altmap); 840 } else { 841 resource_size_t start, size; 842 843 start = phys_start_pfn << PAGE_SHIFT; 844 size = nr_pages * PAGE_SIZE; 845 846 ret = release_mem_region_adjustable(&iomem_resource, start, 847 size); 848 if (ret) { 849 resource_size_t endres = start + size - 1; 850 851 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 852 &start, &endres, ret); 853 } 854 } 855 856 clear_zone_contiguous(zone); 857 858 /* 859 * We can only remove entire sections 860 */ 861 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 862 BUG_ON(nr_pages % PAGES_PER_SECTION); 863 864 sections_to_remove = nr_pages / PAGES_PER_SECTION; 865 for (i = 0; i < sections_to_remove; i++) { 866 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 867 868 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 869 map_offset = 0; 870 if (ret) 871 break; 872 } 873 874 set_zone_contiguous(zone); 875 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(__remove_pages); 879 #endif /* CONFIG_MEMORY_HOTREMOVE */ 880 881 int set_online_page_callback(online_page_callback_t callback) 882 { 883 int rc = -EINVAL; 884 885 get_online_mems(); 886 mutex_lock(&online_page_callback_lock); 887 888 if (online_page_callback == generic_online_page) { 889 online_page_callback = callback; 890 rc = 0; 891 } 892 893 mutex_unlock(&online_page_callback_lock); 894 put_online_mems(); 895 896 return rc; 897 } 898 EXPORT_SYMBOL_GPL(set_online_page_callback); 899 900 int restore_online_page_callback(online_page_callback_t callback) 901 { 902 int rc = -EINVAL; 903 904 get_online_mems(); 905 mutex_lock(&online_page_callback_lock); 906 907 if (online_page_callback == callback) { 908 online_page_callback = generic_online_page; 909 rc = 0; 910 } 911 912 mutex_unlock(&online_page_callback_lock); 913 put_online_mems(); 914 915 return rc; 916 } 917 EXPORT_SYMBOL_GPL(restore_online_page_callback); 918 919 void __online_page_set_limits(struct page *page) 920 { 921 } 922 EXPORT_SYMBOL_GPL(__online_page_set_limits); 923 924 void __online_page_increment_counters(struct page *page) 925 { 926 adjust_managed_page_count(page, 1); 927 } 928 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 929 930 void __online_page_free(struct page *page) 931 { 932 __free_reserved_page(page); 933 } 934 EXPORT_SYMBOL_GPL(__online_page_free); 935 936 static void generic_online_page(struct page *page) 937 { 938 __online_page_set_limits(page); 939 __online_page_increment_counters(page); 940 __online_page_free(page); 941 } 942 943 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 944 void *arg) 945 { 946 unsigned long i; 947 unsigned long onlined_pages = *(unsigned long *)arg; 948 struct page *page; 949 if (PageReserved(pfn_to_page(start_pfn))) 950 for (i = 0; i < nr_pages; i++) { 951 page = pfn_to_page(start_pfn + i); 952 (*online_page_callback)(page); 953 onlined_pages++; 954 } 955 *(unsigned long *)arg = onlined_pages; 956 return 0; 957 } 958 959 #ifdef CONFIG_MOVABLE_NODE 960 /* 961 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 962 * normal memory. 963 */ 964 static bool can_online_high_movable(struct zone *zone) 965 { 966 return true; 967 } 968 #else /* CONFIG_MOVABLE_NODE */ 969 /* ensure every online node has NORMAL memory */ 970 static bool can_online_high_movable(struct zone *zone) 971 { 972 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 973 } 974 #endif /* CONFIG_MOVABLE_NODE */ 975 976 /* check which state of node_states will be changed when online memory */ 977 static void node_states_check_changes_online(unsigned long nr_pages, 978 struct zone *zone, struct memory_notify *arg) 979 { 980 int nid = zone_to_nid(zone); 981 enum zone_type zone_last = ZONE_NORMAL; 982 983 /* 984 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 985 * contains nodes which have zones of 0...ZONE_NORMAL, 986 * set zone_last to ZONE_NORMAL. 987 * 988 * If we don't have HIGHMEM nor movable node, 989 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 990 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 991 */ 992 if (N_MEMORY == N_NORMAL_MEMORY) 993 zone_last = ZONE_MOVABLE; 994 995 /* 996 * if the memory to be online is in a zone of 0...zone_last, and 997 * the zones of 0...zone_last don't have memory before online, we will 998 * need to set the node to node_states[N_NORMAL_MEMORY] after 999 * the memory is online. 1000 */ 1001 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 1002 arg->status_change_nid_normal = nid; 1003 else 1004 arg->status_change_nid_normal = -1; 1005 1006 #ifdef CONFIG_HIGHMEM 1007 /* 1008 * If we have movable node, node_states[N_HIGH_MEMORY] 1009 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1010 * set zone_last to ZONE_HIGHMEM. 1011 * 1012 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1013 * contains nodes which have zones of 0...ZONE_MOVABLE, 1014 * set zone_last to ZONE_MOVABLE. 