1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 int memhp_default_online_type = MMOP_OFFLINE; 71 #else 72 int memhp_default_online_type = MMOP_ONLINE; 73 #endif 74 75 static int __init setup_memhp_default_state(char *str) 76 { 77 const int online_type = memhp_online_type_from_str(str); 78 79 if (online_type >= 0) 80 memhp_default_online_type = online_type; 81 82 return 1; 83 } 84 __setup("memhp_default_state=", setup_memhp_default_state); 85 86 void mem_hotplug_begin(void) 87 { 88 cpus_read_lock(); 89 percpu_down_write(&mem_hotplug_lock); 90 } 91 92 void mem_hotplug_done(void) 93 { 94 percpu_up_write(&mem_hotplug_lock); 95 cpus_read_unlock(); 96 } 97 98 u64 max_mem_size = U64_MAX; 99 100 /* add this memory to iomem resource */ 101 static struct resource *register_memory_resource(u64 start, u64 size, 102 const char *resource_name) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 107 if (strcmp(resource_name, "System RAM")) 108 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 109 110 /* 111 * Make sure value parsed from 'mem=' only restricts memory adding 112 * while booting, so that memory hotplug won't be impacted. Please 113 * refer to document of 'mem=' in kernel-parameters.txt for more 114 * details. 115 */ 116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 117 return ERR_PTR(-E2BIG); 118 119 /* 120 * Request ownership of the new memory range. This might be 121 * a child of an existing resource that was present but 122 * not marked as busy. 123 */ 124 res = __request_region(&iomem_resource, start, size, 125 resource_name, flags); 126 127 if (!res) { 128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 129 start, start + size); 130 return ERR_PTR(-EEXIST); 131 } 132 return res; 133 } 134 135 static void release_memory_resource(struct resource *res) 136 { 137 if (!res) 138 return; 139 release_resource(res); 140 kfree(res); 141 } 142 143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 144 void get_page_bootmem(unsigned long info, struct page *page, 145 unsigned long type) 146 { 147 page->freelist = (void *)type; 148 SetPagePrivate(page); 149 set_page_private(page, info); 150 page_ref_inc(page); 151 } 152 153 void put_page_bootmem(struct page *page) 154 { 155 unsigned long type; 156 157 type = (unsigned long) page->freelist; 158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 160 161 if (page_ref_dec_return(page) == 1) { 162 page->freelist = NULL; 163 ClearPagePrivate(page); 164 set_page_private(page, 0); 165 INIT_LIST_HEAD(&page->lru); 166 free_reserved_page(page); 167 } 168 } 169 170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 171 #ifndef CONFIG_SPARSEMEM_VMEMMAP 172 static void register_page_bootmem_info_section(unsigned long start_pfn) 173 { 174 unsigned long mapsize, section_nr, i; 175 struct mem_section *ms; 176 struct page *page, *memmap; 177 struct mem_section_usage *usage; 178 179 section_nr = pfn_to_section_nr(start_pfn); 180 ms = __nr_to_section(section_nr); 181 182 /* Get section's memmap address */ 183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 184 185 /* 186 * Get page for the memmap's phys address 187 * XXX: need more consideration for sparse_vmemmap... 188 */ 189 page = virt_to_page(memmap); 190 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 192 193 /* remember memmap's page */ 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, SECTION_INFO); 196 197 usage = ms->usage; 198 page = virt_to_page(usage); 199 200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 201 202 for (i = 0; i < mapsize; i++, page++) 203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 204 205 } 206 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 207 static void register_page_bootmem_info_section(unsigned long start_pfn) 208 { 209 unsigned long mapsize, section_nr, i; 210 struct mem_section *ms; 211 struct page *page, *memmap; 212 struct mem_section_usage *usage; 213 214 section_nr = pfn_to_section_nr(start_pfn); 215 ms = __nr_to_section(section_nr); 216 217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 218 219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 220 221 usage = ms->usage; 222 page = virt_to_page(usage); 223 224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 225 226 for (i = 0; i < mapsize; i++, page++) 227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 228 } 229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 230 231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 232 { 233 unsigned long i, pfn, end_pfn, nr_pages; 234 int node = pgdat->node_id; 235 struct page *page; 236 237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 238 page = virt_to_page(pgdat); 239 240 for (i = 0; i < nr_pages; i++, page++) 241 get_page_bootmem(node, page, NODE_INFO); 242 243 pfn = pgdat->node_start_pfn; 244 end_pfn = pgdat_end_pfn(pgdat); 245 246 /* register section info */ 247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 248 /* 249 * Some platforms can assign the same pfn to multiple nodes - on 250 * node0 as well as nodeN. To avoid registering a pfn against 251 * multiple nodes we check that this pfn does not already 252 * reside in some other nodes. 