xref: /openbmc/linux/mm/memory_hotplug.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static void generic_online_page(struct page *page, unsigned int order);
53 
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56 
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58 
59 void get_online_mems(void)
60 {
61 	percpu_down_read(&mem_hotplug_lock);
62 }
63 
64 void put_online_mems(void)
65 {
66 	percpu_up_read(&mem_hotplug_lock);
67 }
68 
69 bool movable_node_enabled = false;
70 
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77 
78 static int __init setup_memhp_default_state(char *str)
79 {
80 	if (!strcmp(str, "online"))
81 		memhp_auto_online = true;
82 	else if (!strcmp(str, "offline"))
83 		memhp_auto_online = false;
84 
85 	return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88 
89 void mem_hotplug_begin(void)
90 {
91 	cpus_read_lock();
92 	percpu_down_write(&mem_hotplug_lock);
93 }
94 
95 void mem_hotplug_done(void)
96 {
97 	percpu_up_write(&mem_hotplug_lock);
98 	cpus_read_unlock();
99 }
100 
101 u64 max_mem_size = U64_MAX;
102 
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 	struct resource *res;
107 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 	char *resource_name = "System RAM";
109 
110 	if (start + size > max_mem_size)
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Request ownership of the new memory range.  This might be
115 	 * a child of an existing resource that was present but
116 	 * not marked as busy.
117 	 */
118 	res = __request_region(&iomem_resource, start, size,
119 			       resource_name, flags);
120 
121 	if (!res) {
122 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 				start, start + size);
124 		return ERR_PTR(-EEXIST);
125 	}
126 	return res;
127 }
128 
129 static void release_memory_resource(struct resource *res)
130 {
131 	if (!res)
132 		return;
133 	release_resource(res);
134 	kfree(res);
135 	return;
136 }
137 
138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
139 void get_page_bootmem(unsigned long info,  struct page *page,
140 		      unsigned long type)
141 {
142 	page->freelist = (void *)type;
143 	SetPagePrivate(page);
144 	set_page_private(page, info);
145 	page_ref_inc(page);
146 }
147 
148 void put_page_bootmem(struct page *page)
149 {
150 	unsigned long type;
151 
152 	type = (unsigned long) page->freelist;
153 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
154 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
155 
156 	if (page_ref_dec_return(page) == 1) {
157 		page->freelist = NULL;
158 		ClearPagePrivate(page);
159 		set_page_private(page, 0);
160 		INIT_LIST_HEAD(&page->lru);
161 		free_reserved_page(page);
162 	}
163 }
164 
165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
166 #ifndef CONFIG_SPARSEMEM_VMEMMAP
167 static void register_page_bootmem_info_section(unsigned long start_pfn)
168 {
169 	unsigned long mapsize, section_nr, i;
170 	struct mem_section *ms;
171 	struct page *page, *memmap;
172 	struct mem_section_usage *usage;
173 
174 	section_nr = pfn_to_section_nr(start_pfn);
175 	ms = __nr_to_section(section_nr);
176 
177 	/* Get section's memmap address */
178 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
179 
180 	/*
181 	 * Get page for the memmap's phys address
182 	 * XXX: need more consideration for sparse_vmemmap...
183 	 */
184 	page = virt_to_page(memmap);
185 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
186 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
187 
188 	/* remember memmap's page */
189 	for (i = 0; i < mapsize; i++, page++)
190 		get_page_bootmem(section_nr, page, SECTION_INFO);
191 
192 	usage = ms->usage;
193 	page = virt_to_page(usage);
194 
195 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
196 
197 	for (i = 0; i < mapsize; i++, page++)
198 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
199 
200 }
201 #else /* CONFIG_SPARSEMEM_VMEMMAP */
202 static void register_page_bootmem_info_section(unsigned long start_pfn)
203 {
204 	unsigned long mapsize, section_nr, i;
205 	struct mem_section *ms;
206 	struct page *page, *memmap;
207 	struct mem_section_usage *usage;
208 
209 	section_nr = pfn_to_section_nr(start_pfn);
210 	ms = __nr_to_section(section_nr);
211 
212 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
213 
214 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
215 
216 	usage = ms->usage;
217 	page = virt_to_page(usage);
218 
219 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
220 
221 	for (i = 0; i < mapsize; i++, page++)
222 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
223 }
224 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
225 
226 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
227 {
228 	unsigned long i, pfn, end_pfn, nr_pages;
229 	int node = pgdat->node_id;
230 	struct page *page;
231 
232 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
233 	page = virt_to_page(pgdat);
234 
235 	for (i = 0; i < nr_pages; i++, page++)
236 		get_page_bootmem(node, page, NODE_INFO);
237 
238 	pfn = pgdat->node_start_pfn;
239 	end_pfn = pgdat_end_pfn(pgdat);
240 
241 	/* register section info */
242 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
243 		/*
244 		 * Some platforms can assign the same pfn to multiple nodes - on
245 		 * node0 as well as nodeN.  To avoid registering a pfn against
246 		 * multiple nodes we check that this pfn does not already
247 		 * reside in some other nodes.
248 		 */
249 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
250 			register_page_bootmem_info_section(pfn);
251 	}
252 }
253 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
254 
255 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
256 		const char *reason)
257 {
258 	/*
259 	 * Disallow all operations smaller than a sub-section and only
260 	 * allow operations smaller than a section for
261 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
262 	 * enforces a larger memory_block_size_bytes() granularity for
263 	 * memory that will be marked online, so this check should only
264 	 * fire for direct arch_{add,remove}_memory() users outside of
265 	 * add_memory_resource().
266 	 */
267 	unsigned long min_align;
268 
269 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
270 		min_align = PAGES_PER_SUBSECTION;
271 	else
272 		min_align = PAGES_PER_SECTION;
273 	if (!IS_ALIGNED(pfn, min_align)
274 			|| !IS_ALIGNED(nr_pages, min_align)) {
275 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
276 				reason, pfn, pfn + nr_pages - 1);
277 		return -EINVAL;
278 	}
279 	return 0;
280 }
281 
282 /*
283  * Reasonably generic function for adding memory.  It is
284  * expected that archs that support memory hotplug will
285  * call this function after deciding the zone to which to
286  * add the new pages.