1015 */ 1016 zone_last = ZONE_HIGHMEM; 1017 if (N_MEMORY == N_HIGH_MEMORY) 1018 zone_last = ZONE_MOVABLE; 1019 1020 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 1021 arg->status_change_nid_high = nid; 1022 else 1023 arg->status_change_nid_high = -1; 1024 #else 1025 arg->status_change_nid_high = arg->status_change_nid_normal; 1026 #endif 1027 1028 /* 1029 * if the node don't have memory befor online, we will need to 1030 * set the node to node_states[N_MEMORY] after the memory 1031 * is online. 1032 */ 1033 if (!node_state(nid, N_MEMORY)) 1034 arg->status_change_nid = nid; 1035 else 1036 arg->status_change_nid = -1; 1037 } 1038 1039 static void node_states_set_node(int node, struct memory_notify *arg) 1040 { 1041 if (arg->status_change_nid_normal >= 0) 1042 node_set_state(node, N_NORMAL_MEMORY); 1043 1044 if (arg->status_change_nid_high >= 0) 1045 node_set_state(node, N_HIGH_MEMORY); 1046 1047 node_set_state(node, N_MEMORY); 1048 } 1049 1050 int zone_can_shift(unsigned long pfn, unsigned long nr_pages, 1051 enum zone_type target) 1052 { 1053 struct zone *zone = page_zone(pfn_to_page(pfn)); 1054 enum zone_type idx = zone_idx(zone); 1055 int i; 1056 1057 if (idx < target) { 1058 /* pages must be at end of current zone */ 1059 if (pfn + nr_pages != zone_end_pfn(zone)) 1060 return 0; 1061 1062 /* no zones in use between current zone and target */ 1063 for (i = idx + 1; i < target; i++) 1064 if (zone_is_initialized(zone - idx + i)) 1065 return 0; 1066 } 1067 1068 if (target < idx) { 1069 /* pages must be at beginning of current zone */ 1070 if (pfn != zone->zone_start_pfn) 1071 return 0; 1072 1073 /* no zones in use between current zone and target */ 1074 for (i = target + 1; i < idx; i++) 1075 if (zone_is_initialized(zone - idx + i)) 1076 return 0; 1077 } 1078 1079 return target - idx; 1080 } 1081 1082 /* Must be protected by mem_hotplug_begin() */ 1083 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 1084 { 1085 unsigned long flags; 1086 unsigned long onlined_pages = 0; 1087 struct zone *zone; 1088 int need_zonelists_rebuild = 0; 1089 int nid; 1090 int ret; 1091 struct memory_notify arg; 1092 int zone_shift = 0; 1093 1094 /* 1095 * This doesn't need a lock to do pfn_to_page(). 1096 * The section can't be removed here because of the 1097 * memory_block->state_mutex. 1098 */ 1099 zone = page_zone(pfn_to_page(pfn)); 1100 1101 if ((zone_idx(zone) > ZONE_NORMAL || 1102 online_type == MMOP_ONLINE_MOVABLE) && 1103 !can_online_high_movable(zone)) 1104 return -EINVAL; 1105 1106 if (online_type == MMOP_ONLINE_KERNEL) 1107 zone_shift = zone_can_shift(pfn, nr_pages, ZONE_NORMAL); 1108 else if (online_type == MMOP_ONLINE_MOVABLE) 1109 zone_shift = zone_can_shift(pfn, nr_pages, ZONE_MOVABLE); 1110 1111 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages); 1112 if (!zone) 1113 return -EINVAL; 1114 1115 arg.start_pfn = pfn; 1116 arg.nr_pages = nr_pages; 1117 node_states_check_changes_online(nr_pages, zone, &arg); 1118 1119 nid = zone_to_nid(zone); 1120 1121 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1122 ret = notifier_to_errno(ret); 1123 if (ret) 1124 goto failed_addition; 1125 1126 /* 1127 * If this zone is not populated, then it is not in zonelist. 1128 * This means the page allocator ignores this zone. 1129 * So, zonelist must be updated after online. 1130 */ 1131 mutex_lock(&zonelists_mutex); 1132 if (!populated_zone(zone)) { 1133 need_zonelists_rebuild = 1; 1134 build_all_zonelists(NULL, zone); 1135 } 1136 1137 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1138 online_pages_range); 1139 if (ret) { 1140 if (need_zonelists_rebuild) 1141 zone_pcp_reset(zone); 1142 mutex_unlock(&zonelists_mutex); 1143 goto failed_addition; 1144 } 1145 1146 zone->present_pages += onlined_pages; 1147 1148 pgdat_resize_lock(zone->zone_pgdat, &flags); 1149 zone->zone_pgdat->node_present_pages += onlined_pages; 1150 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1151 1152 if (onlined_pages) { 1153 node_states_set_node(nid, &arg); 1154 if (need_zonelists_rebuild) 1155 build_all_zonelists(NULL, NULL); 1156 else 1157 zone_pcp_update(zone); 1158 } 1159 1160 mutex_unlock(&zonelists_mutex); 1161 1162 init_per_zone_wmark_min(); 1163 1164 if (onlined_pages) { 1165 kswapd_run(nid); 1166 kcompactd_run(nid); 1167 } 1168 1169 vm_total_pages = nr_free_pagecache_pages(); 1170 1171 writeback_set_ratelimit(); 1172 1173 if (onlined_pages) 1174 memory_notify(MEM_ONLINE, &arg); 1175 return 0; 1176 1177 failed_addition: 1178 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1179 (unsigned long long) pfn << PAGE_SHIFT, 1180 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1181 memory_notify(MEM_CANCEL_ONLINE, &arg); 1182 return ret; 1183 } 1184 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1185 1186 static void reset_node_present_pages(pg_data_t *pgdat) 1187 { 1188 struct zone *z; 1189 1190 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1191 z->present_pages = 0; 1192 1193 pgdat->node_present_pages = 0; 1194 } 1195 1196 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1197 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1198 { 1199 struct pglist_data *pgdat; 1200 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1201 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1202 unsigned long start_pfn = PFN_DOWN(start); 1203 1204 pgdat = NODE_DATA(nid); 1205 if (!pgdat) { 1206 pgdat = arch_alloc_nodedata(nid); 1207 if (!pgdat) 1208 return NULL; 1209 1210 arch_refresh_nodedata(nid, pgdat); 1211 } else { 1212 /* Reset the nr_zones, order and classzone_idx before reuse */ 1213 pgdat->nr_zones = 0; 1214 pgdat->kswapd_order = 0; 1215 pgdat->kswapd_classzone_idx = 0; 1216 } 1217 1218 /* we can use NODE_DATA(nid) from here */ 1219 1220 /* init node's zones as empty zones, we don't have any present pages.*/ 1221 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1222 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1223 1224 /* 1225 * The node we allocated has no zone fallback lists. For avoiding 1226 * to access not-initialized zonelist, build here. 1227 */ 1228 mutex_lock(&zonelists_mutex); 1229 build_all_zonelists(pgdat, NULL); 1230 mutex_unlock(&zonelists_mutex); 1231 1232 /* 1233 * zone->managed_pages is set to an approximate value in 1234 * free_area_init_core(), which will cause 1235 * /sys/device/system/node/nodeX/meminfo has wrong data. 1236 * So reset it to 0 before any memory is onlined. 1237 */ 1238 reset_node_managed_pages(pgdat); 1239 1240 /* 1241 * When memory is hot-added, all the memory is in offline state. So 1242 * clear all zones' present_pages because they will be updated in 1243 * online_pages() and offline_pages(). 1244 */ 1245 reset_node_present_pages(pgdat); 1246 1247 return pgdat; 1248 } 1249 1250 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1251 { 1252 arch_refresh_nodedata(nid, NULL); 1253 free_percpu(pgdat->per_cpu_nodestats); 1254 arch_free_nodedata(pgdat); 1255 return; 1256 } 1257 1258 1259 /** 1260 * try_online_node - online a node if offlined 1261 * 1262 * called by cpu_up() to online a node without onlined memory. 1263 */ 1264 int try_online_node(int nid) 1265 { 1266 pg_data_t *pgdat; 1267 int ret; 1268 1269 if (node_online(nid)) 1270 return 0; 1271 1272 mem_hotplug_begin(); 1273 pgdat = hotadd_new_pgdat(nid, 0); 1274 if (!pgdat) { 1275 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1276 ret = -ENOMEM; 1277 goto out; 1278 } 1279 node_set_online(nid); 1280 ret = register_one_node(nid); 1281 BUG_ON(ret); 1282 1283 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1284 mutex_lock(&zonelists_mutex); 1285 build_all_zonelists(NULL, NULL); 1286 mutex_unlock(&zonelists_mutex); 1287 } 1288 1289 out: 1290 mem_hotplug_done(); 1291 return ret; 1292 } 1293 1294 static int check_hotplug_memory_range(u64 start, u64 size) 1295 { 1296 u64 start_pfn = PFN_DOWN(start); 1297 u64 nr_pages = size >> PAGE_SHIFT; 1298 1299 /* Memory range must be aligned with section */ 1300 if ((start_pfn & ~PAGE_SECTION_MASK) || 1301 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1302 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1303 (unsigned long long)start, 1304 (unsigned long long)size); 1305 return -EINVAL; 1306 } 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * If movable zone has already been setup, newly added memory should be check. 1313 * If its address is higher than movable zone, it should be added as movable. 1314 * Without this check, movable zone may overlap with other zone. 1315 */ 1316 static int should_add_memory_movable(int nid, u64 start, u64 size) 1317 { 1318 unsigned long start_pfn = start >> PAGE_SHIFT; 1319 pg_data_t *pgdat = NODE_DATA(nid); 1320 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1321 1322 if (zone_is_empty(movable_zone)) 1323 return 0; 1324 1325 if (movable_zone->zone_start_pfn <= start_pfn) 1326 return 1; 1327 1328 return 0; 1329 } 1330 1331 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1332 bool for_device) 1333 { 1334 #ifdef CONFIG_ZONE_DEVICE 1335 if (for_device) 1336 return ZONE_DEVICE; 1337 #endif 1338 if (should_add_memory_movable(nid, start, size)) 1339 return ZONE_MOVABLE; 1340 1341 return zone_default; 1342 } 1343 1344 static int online_memory_block(struct memory_block *mem, void *arg) 1345 { 1346 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 1347 } 1348 1349 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1350 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1351 { 1352 u64 start, size; 1353 pg_data_t *pgdat = NULL; 1354 bool new_pgdat; 1355 bool new_node; 1356 int ret; 1357 1358 start = res->start; 1359 size = resource_size(res); 1360 1361 ret = check_hotplug_memory_range(start, size); 1362 if (ret) 1363 return ret; 1364 1365 { /* Stupid hack to suppress address-never-null warning */ 1366 void *p = NODE_DATA(nid); 1367 new_pgdat = !p; 1368 } 1369 1370 mem_hotplug_begin(); 1371 1372 /* 1373 * Add