253 */ 254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 255 register_page_bootmem_info_section(pfn); 256 } 257 } 258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 259 260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 261 const char *reason) 262 { 263 /* 264 * Disallow all operations smaller than a sub-section and only 265 * allow operations smaller than a section for 266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 267 * enforces a larger memory_block_size_bytes() granularity for 268 * memory that will be marked online, so this check should only 269 * fire for direct arch_{add,remove}_memory() users outside of 270 * add_memory_resource(). 271 */ 272 unsigned long min_align; 273 274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 275 min_align = PAGES_PER_SUBSECTION; 276 else 277 min_align = PAGES_PER_SECTION; 278 if (!IS_ALIGNED(pfn, min_align) 279 || !IS_ALIGNED(nr_pages, min_align)) { 280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 281 reason, pfn, pfn + nr_pages - 1); 282 return -EINVAL; 283 } 284 return 0; 285 } 286 287 static int check_hotplug_memory_addressable(unsigned long pfn, 288 unsigned long nr_pages) 289 { 290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1; 291 292 if (max_addr >> MAX_PHYSMEM_BITS) { 293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1; 294 WARN(1, 295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n", 296 (u64)PFN_PHYS(pfn), max_addr, max_allowed); 297 return -E2BIG; 298 } 299 300 return 0; 301 } 302 303 /* 304 * Reasonably generic function for adding memory. It is 305 * expected that archs that support memory hotplug will 306 * call this function after deciding the zone to which to 307 * add the new pages. 308 */ 309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 310 struct mhp_params *params) 311 { 312 const unsigned long end_pfn = pfn + nr_pages; 313 unsigned long cur_nr_pages; 314 int err; 315 struct vmem_altmap *altmap = params->altmap; 316 317 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 318 return -EINVAL; 319 320 err = check_hotplug_memory_addressable(pfn, nr_pages); 321 if (err) 322 return err; 323 324 if (altmap) { 325 /* 326 * Validate altmap is within bounds of the total request 327 */ 328 if (altmap->base_pfn != pfn 329 || vmem_altmap_offset(altmap) > nr_pages) { 330 pr_warn_once("memory add fail, invalid altmap\n"); 331 return -EINVAL; 332 } 333 altmap->alloc = 0; 334 } 335 336 err = check_pfn_span(pfn, nr_pages, "add"); 337 if (err) 338 return err; 339 340 for (; pfn < end_pfn; pfn += cur_nr_pages) { 341 /* Select all remaining pages up to the next section boundary */ 342 cur_nr_pages = min(end_pfn - pfn, 343 SECTION_ALIGN_UP(pfn + 1) - pfn); 344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 345 if (err) 346 break; 347 cond_resched(); 348 } 349 vmemmap_populate_print_last(); 350 return err; 351 } 352 353 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 354 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 355 unsigned long start_pfn, 356 unsigned long end_pfn) 357 { 358 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 359 if (unlikely(!pfn_to_online_page(start_pfn))) 360 continue; 361 362 if (unlikely(pfn_to_nid(start_pfn) != nid)) 363 continue; 364 365 if (zone != page_zone(pfn_to_page(start_pfn))) 366 continue; 367 368 return start_pfn; 369 } 370 371 return 0; 372 } 373 374 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 375 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 376 unsigned long start_pfn, 377 unsigned long end_pfn) 378 { 379 unsigned long pfn; 380 381 /* pfn is the end pfn of a memory section. */ 382 pfn = end_pfn - 1; 383 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 384 if (unlikely(!pfn_to_online_page(pfn))) 385 continue; 386 387 if (unlikely(pfn_to_nid(pfn) != nid)) 388 continue; 389 390 if (zone != page_zone(pfn_to_page(pfn))) 391 continue; 392 393 return pfn; 394 } 395 396 return 0; 397 } 398 399 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 400 unsigned long end_pfn) 401 { 402 unsigned long pfn; 403 int nid = zone_to_nid(zone); 404 405 zone_span_writelock(zone); 406 if (zone->zone_start_pfn == start_pfn) { 407 /* 408 * If the section is smallest section in the zone, it need 409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 410 * In this case, we find second smallest valid mem_section 411 * for shrinking zone. 412 */ 413 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 414 zone_end_pfn(zone)); 415 if (pfn) { 416 zone->spanned_pages = zone_end_pfn(zone) - pfn; 417 zone->zone_start_pfn = pfn; 418 } else { 419 zone->zone_start_pfn = 0; 420 zone->spanned_pages = 0; 421 } 422 } else if (zone_end_pfn(zone) == end_pfn) { 423 /* 424 * If the section is biggest section in the zone, it need 425 * shrink zone->spanned_pages. 