xref: /openbmc/linux/mm/memory_hotplug.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 
37 #include <asm/tlbflush.h>
38 
39 #include "internal.h"
40 
41 /*
42  * online_page_callback contains pointer to current page onlining function.
43  * Initially it is generic_online_page(). If it is required it could be
44  * changed by calling set_online_page_callback() for callback registration
45  * and restore_online_page_callback() for generic callback restore.
46  */
47 
48 static void generic_online_page(struct page *page);
49 
50 static online_page_callback_t online_page_callback = generic_online_page;
51 static DEFINE_MUTEX(online_page_callback_lock);
52 
53 /* The same as the cpu_hotplug lock, but for memory hotplug. */
54 static struct {
55 	struct task_struct *active_writer;
56 	struct mutex lock; /* Synchronizes accesses to refcount, */
57 	/*
58 	 * Also blocks the new readers during
59 	 * an ongoing mem hotplug operation.
60 	 */
61 	int refcount;
62 
63 #ifdef CONFIG_DEBUG_LOCK_ALLOC
64 	struct lockdep_map dep_map;
65 #endif
66 } mem_hotplug = {
67 	.active_writer = NULL,
68 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
69 	.refcount = 0,
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 	.dep_map = {.name = "mem_hotplug.lock" },
72 #endif
73 };
74 
75 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
76 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
77 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
78 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
79 
80 void get_online_mems(void)
81 {
82 	might_sleep();
83 	if (mem_hotplug.active_writer == current)
84 		return;
85 	memhp_lock_acquire_read();
86 	mutex_lock(&mem_hotplug.lock);
87 	mem_hotplug.refcount++;
88 	mutex_unlock(&mem_hotplug.lock);
89 
90 }
91 
92 void put_online_mems(void)
93 {
94 	if (mem_hotplug.active_writer == current)
95 		return;
96 	mutex_lock(&mem_hotplug.lock);
97 
98 	if (WARN_ON(!mem_hotplug.refcount))
99 		mem_hotplug.refcount++; /* try to fix things up */
100 
101 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
102 		wake_up_process(mem_hotplug.active_writer);
103 	mutex_unlock(&mem_hotplug.lock);
104 	memhp_lock_release();
105 
106 }
107 
108 void mem_hotplug_begin(void)
109 {
110 	mem_hotplug.active_writer = current;
111 
112 	memhp_lock_acquire();
113 	for (;;) {
114 		mutex_lock(&mem_hotplug.lock);
115 		if (likely(!mem_hotplug.refcount))
116 			break;
117 		__set_current_state(TASK_UNINTERRUPTIBLE);
118 		mutex_unlock(&mem_hotplug.lock);
119 		schedule();
120 	}
121 }
122 
123 void mem_hotplug_done(void)
124 {
125 	mem_hotplug.active_writer = NULL;
126 	mutex_unlock(&mem_hotplug.lock);
127 	memhp_lock_release();
128 }
129 
130 /* add this memory to iomem resource */
131 static struct resource *register_memory_resource(u64 start, u64 size)
132 {
133 	struct resource *res;
134 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
135 	if (!res)
136 		return ERR_PTR(-ENOMEM);
137 
138 	res->name = "System RAM";
139 	res->start = start;
140 	res->end = start + size - 1;
141 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
142 	if (request_resource(&iomem_resource, res) < 0) {
143 		pr_debug("System RAM resource %pR cannot be added\n", res);
144 		kfree(res);
145 		return ERR_PTR(-EEXIST);
146 	}
147 	return res;
148 }
149 
150 static void release_memory_resource(struct resource *res)
151 {
152 	if (!res)
153 		return;
154 	release_resource(res);
155 	kfree(res);
156 	return;
157 }
158 
159 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
160 void get_page_bootmem(unsigned long info,  struct page *page,
161 		      unsigned long type)
162 {
163 	page->lru.next = (struct list_head *) type;
164 	SetPagePrivate(page);
165 	set_page_private(page, info);
166 	atomic_inc(&page->_count);
167 }
168 
169 void put_page_bootmem(struct page *page)
170 {
171 	unsigned long type;
172 
173 	type = (unsigned long) page->lru.next;
174 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
175 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
176 
177 	if (atomic_dec_return(&page->_count) == 1) {
178 		ClearPagePrivate(page);
179 		set_page_private(page, 0);
180 		INIT_LIST_HEAD(&page->lru);
181 		free_reserved_page(page);
182 	}
183 }
184 
185 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
186 #ifndef CONFIG_SPARSEMEM_VMEMMAP
187 static void register_page_bootmem_info_section(unsigned long start_pfn)
188 {
189 	unsigned long *usemap, mapsize, section_nr, i;
190 	struct mem_section *ms;
191 	struct page *page, *memmap;
192 
193 	section_nr = pfn_to_section_nr(start_pfn);
194 	ms = __nr_to_section(section_nr);
195 
196 	/* Get section's memmap address */
197 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
198 
199 	/*
200 	 * Get page for the memmap's phys address
201 	 * XXX: need more consideration for sparse_vmemmap...
202 	 */
203 	page = virt_to_page(memmap);
204 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
205 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
206 
207 	/* remember memmap's page */
208 	for (i = 0; i < mapsize; i++, page++)
209 		get_page_bootmem(section_nr, page, SECTION_INFO);
210 
211 	usemap = __nr_to_section(section_nr)->pageblock_flags;
212 	page = virt_to_page(usemap);
213 
214 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
215 
216 	for (i = 0; i < mapsize; i++, page++)
217 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
218 
219 }
220 #else /* CONFIG_SPARSEMEM_VMEMMAP */
221 static void register_page_bootmem_info_section(unsigned long start_pfn)
222 {
223 	unsigned long *usemap, mapsize, section_nr, i;
224 	struct mem_section *ms;
225 	struct page *page, *memmap;
226 
227 	if (!pfn_valid(start_pfn))
228 		return;
229 
230 	section_nr = pfn_to_section_nr(start_pfn);
231 	ms = __nr_to_section(section_nr);
232 
233 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
234 
235 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
236 
237 	usemap = __nr_to_section(section_nr)->pageblock_flags;
238 	page = virt_to_page(usemap);
239 
240 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
241 
242 	for (i = 0; i < mapsize; i++, page++)
243 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
244 }
245 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
246 
247 void register_page_bootmem_info_node(struct pglist_data *pgdat)
248 {
249 	unsigned long i, pfn, end_pfn, nr_pages;
250 	int node = pgdat->node_id;
251 	struct page *page;
252 	struct zone *zone;
253 
254 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
255 	page = virt_to_page(pgdat);
256 
257 	for (i = 0; i < nr_pages; i++, page++)
258 		get_page_bootmem(node, page, NODE_INFO);
259 
260 	zone = &pgdat->node_zones[0];
261 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
262 		if (zone_is_initialized(zone)) {
263 			nr_pages = zone->wait_table_hash_nr_entries
264 				* sizeof(wait_queue_head_t);
265 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
266 			page = virt_to_page(zone->wait_table);
267 
268 			for (i = 0; i < nr_pages; i++, page++)
269 				get_page_bootmem(node, page, NODE_INFO);
270 		}
271 	}
272 
273 	pfn = pgdat->node_start_pfn;
274 	end_pfn = pgdat_end_pfn(pgdat);
275 
276 	/* register section info */
277 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
278 		/*
279 		 * Some platforms can assign the same pfn to multiple nodes - on
280 		 * node0 as well as nodeN.  To avoid registering a pfn against
281 		 * multiple nodes we check that this pfn does not already
282 		 * reside in some other nodes.