new range to memblock so that when hotadd_new_pgdat() is called 1374 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1375 * this new range and calculate total pages correctly. The range will 1376 * be removed at hot-remove time. 1377 */ 1378 memblock_add_node(start, size, nid); 1379 1380 new_node = !node_online(nid); 1381 if (new_node) { 1382 pgdat = hotadd_new_pgdat(nid, start); 1383 ret = -ENOMEM; 1384 if (!pgdat) 1385 goto error; 1386 } 1387 1388 /* call arch's memory hotadd */ 1389 ret = arch_add_memory(nid, start, size, false); 1390 1391 if (ret < 0) 1392 goto error; 1393 1394 /* we online node here. we can't roll back from here. */ 1395 node_set_online(nid); 1396 1397 if (new_node) { 1398 ret = register_one_node(nid); 1399 /* 1400 * If sysfs file of new node can't create, cpu on the node 1401 * can't be hot-added. There is no rollback way now. 1402 * So, check by BUG_ON() to catch it reluctantly.. 1403 */ 1404 BUG_ON(ret); 1405 } 1406 1407 /* create new memmap entry */ 1408 firmware_map_add_hotplug(start, start + size, "System RAM"); 1409 1410 /* online pages if requested */ 1411 if (online) 1412 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1413 NULL, online_memory_block); 1414 1415 goto out; 1416 1417 error: 1418 /* rollback pgdat allocation and others */ 1419 if (new_pgdat) 1420 rollback_node_hotadd(nid, pgdat); 1421 memblock_remove(start, size); 1422 1423 out: 1424 mem_hotplug_done(); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_GPL(add_memory_resource); 1428 1429 int __ref add_memory(int nid, u64 start, u64 size) 1430 { 1431 struct resource *res; 1432 int ret; 1433 1434 res = register_memory_resource(start, size); 1435 if (IS_ERR(res)) 1436 return PTR_ERR(res); 1437 1438 ret = add_memory_resource(nid, res, memhp_auto_online); 1439 if (ret < 0) 1440 release_memory_resource(res); 1441 return ret; 1442 } 1443 EXPORT_SYMBOL_GPL(add_memory); 1444 1445 #ifdef CONFIG_MEMORY_HOTREMOVE 1446 /* 1447 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1448 * set and the size of the free page is given by page_order(). Using this, 1449 * the function determines if the pageblock contains only free pages. 1450 * Due to buddy contraints, a free page at least the size of a pageblock will 1451 * be located at the start of the pageblock 1452 */ 1453 static inline int pageblock_free(struct page *page) 1454 { 1455 return PageBuddy(page) && page_order(page) >= pageblock_order; 1456 } 1457 1458 /* Return the start of the next active pageblock after a given page */ 1459 static struct page *next_active_pageblock(struct page *page) 1460 { 1461 /* Ensure the starting page is pageblock-aligned */ 1462 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1463 1464 /* If the entire pageblock is free, move to the end of free page */ 1465 if (pageblock_free(page)) { 1466 int order; 1467 /* be careful. we don't have locks, page_order can be changed.*/ 1468 order = page_order(page); 1469 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1470 return page + (1 << order); 1471 } 1472 1473 return page + pageblock_nr_pages; 1474 } 1475 1476 /* Checks if this range of memory is likely to be hot-removable. */ 1477 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1478 { 1479 struct page *page = pfn_to_page(start_pfn); 1480 struct page *end_page = page + nr_pages; 1481 1482 /* Check the starting page of each pageblock within the range */ 1483 for (; page < end_page; page = next_active_pageblock(page)) { 1484 if (!is_pageblock_removable_nolock(page)) 1485 return false; 1486 cond_resched(); 1487 } 1488 1489 /* All pageblocks in the memory block are likely to be hot-removable */ 1490 return true; 1491 } 1492 1493 /* 1494 * Confirm all pages in a range [start, end) is belongs to the same zone. 1495 */ 1496 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1497 { 1498 unsigned long pfn, sec_end_pfn; 1499 struct zone *zone = NULL; 1500 struct page *page; 1501 int i; 1502 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn); 1503 pfn < end_pfn; 1504 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) { 1505 /* Make sure the memory section is present first */ 1506 if (!present_section_nr(pfn_to_section_nr(pfn))) 1507 continue; 1508 for (; pfn < sec_end_pfn && pfn < end_pfn; 1509 pfn += MAX_ORDER_NR_PAGES) { 1510 i = 0; 1511 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1512 while ((i < MAX_ORDER_NR_PAGES) && 1513 !pfn_valid_within(pfn + i)) 1514 i++; 1515 if (i == MAX_ORDER_NR_PAGES) 1516 continue; 1517 page = pfn_to_page(pfn + i); 1518 if (zone && page_zone(page) != zone) 1519 return 0; 1520 zone = page_zone(page); 1521 } 1522 } 1523 return 1; 1524 } 1525 1526 /* 1527 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1528 * and hugepages). We scan pfn because it's much easier than scanning over 1529 * linked list. This function returns the pfn of the first found movable 1530 * page if it's found, otherwise 0. 