426 * In this case, we find second biggest valid mem_section for 427 * shrinking zone. 428 */ 429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 430 start_pfn); 431 if (pfn) 432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 433 else { 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 } 437 } 438 zone_span_writeunlock(zone); 439 } 440 441 static void update_pgdat_span(struct pglist_data *pgdat) 442 { 443 unsigned long node_start_pfn = 0, node_end_pfn = 0; 444 struct zone *zone; 445 446 for (zone = pgdat->node_zones; 447 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 448 unsigned long zone_end_pfn = zone->zone_start_pfn + 449 zone->spanned_pages; 450 451 /* No need to lock the zones, they can't change. */ 452 if (!zone->spanned_pages) 453 continue; 454 if (!node_end_pfn) { 455 node_start_pfn = zone->zone_start_pfn; 456 node_end_pfn = zone_end_pfn; 457 continue; 458 } 459 460 if (zone_end_pfn > node_end_pfn) 461 node_end_pfn = zone_end_pfn; 462 if (zone->zone_start_pfn < node_start_pfn) 463 node_start_pfn = zone->zone_start_pfn; 464 } 465 466 pgdat->node_start_pfn = node_start_pfn; 467 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 468 } 469 470 void __ref remove_pfn_range_from_zone(struct zone *zone, 471 unsigned long start_pfn, 472 unsigned long nr_pages) 473 { 474 const unsigned long end_pfn = start_pfn + nr_pages; 475 struct pglist_data *pgdat = zone->zone_pgdat; 476 unsigned long pfn, cur_nr_pages, flags; 477 478 /* Poison struct pages because they are now uninitialized again. */ 479 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 480 cond_resched(); 481 482 /* Select all remaining pages up to the next section boundary */ 483 cur_nr_pages = 484 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 485 page_init_poison(pfn_to_page(pfn), 486 sizeof(struct page) * cur_nr_pages); 487 } 488 489 #ifdef CONFIG_ZONE_DEVICE 490 /* 491 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 492 * we will not try to shrink the zones - which is okay as 493 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 494 */ 495 if (zone_idx(zone) == ZONE_DEVICE) 496 return; 497 #endif 498 499 clear_zone_contiguous(zone); 500 501 pgdat_resize_lock(zone->zone_pgdat, &flags); 502 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 503 update_pgdat_span(pgdat); 504 pgdat_resize_unlock(zone->zone_pgdat, &flags); 505 506 set_zone_contiguous(zone); 507 } 508 509 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 510 unsigned long map_offset, 511 struct vmem_altmap *altmap) 512 { 513 struct mem_section *ms = __pfn_to_section(pfn); 514 515 if (WARN_ON_ONCE(!valid_section(ms))) 516 return; 517 518 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 519 } 520 521 /** 522 * __remove_pages() - remove sections of pages 523 * @pfn: starting pageframe (must be aligned to start of a section) 524 * @nr_pages: number of pages to remove (must be multiple of section size) 525 * @altmap: alternative device page map or %NULL if default memmap is used 526 * 527 * Generic helper function to remove section mappings and sysfs entries 528 * for the section of the memory we are removing. Caller needs to make 529 * sure that pages are marked reserved and zones are adjust properly by 530 * calling offline_pages(). 531 */ 532 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 533 struct vmem_altmap *altmap) 534 { 535 const unsigned long end_pfn = pfn + nr_pages; 536 unsigned long cur_nr_pages; 537 unsigned long map_offset = 0; 538 539 map_offset = vmem_altmap_offset(altmap); 540 541 if (check_pfn_span(pfn, nr_pages, "remove")) 542 return; 543 544 for (; pfn < end_pfn; pfn += cur_nr_pages) { 545 cond_resched(); 546 /* Select all remaining pages up to the next section boundary */ 547 cur_nr_pages = min(end_pfn - pfn, 548 SECTION_ALIGN_UP(pfn + 1) - pfn); 549 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 550 map_offset = 0; 551 } 552 } 553 554 int set_online_page_callback(online_page_callback_t callback) 555 { 556 int rc = -EINVAL; 557 558 get_online_mems(); 559 mutex_lock(&online_page_callback_lock); 560 561 if (online_page_callback == generic_online_page) { 562 online_page_callback = callback; 563 rc = 0; 564 } 565 566 mutex_unlock(&online_page_callback_lock); 567 put_online_mems(); 568 569 return rc; 570 } 571 EXPORT_SYMBOL_GPL(set_online_page_callback); 572 573 int restore_online_page_callback(online_page_callback_t callback) 574 { 575 int rc = -EINVAL; 