287  */
288 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
289 		struct mhp_restrictions *restrictions)
290 {
291 	int err;
292 	unsigned long nr, start_sec, end_sec;
293 	struct vmem_altmap *altmap = restrictions->altmap;
294 
295 	if (altmap) {
296 		/*
297 		 * Validate altmap is within bounds of the total request
298 		 */
299 		if (altmap->base_pfn != pfn
300 				|| vmem_altmap_offset(altmap) > nr_pages) {
301 			pr_warn_once("memory add fail, invalid altmap\n");
302 			return -EINVAL;
303 		}
304 		altmap->alloc = 0;
305 	}
306 
307 	err = check_pfn_span(pfn, nr_pages, "add");
308 	if (err)
309 		return err;
310 
311 	start_sec = pfn_to_section_nr(pfn);
312 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
313 	for (nr = start_sec; nr <= end_sec; nr++) {
314 		unsigned long pfns;
315 
316 		pfns = min(nr_pages, PAGES_PER_SECTION
317 				- (pfn & ~PAGE_SECTION_MASK));
318 		err = sparse_add_section(nid, pfn, pfns, altmap);
319 		if (err)
320 			break;
321 		pfn += pfns;
322 		nr_pages -= pfns;
323 		cond_resched();
324 	}
325 	vmemmap_populate_print_last();
326 	return err;
327 }
328 
329 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
330 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
331 				     unsigned long start_pfn,
332 				     unsigned long end_pfn)
333 {
334 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
335 		if (unlikely(!pfn_valid(start_pfn)))
336 			continue;
337 
338 		if (unlikely(pfn_to_nid(start_pfn) != nid))
339 			continue;
340 
341 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
342 			continue;
343 
344 		return start_pfn;
345 	}
346 
347 	return 0;
348 }
349 
350 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
351 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
352 				    unsigned long start_pfn,
353 				    unsigned long end_pfn)
354 {
355 	unsigned long pfn;
356 
357 	/* pfn is the end pfn of a memory section. */
358 	pfn = end_pfn - 1;
359 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
360 		if (unlikely(!pfn_valid(pfn)))
361 			continue;
362 
363 		if (unlikely(pfn_to_nid(pfn) != nid))
364 			continue;
365 
366 		if (zone && zone != page_zone(pfn_to_page(pfn)))
367 			continue;
368 
369 		return pfn;
370 	}
371 
372 	return 0;
373 }
374 
375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
376 			     unsigned long end_pfn)
377 {
378 	unsigned long zone_start_pfn = zone->zone_start_pfn;
379 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
380 	unsigned long zone_end_pfn = z;
381 	unsigned long pfn;
382 	int nid = zone_to_nid(zone);
383 
384 	zone_span_writelock(zone);
385 	if (zone_start_pfn == start_pfn) {
386 		/*
387 		 * If the section is smallest section in the zone, it need
388 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
389 		 * In this case, we find second smallest valid mem_section
390 		 * for shrinking zone.
391 		 */
392 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
393 						zone_end_pfn);
394 		if (pfn) {
395 			zone->zone_start_pfn = pfn;
396 			zone->spanned_pages = zone_end_pfn - pfn;
397 		}
398 	} else if (zone_end_pfn == end_pfn) {
399 		/*
400 		 * If the section is biggest section in the zone, it need
401 		 * shrink zone->spanned_pages.
402 		 * In this case, we find second biggest valid mem_section for
403 		 * shrinking zone.
404 		 */
405 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
406 					       start_pfn);
407 		if (pfn)
408 			zone->spanned_pages = pfn - zone_start_pfn + 1;
409 	}
410 
411 	/*
412 	 * The section is not biggest or smallest mem_section in the zone, it
413 	 * only creates a hole in the zone. So in this case, we need not
414 	 * change the zone. But perhaps, the zone has only hole data. Thus
415 	 * it check the zone has only hole or not.
416 	 */
417 	pfn = zone_start_pfn;
418 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
419 		if (unlikely(!pfn_valid(pfn)))
420 			continue;
421 
422 		if (page_zone(pfn_to_page(pfn)) != zone)
423 			continue;
424 
425 		/* Skip range to be removed */
426 		if (pfn >= start_pfn && pfn < end_pfn)
427 			continue;
428 
429 		/* If we find valid section, we have nothing to do */
430 		zone_span_writeunlock(zone);
431 		return;
432 	}
433 
434 	/* The zone has no valid section */
435 	zone->zone_start_pfn = 0;
436 	zone->spanned_pages = 0;
437 	zone_span_writeunlock(zone);
438 }
439 
440 static void shrink_pgdat_span(struct pglist_data *pgdat,
441 			      unsigned long start_pfn, unsigned long end_pfn)
442 {
443 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
444 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
445 	unsigned long pgdat_end_pfn = p;
446 	unsigned long pfn;
447 	int nid = pgdat->node_id;
448 
449 	if (pgdat_start_pfn == start_pfn) {
450 		/*
451 		 * If the section is smallest section in the pgdat, it need
452 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 		 * In this case, we find second smallest valid mem_section
454 		 * for shrinking zone.
455 		 */
456 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 						pgdat_end_pfn);
458 		if (pfn) {
459 			pgdat->node_start_pfn = pfn;
460 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 		}
462 	} else if (pgdat_end_pfn == end_pfn) {
463 		/*
464 		 * If the section is biggest section in the pgdat, it need
465 		 * shrink pgdat->node_spanned_pages.
466 		 * In this case, we find second biggest valid mem_section for
467 		 * shrinking zone.
468 		 */
469 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 					       start_pfn);
471 		if (pfn)
472 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 	}
474 
475 	/*
476 	 * If the section is not biggest or smallest mem_section in the pgdat,
477 	 * it only creates a hole in the pgdat. So in this case, we need not
478 	 * change the pgdat.
479 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 	 * has only hole or not.
481 	 */
482 	pfn = pgdat_start_pfn;
483 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
484 		if (unlikely(!pfn_valid(pfn)))
485 			continue;
486 
487 		if (pfn_to_nid(pfn) != nid)
488 			continue;
489 
490 		/* Skip range to be removed */
491 		if (pfn >= start_pfn && pfn < end_pfn)
492 			continue;
493 
494 		/* If we find valid section, we have nothing to do */
495 		return;
496 	}
497 
498 	/* The pgdat has no valid section */
499 	pgdat->node_start_pfn = 0;
500 	pgdat->node_spanned_pages = 0;
501 }
502 
503 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
504 		unsigned long nr_pages)
505 {
506 	struct pglist_data *pgdat = zone->zone_pgdat;
507 	unsigned long flags;
508 
509 	pgdat_resize_lock(zone->zone_pgdat, &flags);
510 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
511 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
512 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
513 }
514 
515 static void __remove_section(struct zone *zone, unsigned long pfn,
516 		unsigned long nr_pages, unsigned long map_offset,
517 		struct vmem_altmap *altmap)
518 {
519 	struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
520 
521 	if (WARN_ON_ONCE(!valid_section(ms)))
522 		return;
523 
524 	__remove_zone(zone, pfn, nr_pages);
525 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
526 }
527 
528 /**
529  * __remove_pages() - remove sections of pages from a zone
530  * @zone: zone from which pages need to be removed
531  * @pfn: starting pageframe (must be aligned to start of a section)
532  * @nr_pages: number of pages to remove (must be multiple of section size)
533  * @altmap: alternative device page map or %NULL if default memmap is used
534  *
535  * Generic helper function to remove section mappings and sysfs entries
536  * for the section of the memory we are removing. Caller needs to make
537  * sure that pages are marked reserved and zones are adjust properly by
538  * calling offline_pages().