1531 */ 1532 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1533 { 1534 unsigned long pfn; 1535 struct page *page; 1536 for (pfn = start; pfn < end; pfn++) { 1537 if (pfn_valid(pfn)) { 1538 page = pfn_to_page(pfn); 1539 if (PageLRU(page)) 1540 return pfn; 1541 if (PageHuge(page)) { 1542 if (page_huge_active(page)) 1543 return pfn; 1544 else 1545 pfn = round_up(pfn + 1, 1546 1 << compound_order(page)) - 1; 1547 } 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 static struct page *new_node_page(struct page *page, unsigned long private, 1554 int **result) 1555 { 1556 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 1557 int nid = page_to_nid(page); 1558 nodemask_t nmask = node_online_map; 1559 struct page *new_page; 1560 1561 /* 1562 * TODO: allocate a destination hugepage from a nearest neighbor node, 1563 * accordance with memory policy of the user process if possible. For 1564 * now as a simple work-around, we use the next node for destination. 1565 */ 1566 if (PageHuge(page)) 1567 return alloc_huge_page_node(page_hstate(compound_head(page)), 1568 next_node_in(nid, nmask)); 1569 1570 node_clear(nid, nmask); 1571 if (PageHighMem(page) 1572 || (zone_idx(page_zone(page)) == ZONE_MOVABLE)) 1573 gfp_mask |= __GFP_HIGHMEM; 1574 1575 new_page = __alloc_pages_nodemask(gfp_mask, 0, 1576 node_zonelist(nid, gfp_mask), &nmask); 1577 if (!new_page) 1578 new_page = __alloc_pages(gfp_mask, 0, 1579 node_zonelist(nid, gfp_mask)); 1580 1581 return new_page; 1582 } 1583 1584 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1585 static int 1586 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1587 { 1588 unsigned long pfn; 1589 struct page *page; 1590 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1591 int not_managed = 0; 1592 int ret = 0; 1593 LIST_HEAD(source); 1594 1595 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1596 if (!pfn_valid(pfn)) 1597 continue; 1598 page = pfn_to_page(pfn); 1599 1600 if (PageHuge(page)) { 1601 struct page *head = compound_head(page); 1602 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1603 if (compound_order(head) > PFN_SECTION_SHIFT) { 1604 ret = -EBUSY; 1605 break; 1606 } 1607 if (isolate_huge_page(page, &source)) 1608 move_pages -= 1 << compound_order(head); 1609 continue; 1610 } 1611 1612 if (!get_page_unless_zero(page)) 1613 continue; 1614 /* 1615 * We can skip free pages. And we can only deal with pages on 1616 * LRU. 1617 */ 1618 ret = isolate_lru_page(page); 1619 if (!ret) { /* Success */ 1620 put_page(page); 1621 list_add_tail(&page->lru, &source); 1622 move_pages--; 1623 inc_node_page_state(page, NR_ISOLATED_ANON + 1624 page_is_file_cache(page)); 1625 1626 } else { 1627 #ifdef CONFIG_DEBUG_VM 1628 pr_alert("removing pfn %lx from LRU failed\n", pfn); 1629 dump_page(page, "failed to remove from LRU"); 1630 #endif 1631 put_page(page); 1632 /* Because we don't have big zone->lock. we should 1633 check this again here. */ 1634 if (page_count(page)) { 1635 not_managed++; 1636 ret = -EBUSY; 1637 break; 1638 } 1639 } 1640 } 1641 if (!list_empty(&source)) { 1642 if (not_managed) { 1643 putback_movable_pages(&source); 1644 goto out; 1645 } 1646 1647 /* Allocate a new page from the nearest neighbor node */ 1648 ret = migrate_pages(&source, new_node_page, NULL, 0, 1649 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1650 if (ret) 1651 putback_movable_pages(&source); 1652 } 1653 out: 1654 return ret; 1655 } 1656 1657 /* 1658 * remove from free_area[] and mark all as Reserved. 1659 */ 1660 static int 1661 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1662 void *data) 1663 { 1664 __offline_isolated_pages(start, start + nr_pages); 1665 return 0; 1666 } 1667 1668 static void 1669 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1670 { 1671 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1672 offline_isolated_pages_cb); 1673 } 1674 1675 /* 1676 * Check all pages in range, recoreded as memory resource, are isolated. 1677 */ 1678 static int 1679 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1680 void *data) 1681 { 1682 int ret; 1683 long offlined = *(long *)data; 1684 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1685 offlined = nr_pages; 1686 if (!ret) 1687 *(long *)data += offlined; 1688 return ret; 1689 } 1690 1691 static long 1692 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1693 { 1694 long offlined = 0; 1695 int ret; 1696 1697 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1698 check_pages_isolated_cb); 1699 if (ret < 0) 1700 offlined = (long)ret; 1701 return offlined; 1702 } 1703 1704 #ifdef CONFIG_MOVABLE_NODE 1705 /* 1706 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1707 * normal memory. 