576 577 get_online_mems(); 578 mutex_lock(&online_page_callback_lock); 579 580 if (online_page_callback == callback) { 581 online_page_callback = generic_online_page; 582 rc = 0; 583 } 584 585 mutex_unlock(&online_page_callback_lock); 586 put_online_mems(); 587 588 return rc; 589 } 590 EXPORT_SYMBOL_GPL(restore_online_page_callback); 591 592 void generic_online_page(struct page *page, unsigned int order) 593 { 594 /* 595 * Freeing the page with debug_pagealloc enabled will try to unmap it, 596 * so we should map it first. This is better than introducing a special 597 * case in page freeing fast path. 598 */ 599 if (debug_pagealloc_enabled_static()) 600 kernel_map_pages(page, 1 << order, 1); 601 __free_pages_core(page, order); 602 totalram_pages_add(1UL << order); 603 #ifdef CONFIG_HIGHMEM 604 if (PageHighMem(page)) 605 totalhigh_pages_add(1UL << order); 606 #endif 607 } 608 EXPORT_SYMBOL_GPL(generic_online_page); 609 610 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 611 { 612 const unsigned long end_pfn = start_pfn + nr_pages; 613 unsigned long pfn; 614 615 /* 616 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 617 * decide to not expose all pages to the buddy (e.g., expose them 618 * later). We account all pages as being online and belonging to this 619 * zone ("present"). 620 */ 621 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) 622 (*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1); 623 624 /* mark all involved sections as online */ 625 online_mem_sections(start_pfn, end_pfn); 626 } 627 628 /* check which state of node_states will be changed when online memory */ 629 static void node_states_check_changes_online(unsigned long nr_pages, 630 struct zone *zone, struct memory_notify *arg) 631 { 632 int nid = zone_to_nid(zone); 633 634 arg->status_change_nid = NUMA_NO_NODE; 635 arg->status_change_nid_normal = NUMA_NO_NODE; 636 arg->status_change_nid_high = NUMA_NO_NODE; 637 638 if (!node_state(nid, N_MEMORY)) 639 arg->status_change_nid = nid; 640 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 641 arg->status_change_nid_normal = nid; 642 #ifdef CONFIG_HIGHMEM 643 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 644 arg->status_change_nid_high = nid; 645 #endif 646 } 647 648 static void node_states_set_node(int node, struct memory_notify *arg) 649 { 650 if (arg->status_change_nid_normal >= 0) 651 node_set_state(node, N_NORMAL_MEMORY); 652 653 if (arg->status_change_nid_high >= 0) 654 node_set_state(node, N_HIGH_MEMORY); 655 656 if (arg->status_change_nid >= 0) 657 node_set_state(node, N_MEMORY); 658 } 659 660 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 661 unsigned long nr_pages) 662 { 663 unsigned long old_end_pfn = zone_end_pfn(zone); 664 665 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 666 zone->zone_start_pfn = start_pfn; 667 668 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 669 } 670 671 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 672 unsigned long nr_pages) 673 { 674 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 675 676 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 677 pgdat->node_start_pfn = start_pfn; 678 679 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 680 681 } 682 /* 683 * Associate the pfn range with the given zone, initializing the memmaps 684 * and resizing the pgdat/zone data to span the added pages. After this 685 * call, all affected pages are PG_reserved. 686 * 687 * All aligned pageblocks are initialized to the specified migratetype 688 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 689 * zone stats (e.g., nr_isolate_pageblock) are touched. 690 */ 691 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 692 unsigned long nr_pages, 693 struct vmem_altmap *altmap, int migratetype) 694 { 695 struct pglist_data *pgdat = zone->zone_pgdat; 696 int nid = pgdat->node_id; 697 unsigned long flags; 698 699 clear_zone_contiguous(zone); 700 701 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 702 pgdat_resize_lock(pgdat, &flags); 703 zone_span_writelock(zone); 704 if (zone_is_empty(zone)) 705 init_currently_empty_zone(zone, start_pfn, nr_pages); 706 resize_zone_range(zone, start_pfn, nr_pages); 707 zone_span_writeunlock(zone); 708 resize_pgdat_range(pgdat, start_pfn, nr_pages); 709 pgdat_resize_unlock(pgdat, &flags); 710 711 /* 712 * TODO now we have a visible range of pages which are not associated 713 * with their zone properly. Not nice but set_pfnblock_flags_mask 714 * expects the zone spans the pfn range. All the pages in the range 715 * are reserved so nobody should be touching them so we should be safe 716 */ 717 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 718 MEMINIT_HOTPLUG, altmap, migratetype); 719 720 set_zone_contiguous(zone); 721 } 722 723 /* 724 * Returns a default kernel memory zone for the given pfn range. 