539  */
540 void __remove_pages(struct zone *zone, unsigned long pfn,
541 		    unsigned long nr_pages, struct vmem_altmap *altmap)
542 {
543 	unsigned long map_offset = 0;
544 	unsigned long nr, start_sec, end_sec;
545 
546 	map_offset = vmem_altmap_offset(altmap);
547 
548 	clear_zone_contiguous(zone);
549 
550 	if (check_pfn_span(pfn, nr_pages, "remove"))
551 		return;
552 
553 	start_sec = pfn_to_section_nr(pfn);
554 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
555 	for (nr = start_sec; nr <= end_sec; nr++) {
556 		unsigned long pfns;
557 
558 		cond_resched();
559 		pfns = min(nr_pages, PAGES_PER_SECTION
560 				- (pfn & ~PAGE_SECTION_MASK));
561 		__remove_section(zone, pfn, pfns, map_offset, altmap);
562 		pfn += pfns;
563 		nr_pages -= pfns;
564 		map_offset = 0;
565 	}
566 
567 	set_zone_contiguous(zone);
568 }
569 
570 int set_online_page_callback(online_page_callback_t callback)
571 {
572 	int rc = -EINVAL;
573 
574 	get_online_mems();
575 	mutex_lock(&online_page_callback_lock);
576 
577 	if (online_page_callback == generic_online_page) {
578 		online_page_callback = callback;
579 		rc = 0;
580 	}
581 
582 	mutex_unlock(&online_page_callback_lock);
583 	put_online_mems();
584 
585 	return rc;
586 }
587 EXPORT_SYMBOL_GPL(set_online_page_callback);
588 
589 int restore_online_page_callback(online_page_callback_t callback)
590 {
591 	int rc = -EINVAL;
592 
593 	get_online_mems();
594 	mutex_lock(&online_page_callback_lock);
595 
596 	if (online_page_callback == callback) {
597 		online_page_callback = generic_online_page;
598 		rc = 0;
599 	}
600 
601 	mutex_unlock(&online_page_callback_lock);
602 	put_online_mems();
603 
604 	return rc;
605 }
606 EXPORT_SYMBOL_GPL(restore_online_page_callback);
607 
608 void __online_page_set_limits(struct page *page)
609 {
610 }
611 EXPORT_SYMBOL_GPL(__online_page_set_limits);
612 
613 void __online_page_increment_counters(struct page *page)
614 {
615 	adjust_managed_page_count(page, 1);
616 }
617 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
618 
619 void __online_page_free(struct page *page)
620 {
621 	__free_reserved_page(page);
622 }
623 EXPORT_SYMBOL_GPL(__online_page_free);
624 
625 static void generic_online_page(struct page *page, unsigned int order)
626 {
627 	kernel_map_pages(page, 1 << order, 1);
628 	__free_pages_core(page, order);
629 	totalram_pages_add(1UL << order);
630 #ifdef CONFIG_HIGHMEM
631 	if (PageHighMem(page))
632 		totalhigh_pages_add(1UL << order);
633 #endif
634 }
635 
636 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
637 {
638 	unsigned long end = start + nr_pages;
639 	int order, onlined_pages = 0;
640 
641 	while (start < end) {
642 		order = min(MAX_ORDER - 1,
643 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
644 		(*online_page_callback)(pfn_to_page(start), order);
645 
646 		onlined_pages += (1UL << order);
647 		start += (1UL << order);
648 	}
649 	return onlined_pages;
650 }
651 
652 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
653 			void *arg)
654 {
655 	unsigned long onlined_pages = *(unsigned long *)arg;
656 
657 	if (PageReserved(pfn_to_page(start_pfn)))
658 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
659 
660 	online_mem_sections(start_pfn, start_pfn + nr_pages);
661 
662 	*(unsigned long *)arg = onlined_pages;
663 	return 0;
664 }
665 
666 /* check which state of node_states will be changed when online memory */
667 static void node_states_check_changes_online(unsigned long nr_pages,
668 	struct zone *zone, struct memory_notify *arg)
669 {
670 	int nid = zone_to_nid(zone);
671 
672 	arg->status_change_nid = NUMA_NO_NODE;
673 	arg->status_change_nid_normal = NUMA_NO_NODE;
674 	arg->status_change_nid_high = NUMA_NO_NODE;
675 
676 	if (!node_state(nid, N_MEMORY))
677 		arg->status_change_nid = nid;
678 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
679 		arg->status_change_nid_normal = nid;
680 #ifdef CONFIG_HIGHMEM
681 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
682 		arg->status_change_nid_high = nid;
683 #endif
684 }
685 
686 static void node_states_set_node(int node, struct memory_notify *arg)
687 {
688 	if (arg->status_change_nid_normal >= 0)
689 		node_set_state(node, N_NORMAL_MEMORY);
690 
691 	if (arg->status_change_nid_high >= 0)
692 		node_set_state(node, N_HIGH_MEMORY);
693 
694 	if (arg->status_change_nid >= 0)
695 		node_set_state(node, N_MEMORY);
696 }
697 
698 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
699 		unsigned long nr_pages)
700 {
701 	unsigned long old_end_pfn = zone_end_pfn(zone);
702 
703 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
704 		zone->zone_start_pfn = start_pfn;
705 
706 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
707 }
708 
709 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
710                                      unsigned long nr_pages)
711 {
712 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
713 
714 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
715 		pgdat->node_start_pfn = start_pfn;
716 
717 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
718 }
719 
720 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
721 		unsigned long nr_pages, struct vmem_altmap *altmap)
722 {
723 	struct pglist_data *pgdat = zone->zone_pgdat;
724 	int nid = pgdat->node_id;
725 	unsigned long flags;
726 
727 	clear_zone_contiguous(zone);
728 
729 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
730 	pgdat_resize_lock(pgdat, &flags);
731 	zone_span_writelock(zone);
732 	if (zone_is_empty(zone))
733 		init_currently_empty_zone(zone, start_pfn, nr_pages);
734 	resize_zone_range(zone, start_pfn, nr_pages);
735 	zone_span_writeunlock(zone);
736 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
737 	pgdat_resize_unlock(pgdat, &flags);
738 
739 	/*
740 	 * TODO now we have a visible range of pages which are not associated
741 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
742 	 * expects the zone spans the pfn range. All the pages in the range
743 	 * are reserved so nobody should be touching them so we should be safe
744 	 */
745 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
746 			MEMMAP_HOTPLUG, altmap);
747 
748 	set_zone_contiguous(zone);
749 }
750 
751 /*
752  * Returns a default kernel memory zone for the given pfn range.