1708 */ 1709 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1710 { 1711 return true; 1712 } 1713 #else /* CONFIG_MOVABLE_NODE */ 1714 /* ensure the node has NORMAL memory if it is still online */ 1715 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1716 { 1717 struct pglist_data *pgdat = zone->zone_pgdat; 1718 unsigned long present_pages = 0; 1719 enum zone_type zt; 1720 1721 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1722 present_pages += pgdat->node_zones[zt].present_pages; 1723 1724 if (present_pages > nr_pages) 1725 return true; 1726 1727 present_pages = 0; 1728 for (; zt <= ZONE_MOVABLE; zt++) 1729 present_pages += pgdat->node_zones[zt].present_pages; 1730 1731 /* 1732 * we can't offline the last normal memory until all 1733 * higher memory is offlined. 1734 */ 1735 return present_pages == 0; 1736 } 1737 #endif /* CONFIG_MOVABLE_NODE */ 1738 1739 static int __init cmdline_parse_movable_node(char *p) 1740 { 1741 #ifdef CONFIG_MOVABLE_NODE 1742 /* 1743 * Memory used by the kernel cannot be hot-removed because Linux 1744 * cannot migrate the kernel pages. When memory hotplug is 1745 * enabled, we should prevent memblock from allocating memory 1746 * for the kernel. 1747 * 1748 * ACPI SRAT records all hotpluggable memory ranges. But before 1749 * SRAT is parsed, we don't know about it. 1750 * 1751 * The kernel image is loaded into memory at very early time. We 1752 * cannot prevent this anyway. So on NUMA system, we set any 1753 * node the kernel resides in as un-hotpluggable. 1754 * 1755 * Since on modern servers, one node could have double-digit 1756 * gigabytes memory, we can assume the memory around the kernel 1757 * image is also un-hotpluggable. So before SRAT is parsed, just 1758 * allocate memory near the kernel image to try the best to keep 1759 * the kernel away from hotpluggable memory. 1760 */ 1761 memblock_set_bottom_up(true); 1762 movable_node_enabled = true; 1763 #else 1764 pr_warn("movable_node option not supported\n"); 1765 #endif 1766 return 0; 1767 } 1768 early_param("movable_node", cmdline_parse_movable_node); 1769 1770 /* check which state of node_states will be changed when offline memory */ 1771 static void node_states_check_changes_offline(unsigned long nr_pages, 1772 struct zone *zone, struct memory_notify *arg) 1773 { 1774 struct pglist_data *pgdat = zone->zone_pgdat; 1775 unsigned long present_pages = 0; 1776 enum zone_type zt, zone_last = ZONE_NORMAL; 1777 1778 /* 1779 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1780 * contains nodes which have zones of 0...ZONE_NORMAL, 1781 * set zone_last to ZONE_NORMAL. 1782 * 1783 * If we don't have HIGHMEM nor movable node, 1784 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1785 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1786 */ 1787 if (N_MEMORY == N_NORMAL_MEMORY) 1788 zone_last = ZONE_MOVABLE; 1789 1790 /* 1791 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1792 * If the memory to be offline is in a zone of 0...zone_last, 1793 * and it is the last present memory, 0...zone_last will 1794 * become empty after offline , thus we can determind we will 1795 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1796 */ 1797 for (zt = 0; zt <= zone_last; zt++) 1798 present_pages += pgdat->node_zones[zt].present_pages; 1799 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1800 arg->status_change_nid_normal = zone_to_nid(zone); 1801 else 1802 arg->status_change_nid_normal = -1; 1803 1804 #ifdef CONFIG_HIGHMEM 1805 /* 1806 * If we have movable node, node_states[N_HIGH_MEMORY] 1807 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1808 * set zone_last to ZONE_HIGHMEM. 1809 * 1810 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1811 * contains nodes which have zones of 0...ZONE_MOVABLE, 1812 * set zone_last to ZONE_MOVABLE. 1813 */ 1814 zone_last = ZONE_HIGHMEM; 1815 if (N_MEMORY == N_HIGH_MEMORY) 1816 zone_last = ZONE_MOVABLE; 1817 1818 for (; zt <= zone_last; zt++) 1819 present_pages += pgdat->node_zones[zt].present_pages; 1820 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1821 arg->status_change_nid_high = zone_to_nid(zone); 1822 else 1823 arg->status_change_nid_high = -1; 1824 #else 1825 arg->status_change_nid_high = arg->status_change_nid_normal; 1826 #endif 1827 1828 /* 1829 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1830 */ 1831 zone_last = ZONE_MOVABLE; 1832 1833 /* 1834 * check whether node_states[N_HIGH_MEMORY] will be changed 1835 * If we try to offline the last present @nr_pages from the node, 1836 * we can determind we will need to clear the node from 1837 * node_states[N_HIGH_MEMORY]. 