725 * If no kernel zone covers this pfn range it will automatically go 726 * to the ZONE_NORMAL. 727 */ 728 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 729 unsigned long nr_pages) 730 { 731 struct pglist_data *pgdat = NODE_DATA(nid); 732 int zid; 733 734 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 735 struct zone *zone = &pgdat->node_zones[zid]; 736 737 if (zone_intersects(zone, start_pfn, nr_pages)) 738 return zone; 739 } 740 741 return &pgdat->node_zones[ZONE_NORMAL]; 742 } 743 744 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 745 unsigned long nr_pages) 746 { 747 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 748 nr_pages); 749 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 750 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 751 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 752 753 /* 754 * We inherit the existing zone in a simple case where zones do not 755 * overlap in the given range 756 */ 757 if (in_kernel ^ in_movable) 758 return (in_kernel) ? kernel_zone : movable_zone; 759 760 /* 761 * If the range doesn't belong to any zone or two zones overlap in the 762 * given range then we use movable zone only if movable_node is 763 * enabled because we always online to a kernel zone by default. 764 */ 765 return movable_node_enabled ? movable_zone : kernel_zone; 766 } 767 768 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 769 unsigned long nr_pages) 770 { 771 if (online_type == MMOP_ONLINE_KERNEL) 772 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 773 774 if (online_type == MMOP_ONLINE_MOVABLE) 775 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 776 777 return default_zone_for_pfn(nid, start_pfn, nr_pages); 778 } 779 780 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 781 int online_type, int nid) 782 { 783 unsigned long flags; 784 struct zone *zone; 785 int need_zonelists_rebuild = 0; 786 int ret; 787 struct memory_notify arg; 788 789 /* We can only online full sections (e.g., SECTION_IS_ONLINE) */ 790 if (WARN_ON_ONCE(!nr_pages || 791 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION))) 792 return -EINVAL; 793 794 mem_hotplug_begin(); 795 796 /* associate pfn range with the zone */ 797 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 798 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 799 800 arg.start_pfn = pfn; 801 arg.nr_pages = nr_pages; 802 node_states_check_changes_online(nr_pages, zone, &arg); 803 804 ret = memory_notify(MEM_GOING_ONLINE, &arg); 805 ret = notifier_to_errno(ret); 806 if (ret) 807 goto failed_addition; 808 809 /* 810 * Fixup the number of isolated pageblocks before marking the sections 811 * onlining, such that undo_isolate_page_range() works correctly. 812 */ 813 spin_lock_irqsave(&zone->lock, flags); 814 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 815 spin_unlock_irqrestore(&zone->lock, flags); 816 817 /* 818 * If this zone is not populated, then it is not in zonelist. 819 * This means the page allocator ignores this zone. 820 * So, zonelist must be updated after online. 821 */ 822 if (!populated_zone(zone)) { 823 need_zonelists_rebuild = 1; 824 setup_zone_pageset(zone); 825 } 826 827 online_pages_range(pfn, nr_pages); 828 zone->present_pages += nr_pages; 829 830 pgdat_resize_lock(zone->zone_pgdat, &flags); 831 zone->zone_pgdat->node_present_pages += nr_pages; 832 pgdat_resize_unlock(zone->zone_pgdat, &flags); 833 834 node_states_set_node(nid, &arg); 835 if (need_zonelists_rebuild) 836 build_all_zonelists(NULL); 837 zone_pcp_update(zone); 838 839 /* Basic onlining is complete, allow allocation of onlined pages. */ 840 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 841 842 /* 843 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 844 * the tail of the freelist when undoing isolation). Shuffle the whole 845 * zone to make sure the just onlined pages are properly distributed 846 * across the whole freelist - to create an initial shuffle. 847 */ 848 shuffle_zone(zone); 849 850 init_per_zone_wmark_min(); 851 852 kswapd_run(nid); 853 kcompactd_run(nid); 854 855 writeback_set_ratelimit(); 856 857 memory_notify(MEM_ONLINE, &arg); 858 mem_hotplug_done(); 859 return 0; 860 861 failed_addition: 862 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 863 (unsigned long long) pfn << PAGE_SHIFT, 864 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 865 memory_notify(MEM_CANCEL_ONLINE, &arg); 866 remove_pfn_range_from_zone(zone, pfn, nr_pages); 867 mem_hotplug_done(); 868 return ret; 869 } 870 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 871 872 static void reset_node_present_pages(pg_data_t *pgdat) 873 { 874 struct zone *z; 875 876 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 877 z->present_pages = 0; 878 879 pgdat->node_present_pages = 0; 880 } 881 882 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 883 static pg_data_t __ref *hotadd_new_pgdat(int nid) 884 { 885 struct pglist_data *pgdat; 886 887 pgdat = NODE_DATA(nid); 888 if (!pgdat) { 889 pgdat = arch_alloc_nodedata(nid); 890 if (!pgdat) 891 return NULL; 892 893 pgdat->per_cpu_nodestats = 894 alloc_percpu(struct per_cpu_nodestat); 895 arch_refresh_nodedata(nid, pgdat); 896 } else { 897 int cpu; 898 /* 899 * Reset the nr_zones, order and highest_zoneidx before reuse. 