753  * If no kernel zone covers this pfn range it will automatically go
754  * to the ZONE_NORMAL.
755  */
756 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
757 		unsigned long nr_pages)
758 {
759 	struct pglist_data *pgdat = NODE_DATA(nid);
760 	int zid;
761 
762 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
763 		struct zone *zone = &pgdat->node_zones[zid];
764 
765 		if (zone_intersects(zone, start_pfn, nr_pages))
766 			return zone;
767 	}
768 
769 	return &pgdat->node_zones[ZONE_NORMAL];
770 }
771 
772 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
773 		unsigned long nr_pages)
774 {
775 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
776 			nr_pages);
777 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
778 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
779 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
780 
781 	/*
782 	 * We inherit the existing zone in a simple case where zones do not
783 	 * overlap in the given range
784 	 */
785 	if (in_kernel ^ in_movable)
786 		return (in_kernel) ? kernel_zone : movable_zone;
787 
788 	/*
789 	 * If the range doesn't belong to any zone or two zones overlap in the
790 	 * given range then we use movable zone only if movable_node is
791 	 * enabled because we always online to a kernel zone by default.
792 	 */
793 	return movable_node_enabled ? movable_zone : kernel_zone;
794 }
795 
796 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
797 		unsigned long nr_pages)
798 {
799 	if (online_type == MMOP_ONLINE_KERNEL)
800 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
801 
802 	if (online_type == MMOP_ONLINE_MOVABLE)
803 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
804 
805 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
806 }
807 
808 /*
809  * Associates the given pfn range with the given node and the zone appropriate
810  * for the given online type.
811  */
812 static struct zone * __meminit move_pfn_range(int online_type, int nid,
813 		unsigned long start_pfn, unsigned long nr_pages)
814 {
815 	struct zone *zone;
816 
817 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
818 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
819 	return zone;
820 }
821 
822 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
823 {
824 	unsigned long flags;
825 	unsigned long onlined_pages = 0;
826 	struct zone *zone;
827 	int need_zonelists_rebuild = 0;
828 	int nid;
829 	int ret;
830 	struct memory_notify arg;
831 	struct memory_block *mem;
832 
833 	mem_hotplug_begin();
834 
835 	/*
836 	 * We can't use pfn_to_nid() because nid might be stored in struct page
837 	 * which is not yet initialized. Instead, we find nid from memory block.
838 	 */
839 	mem = find_memory_block(__pfn_to_section(pfn));
840 	nid = mem->nid;
841 	put_device(&mem->dev);
842 
843 	/* associate pfn range with the zone */
844 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
845 
846 	arg.start_pfn = pfn;
847 	arg.nr_pages = nr_pages;
848 	node_states_check_changes_online(nr_pages, zone, &arg);
849 
850 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
851 	ret = notifier_to_errno(ret);
852 	if (ret)
853 		goto failed_addition;
854 
855 	/*
856 	 * If this zone is not populated, then it is not in zonelist.
857 	 * This means the page allocator ignores this zone.
858 	 * So, zonelist must be updated after online.
859 	 */
860 	if (!populated_zone(zone)) {
861 		need_zonelists_rebuild = 1;
862 		setup_zone_pageset(zone);
863 	}
864 
865 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
866 		online_pages_range);
867 	if (ret) {
868 		if (need_zonelists_rebuild)
869 			zone_pcp_reset(zone);
870 		goto failed_addition;
871 	}
872 
873 	zone->present_pages += onlined_pages;
874 
875 	pgdat_resize_lock(zone->zone_pgdat, &flags);
876 	zone->zone_pgdat->node_present_pages += onlined_pages;
877 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
878 
879 	shuffle_zone(zone);
880 
881 	if (onlined_pages) {
882 		node_states_set_node(nid, &arg);
883 		if (need_zonelists_rebuild)
884 			build_all_zonelists(NULL);
885 		else
886 			zone_pcp_update(zone);
887 	}
888 
889 	init_per_zone_wmark_min();
890 
891 	if (onlined_pages) {
892 		kswapd_run(nid);
893 		kcompactd_run(nid);
894 	}
895 
896 	vm_total_pages = nr_free_pagecache_pages();
897 
898 	writeback_set_ratelimit();
899 
900 	if (onlined_pages)
901 		memory_notify(MEM_ONLINE, &arg);
902 	mem_hotplug_done();
903 	return 0;
904 
905 failed_addition:
906 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
907 		 (unsigned long long) pfn << PAGE_SHIFT,
908 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
909 	memory_notify(MEM_CANCEL_ONLINE, &arg);
910 	mem_hotplug_done();
911 	return ret;
912 }
913 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
914 
915 static void reset_node_present_pages(pg_data_t *pgdat)
916 {
917 	struct zone *z;
918 
919 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
920 		z->present_pages = 0;
921 
922 	pgdat->node_present_pages = 0;
923 }
924 
925 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
926 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
927 {
928 	struct pglist_data *pgdat;
929 	unsigned long start_pfn = PFN_DOWN(start);
930 
931 	pgdat = NODE_DATA(nid);
932 	if (!pgdat) {
933 		pgdat = arch_alloc_nodedata(nid);
934 		if (!pgdat)
935 			return NULL;
936 
937 		arch_refresh_nodedata(nid, pgdat);
938 	} else {
939 		/*
940 		 * Reset the nr_zones, order and classzone_idx before reuse.
941 		 * Note that kswapd will init kswapd_classzone_idx properly
942 		 * when it starts in the near future.
943 		 */
944 		pgdat->nr_zones = 0;
945 		pgdat->kswapd_order = 0;
946 		pgdat->kswapd_classzone_idx = 0;
947 	}
948 
949 	/* we can use NODE_DATA(nid) from here */
950 
951 	pgdat->node_id = nid;
952 	pgdat->node_start_pfn = start_pfn;
953 
954 	/* init node's zones as empty zones, we don't have any present pages.*/
955 	free_area_init_core_hotplug(nid);
956 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
957 
958 	/*
959 	 * The node we allocated has no zone fallback lists. For avoiding
960 	 * to access not-initialized zonelist, build here.