283 		 */
284 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
285 			register_page_bootmem_info_section(pfn);
286 	}
287 }
288 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
289 
290 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
291 				     unsigned long end_pfn)
292 {
293 	unsigned long old_zone_end_pfn;
294 
295 	zone_span_writelock(zone);
296 
297 	old_zone_end_pfn = zone_end_pfn(zone);
298 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
299 		zone->zone_start_pfn = start_pfn;
300 
301 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
302 				zone->zone_start_pfn;
303 
304 	zone_span_writeunlock(zone);
305 }
306 
307 static void resize_zone(struct zone *zone, unsigned long start_pfn,
308 		unsigned long end_pfn)
309 {
310 	zone_span_writelock(zone);
311 
312 	if (end_pfn - start_pfn) {
313 		zone->zone_start_pfn = start_pfn;
314 		zone->spanned_pages = end_pfn - start_pfn;
315 	} else {
316 		/*
317 		 * make it consist as free_area_init_core(),
318 		 * if spanned_pages = 0, then keep start_pfn = 0
319 		 */
320 		zone->zone_start_pfn = 0;
321 		zone->spanned_pages = 0;
322 	}
323 
324 	zone_span_writeunlock(zone);
325 }
326 
327 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
328 		unsigned long end_pfn)
329 {
330 	enum zone_type zid = zone_idx(zone);
331 	int nid = zone->zone_pgdat->node_id;
332 	unsigned long pfn;
333 
334 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
335 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
336 }
337 
338 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
339  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
340 static int __ref ensure_zone_is_initialized(struct zone *zone,
341 			unsigned long start_pfn, unsigned long num_pages)
342 {
343 	if (!zone_is_initialized(zone))
344 		return init_currently_empty_zone(zone, start_pfn, num_pages);
345 
346 	return 0;
347 }
348 
349 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
350 		unsigned long start_pfn, unsigned long end_pfn)
351 {
352 	int ret;
353 	unsigned long flags;
354 	unsigned long z1_start_pfn;
355 
356 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
357 	if (ret)
358 		return ret;
359 
360 	pgdat_resize_lock(z1->zone_pgdat, &flags);
361 
362 	/* can't move pfns which are higher than @z2 */
363 	if (end_pfn > zone_end_pfn(z2))
364 		goto out_fail;
365 	/* the move out part must be at the left most of @z2 */
366 	if (start_pfn > z2->zone_start_pfn)
367 		goto out_fail;
368 	/* must included/overlap */
369 	if (end_pfn <= z2->zone_start_pfn)
370 		goto out_fail;
371 
372 	/* use start_pfn for z1's start_pfn if z1 is empty */
373 	if (!zone_is_empty(z1))
374 		z1_start_pfn = z1->zone_start_pfn;
375 	else
376 		z1_start_pfn = start_pfn;
377 
378 	resize_zone(z1, z1_start_pfn, end_pfn);
379 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
380 
381 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
382 
383 	fix_zone_id(z1, start_pfn, end_pfn);
384 
385 	return 0;
386 out_fail:
387 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
388 	return -1;
389 }
390 
391 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
392 		unsigned long start_pfn, unsigned long end_pfn)
393 {
394 	int ret;
395 	unsigned long flags;
396 	unsigned long z2_end_pfn;
397 
398 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
399 	if (ret)
400 		return ret;
401 
402 	pgdat_resize_lock(z1->zone_pgdat, &flags);
403 
404 	/* can't move pfns which are lower than @z1 */
405 	if (z1->zone_start_pfn > start_pfn)
406 		goto out_fail;
407 	/* the move out part mast at the right most of @z1 */
408 	if (zone_end_pfn(z1) >  end_pfn)
409 		goto out_fail;
410 	/* must included/overlap */
411 	if (start_pfn >= zone_end_pfn(z1))
412 		goto out_fail;
413 
414 	/* use end_pfn for z2's end_pfn if z2 is empty */
415 	if (!zone_is_empty(z2))
416 		z2_end_pfn = zone_end_pfn(z2);
417 	else
418 		z2_end_pfn = end_pfn;
419 
420 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
421 	resize_zone(z2, start_pfn, z2_end_pfn);
422 
423 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
424 
425 	fix_zone_id(z2, start_pfn, end_pfn);
426 
427 	return 0;
428 out_fail:
429 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
430 	return -1;
431 }
432 
433 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
434 				      unsigned long end_pfn)
435 {
436 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
437 
438 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
439 		pgdat->node_start_pfn = start_pfn;
440 
441 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
442 					pgdat->node_start_pfn;
443 }
444 
445 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
446 {
447 	struct pglist_data *pgdat = zone->zone_pgdat;
448 	int nr_pages = PAGES_PER_SECTION;
449 	int nid = pgdat->node_id;
450 	int zone_type;
451 	unsigned long flags, pfn;
452 	int ret;
453 
454 	zone_type = zone - pgdat->node_zones;
455 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
456 	if (ret)
457 		return ret;
458 
459 	pgdat_resize_lock(zone->zone_pgdat, &flags);
460 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
461 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
462 			phys_start_pfn + nr_pages);
463 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
464 	memmap_init_zone(nr_pages, nid, zone_type,
465 			 phys_start_pfn, MEMMAP_HOTPLUG);
466 
467 	/* online_page_range is called later and expects pages reserved */
468 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
469 		if (!pfn_valid(pfn))
470 			continue;
471 
472 		SetPageReserved(pfn_to_page(pfn));
473 	}
474 	return 0;
475 }
476 
477 static int __meminit __add_section(int nid, struct zone *zone,
478 					unsigned long phys_start_pfn)
479 {
480 	int ret;
481 
482 	if (pfn_valid(phys_start_pfn))
483 		return -EEXIST;
484 
485 	ret = sparse_add_one_section(zone, phys_start_pfn);
486 
487 	if (ret < 0)
488 		return ret;
489 
490 	ret = __add_zone(zone, phys_start_pfn);
491 
492 	if (ret < 0)
493 		return ret;
494 
495 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
496 }
497 
498 /*
499  * Reasonably generic function for adding memory.  It is
500  * expected that archs that support memory hotplug will
501  * call this function after deciding the zone to which to
502  * add the new pages.
503  */
504 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
505 			unsigned long nr_pages)
506 {
507 	unsigned long i;
508 	int err = 0;
509 	int start_sec, end_sec;
510 	struct vmem_altmap *altmap;
511 
512 	/* during initialize mem_map, align hot-added range to section */
513 	start_sec = pfn_to_section_nr(phys_start_pfn);
514 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
515 
516 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
517 	if (altmap) {
518 		/*
519 		 * Validate altmap is within bounds of the total request
520 		 */
521 		if (altmap->base_pfn != phys_start_pfn
522 				|| vmem_altmap_offset(altmap) > nr_pages) {
523 			pr_warn_once("memory add fail, invalid altmap\n");
524 			return -EINVAL;
525 		}
526 		altmap->alloc = 0;
527 	}
528 
529 	for (i = start_sec; i <= end_sec; i++) {
530 		err = __add_section(nid, zone, section_nr_to_pfn(i));
531 
532 		/*
533 		 * EEXIST is finally dealt with by ioresource collision
534 		 * check. see add_memory() => register_memory_resource()
535 		 * Warning will be printed if there is collision.