900 * Note that kswapd will init kswapd_highest_zoneidx properly 901 * when it starts in the near future. 902 */ 903 pgdat->nr_zones = 0; 904 pgdat->kswapd_order = 0; 905 pgdat->kswapd_highest_zoneidx = 0; 906 for_each_online_cpu(cpu) { 907 struct per_cpu_nodestat *p; 908 909 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 910 memset(p, 0, sizeof(*p)); 911 } 912 } 913 914 /* we can use NODE_DATA(nid) from here */ 915 pgdat->node_id = nid; 916 pgdat->node_start_pfn = 0; 917 918 /* init node's zones as empty zones, we don't have any present pages.*/ 919 free_area_init_core_hotplug(nid); 920 921 /* 922 * The node we allocated has no zone fallback lists. For avoiding 923 * to access not-initialized zonelist, build here. 924 */ 925 build_all_zonelists(pgdat); 926 927 /* 928 * When memory is hot-added, all the memory is in offline state. So 929 * clear all zones' present_pages because they will be updated in 930 * online_pages() and offline_pages(). 931 */ 932 reset_node_managed_pages(pgdat); 933 reset_node_present_pages(pgdat); 934 935 return pgdat; 936 } 937 938 static void rollback_node_hotadd(int nid) 939 { 940 pg_data_t *pgdat = NODE_DATA(nid); 941 942 arch_refresh_nodedata(nid, NULL); 943 free_percpu(pgdat->per_cpu_nodestats); 944 arch_free_nodedata(pgdat); 945 } 946 947 948 /** 949 * try_online_node - online a node if offlined 950 * @nid: the node ID 951 * @set_node_online: Whether we want to online the node 952 * called by cpu_up() to online a node without onlined memory. 953 * 954 * Returns: 955 * 1 -> a new node has been allocated 956 * 0 -> the node is already online 957 * -ENOMEM -> the node could not be allocated 958 */ 959 static int __try_online_node(int nid, bool set_node_online) 960 { 961 pg_data_t *pgdat; 962 int ret = 1; 963 964 if (node_online(nid)) 965 return 0; 966 967 pgdat = hotadd_new_pgdat(nid); 968 if (!pgdat) { 969 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 970 ret = -ENOMEM; 971 goto out; 972 } 973 974 if (set_node_online) { 975 node_set_online(nid); 976 ret = register_one_node(nid); 977 BUG_ON(ret); 978 } 979 out: 980 return ret; 981 } 982 983 /* 984 * Users of this function always want to online/register the node 985 */ 986 int try_online_node(int nid) 987 { 988 int ret; 989 990 mem_hotplug_begin(); 991 ret = __try_online_node(nid, true); 992 mem_hotplug_done(); 993 return ret; 994 } 995 996 static int check_hotplug_memory_range(u64 start, u64 size) 997 { 998 /* memory range must be block size aligned */ 999 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1000 !IS_ALIGNED(size, memory_block_size_bytes())) { 1001 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1002 memory_block_size_bytes(), start, size); 1003 return -EINVAL; 1004 } 1005 1006 return 0; 1007 } 1008 1009 static int online_memory_block(struct memory_block *mem, void *arg) 1010 { 1011 mem->online_type = memhp_default_online_type; 1012 return device_online(&mem->dev); 1013 } 1014 1015 /* 1016 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1017 * and online/offline operations (triggered e.g. by sysfs). 1018 * 1019 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1020 */ 1021 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1022 { 1023 struct mhp_params params = { .pgprot = PAGE_KERNEL }; 1024 u64 start, size; 1025 bool new_node = false; 1026 int ret; 1027 1028 start = res->start; 1029 size = resource_size(res); 1030 1031 ret = check_hotplug_memory_range(start, size); 1032 if (ret) 1033 return ret; 1034 1035 if (!node_possible(nid)) { 1036 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1037 return -EINVAL; 1038 } 1039 1040 mem_hotplug_begin(); 1041 1042 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1043 memblock_add_node(start, size, nid); 1044 1045 ret = __try_online_node(nid, false); 1046 if (ret < 0) 1047 goto error; 1048 new_node = ret; 1049 1050 /* call arch's memory hotadd */ 1051 ret = arch_add_memory(nid, start, size, ¶ms); 1052 if (ret < 0) 1053 goto error; 1054 1055 /* create memory block devices after memory was added */ 1056 ret = create_memory_block_devices(start, size); 1057 if (ret) { 1058 arch_remove_memory(nid, start, size, NULL); 1059 goto error; 1060 } 1061 1062 if (new_node) { 1063 /* If sysfs file of new node can't be created, cpu on the node 1064 * can't be hot-added. There is no rollback way now. 1065 * So, check by BUG_ON() to catch it reluctantly.. 