1838 */ 1839 for (; zt <= zone_last; zt++) 1840 present_pages += pgdat->node_zones[zt].present_pages; 1841 if (nr_pages >= present_pages) 1842 arg->status_change_nid = zone_to_nid(zone); 1843 else 1844 arg->status_change_nid = -1; 1845 } 1846 1847 static void node_states_clear_node(int node, struct memory_notify *arg) 1848 { 1849 if (arg->status_change_nid_normal >= 0) 1850 node_clear_state(node, N_NORMAL_MEMORY); 1851 1852 if ((N_MEMORY != N_NORMAL_MEMORY) && 1853 (arg->status_change_nid_high >= 0)) 1854 node_clear_state(node, N_HIGH_MEMORY); 1855 1856 if ((N_MEMORY != N_HIGH_MEMORY) && 1857 (arg->status_change_nid >= 0)) 1858 node_clear_state(node, N_MEMORY); 1859 } 1860 1861 static int __ref __offline_pages(unsigned long start_pfn, 1862 unsigned long end_pfn, unsigned long timeout) 1863 { 1864 unsigned long pfn, nr_pages, expire; 1865 long offlined_pages; 1866 int ret, drain, retry_max, node; 1867 unsigned long flags; 1868 struct zone *zone; 1869 struct memory_notify arg; 1870 1871 /* at least, alignment against pageblock is necessary */ 1872 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1873 return -EINVAL; 1874 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1875 return -EINVAL; 1876 /* This makes hotplug much easier...and readable. 1877 we assume this for now. .*/ 1878 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1879 return -EINVAL; 1880 1881 zone = page_zone(pfn_to_page(start_pfn)); 1882 node = zone_to_nid(zone); 1883 nr_pages = end_pfn - start_pfn; 1884 1885 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1886 return -EINVAL; 1887 1888 /* set above range as isolated */ 1889 ret = start_isolate_page_range(start_pfn, end_pfn, 1890 MIGRATE_MOVABLE, true); 1891 if (ret) 1892 return ret; 1893 1894 arg.start_pfn = start_pfn; 1895 arg.nr_pages = nr_pages; 1896 node_states_check_changes_offline(nr_pages, zone, &arg); 1897 1898 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1899 ret = notifier_to_errno(ret); 1900 if (ret) 1901 goto failed_removal; 1902 1903 pfn = start_pfn; 1904 expire = jiffies + timeout; 1905 drain = 0; 1906 retry_max = 5; 1907 repeat: 1908 /* start memory hot removal */ 1909 ret = -EAGAIN; 1910 if (time_after(jiffies, expire)) 1911 goto failed_removal; 1912 ret = -EINTR; 1913 if (signal_pending(current)) 1914 goto failed_removal; 1915 ret = 0; 1916 if (drain) { 1917 lru_add_drain_all(); 1918 cond_resched(); 1919 drain_all_pages(zone); 1920 } 1921 1922 pfn = scan_movable_pages(start_pfn, end_pfn); 1923 if (pfn) { /* We have movable pages */ 1924 ret = do_migrate_range(pfn, end_pfn); 1925 if (!ret) { 1926 drain = 1; 1927 goto repeat; 1928 } else { 1929 if (ret < 0) 1930 if (--retry_max == 0) 1931 goto failed_removal; 1932 yield(); 1933 drain = 1; 1934 goto repeat; 1935 } 1936 } 1937 /* drain all zone's lru pagevec, this is asynchronous... */ 1938 lru_add_drain_all(); 1939 yield(); 1940 /* drain pcp pages, this is synchronous. */ 1941 drain_all_pages(zone); 1942 /* 1943 * dissolve free hugepages in the memory block before doing offlining 1944 * actually in order to make hugetlbfs's object counting consistent. 1945 */ 1946 dissolve_free_huge_pages(start_pfn, end_pfn); 1947 /* check again */ 1948 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1949 if (offlined_pages < 0) { 1950 ret = -EBUSY; 1951 goto failed_removal; 1952 } 1953 pr_info("Offlined Pages %ld\n", offlined_pages); 1954 /* Ok, all of our target is isolated. 1955 We cannot do rollback at this point. */ 1956 offline_isolated_pages(start_pfn, end_pfn); 1957 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1958 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1959 /* removal success */ 1960 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1961 zone->present_pages -= offlined_pages; 1962 1963 pgdat_resize_lock(zone->zone_pgdat, &flags); 1964 zone->zone_pgdat->node_present_pages -= offlined_pages; 1965 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1966 1967 init_per_zone_wmark_min(); 1968 1969 if (!populated_zone(zone)) { 1970 zone_pcp_reset(zone); 1971 mutex_lock(&zonelists_mutex); 1972 build_all_zonelists(NULL, NULL); 1973 mutex_unlock(&zonelists_mutex); 1974 } else 1975 zone_pcp_update(zone); 1976 1977 node_states_clear_node(node, &arg); 1978 if (arg.status_change_nid >= 0) { 1979 kswapd_stop(node); 1980 kcompactd_stop(node); 1981 } 1982 1983 vm_total_pages = nr_free_pagecache_pages(); 1984 writeback_set_ratelimit(); 1985 1986 memory_notify(MEM_OFFLINE, &arg); 1987 return 0; 1988 1989 failed_removal: 1990 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1991 (unsigned long long) start_pfn << PAGE_SHIFT, 1992 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1993 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1994 /* pushback to free area */ 1995 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1996 return ret; 1997 } 1998 1999 /* Must be protected by mem_hotplug_begin() */ 2000 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 2001 { 2002 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 2003 } 2004 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2005 2006 /** 2007 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 2008 * @start_pfn: start pfn of the memory range 2009 * @end_pfn: end pfn of the memory range 2010 * @arg: argument passed to func 2011 * @func: callback for each memory section walked 2012 * 2013 * This function walks through all present mem sections in range 2014 * [start_pfn, end_pfn) and call func on each mem section. 