536 		 */
537 		if (err && (err != -EEXIST))
538 			break;
539 		err = 0;
540 	}
541 	vmemmap_populate_print_last();
542 
543 	return err;
544 }
545 EXPORT_SYMBOL_GPL(__add_pages);
546 
547 #ifdef CONFIG_MEMORY_HOTREMOVE
548 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
549 static int find_smallest_section_pfn(int nid, struct zone *zone,
550 				     unsigned long start_pfn,
551 				     unsigned long end_pfn)
552 {
553 	struct mem_section *ms;
554 
555 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
556 		ms = __pfn_to_section(start_pfn);
557 
558 		if (unlikely(!valid_section(ms)))
559 			continue;
560 
561 		if (unlikely(pfn_to_nid(start_pfn) != nid))
562 			continue;
563 
564 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
565 			continue;
566 
567 		return start_pfn;
568 	}
569 
570 	return 0;
571 }
572 
573 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
574 static int find_biggest_section_pfn(int nid, struct zone *zone,
575 				    unsigned long start_pfn,
576 				    unsigned long end_pfn)
577 {
578 	struct mem_section *ms;
579 	unsigned long pfn;
580 
581 	/* pfn is the end pfn of a memory section. */
582 	pfn = end_pfn - 1;
583 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
584 		ms = __pfn_to_section(pfn);
585 
586 		if (unlikely(!valid_section(ms)))
587 			continue;
588 
589 		if (unlikely(pfn_to_nid(pfn) != nid))
590 			continue;
591 
592 		if (zone && zone != page_zone(pfn_to_page(pfn)))
593 			continue;
594 
595 		return pfn;
596 	}
597 
598 	return 0;
599 }
600 
601 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
602 			     unsigned long end_pfn)
603 {
604 	unsigned long zone_start_pfn = zone->zone_start_pfn;
605 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
606 	unsigned long zone_end_pfn = z;
607 	unsigned long pfn;
608 	struct mem_section *ms;
609 	int nid = zone_to_nid(zone);
610 
611 	zone_span_writelock(zone);
612 	if (zone_start_pfn == start_pfn) {
613 		/*
614 		 * If the section is smallest section in the zone, it need
615 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
616 		 * In this case, we find second smallest valid mem_section
617 		 * for shrinking zone.
618 		 */
619 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
620 						zone_end_pfn);
621 		if (pfn) {
622 			zone->zone_start_pfn = pfn;
623 			zone->spanned_pages = zone_end_pfn - pfn;
624 		}
625 	} else if (zone_end_pfn == end_pfn) {
626 		/*
627 		 * If the section is biggest section in the zone, it need
628 		 * shrink zone->spanned_pages.
629 		 * In this case, we find second biggest valid mem_section for
630 		 * shrinking zone.
631 		 */
632 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
633 					       start_pfn);
634 		if (pfn)
635 			zone->spanned_pages = pfn - zone_start_pfn + 1;
636 	}
637 
638 	/*
639 	 * The section is not biggest or smallest mem_section in the zone, it
640 	 * only creates a hole in the zone. So in this case, we need not
641 	 * change the zone. But perhaps, the zone has only hole data. Thus
642 	 * it check the zone has only hole or not.
643 	 */
644 	pfn = zone_start_pfn;
645 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
646 		ms = __pfn_to_section(pfn);
647 
648 		if (unlikely(!valid_section(ms)))
649 			continue;
650 
651 		if (page_zone(pfn_to_page(pfn)) != zone)
652 			continue;
653 
654 		 /* If the section is current section, it continues the loop */
655 		if (start_pfn == pfn)
656 			continue;
657 
658 		/* If we find valid section, we have nothing to do */
659 		zone_span_writeunlock(zone);
660 		return;
661 	}
662 
663 	/* The zone has no valid section */
664 	zone->zone_start_pfn = 0;
665 	zone->spanned_pages = 0;
666 	zone_span_writeunlock(zone);
667 }
668 
669 static void shrink_pgdat_span(struct pglist_data *pgdat,
670 			      unsigned long start_pfn, unsigned long end_pfn)
671 {
672 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
673 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
674 	unsigned long pgdat_end_pfn = p;
675 	unsigned long pfn;
676 	struct mem_section *ms;
677 	int nid = pgdat->node_id;
678 
679 	if (pgdat_start_pfn == start_pfn) {
680 		/*
681 		 * If the section is smallest section in the pgdat, it need
682 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
683 		 * In this case, we find second smallest valid mem_section
684 		 * for shrinking zone.
685 		 */
686 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
687 						pgdat_end_pfn);
688 		if (pfn) {
689 			pgdat->node_start_pfn = pfn;
690 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
691 		}
692 	} else if (pgdat_end_pfn == end_pfn) {
693 		/*
694 		 * If the section is biggest section in the pgdat, it need
695 		 * shrink pgdat->node_spanned_pages.
696 		 * In this case, we find second biggest valid mem_section for
697 		 * shrinking zone.
698 		 */
699 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
700 					       start_pfn);
701 		if (pfn)
702 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
703 	}
704 
705 	/*
706 	 * If the section is not biggest or smallest mem_section in the pgdat,
707 	 * it only creates a hole in the pgdat. So in this case, we need not
708 	 * change the pgdat.
709 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
710 	 * has only hole or not.
711 	 */
712 	pfn = pgdat_start_pfn;
713 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
714 		ms = __pfn_to_section(pfn);
715 
716 		if (unlikely(!valid_section(ms)))
717 			continue;
718 
719 		if (pfn_to_nid(pfn) != nid)
720 			continue;
721 
722 		 /* If the section is current section, it continues the loop */
723 		if (start_pfn == pfn)
724 			continue;
725 
726 		/* If we find valid section, we have nothing to do */
727 		return;
728 	}
729 
730 	/* The pgdat has no valid section */
731 	pgdat->node_start_pfn = 0;
732 	pgdat->node_spanned_pages = 0;
733 }
734 
735 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
736 {
737 	struct pglist_data *pgdat = zone->zone_pgdat;
738 	int nr_pages = PAGES_PER_SECTION;
739 	int zone_type;
740 	unsigned long flags;
741 
742 	zone_type = zone - pgdat->node_zones;
743 
744 	pgdat_resize_lock(zone->zone_pgdat, &flags);
745 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
746 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
747 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
748 }
749 
750 static int __remove_section(struct zone *zone, struct mem_section *ms,
751 		unsigned long map_offset)
752 {
753 	unsigned long start_pfn;
754 	int scn_nr;
755 	int ret = -EINVAL;
756 
757 	if (!valid_section(ms))
758 		return ret;
759 
760 	ret = unregister_memory_section(ms);
761 	if (ret)
762 		return ret;
763 
764 	scn_nr = __section_nr(ms);
765 	start_pfn = section_nr_to_pfn(scn_nr);
766 	__remove_zone(zone, start_pfn);
767 
768 	sparse_remove_one_section(zone, ms, map_offset);
769 	return 0;
770 }
771 
772 /**
773  * __remove_pages() - remove sections of pages from a zone
774  * @zone: zone from which pages need to be removed
775  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
776  * @nr_pages: number of pages to remove (must be multiple of section size)
777  *
778  * Generic helper function to remove section mappings and sysfs entries
779  * for the section of the memory we are removing. Caller needs to make
780  * sure that pages are marked reserved and zones are adjust properly by
781  * calling offline_pages().