1066 * We online node here. We can't roll back from here. 1067 */ 1068 node_set_online(nid); 1069 ret = __register_one_node(nid); 1070 BUG_ON(ret); 1071 } 1072 1073 /* link memory sections under this node.*/ 1074 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1075 MEMINIT_HOTPLUG); 1076 1077 /* create new memmap entry */ 1078 if (!strcmp(res->name, "System RAM")) 1079 firmware_map_add_hotplug(start, start + size, "System RAM"); 1080 1081 /* device_online() will take the lock when calling online_pages() */ 1082 mem_hotplug_done(); 1083 1084 /* 1085 * In case we're allowed to merge the resource, flag it and trigger 1086 * merging now that adding succeeded. 1087 */ 1088 if (mhp_flags & MEMHP_MERGE_RESOURCE) 1089 merge_system_ram_resource(res); 1090 1091 /* online pages if requested */ 1092 if (memhp_default_online_type != MMOP_OFFLINE) 1093 walk_memory_blocks(start, size, NULL, online_memory_block); 1094 1095 return ret; 1096 error: 1097 /* rollback pgdat allocation and others */ 1098 if (new_node) 1099 rollback_node_hotadd(nid); 1100 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1101 memblock_remove(start, size); 1102 mem_hotplug_done(); 1103 return ret; 1104 } 1105 1106 /* requires device_hotplug_lock, see add_memory_resource() */ 1107 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1108 { 1109 struct resource *res; 1110 int ret; 1111 1112 res = register_memory_resource(start, size, "System RAM"); 1113 if (IS_ERR(res)) 1114 return PTR_ERR(res); 1115 1116 ret = add_memory_resource(nid, res, mhp_flags); 1117 if (ret < 0) 1118 release_memory_resource(res); 1119 return ret; 1120 } 1121 1122 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1123 { 1124 int rc; 1125 1126 lock_device_hotplug(); 1127 rc = __add_memory(nid, start, size, mhp_flags); 1128 unlock_device_hotplug(); 1129 1130 return rc; 1131 } 1132 EXPORT_SYMBOL_GPL(add_memory); 1133 1134 /* 1135 * Add special, driver-managed memory to the system as system RAM. Such 1136 * memory is not exposed via the raw firmware-provided memmap as system 1137 * RAM, instead, it is detected and added by a driver - during cold boot, 1138 * after a reboot, and after kexec. 1139 * 1140 * Reasons why this memory should not be used for the initial memmap of a 1141 * kexec kernel or for placing kexec images: 1142 * - The booting kernel is in charge of determining how this memory will be 1143 * used (e.g., use persistent memory as system RAM) 1144 * - Coordination with a hypervisor is required before this memory 1145 * can be used (e.g., inaccessible parts). 1146 * 1147 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1148 * memory map") are created. Also, the created memory resource is flagged 1149 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1150 * this memory as well (esp., not place kexec images onto it). 1151 * 1152 * The resource_name (visible via /proc/iomem) has to have the format 1153 * "System RAM ($DRIVER)". 1154 */ 1155 int add_memory_driver_managed(int nid, u64 start, u64 size, 1156 const char *resource_name, mhp_t mhp_flags) 1157 { 1158 struct resource *res; 1159 int rc; 1160 1161 if (!resource_name || 1162 strstr(resource_name, "System RAM (") != resource_name || 1163 resource_name[strlen(resource_name) - 1] != ')') 1164 return -EINVAL; 1165 1166 lock_device_hotplug(); 1167 1168 res = register_memory_resource(start, size, resource_name); 1169 if (IS_ERR(res)) { 1170 rc = PTR_ERR(res); 1171 goto out_unlock; 1172 } 1173 1174 rc = add_memory_resource(nid, res, mhp_flags); 1175 if (rc < 0) 1176 release_memory_resource(res); 1177 1178 out_unlock: 1179 unlock_device_hotplug(); 1180 return rc; 1181 } 1182 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1183 1184 #ifdef CONFIG_MEMORY_HOTREMOVE 1185 /* 1186 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1187 * memory holes). When true, return the zone. 1188 */ 1189 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1190 unsigned long end_pfn) 1191 { 1192 unsigned long pfn, sec_end_pfn; 1193 struct zone *zone = NULL; 1194 struct page *page; 1195 int i; 1196 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1197 pfn < end_pfn; 1198 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1199 /* Make sure the memory section is present first */ 1200 if (!present_section_nr(pfn_to_section_nr(pfn))) 1201 continue; 1202 for (; pfn < sec_end_pfn && pfn < end_pfn; 1203 pfn += MAX_ORDER_NR_PAGES) { 1204 i = 0; 1205 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1206 while ((i < MAX_ORDER_NR_PAGES) && 1207 !pfn_valid_within(pfn + i)) 1208 i++; 1209 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1210 continue; 1211 /* Check if we got outside of the zone */ 1212 if (zone && !zone_spans_pfn(zone, pfn + i)) 1213 return NULL; 1214 page = pfn_to_page(pfn + i); 1215 if (zone && page_zone(page) != zone) 1216 return NULL; 1217 zone = page_zone(page); 1218 } 1219 } 1220 1221 return zone; 1222 } 1223 1224 /* 1225 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1226 * non-lru movable pages and hugepages). Will skip over most unmovable 1227 * pages (esp., pages that can be skipped when offlining), but bail out on 1228 * definitely unmovable pages. 