2015 * 2016 * Returns the return value of func. 2017 */ 2018 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 2019 void *arg, int (*func)(struct memory_block *, void *)) 2020 { 2021 struct memory_block *mem = NULL; 2022 struct mem_section *section; 2023 unsigned long pfn, section_nr; 2024 int ret; 2025 2026 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2027 section_nr = pfn_to_section_nr(pfn); 2028 if (!present_section_nr(section_nr)) 2029 continue; 2030 2031 section = __nr_to_section(section_nr); 2032 /* same memblock? */ 2033 if (mem) 2034 if ((section_nr >= mem->start_section_nr) && 2035 (section_nr <= mem->end_section_nr)) 2036 continue; 2037 2038 mem = find_memory_block_hinted(section, mem); 2039 if (!mem) 2040 continue; 2041 2042 ret = func(mem, arg); 2043 if (ret) { 2044 kobject_put(&mem->dev.kobj); 2045 return ret; 2046 } 2047 } 2048 2049 if (mem) 2050 kobject_put(&mem->dev.kobj); 2051 2052 return 0; 2053 } 2054 2055 #ifdef CONFIG_MEMORY_HOTREMOVE 2056 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2057 { 2058 int ret = !is_memblock_offlined(mem); 2059 2060 if (unlikely(ret)) { 2061 phys_addr_t beginpa, endpa; 2062 2063 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2064 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 2065 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2066 &beginpa, &endpa); 2067 } 2068 2069 return ret; 2070 } 2071 2072 static int check_cpu_on_node(pg_data_t *pgdat) 2073 { 2074 int cpu; 2075 2076 for_each_present_cpu(cpu) { 2077 if (cpu_to_node(cpu) == pgdat->node_id) 2078 /* 2079 * the cpu on this node isn't removed, and we can't 2080 * offline this node. 2081 */ 2082 return -EBUSY; 2083 } 2084 2085 return 0; 2086 } 2087 2088 static void unmap_cpu_on_node(pg_data_t *pgdat) 2089 { 2090 #ifdef CONFIG_ACPI_NUMA 2091 int cpu; 2092 2093 for_each_possible_cpu(cpu) 2094 if (cpu_to_node(cpu) == pgdat->node_id) 2095 numa_clear_node(cpu); 2096 #endif 2097 } 2098 2099 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 2100 { 2101 int ret; 2102 2103 ret = check_cpu_on_node(pgdat); 2104 if (ret) 2105 return ret; 2106 2107 /* 2108 * the node will be offlined when we come here, so we can clear 2109 * the cpu_to_node() now. 2110 */ 2111 2112 unmap_cpu_on_node(pgdat); 2113 return 0; 2114 } 2115 2116 /** 2117 * try_offline_node 2118 * 2119 * Offline a node if all memory sections and cpus of the node are removed. 2120 * 2121 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2122 * and online/offline operations before this call. 2123 */ 2124 void try_offline_node(int nid) 2125 { 2126 pg_data_t *pgdat = NODE_DATA(nid); 2127 unsigned long start_pfn = pgdat->node_start_pfn; 2128 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 2129 unsigned long pfn; 2130 int i; 2131 2132 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2133 unsigned long section_nr = pfn_to_section_nr(pfn); 2134 2135 if (!present_section_nr(section_nr)) 2136 continue; 2137 2138 if (pfn_to_nid(pfn) != nid) 2139 continue; 2140 2141 /* 2142 * some memory sections of this node are not removed, and we 2143 * can't offline node now. 2144 */ 2145 return; 2146 } 2147 2148 if (check_and_unmap_cpu_on_node(pgdat)) 2149 return; 2150 2151 /* 2152 * all memory/cpu of this node are removed, we can offline this 2153 * node now. 2154 */ 2155 node_set_offline(nid); 2156 unregister_one_node(nid); 2157 2158 /* free waittable in each zone */ 2159 for (i = 0; i < MAX_NR_ZONES; i++) { 2160 struct zone *zone = pgdat->node_zones + i; 2161 2162 /* 2163 * wait_table may be allocated from boot memory, 2164 * here only free if it's allocated by vmalloc. 2165 */ 2166 if (is_vmalloc_addr(zone->wait_table)) { 2167 vfree(zone->wait_table); 2168 zone->wait_table = NULL; 2169 } 2170 } 2171 } 2172 EXPORT_SYMBOL(try_offline_node); 2173 2174 /** 2175 * remove_memory 2176 * 2177 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2178 * and online/offline operations before this call, as required by 2179 * try_offline_node(). 2180 */ 2181 void __ref remove_memory(int nid, u64 start, u64 size) 2182 { 2183 int ret; 2184 2185 BUG_ON(check_hotplug_memory_range(start, size)); 2186 2187 mem_hotplug_begin(); 2188 2189 /* 2190 * All memory blocks must be offlined before removing memory. Check 2191 * whether all memory blocks in question are offline and trigger a BUG() 2192 * if this is not the case. 2193 */ 2194 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2195 check_memblock_offlined_cb); 2196 if (ret) 2197 BUG(); 2198 2199 /* remove memmap entry */ 2200 firmware_map_remove(start, start + size, "System RAM"); 2201 memblock_free(start, size); 2202 memblock_remove(start, size); 2203 2204 arch_remove_memory(start, size); 2205 2206 try_offline_node(nid); 2207 2208 mem_hotplug_done(); 2209 } 2210 EXPORT_SYMBOL_GPL(remove_memory); 2211 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2212