782  */
783 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
784 		 unsigned long nr_pages)
785 {
786 	unsigned long i;
787 	unsigned long map_offset = 0;
788 	int sections_to_remove, ret = 0;
789 
790 	/* In the ZONE_DEVICE case device driver owns the memory region */
791 	if (is_dev_zone(zone)) {
792 		struct page *page = pfn_to_page(phys_start_pfn);
793 		struct vmem_altmap *altmap;
794 
795 		altmap = to_vmem_altmap((unsigned long) page);
796 		if (altmap)
797 			map_offset = vmem_altmap_offset(altmap);
798 	} else {
799 		resource_size_t start, size;
800 
801 		start = phys_start_pfn << PAGE_SHIFT;
802 		size = nr_pages * PAGE_SIZE;
803 
804 		ret = release_mem_region_adjustable(&iomem_resource, start,
805 					size);
806 		if (ret) {
807 			resource_size_t endres = start + size - 1;
808 
809 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
810 					&start, &endres, ret);
811 		}
812 	}
813 
814 	/*
815 	 * We can only remove entire sections
816 	 */
817 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
818 	BUG_ON(nr_pages % PAGES_PER_SECTION);
819 
820 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
821 	for (i = 0; i < sections_to_remove; i++) {
822 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
823 
824 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
825 		map_offset = 0;
826 		if (ret)
827 			break;
828 	}
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(__remove_pages);
832 #endif /* CONFIG_MEMORY_HOTREMOVE */
833 
834 int set_online_page_callback(online_page_callback_t callback)
835 {
836 	int rc = -EINVAL;
837 
838 	get_online_mems();
839 	mutex_lock(&online_page_callback_lock);
840 
841 	if (online_page_callback == generic_online_page) {
842 		online_page_callback = callback;
843 		rc = 0;
844 	}
845 
846 	mutex_unlock(&online_page_callback_lock);
847 	put_online_mems();
848 
849 	return rc;
850 }
851 EXPORT_SYMBOL_GPL(set_online_page_callback);
852 
853 int restore_online_page_callback(online_page_callback_t callback)
854 {
855 	int rc = -EINVAL;
856 
857 	get_online_mems();
858 	mutex_lock(&online_page_callback_lock);
859 
860 	if (online_page_callback == callback) {
861 		online_page_callback = generic_online_page;
862 		rc = 0;
863 	}
864 
865 	mutex_unlock(&online_page_callback_lock);
866 	put_online_mems();
867 
868 	return rc;
869 }
870 EXPORT_SYMBOL_GPL(restore_online_page_callback);
871 
872 void __online_page_set_limits(struct page *page)
873 {
874 }
875 EXPORT_SYMBOL_GPL(__online_page_set_limits);
876 
877 void __online_page_increment_counters(struct page *page)
878 {
879 	adjust_managed_page_count(page, 1);
880 }
881 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
882 
883 void __online_page_free(struct page *page)
884 {
885 	__free_reserved_page(page);
886 }
887 EXPORT_SYMBOL_GPL(__online_page_free);
888 
889 static void generic_online_page(struct page *page)
890 {
891 	__online_page_set_limits(page);
892 	__online_page_increment_counters(page);
893 	__online_page_free(page);
894 }
895 
896 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
897 			void *arg)
898 {
899 	unsigned long i;
900 	unsigned long onlined_pages = *(unsigned long *)arg;
901 	struct page *page;
902 	if (PageReserved(pfn_to_page(start_pfn)))
903 		for (i = 0; i < nr_pages; i++) {
904 			page = pfn_to_page(start_pfn + i);
905 			(*online_page_callback)(page);
906 			onlined_pages++;
907 		}
908 	*(unsigned long *)arg = onlined_pages;
909 	return 0;
910 }
911 
912 #ifdef CONFIG_MOVABLE_NODE
913 /*
914  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
915  * normal memory.
916  */
917 static bool can_online_high_movable(struct zone *zone)
918 {
919 	return true;
920 }
921 #else /* CONFIG_MOVABLE_NODE */
922 /* ensure every online node has NORMAL memory */
923 static bool can_online_high_movable(struct zone *zone)
924 {
925 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
926 }
927 #endif /* CONFIG_MOVABLE_NODE */
928 
929 /* check which state of node_states will be changed when online memory */
930 static void node_states_check_changes_online(unsigned long nr_pages,
931 	struct zone *zone, struct memory_notify *arg)
932 {
933 	int nid = zone_to_nid(zone);
934 	enum zone_type zone_last = ZONE_NORMAL;
935 
936 	/*
937 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
938 	 * contains nodes which have zones of 0...ZONE_NORMAL,
939 	 * set zone_last to ZONE_NORMAL.
940 	 *
941 	 * If we don't have HIGHMEM nor movable node,
942 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
943 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
944 	 */
945 	if (N_MEMORY == N_NORMAL_MEMORY)
946 		zone_last = ZONE_MOVABLE;
947 
948 	/*
949 	 * if the memory to be online is in a zone of 0...zone_last, and
950 	 * the zones of 0...zone_last don't have memory before online, we will
951 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
952 	 * the memory is online.
953 	 */
954 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
955 		arg->status_change_nid_normal = nid;
956 	else
957 		arg->status_change_nid_normal = -1;
958 
959 #ifdef CONFIG_HIGHMEM
960 	/*
961 	 * If we have movable node, node_states[N_HIGH_MEMORY]
962 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
963 	 * set zone_last to ZONE_HIGHMEM.
964 	 *
965 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
966 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
967 	 * set zone_last to ZONE_MOVABLE.
968 	 */
969 	zone_last = ZONE_HIGHMEM;
970 	if (N_MEMORY == N_HIGH_MEMORY)
971 		zone_last = ZONE_MOVABLE;
972 
973 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
974 		arg->status_change_nid_high = nid;
975 	else
976 		arg->status_change_nid_high = -1;
977 #else
978 	arg->status_change_nid_high = arg->status_change_nid_normal;
979 #endif
980 
981 	/*
982 	 * if the node don't have memory befor online, we will need to
983 	 * set the node to node_states[N_MEMORY] after the memory
984 	 * is online.
985 	 */
986 	if (!node_state(nid, N_MEMORY))
987 		arg->status_change_nid = nid;
988 	else
989 		arg->status_change_nid = -1;
990 }
991 
992 static void node_states_set_node(int node, struct memory_notify *arg)
993 {
994 	if (arg->status_change_nid_normal >= 0)
995 		node_set_state(node, N_NORMAL_MEMORY);
996 
997 	if (arg->status_change_nid_high >= 0)
998 		node_set_state(node, N_HIGH_MEMORY);
999 
1000 	node_set_state(node, N_MEMORY);
1001 }
1002 
1003 
1004 /* Must be protected by mem_hotplug_begin() */
1005 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1006 {
1007 	unsigned long flags;
1008 	unsigned long onlined_pages = 0;
1009 	struct zone *zone;
1010 	int need_zonelists_rebuild = 0;
1011 	int nid;
1012 	int ret;
1013 	struct memory_notify arg;
1014 
1015 	/*
1016 	 * This doesn't need a lock to do pfn_to_page().
1017 	 * The section can't be removed here because of the
1018 	 * memory_block->state_mutex.
1019 	 */
1020 	zone = page_zone(pfn_to_page(pfn));
1021 
1022 	if ((zone_idx(zone) > ZONE_NORMAL ||
1023 	    online_type == MMOP_ONLINE_MOVABLE) &&
1024 	    !can_online_high_movable(zone))
1025 		return -EINVAL;
1026 
1027 	if (online_type == MMOP_ONLINE_KERNEL &&
1028 	    zone_idx(zone) == ZONE_MOVABLE) {
1029 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1030 			return -EINVAL;
1031 	}
1032 	if (online_type == MMOP_ONLINE_MOVABLE &&
1033 	    zone_idx(zone) == ZONE_MOVABLE - 1) {
1034 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1035 			return -EINVAL;
1036 	}
1037 
1038 	/* Previous code may changed the zone of the pfn range */
1039 	zone = page_zone(pfn_to_page(pfn));
1040 
1041 	arg.start_pfn = pfn;
1042 	arg.nr_pages = nr_pages;
1043 	node_states_check_changes_online(nr_pages, zone, &arg);
1044 
1045 	nid = pfn_to_nid(pfn);
1046 
1047 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1048 	ret = notifier_to_errno(ret);
1049 	if (ret) {
1050 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1051 		return ret;
1052 	}
1053 	/*
1054 	 * If this zone is not populated, then it is not in zonelist.
1055 	 * This means the page allocator ignores this zone.
1056 	 * So, zonelist must be updated after online.