961 	 */
962 	build_all_zonelists(pgdat);
963 
964 	/*
965 	 * When memory is hot-added, all the memory is in offline state. So
966 	 * clear all zones' present_pages because they will be updated in
967 	 * online_pages() and offline_pages().
968 	 */
969 	reset_node_managed_pages(pgdat);
970 	reset_node_present_pages(pgdat);
971 
972 	return pgdat;
973 }
974 
975 static void rollback_node_hotadd(int nid)
976 {
977 	pg_data_t *pgdat = NODE_DATA(nid);
978 
979 	arch_refresh_nodedata(nid, NULL);
980 	free_percpu(pgdat->per_cpu_nodestats);
981 	arch_free_nodedata(pgdat);
982 	return;
983 }
984 
985 
986 /**
987  * try_online_node - online a node if offlined
988  * @nid: the node ID
989  * @start: start addr of the node
990  * @set_node_online: Whether we want to online the node
991  * called by cpu_up() to online a node without onlined memory.
992  *
993  * Returns:
994  * 1 -> a new node has been allocated
995  * 0 -> the node is already online
996  * -ENOMEM -> the node could not be allocated
997  */
998 static int __try_online_node(int nid, u64 start, bool set_node_online)
999 {
1000 	pg_data_t *pgdat;
1001 	int ret = 1;
1002 
1003 	if (node_online(nid))
1004 		return 0;
1005 
1006 	pgdat = hotadd_new_pgdat(nid, start);
1007 	if (!pgdat) {
1008 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1009 		ret = -ENOMEM;
1010 		goto out;
1011 	}
1012 
1013 	if (set_node_online) {
1014 		node_set_online(nid);
1015 		ret = register_one_node(nid);
1016 		BUG_ON(ret);
1017 	}
1018 out:
1019 	return ret;
1020 }
1021 
1022 /*
1023  * Users of this function always want to online/register the node
1024  */
1025 int try_online_node(int nid)
1026 {
1027 	int ret;
1028 
1029 	mem_hotplug_begin();
1030 	ret =  __try_online_node(nid, 0, true);
1031 	mem_hotplug_done();
1032 	return ret;
1033 }
1034 
1035 static int check_hotplug_memory_range(u64 start, u64 size)
1036 {
1037 	/* memory range must be block size aligned */
1038 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1039 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1040 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1041 		       memory_block_size_bytes(), start, size);
1042 		return -EINVAL;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static int online_memory_block(struct memory_block *mem, void *arg)
1049 {
1050 	return device_online(&mem->dev);
1051 }
1052 
1053 /*
1054  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1055  * and online/offline operations (triggered e.g. by sysfs).
1056  *
1057  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1058  */
1059 int __ref add_memory_resource(int nid, struct resource *res)
1060 {
1061 	struct mhp_restrictions restrictions = {};
1062 	u64 start, size;
1063 	bool new_node = false;
1064 	int ret;
1065 
1066 	start = res->start;
1067 	size = resource_size(res);
1068 
1069 	ret = check_hotplug_memory_range(start, size);
1070 	if (ret)
1071 		return ret;
1072 
1073 	mem_hotplug_begin();
1074 
1075 	/*
1076 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1077 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1078 	 * this new range and calculate total pages correctly.  The range will
1079 	 * be removed at hot-remove time.
1080 	 */
1081 	memblock_add_node(start, size, nid);
1082 
1083 	ret = __try_online_node(nid, start, false);
1084 	if (ret < 0)
1085 		goto error;
1086 	new_node = ret;
1087 
1088 	/* call arch's memory hotadd */
1089 	ret = arch_add_memory(nid, start, size, &restrictions);
1090 	if (ret < 0)
1091 		goto error;
1092 
1093 	/* create memory block devices after memory was added */
1094 	ret = create_memory_block_devices(start, size);
1095 	if (ret) {
1096 		arch_remove_memory(nid, start, size, NULL);
1097 		goto error;
1098 	}
1099 
1100 	if (new_node) {
1101 		/* If sysfs file of new node can't be created, cpu on the node
1102 		 * can't be hot-added. There is no rollback way now.
1103 		 * So, check by BUG_ON() to catch it reluctantly..
1104 		 * We online node here. We can't roll back from here.
1105 		 */
1106 		node_set_online(nid);
1107 		ret = __register_one_node(nid);
1108 		BUG_ON(ret);
1109 	}
1110 
1111 	/* link memory sections under this node.*/
1112 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1113 	BUG_ON(ret);
1114 
1115 	/* create new memmap entry */
1116 	firmware_map_add_hotplug(start, start + size, "System RAM");
1117 
1118 	/* device_online() will take the lock when calling online_pages() */
1119 	mem_hotplug_done();
1120 
1121 	/* online pages if requested */
1122 	if (memhp_auto_online)
1123 		walk_memory_blocks(start, size, NULL, online_memory_block);
1124 
1125 	return ret;
1126 error:
1127 	/* rollback pgdat allocation and others */
1128 	if (new_node)
1129 		rollback_node_hotadd(nid);
1130 	memblock_remove(start, size);
1131 	mem_hotplug_done();
1132 	return ret;
1133 }
1134 
1135 /* requires device_hotplug_lock, see add_memory_resource() */
1136 int __ref __add_memory(int nid, u64 start, u64 size)
1137 {
1138 	struct resource *res;
1139 	int ret;
1140 
1141 	res = register_memory_resource(start, size);
1142 	if (IS_ERR(res))
1143 		return PTR_ERR(res);
1144 
1145 	ret = add_memory_resource(nid, res);
1146 	if (ret < 0)
1147 		release_memory_resource(res);
1148 	return ret;
1149 }
1150 
1151 int add_memory(int nid, u64 start, u64 size)
1152 {
1153 	int rc;
1154 
1155 	lock_device_hotplug();
1156 	rc = __add_memory(nid, start, size);
1157 	unlock_device_hotplug();
1158 
1159 	return rc;
1160 }
1161 EXPORT_SYMBOL_GPL(add_memory);
1162 
1163 #ifdef CONFIG_MEMORY_HOTREMOVE
1164 /*
1165  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1166  * set and the size of the free page is given by page_order(). Using this,
1167  * the function determines if the pageblock contains only free pages.