1057 	 */
1058 	mutex_lock(&zonelists_mutex);
1059 	if (!populated_zone(zone)) {
1060 		need_zonelists_rebuild = 1;
1061 		build_all_zonelists(NULL, zone);
1062 	}
1063 
1064 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1065 		online_pages_range);
1066 	if (ret) {
1067 		if (need_zonelists_rebuild)
1068 			zone_pcp_reset(zone);
1069 		mutex_unlock(&zonelists_mutex);
1070 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1071 		       (unsigned long long) pfn << PAGE_SHIFT,
1072 		       (((unsigned long long) pfn + nr_pages)
1073 			    << PAGE_SHIFT) - 1);
1074 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1075 		return ret;
1076 	}
1077 
1078 	zone->present_pages += onlined_pages;
1079 
1080 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1081 	zone->zone_pgdat->node_present_pages += onlined_pages;
1082 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1083 
1084 	if (onlined_pages) {
1085 		node_states_set_node(zone_to_nid(zone), &arg);
1086 		if (need_zonelists_rebuild)
1087 			build_all_zonelists(NULL, NULL);
1088 		else
1089 			zone_pcp_update(zone);
1090 	}
1091 
1092 	mutex_unlock(&zonelists_mutex);
1093 
1094 	init_per_zone_wmark_min();
1095 
1096 	if (onlined_pages)
1097 		kswapd_run(zone_to_nid(zone));
1098 
1099 	vm_total_pages = nr_free_pagecache_pages();
1100 
1101 	writeback_set_ratelimit();
1102 
1103 	if (onlined_pages)
1104 		memory_notify(MEM_ONLINE, &arg);
1105 	return 0;
1106 }
1107 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1108 
1109 static void reset_node_present_pages(pg_data_t *pgdat)
1110 {
1111 	struct zone *z;
1112 
1113 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1114 		z->present_pages = 0;
1115 
1116 	pgdat->node_present_pages = 0;
1117 }
1118 
1119 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1120 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1121 {
1122 	struct pglist_data *pgdat;
1123 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1124 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1125 	unsigned long start_pfn = PFN_DOWN(start);
1126 
1127 	pgdat = NODE_DATA(nid);
1128 	if (!pgdat) {
1129 		pgdat = arch_alloc_nodedata(nid);
1130 		if (!pgdat)
1131 			return NULL;
1132 
1133 		arch_refresh_nodedata(nid, pgdat);
1134 	} else {
1135 		/* Reset the nr_zones and classzone_idx to 0 before reuse */
1136 		pgdat->nr_zones = 0;
1137 		pgdat->classzone_idx = 0;
1138 	}
1139 
1140 	/* we can use NODE_DATA(nid) from here */
1141 
1142 	/* init node's zones as empty zones, we don't have any present pages.*/
1143 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1144 
1145 	/*
1146 	 * The node we allocated has no zone fallback lists. For avoiding
1147 	 * to access not-initialized zonelist, build here.
1148 	 */
1149 	mutex_lock(&zonelists_mutex);
1150 	build_all_zonelists(pgdat, NULL);
1151 	mutex_unlock(&zonelists_mutex);
1152 
1153 	/*
1154 	 * zone->managed_pages is set to an approximate value in
1155 	 * free_area_init_core(), which will cause
1156 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1157 	 * So reset it to 0 before any memory is onlined.
1158 	 */
1159 	reset_node_managed_pages(pgdat);
1160 
1161 	/*
1162 	 * When memory is hot-added, all the memory is in offline state. So
1163 	 * clear all zones' present_pages because they will be updated in
1164 	 * online_pages() and offline_pages().
1165 	 */
1166 	reset_node_present_pages(pgdat);
1167 
1168 	return pgdat;
1169 }
1170 
1171 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1172 {
1173 	arch_refresh_nodedata(nid, NULL);
1174 	arch_free_nodedata(pgdat);
1175 	return;
1176 }
1177 
1178 
1179 /**
1180  * try_online_node - online a node if offlined
1181  *
1182  * called by cpu_up() to online a node without onlined memory.
1183  */
1184 int try_online_node(int nid)
1185 {
1186 	pg_data_t	*pgdat;
1187 	int	ret;
1188 
1189 	if (node_online(nid))
1190 		return 0;
1191 
1192 	mem_hotplug_begin();
1193 	pgdat = hotadd_new_pgdat(nid, 0);
1194 	if (!pgdat) {
1195 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1196 		ret = -ENOMEM;
1197 		goto out;
1198 	}
1199 	node_set_online(nid);
1200 	ret = register_one_node(nid);
1201 	BUG_ON(ret);
1202 
1203 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1204 		mutex_lock(&zonelists_mutex);
1205 		build_all_zonelists(NULL, NULL);
1206 		mutex_unlock(&zonelists_mutex);
1207 	}
1208 
1209 out:
1210 	mem_hotplug_done();
1211 	return ret;
1212 }
1213 
1214 static int check_hotplug_memory_range(u64 start, u64 size)
1215 {
1216 	u64 start_pfn = PFN_DOWN(start);
1217 	u64 nr_pages = size >> PAGE_SHIFT;
1218 
1219 	/* Memory range must be aligned with section */
1220 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1221 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1222 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1223 				(unsigned long long)start,
1224 				(unsigned long long)size);
1225 		return -EINVAL;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /*
1232  * If movable zone has already been setup, newly added memory should be check.
1233  * If its address is higher than movable zone, it should be added as movable.
1234  * Without this check, movable zone may overlap with other zone.
1235  */
1236 static int should_add_memory_movable(int nid, u64 start, u64 size)
1237 {
1238 	unsigned long start_pfn = start >> PAGE_SHIFT;
1239 	pg_data_t *pgdat = NODE_DATA(nid);
1240 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1241 
1242 	if (zone_is_empty(movable_zone))
1243 		return 0;
1244 
1245 	if (movable_zone->zone_start_pfn <= start_pfn)
1246 		return 1;
1247 
1248 	return 0;
1249 }
1250 
1251 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1252 		bool for_device)
1253 {
1254 #ifdef CONFIG_ZONE_DEVICE
1255 	if (for_device)
1256 		return ZONE_DEVICE;
1257 #endif
1258 	if (should_add_memory_movable(nid, start, size))
1259 		return ZONE_MOVABLE;
1260 
1261 	return zone_default;
1262 }
1263 
1264 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1265 int __ref add_memory_resource(int nid, struct resource *res)
1266 {
1267 	u64 start, size;
1268 	pg_data_t *pgdat = NULL;
1269 	bool new_pgdat;
1270 	bool new_node;
1271 	int ret;
1272 
1273 	start = res->start;
1274 	size = resource_size(res);
1275 
1276 	ret = check_hotplug_memory_range(start, size);
1277 	if (ret)
1278 		return ret;
1279 
1280 	{	/* Stupid hack to suppress address-never-null warning */
1281 		void *p = NODE_DATA(nid);
1282 		new_pgdat = !p;
1283 	}
1284 
1285 	mem_hotplug_begin();
1286 
1287 	/*
1288 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1289 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1290 	 * this new range and calculate total pages correctly.  The range will
1291 	 * be removed at hot-remove time.
1292 	 */
1293 	memblock_add_node(start, size, nid);
1294 
1295 	new_node = !node_online(nid);
1296 	if (new_node) {
1297 		pgdat = hotadd_new_pgdat(nid, start);
1298 		ret = -ENOMEM;
1299 		if (!pgdat)
1300 			goto error;
1301 	}
1302 
1303 	/* call arch's memory hotadd */
1304 	ret = arch_add_memory(nid, start, size, false);
1305 
1306 	if (ret < 0)
1307 		goto error;
1308 
1309 	/* we online node here. we can't roll back from here. */
1310 	node_set_online(nid);
1311 
1312 	if (new_node) {
1313 		ret = register_one_node(nid);
1314 		/*
1315 		 * If sysfs file of new node can't create, cpu on the node
1316 		 * can't be hot-added. There is no rollback way now.
1317 		 * So, check by BUG_ON() to catch it reluctantly..
1318 		 */
1319 		BUG_ON(ret);
1320 	}
1321 
1322 	/* create new memmap entry */
1323 	firmware_map_add_hotplug(start, start + size, "System RAM");
1324 
1325 	goto out;
1326 
1327 error:
1328 	/* rollback pgdat allocation and others */
1329 	if (new_pgdat)
1330 		rollback_node_hotadd(nid, pgdat);
1331 	memblock_remove(start, size);
1332 
1333 out:
1334 	mem_hotplug_done();
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(add_memory_resource);
1338 
1339 int __ref add_memory(int nid, u64 start, u64 size)
1340 {
1341 	struct resource *res;
1342 	int ret;
1343 
1344 	res = register_memory_resource(start, size);
1345 	if (IS_ERR(res))
1346 		return PTR_ERR(res);
1347 
1348 	ret = add_memory_resource(nid, res);
1349 	if (ret < 0)
1350 		release_memory_resource(res);
1351 	return ret;
1352 }
1353 EXPORT_SYMBOL_GPL(add_memory);
1354 
1355 #ifdef CONFIG_MEMORY_HOTREMOVE
1356 /*
1357  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1358  * set and the size of the free page is given by page_order(). Using this,
1359  * the function determines if the pageblock contains only free pages.
1360  * Due to buddy contraints, a free page at least the size of a pageblock will
1361  * be located at the start of the pageblock
1362  */
1363 static inline int pageblock_free(struct page *page)
1364 {
1365 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1366 }
1367 
1368 /* Return the start of the next active pageblock after a given page */
1369 static struct page *next_active_pageblock(struct page *page)
1370 {
1371 	/* Ensure the starting page is pageblock-aligned */
1372 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1373 
1374 	/* If the entire pageblock is free, move to the end of free page */
1375 	if (pageblock_free(page)) {
1376 		int order;
1377 		/* be careful. we don't have locks, page_order can be changed.*/
1378 		order = page_order(page);
1379 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1380 			return page + (1 << order);
1381 	}
1382 
1383 	return page + pageblock_nr_pages;
1384 }
1385 
1386 /* Checks if this range of memory is likely to be hot-removable. */
1387 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1388 {
1389 	struct page *page = pfn_to_page(start_pfn);
1390 	struct page *end_page = page + nr_pages;
1391 
1392 	/* Check the starting page of each pageblock within the range */
1393 	for (; page < end_page; page = next_active_pageblock(page)) {
1394 		if (!is_pageblock_removable_nolock(page))
1395 			return 0;
1396 		cond_resched();
1397 	}
1398 
1399 	/* All pageblocks in the memory block are likely to be hot-removable */
1400 	return 1;
1401 }
1402 
1403 /*
1404  * Confirm all pages in a range [start, end) is belongs to the same zone.
1405  */
1406 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1407 {
1408 	unsigned long pfn, sec_end_pfn;
1409 	struct zone *zone = NULL;
1410 	struct page *page;
1411 	int i;
1412 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1413 	     pfn < end_pfn;
1414 	     pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1415 		/* Make sure the memory section is present first */
1416 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1417 			continue;
1418 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1419 		     pfn += MAX_ORDER_NR_PAGES) {
1420 			i = 0;
1421 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1422 			while ((i < MAX_ORDER_NR_PAGES) &&
1423 				!pfn_valid_within(pfn + i))
1424 				i++;
1425 			if (i == MAX_ORDER_NR_PAGES)
1426 				continue;
1427 			page = pfn_to_page(pfn + i);
1428 			if (zone && page_zone(page) != zone)
1429 				return 0;
1430 			zone = page_zone(page);
1431 		}
1432 	}
1433 	return 1;
1434 }
1435 
1436 /*
1437  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1438  * and hugepages). We scan pfn because it's much easier than scanning over
1439  * linked list. This function returns the pfn of the first found movable
1440  * page if it's found, otherwise 0.
1441  */
1442 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1443 {
1444 	unsigned long pfn;
1445 	struct page *page;
1446 	for (pfn = start; pfn < end; pfn++) {
1447 		if (pfn_valid(pfn)) {
1448 			page = pfn_to_page(pfn);
1449 			if (PageLRU(page))
1450 				return pfn;
1451 			if (PageHuge(page)) {
1452 				if (page_huge_active(page))
1453 					return pfn;
1454 				else
1455 					pfn = round_up(pfn + 1,
1456 						1 << compound_order(page)) - 1;
1457 			}
1458 		}
1459 	}
1460 	return 0;
1461 }
1462 
1463 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1464 static int
1465 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1466 {
1467 	unsigned long pfn;
1468 	struct page *page;
1469 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1470 	int not_managed = 0;
1471 	int ret = 0;
1472 	LIST_HEAD(source);
1473 
1474 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1475 		if (!pfn_valid(pfn))
1476 			continue;
1477 		page = pfn_to_page(pfn);
1478 
1479 		if (PageHuge(page)) {
1480 			struct page *head = compound_head(page);
1481 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1482 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1483 				ret = -EBUSY;
1484 				break;
1485 			}
1486 			if (isolate_huge_page(page, &source))
1487 				move_pages -= 1 << compound_order(head);
1488 			continue;
1489 		}
1490 
1491 		if (!get_page_unless_zero(page))
1492 			continue;
1493 		/*
1494 		 * We can skip free pages. And we can only deal with pages on
1495 		 * LRU.
1496 		 */
1497 		ret = isolate_lru_page(page);
1498 		if (!ret) { /* Success */
1499 			put_page(page);
1500 			list_add_tail(&page->lru, &source);
1501 			move_pages--;
1502 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1503 					    page_is_file_cache(page));
1504 
1505 		} else {
1506 #ifdef CONFIG_DEBUG_VM
1507 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1508 			       pfn);
1509 			dump_page(page, "failed to remove from LRU");
1510 #endif
1511 			put_page(page);
1512 			/* Because we don't have big zone->lock. we should
1513 			   check this again here. */
1514 			if (page_count(page)) {
1515 				not_managed++;
1516 				ret = -EBUSY;
1517 				break;
1518 			}
1519 		}
1520 	}
1521 	if (!list_empty(&source)) {
1522 		if (not_managed) {
1523 			putback_movable_pages(&source);
1524 			goto out;
1525 		}
1526 
1527 		/*
1528 		 * alloc_migrate_target should be improooooved!!
1529 		 * migrate_pages returns # of failed pages.
1530 		 */
1531 		ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1532 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1533 		if (ret)
1534 			putback_movable_pages(&source);
1535 	}
1536 out:
1537 	return ret;
1538 }
1539 
1540 /*
1541  * remove from free_area[] and mark all as Reserved.
1542  */
1543 static int
1544 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1545 			void *data)
1546 {
1547 	__offline_isolated_pages(start, start + nr_pages);
1548 	return 0;
1549 }
1550 
1551 static void
1552 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1553 {
1554 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1555 				offline_isolated_pages_cb);
1556 }
1557 
1558 /*
1559  * Check all pages in range, recoreded as memory resource, are isolated.
1560  */
1561 static int
1562 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1563 			void *data)
1564 {
1565 	int ret;
1566 	long offlined = *(long *)data;
1567 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1568 	offlined = nr_pages;
1569 	if (!ret)
1570 		*(long *)data += offlined;
1571 	return ret;
1572 }
1573 
1574 static long
1575 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1576 {
1577 	long offlined = 0;
1578 	int ret;
1579 
1580 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1581 			check_pages_isolated_cb);
1582 	if (ret < 0)
1583 		offlined = (long)ret;
1584 	return offlined;
1585 }
1586 
1587 #ifdef CONFIG_MOVABLE_NODE
1588 /*
1589  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1590  * normal memory.
1591  */
1592 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1593 {
1594 	return true;
1595 }
1596 #else /* CONFIG_MOVABLE_NODE */
1597 /* ensure the node has NORMAL memory if it is still online */
1598 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1599 {
1600 	struct pglist_data *pgdat = zone->zone_pgdat;
1601 	unsigned long present_pages = 0;
1602 	enum zone_type zt;
1603 
1604 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1605 		present_pages += pgdat->node_zones[zt].present_pages;
1606 
1607 	if (present_pages > nr_pages)
1608 		return true;
1609 
1610 	present_pages = 0;
1611 	for (; zt <= ZONE_MOVABLE; zt++)
1612 		present_pages += pgdat->node_zones[zt].present_pages;
1613 
1614 	/*
1615 	 * we can't offline the last normal memory until all
1616 	 * higher memory is offlined.