1168  * Due to buddy contraints, a free page at least the size of a pageblock will
1169  * be located at the start of the pageblock
1170  */
1171 static inline int pageblock_free(struct page *page)
1172 {
1173 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1174 }
1175 
1176 /* Return the pfn of the start of the next active pageblock after a given pfn */
1177 static unsigned long next_active_pageblock(unsigned long pfn)
1178 {
1179 	struct page *page = pfn_to_page(pfn);
1180 
1181 	/* Ensure the starting page is pageblock-aligned */
1182 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1183 
1184 	/* If the entire pageblock is free, move to the end of free page */
1185 	if (pageblock_free(page)) {
1186 		int order;
1187 		/* be careful. we don't have locks, page_order can be changed.*/
1188 		order = page_order(page);
1189 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1190 			return pfn + (1 << order);
1191 	}
1192 
1193 	return pfn + pageblock_nr_pages;
1194 }
1195 
1196 static bool is_pageblock_removable_nolock(unsigned long pfn)
1197 {
1198 	struct page *page = pfn_to_page(pfn);
1199 	struct zone *zone;
1200 
1201 	/*
1202 	 * We have to be careful here because we are iterating over memory
1203 	 * sections which are not zone aware so we might end up outside of
1204 	 * the zone but still within the section.
1205 	 * We have to take care about the node as well. If the node is offline
1206 	 * its NODE_DATA will be NULL - see page_zone.
1207 	 */
1208 	if (!node_online(page_to_nid(page)))
1209 		return false;
1210 
1211 	zone = page_zone(page);
1212 	pfn = page_to_pfn(page);
1213 	if (!zone_spans_pfn(zone, pfn))
1214 		return false;
1215 
1216 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1217 }
1218 
1219 /* Checks if this range of memory is likely to be hot-removable. */
1220 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1221 {
1222 	unsigned long end_pfn, pfn;
1223 
1224 	end_pfn = min(start_pfn + nr_pages,
1225 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1226 
1227 	/* Check the starting page of each pageblock within the range */
1228 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1229 		if (!is_pageblock_removable_nolock(pfn))
1230 			return false;
1231 		cond_resched();
1232 	}
1233 
1234 	/* All pageblocks in the memory block are likely to be hot-removable */
1235 	return true;
1236 }
1237 
1238 /*
1239  * Confirm all pages in a range [start, end) belong to the same zone.
1240  * When true, return its valid [start, end).
1241  */
1242 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1243 			 unsigned long *valid_start, unsigned long *valid_end)
1244 {
1245 	unsigned long pfn, sec_end_pfn;
1246 	unsigned long start, end;
1247 	struct zone *zone = NULL;
1248 	struct page *page;
1249 	int i;
1250 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1251 	     pfn < end_pfn;
1252 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1253 		/* Make sure the memory section is present first */
1254 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1255 			continue;
1256 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1257 		     pfn += MAX_ORDER_NR_PAGES) {
1258 			i = 0;
1259 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1260 			while ((i < MAX_ORDER_NR_PAGES) &&
1261 				!pfn_valid_within(pfn + i))
1262 				i++;
1263 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1264 				continue;
1265 			/* Check if we got outside of the zone */
1266 			if (zone && !zone_spans_pfn(zone, pfn + i))
1267 				return 0;
1268 			page = pfn_to_page(pfn + i);
1269 			if (zone && page_zone(page) != zone)
1270 				return 0;
1271 			if (!zone)
1272 				start = pfn + i;
1273 			zone = page_zone(page);
1274 			end = pfn + MAX_ORDER_NR_PAGES;
1275 		}
1276 	}
1277 
1278 	if (zone) {
1279 		*valid_start = start;
1280 		*valid_end = min(end, end_pfn);
1281 		return 1;
1282 	} else {
1283 		return 0;
1284 	}
1285 }
1286 
1287 /*
1288  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1289  * non-lru movable pages and hugepages). We scan pfn because it's much
1290  * easier than scanning over linked list. This function returns the pfn
1291  * of the first found movable page if it's found, otherwise 0.
1292  */
1293 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1294 {
1295 	unsigned long pfn;
1296 
1297 	for (pfn = start; pfn < end; pfn++) {
1298 		struct page *page, *head;
1299 		unsigned long skip;
1300 
1301 		if (!pfn_valid(pfn))
1302 			continue;
1303 		page = pfn_to_page(pfn);
1304 		if (PageLRU(page))
1305 			return pfn;
1306 		if (__PageMovable(page))
1307 			return pfn;
1308 
1309 		if (!PageHuge(page))
1310 			continue;
1311 		head = compound_head(page);
1312 		if (page_huge_active(head))
1313 			return pfn;
1314 		skip = (1 << compound_order(head)) - (page - head);
1315 		pfn += skip - 1;
1316 	}
1317 	return 0;
1318 }
1319 
1320 static struct page *new_node_page(struct page *page, unsigned long private)
1321 {
1322 	int nid = page_to_nid(page);
1323 	nodemask_t nmask = node_states[N_MEMORY];
1324 
1325 	/*
1326 	 * try to allocate from a different node but reuse this node if there
1327 	 * are no other online nodes to be used (e.g. we are offlining a part
1328 	 * of the only existing node)
1329 	 */
1330 	node_clear(nid, nmask);
1331 	if (nodes_empty(nmask))
1332 		node_set(nid, nmask);
1333 
1334 	return new_page_nodemask(page, nid, &nmask);
1335 }
1336 
1337 static int
1338 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1339 {
1340 	unsigned long pfn;
1341 	struct page *page;
1342 	int ret = 0;
1343 	LIST_HEAD(source);
1344 
1345 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1346 		if (!pfn_valid(pfn))
1347 			continue;
1348 		page = pfn_to_page(pfn);
1349 
1350 		if (PageHuge(page)) {
1351 			struct page *head = compound_head(page);
1352 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1353 			isolate_huge_page(head, &source);
1354 			continue;
1355 		} else if (PageTransHuge(page))
1356 			pfn = page_to_pfn(compound_head(page))
1357 				+ hpage_nr_pages(page) - 1;
1358 
1359 		/*
1360 		 * HWPoison pages have elevated reference counts so the migration would
1361 		 * fail on them. It also doesn't make any sense to migrate them in the
1362 		 * first place. Still try to unmap such a page in case it is still mapped
1363 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1364 		 * the unmap as the catch all safety net).
1365 		 */
1366 		if (PageHWPoison(page)) {
1367 			if (WARN_ON(PageLRU(page)))
1368 				isolate_lru_page(page);
1369 			if (page_mapped(page))
1370 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1371 			continue;
1372 		}
1373 
1374 		if (!get_page_unless_zero(page))
1375 			continue;
1376 		/*
1377 		 * We can skip free pages. And we can deal with pages on
1378 		 * LRU and non-lru movable pages.