1617 	 */
1618 	return present_pages == 0;
1619 }
1620 #endif /* CONFIG_MOVABLE_NODE */
1621 
1622 static int __init cmdline_parse_movable_node(char *p)
1623 {
1624 #ifdef CONFIG_MOVABLE_NODE
1625 	/*
1626 	 * Memory used by the kernel cannot be hot-removed because Linux
1627 	 * cannot migrate the kernel pages. When memory hotplug is
1628 	 * enabled, we should prevent memblock from allocating memory
1629 	 * for the kernel.
1630 	 *
1631 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1632 	 * SRAT is parsed, we don't know about it.
1633 	 *
1634 	 * The kernel image is loaded into memory at very early time. We
1635 	 * cannot prevent this anyway. So on NUMA system, we set any
1636 	 * node the kernel resides in as un-hotpluggable.
1637 	 *
1638 	 * Since on modern servers, one node could have double-digit
1639 	 * gigabytes memory, we can assume the memory around the kernel
1640 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1641 	 * allocate memory near the kernel image to try the best to keep
1642 	 * the kernel away from hotpluggable memory.
1643 	 */
1644 	memblock_set_bottom_up(true);
1645 	movable_node_enabled = true;
1646 #else
1647 	pr_warn("movable_node option not supported\n");
1648 #endif
1649 	return 0;
1650 }
1651 early_param("movable_node", cmdline_parse_movable_node);
1652 
1653 /* check which state of node_states will be changed when offline memory */
1654 static void node_states_check_changes_offline(unsigned long nr_pages,
1655 		struct zone *zone, struct memory_notify *arg)
1656 {
1657 	struct pglist_data *pgdat = zone->zone_pgdat;
1658 	unsigned long present_pages = 0;
1659 	enum zone_type zt, zone_last = ZONE_NORMAL;
1660 
1661 	/*
1662 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1663 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1664 	 * set zone_last to ZONE_NORMAL.
1665 	 *
1666 	 * If we don't have HIGHMEM nor movable node,
1667 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1668 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1669 	 */
1670 	if (N_MEMORY == N_NORMAL_MEMORY)
1671 		zone_last = ZONE_MOVABLE;
1672 
1673 	/*
1674 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1675 	 * If the memory to be offline is in a zone of 0...zone_last,
1676 	 * and it is the last present memory, 0...zone_last will
1677 	 * become empty after offline , thus we can determind we will
1678 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1679 	 */
1680 	for (zt = 0; zt <= zone_last; zt++)
1681 		present_pages += pgdat->node_zones[zt].present_pages;
1682 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1683 		arg->status_change_nid_normal = zone_to_nid(zone);
1684 	else
1685 		arg->status_change_nid_normal = -1;
1686 
1687 #ifdef CONFIG_HIGHMEM
1688 	/*
1689 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1690 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1691 	 * set zone_last to ZONE_HIGHMEM.
1692 	 *
1693 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1694 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1695 	 * set zone_last to ZONE_MOVABLE.
1696 	 */
1697 	zone_last = ZONE_HIGHMEM;
1698 	if (N_MEMORY == N_HIGH_MEMORY)
1699 		zone_last = ZONE_MOVABLE;
1700 
1701 	for (; zt <= zone_last; zt++)
1702 		present_pages += pgdat->node_zones[zt].present_pages;
1703 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1704 		arg->status_change_nid_high = zone_to_nid(zone);
1705 	else
1706 		arg->status_change_nid_high = -1;
1707 #else
1708 	arg->status_change_nid_high = arg->status_change_nid_normal;
1709 #endif
1710 
1711 	/*
1712 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1713 	 */
1714 	zone_last = ZONE_MOVABLE;
1715 
1716 	/*
1717 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1718 	 * If we try to offline the last present @nr_pages from the node,
1719 	 * we can determind we will need to clear the node from
1720 	 * node_states[N_HIGH_MEMORY].
1721 	 */
1722 	for (; zt <= zone_last; zt++)
1723 		present_pages += pgdat->node_zones[zt].present_pages;
1724 	if (nr_pages >= present_pages)
1725 		arg->status_change_nid = zone_to_nid(zone);
1726 	else
1727 		arg->status_change_nid = -1;
1728 }
1729 
1730 static void node_states_clear_node(int node, struct memory_notify *arg)
1731 {
1732 	if (arg->status_change_nid_normal >= 0)
1733 		node_clear_state(node, N_NORMAL_MEMORY);
1734 
1735 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1736 	    (arg->status_change_nid_high >= 0))
1737 		node_clear_state(node, N_HIGH_MEMORY);
1738 
1739 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1740 	    (arg->status_change_nid >= 0))
1741 		node_clear_state(node, N_MEMORY);
1742 }
1743 
1744 static int __ref __offline_pages(unsigned long start_pfn,
1745 		  unsigned long end_pfn, unsigned long timeout)
1746 {
1747 	unsigned long pfn, nr_pages, expire;
1748 	long offlined_pages;
1749 	int ret, drain, retry_max, node;
1750 	unsigned long flags;
1751 	struct zone *zone;
1752 	struct memory_notify arg;
1753 
1754 	/* at least, alignment against pageblock is necessary */
1755 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1756 		return -EINVAL;
1757 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1758 		return -EINVAL;
1759 	/* This makes hotplug much easier...and readable.
1760 	   we assume this for now. .*/
1761 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1762 		return -EINVAL;
1763 
1764 	zone = page_zone(pfn_to_page(start_pfn));
1765 	node = zone_to_nid(zone);
1766 	nr_pages = end_pfn - start_pfn;
1767 
1768 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1769 		return -EINVAL;
1770 
1771 	/* set above range as isolated */
1772 	ret = start_isolate_page_range(start_pfn, end_pfn,
1773 				       MIGRATE_MOVABLE, true);
1774 	if (ret)
1775 		return ret;
1776 
1777 	arg.start_pfn = start_pfn;
1778 	arg.nr_pages = nr_pages;
1779 	node_states_check_changes_offline(nr_pages, zone, &arg);
1780 
1781 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1782 	ret = notifier_to_errno(ret);
1783 	if (ret)
1784 		goto failed_removal;
1785 
1786 	pfn = start_pfn;
1787 	expire = jiffies + timeout;
1788 	drain = 0;
1789 	retry_max = 5;
1790 repeat:
1791 	/* start memory hot removal */
1792 	ret = -EAGAIN;
1793 	if (time_after(jiffies, expire))
1794 		goto failed_removal;
1795 	ret = -EINTR;
1796 	if (signal_pending(current))
1797 		goto failed_removal;
1798 	ret = 0;
1799 	if (drain) {
1800 		lru_add_drain_all();
1801 		cond_resched();
1802 		drain_all_pages(zone);
1803 	}
1804 
1805 	pfn = scan_movable_pages(start_pfn, end_pfn);
1806 	if (pfn) { /* We have movable pages */
1807 		ret = do_migrate_range(pfn, end_pfn);
1808 		if (!ret) {
1809 			drain = 1;
1810 			goto repeat;
1811 		} else {
1812 			if (ret < 0)
1813 				if (--retry_max == 0)
1814 					goto failed_removal;
1815 			yield();
1816 			drain = 1;
1817 			goto repeat;
1818 		}
1819 	}
1820 	/* drain all zone's lru pagevec, this is asynchronous... */
1821 	lru_add_drain_all();
1822 	yield();
1823 	/* drain pcp pages, this is synchronous. */
1824 	drain_all_pages(zone);
1825 	/*
1826 	 * dissolve free hugepages in the memory block before doing offlining
1827 	 * actually in order to make hugetlbfs's object counting consistent.
1828 	 */
1829 	dissolve_free_huge_pages(start_pfn, end_pfn);
1830 	/* check again */
1831 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1832 	if (offlined_pages < 0) {
1833 		ret = -EBUSY;
1834 		goto failed_removal;
1835 	}
1836 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1837 	/* Ok, all of our target is isolated.
1838 	   We cannot do rollback at this point. */
1839 	offline_isolated_pages(start_pfn, end_pfn);
1840 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1841 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1842 	/* removal success */
1843 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1844 	zone->present_pages -= offlined_pages;
1845 
1846 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1847 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1848 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1849 
1850 	init_per_zone_wmark_min();
1851 
1852 	if (!populated_zone(zone)) {
1853 		zone_pcp_reset(zone);
1854 		mutex_lock(&zonelists_mutex);
1855 		build_all_zonelists(NULL, NULL);
1856 		mutex_unlock(&zonelists_mutex);
1857 	} else
1858 		zone_pcp_update(zone);
1859 
1860 	node_states_clear_node(node, &arg);
1861 	if (arg.status_change_nid >= 0)
1862 		kswapd_stop(node);
1863 
1864 	vm_total_pages = nr_free_pagecache_pages();
1865 	writeback_set_ratelimit();
1866 
1867 	memory_notify(MEM_OFFLINE, &arg);
1868 	return 0;
1869 
1870 failed_removal:
1871 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1872 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1873 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1874 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1875 	/* pushback to free area */
1876 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1877 	return ret;
1878 }
1879 
1880 /* Must be protected by mem_hotplug_begin() */
1881 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1882 {
1883 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1884 }
1885 #endif /* CONFIG_MEMORY_HOTREMOVE */
1886 
1887 /**
1888  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1889  * @start_pfn: start pfn of the memory range
1890  * @end_pfn: end pfn of the memory range
1891  * @arg: argument passed to func
1892  * @func: callback for each memory section walked
1893  *
1894  * This function walks through all present mem sections in range
1895  * [start_pfn, end_pfn) and call func on each mem section.
1896  *
1897  * Returns the return value of func.
1898  */
1899 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1900 		void *arg, int (*func)(struct memory_block *, void *))
1901 {
1902 	struct memory_block *mem = NULL;
1903 	struct mem_section *section;
1904 	unsigned long pfn, section_nr;
1905 	int ret;
1906 
1907 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1908 		section_nr = pfn_to_section_nr(pfn);
1909 		if (!present_section_nr(section_nr))
1910 			continue;
1911 
1912 		section = __nr_to_section(section_nr);
1913 		/* same memblock? */
1914 		if (mem)
1915 			if ((section_nr >= mem->start_section_nr) &&
1916 			    (section_nr <= mem->end_section_nr))
1917 				continue;
1918 
1919 		mem = find_memory_block_hinted(section, mem);
1920 		if (!mem)
1921 			continue;
1922 
1923 		ret = func(mem, arg);
1924 		if (ret) {
1925 			kobject_put(&mem->dev.kobj);
1926 			return ret;
1927 		}
1928 	}
1929 
1930 	if (mem)
1931 		kobject_put(&mem->dev.kobj);
1932 
1933 	return 0;
1934 }
1935 
1936 #ifdef CONFIG_MEMORY_HOTREMOVE
1937 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1938 {
1939 	int ret = !is_memblock_offlined(mem);
1940 
1941 	if (unlikely(ret)) {
1942 		phys_addr_t beginpa, endpa;
1943 
1944 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1945 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1946 		pr_warn("removing memory fails, because memory "
1947 			"[%pa-%pa] is onlined\n",
1948 			&beginpa, &endpa);
1949 	}
1950 
1951 	return ret;
1952 }
1953 
1954 static int check_cpu_on_node(pg_data_t *pgdat)
1955 {
1956 	int cpu;
1957 
1958 	for_each_present_cpu(cpu) {
1959 		if (cpu_to_node(cpu) == pgdat->node_id)
1960 			/*
1961 			 * the cpu on this node isn't removed, and we can't
1962 			 * offline this node.
1963 			 */
1964 			return -EBUSY;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static void unmap_cpu_on_node(pg_data_t *pgdat)
1971 {
1972 #ifdef CONFIG_ACPI_NUMA
1973 	int cpu;
1974 
1975 	for_each_possible_cpu(cpu)
1976 		if (cpu_to_node(cpu) == pgdat->node_id)
1977 			numa_clear_node(cpu);
1978 #endif
1979 }
1980 
1981 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1982 {
1983 	int ret;
1984 
1985 	ret = check_cpu_on_node(pgdat);
1986 	if (ret)
1987 		return ret;
1988 
1989 	/*
1990 	 * the node will be offlined when we come here, so we can clear
1991 	 * the cpu_to_node() now.
1992 	 */
1993 
1994 	unmap_cpu_on_node(pgdat);
1995 	return 0;
1996 }
1997 
1998 /**
1999  * try_offline_node
2000  *
2001  * Offline a node if all memory sections and cpus of the node are removed.
2002  *
2003  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2004  * and online/offline operations before this call.
2005  */
2006 void try_offline_node(int nid)
2007 {
2008 	pg_data_t *pgdat = NODE_DATA(nid);
2009 	unsigned long start_pfn = pgdat->node_start_pfn;
2010 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2011 	unsigned long pfn;
2012 	int i;
2013 
2014 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2015 		unsigned long section_nr = pfn_to_section_nr(pfn);
2016 
2017 		if (!present_section_nr(section_nr))
2018 			continue;
2019 
2020 		if (pfn_to_nid(pfn) != nid)
2021 			continue;
2022 
2023 		/*
2024 		 * some memory sections of this node are not removed, and we
2025 		 * can't offline node now.
2026 		 */
2027 		return;
2028 	}
2029 
2030 	if (check_and_unmap_cpu_on_node(pgdat))
2031 		return;
2032 
2033 	/*
2034 	 * all memory/cpu of this node are removed, we can offline this
2035 	 * node now.
2036 	 */
2037 	node_set_offline(nid);
2038 	unregister_one_node(nid);
2039 
2040 	/* free waittable in each zone */
2041 	for (i = 0; i < MAX_NR_ZONES; i++) {
2042 		struct zone *zone = pgdat->node_zones + i;
2043 
2044 		/*
2045 		 * wait_table may be allocated from boot memory,
2046 		 * here only free if it's allocated by vmalloc.
2047 		 */
2048 		if (is_vmalloc_addr(zone->wait_table)) {
2049 			vfree(zone->wait_table);
2050 			zone->wait_table = NULL;
2051 		}
2052 	}
2053 }
2054 EXPORT_SYMBOL(try_offline_node);
2055 
2056 /**
2057  * remove_memory
2058  *
2059  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2060  * and online/offline operations before this call, as required by
2061  * try_offline_node().
2062  */
2063 void __ref remove_memory(int nid, u64 start, u64 size)
2064 {
2065 	int ret;
2066 
2067 	BUG_ON(check_hotplug_memory_range(start, size));
2068 
2069 	mem_hotplug_begin();
2070 
2071 	/*
2072 	 * All memory blocks must be offlined before removing memory.  Check
2073 	 * whether all memory blocks in question are offline and trigger a BUG()
2074 	 * if this is not the case.
2075 	 */
2076 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2077 				check_memblock_offlined_cb);
2078 	if (ret)
2079 		BUG();
2080 
2081 	/* remove memmap entry */
2082 	firmware_map_remove(start, start + size, "System RAM");
2083 	memblock_free(start, size);
2084 	memblock_remove(start, size);
2085 
2086 	arch_remove_memory(start, size);
2087 
2088 	try_offline_node(nid);
2089 
2090 	mem_hotplug_done();
2091 }
2092 EXPORT_SYMBOL_GPL(remove_memory);
2093 #endif /* CONFIG_MEMORY_HOTREMOVE */
2094