1379 		 */
1380 		if (PageLRU(page))
1381 			ret = isolate_lru_page(page);
1382 		else
1383 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1384 		if (!ret) { /* Success */
1385 			list_add_tail(&page->lru, &source);
1386 			if (!__PageMovable(page))
1387 				inc_node_page_state(page, NR_ISOLATED_ANON +
1388 						    page_is_file_cache(page));
1389 
1390 		} else {
1391 			pr_warn("failed to isolate pfn %lx\n", pfn);
1392 			dump_page(page, "isolation failed");
1393 		}
1394 		put_page(page);
1395 	}
1396 	if (!list_empty(&source)) {
1397 		/* Allocate a new page from the nearest neighbor node */
1398 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1399 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1400 		if (ret) {
1401 			list_for_each_entry(page, &source, lru) {
1402 				pr_warn("migrating pfn %lx failed ret:%d ",
1403 				       page_to_pfn(page), ret);
1404 				dump_page(page, "migration failure");
1405 			}
1406 			putback_movable_pages(&source);
1407 		}
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * remove from free_area[] and mark all as Reserved.
1415  */
1416 static int
1417 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1418 			void *data)
1419 {
1420 	unsigned long *offlined_pages = (unsigned long *)data;
1421 
1422 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Check all pages in range, recoreded as memory resource, are isolated.
1428  */
1429 static int
1430 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1431 			void *data)
1432 {
1433 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1434 }
1435 
1436 static int __init cmdline_parse_movable_node(char *p)
1437 {
1438 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1439 	movable_node_enabled = true;
1440 #else
1441 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1442 #endif
1443 	return 0;
1444 }
1445 early_param("movable_node", cmdline_parse_movable_node);
1446 
1447 /* check which state of node_states will be changed when offline memory */
1448 static void node_states_check_changes_offline(unsigned long nr_pages,
1449 		struct zone *zone, struct memory_notify *arg)
1450 {
1451 	struct pglist_data *pgdat = zone->zone_pgdat;
1452 	unsigned long present_pages = 0;
1453 	enum zone_type zt;
1454 
1455 	arg->status_change_nid = NUMA_NO_NODE;
1456 	arg->status_change_nid_normal = NUMA_NO_NODE;
1457 	arg->status_change_nid_high = NUMA_NO_NODE;
1458 
1459 	/*
1460 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1461 	 * If the memory to be offline is within the range
1462 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1463 	 * the zones in that range will become empty after the offlining,
1464 	 * thus we can determine that we need to clear the node from
1465 	 * node_states[N_NORMAL_MEMORY].
1466 	 */
1467 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1468 		present_pages += pgdat->node_zones[zt].present_pages;
1469 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1470 		arg->status_change_nid_normal = zone_to_nid(zone);
1471 
1472 #ifdef CONFIG_HIGHMEM
1473 	/*
1474 	 * node_states[N_HIGH_MEMORY] contains nodes which
1475 	 * have normal memory or high memory.
1476 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1477 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1478 	 * we determine that the zones in that range become empty,
1479 	 * we need to clear the node for N_HIGH_MEMORY.
1480 	 */
1481 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1482 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1483 		arg->status_change_nid_high = zone_to_nid(zone);
1484 #endif
1485 
1486 	/*
1487 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1488 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1489 	 * as well.
1490 	 * Here we count the possible pages from ZONE_MOVABLE.
1491 	 * If after having accounted all the pages, we see that the nr_pages
1492 	 * to be offlined is over or equal to the accounted pages,
1493 	 * we know that the node will become empty, and so, we can clear
1494 	 * it for N_MEMORY as well.
1495 	 */
1496 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1497 
1498 	if (nr_pages >= present_pages)
1499 		arg->status_change_nid = zone_to_nid(zone);
1500 }
1501 
1502 static void node_states_clear_node(int node, struct memory_notify *arg)
1503 {
1504 	if (arg->status_change_nid_normal >= 0)
1505 		node_clear_state(node, N_NORMAL_MEMORY);
1506 
1507 	if (arg->status_change_nid_high >= 0)
1508 		node_clear_state(node, N_HIGH_MEMORY);
1509 
1510 	if (arg->status_change_nid >= 0)
1511 		node_clear_state(node, N_MEMORY);
1512 }
1513 
1514 static int __ref __offline_pages(unsigned long start_pfn,
1515 		  unsigned long end_pfn)
1516 {
1517 	unsigned long pfn, nr_pages;
1518 	unsigned long offlined_pages = 0;
1519 	int ret, node, nr_isolate_pageblock;
1520 	unsigned long flags;
1521 	unsigned long valid_start, valid_end;
1522 	struct zone *zone;
1523 	struct memory_notify arg;
1524 	char *reason;
1525 
1526 	mem_hotplug_begin();
1527 
1528 	/* This makes hotplug much easier...and readable.
1529 	   we assume this for now. .*/
1530 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1531 				  &valid_end)) {
1532 		ret = -EINVAL;
1533 		reason = "multizone range";
1534 		goto failed_removal;
1535 	}
1536 
1537 	zone = page_zone(pfn_to_page(valid_start));
1538 	node = zone_to_nid(zone);
1539 	nr_pages = end_pfn - start_pfn;
1540 
1541 	/* set above range as isolated */
1542 	ret = start_isolate_page_range(start_pfn, end_pfn,
1543 				       MIGRATE_MOVABLE,
1544 				       SKIP_HWPOISON | REPORT_FAILURE);
1545 	if (ret < 0) {
1546 		reason = "failure to isolate range";
1547 		goto failed_removal;
1548 	}
1549 	nr_isolate_pageblock = ret;
1550 
1551 	arg.start_pfn = start_pfn;
1552 	arg.nr_pages = nr_pages;
1553 	node_states_check_changes_offline(nr_pages, zone, &arg);
1554 
1555 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1556 	ret = notifier_to_errno(ret);
1557 	if (ret) {
1558 		reason = "notifier failure";
1559 		goto failed_removal_isolated;
1560 	}
1561 
1562 	do {
1563 		for (pfn = start_pfn; pfn;) {
1564 			if (signal_pending(current)) {
1565 				ret = -EINTR;
1566 				reason = "signal backoff";
1567 				goto failed_removal_isolated;
1568 			}
1569 
1570 			cond_resched();
1571 			lru_add_drain_all();
1572 
1573 			pfn = scan_movable_pages(pfn, end_pfn);
1574 			if (pfn) {
1575 				/*
1576 				 * TODO: fatal migration failures should bail
1577 				 * out
1578 				 */
1579 				do_migrate_range(pfn, end_pfn);
1580 			}
1581 		}
1582 
1583 		/*
1584 		 * Dissolve free hugepages in the memory block before doing
1585 		 * offlining actually in order to make hugetlbfs's object
1586 		 * counting consistent.
1587 		 */
1588 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1589 		if (ret) {
1590 			reason = "failure to dissolve huge pages";
1591 			goto failed_removal_isolated;
1592 		}
1593 		/* check again */
1594 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1595 					    NULL, check_pages_isolated_cb);
1596 	} while (ret);
1597 
1598 	/* Ok, all of our target is isolated.
1599 	   We cannot do rollback at this point. */
1600 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1601 			      &offlined_pages, offline_isolated_pages_cb);
1602 	pr_info("Offlined Pages %ld\n", offlined_pages);
1603 	/*
1604 	 * Onlining will reset pagetype flags and makes migrate type
1605 	 * MOVABLE, so just need to decrease the number of isolated
1606 	 * pageblocks zone counter here.
1607 	 */
1608 	spin_lock_irqsave(&zone->lock, flags);
1609 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1610 	spin_unlock_irqrestore(&zone->lock, flags);
1611 
1612 	/* removal success */
1613 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1614 	zone->present_pages -= offlined_pages;
1615 
1616 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1617 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1618 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1619 
1620 	init_per_zone_wmark_min();
1621 
1622 	if (!populated_zone(zone)) {
1623 		zone_pcp_reset(zone);
1624 		build_all_zonelists(NULL);
1625 	} else
1626 		zone_pcp_update(zone);
1627 
1628 	node_states_clear_node(node, &arg);
1629 	if (arg.status_change_nid >= 0) {
1630 		kswapd_stop(node);
1631 		kcompactd_stop(node);
1632 	}
1633 
1634 	vm_total_pages = nr_free_pagecache_pages();
1635 	writeback_set_ratelimit();
1636 
1637 	memory_notify(MEM_OFFLINE, &arg);
1638 	mem_hotplug_done();
1639 	return 0;
1640 
1641 failed_removal_isolated:
1642 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1643 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1644 failed_removal:
1645 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1646 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1647 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1648 		 reason);
1649 	/* pushback to free area */
1650 	mem_hotplug_done();
1651 	return ret;
1652 }
1653 
1654 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1655 {
1656 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1657 }
1658 
1659 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1660 {
1661 	int ret = !is_memblock_offlined(mem);
1662 
1663 	if (unlikely(ret)) {
1664 		phys_addr_t beginpa, endpa;
1665 
1666 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1667 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1668 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1669 			&beginpa, &endpa);
1670 
1671 		return -EBUSY;
1672 	}
1673 	return 0;
1674 }
1675 
1676 static int check_cpu_on_node(pg_data_t *pgdat)
1677 {
1678 	int cpu;
1679 
1680 	for_each_present_cpu(cpu) {
1681 		if (cpu_to_node(cpu) == pgdat->node_id)
1682 			/*
1683 			 * the cpu on this node isn't removed, and we can't
1684 			 * offline this node.
1685 			 */
1686 			return -EBUSY;
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  * try_offline_node
1694  * @nid: the node ID
1695  *
1696  * Offline a node if all memory sections and cpus of the node are removed.
1697  *
1698  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1699  * and online/offline operations before this call.
1700  */
1701 void try_offline_node(int nid)
1702 {
1703 	pg_data_t *pgdat = NODE_DATA(nid);
1704 	unsigned long start_pfn = pgdat->node_start_pfn;
1705 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1706 	unsigned long pfn;
1707 
1708 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1709 		unsigned long section_nr = pfn_to_section_nr(pfn);
1710 
1711 		if (!present_section_nr(section_nr))
1712 			continue;
1713 
1714 		if (pfn_to_nid(pfn) != nid)
1715 			continue;
1716 
1717 		/*
1718 		 * some memory sections of this node are not removed, and we
1719 		 * can't offline node now.
1720 		 */
1721 		return;
1722 	}
1723 
1724 	if (check_cpu_on_node(pgdat))
1725 		return;
1726 
1727 	/*
1728 	 * all memory/cpu of this node are removed, we can offline this
1729 	 * node now.
1730 	 */
1731 	node_set_offline(nid);
1732 	unregister_one_node(nid);
1733 }
1734 EXPORT_SYMBOL(try_offline_node);
1735 
1736 static void __release_memory_resource(resource_size_t start,
1737 				      resource_size_t size)
1738 {
1739 	int ret;
1740 
1741 	/*
1742 	 * When removing memory in the same granularity as it was added,
1743 	 * this function never fails. It might only fail if resources
1744 	 * have to be adjusted or split. We'll ignore the error, as
1745 	 * removing of memory cannot fail.
1746 	 */
1747 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1748 	if (ret) {
1749 		resource_size_t endres = start + size - 1;
1750 
1751 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1752 			&start, &endres, ret);
1753 	}
1754 }
1755 
1756 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1757 {
1758 	int rc = 0;
1759 
1760 	BUG_ON(check_hotplug_memory_range(start, size));
1761 
1762 	mem_hotplug_begin();
1763 
1764 	/*
1765 	 * All memory blocks must be offlined before removing memory.  Check
1766 	 * whether all memory blocks in question are offline and return error
1767 	 * if this is not the case.
1768 	 */
1769 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1770 	if (rc)
1771 		goto done;
1772 
1773 	/* remove memmap entry */
1774 	firmware_map_remove(start, start + size, "System RAM");
1775 	memblock_free(start, size);
1776 	memblock_remove(start, size);
1777 
1778 	/* remove memory block devices before removing memory */
1779 	remove_memory_block_devices(start, size);
1780 
1781 	arch_remove_memory(nid, start, size, NULL);
1782 	__release_memory_resource(start, size);
1783 
1784 	try_offline_node(nid);
1785 
1786 done:
1787 	mem_hotplug_done();
1788 	return rc;
1789 }
1790 
1791 /**
1792  * remove_memory
1793  * @nid: the node ID
1794  * @start: physical address of the region to remove
1795  * @size: size of the region to remove
1796  *
1797  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1798  * and online/offline operations before this call, as required by
1799  * try_offline_node().
1800  */
1801 void __remove_memory(int nid, u64 start, u64 size)
1802 {
1803 
1804 	/*
1805 	 * trigger BUG() is some memory is not offlined prior to calling this
1806 	 * function
1807 	 */
1808 	if (try_remove_memory(nid, start, size))
1809 		BUG();
1810 }
1811 
1812 /*
1813  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1814  * some memory is not offline
1815  */
1816 int remove_memory(int nid, u64 start, u64 size)
1817 {
1818 	int rc;
1819 
1820 	lock_device_hotplug();
1821 	rc  = try_remove_memory(nid, start, size);
1822 	unlock_device_hotplug();
1823 
1824 	return rc;
1825 }
1826 EXPORT_SYMBOL_GPL(remove_memory);
1827 #endif /* CONFIG_MEMORY_HOTREMOVE */
1828