1229 * 1230 * Returns: 1231 * 0 in case a movable page is found and movable_pfn was updated. 1232 * -ENOENT in case no movable page was found. 1233 * -EBUSY in case a definitely unmovable page was found. 1234 */ 1235 static int scan_movable_pages(unsigned long start, unsigned long end, 1236 unsigned long *movable_pfn) 1237 { 1238 unsigned long pfn; 1239 1240 for (pfn = start; pfn < end; pfn++) { 1241 struct page *page, *head; 1242 unsigned long skip; 1243 1244 if (!pfn_valid(pfn)) 1245 continue; 1246 page = pfn_to_page(pfn); 1247 if (PageLRU(page)) 1248 goto found; 1249 if (__PageMovable(page)) 1250 goto found; 1251 1252 /* 1253 * PageOffline() pages that are not marked __PageMovable() and 1254 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1255 * definitely unmovable. If their reference count would be 0, 1256 * they could at least be skipped when offlining memory. 1257 */ 1258 if (PageOffline(page) && page_count(page)) 1259 return -EBUSY; 1260 1261 if (!PageHuge(page)) 1262 continue; 1263 head = compound_head(page); 1264 if (page_huge_active(head)) 1265 goto found; 1266 skip = compound_nr(head) - (page - head); 1267 pfn += skip - 1; 1268 } 1269 return -ENOENT; 1270 found: 1271 *movable_pfn = pfn; 1272 return 0; 1273 } 1274 1275 static int 1276 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1277 { 1278 unsigned long pfn; 1279 struct page *page, *head; 1280 int ret = 0; 1281 LIST_HEAD(source); 1282 1283 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1284 if (!pfn_valid(pfn)) 1285 continue; 1286 page = pfn_to_page(pfn); 1287 head = compound_head(page); 1288 1289 if (PageHuge(page)) { 1290 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1291 isolate_huge_page(head, &source); 1292 continue; 1293 } else if (PageTransHuge(page)) 1294 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1295 1296 /* 1297 * HWPoison pages have elevated reference counts so the migration would 1298 * fail on them. It also doesn't make any sense to migrate them in the 1299 * first place. Still try to unmap such a page in case it is still mapped 1300 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1301 * the unmap as the catch all safety net). 1302 */ 1303 if (PageHWPoison(page)) { 1304 if (WARN_ON(PageLRU(page))) 1305 isolate_lru_page(page); 1306 if (page_mapped(page)) 1307 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1308 continue; 1309 } 1310 1311 if (!get_page_unless_zero(page)) 1312 continue; 1313 /* 1314 * We can skip free pages. And we can deal with pages on 1315 * LRU and non-lru movable pages. 1316 */ 1317 if (PageLRU(page)) 1318 ret = isolate_lru_page(page); 1319 else 1320 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1321 if (!ret) { /* Success */ 1322 list_add_tail(&page->lru, &source); 1323 if (!__PageMovable(page)) 1324 inc_node_page_state(page, NR_ISOLATED_ANON + 1325 page_is_file_lru(page)); 1326 1327 } else { 1328 pr_warn("failed to isolate pfn %lx\n", pfn); 1329 dump_page(page, "isolation failed"); 1330 } 1331 put_page(page); 1332 } 1333 if (!list_empty(&source)) { 1334 nodemask_t nmask = node_states[N_MEMORY]; 1335 struct migration_target_control mtc = { 1336 .nmask = &nmask, 1337 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1338 }; 1339 1340 /* 1341 * We have checked that migration range is on a single zone so 1342 * we can use the nid of the first page to all the others. 1343 */ 1344 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1345 1346 /* 1347 * try to allocate from a different node but reuse this node 1348 * if there are no other online nodes to be used (e.g. we are 1349 * offlining a part of the only existing node) 1350 */ 1351 node_clear(mtc.nid, nmask); 1352 if (nodes_empty(nmask)) 1353 node_set(mtc.nid, nmask); 1354 ret = migrate_pages(&source, alloc_migration_target, NULL, 1355 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1356 if (ret) { 1357 list_for_each_entry(page, &source, lru) { 1358 pr_warn("migrating pfn %lx failed ret:%d ", 1359 page_to_pfn(page), ret); 1360 dump_page(page, "migration failure"); 1361 } 1362 putback_movable_pages(&source); 1363 } 1364 } 1365 1366 return ret; 1367 } 1368 1369 static int __init cmdline_parse_movable_node(char *p) 1370 { 1371 movable_node_enabled = true; 1372 return 0; 1373 } 1374 early_param("movable_node", cmdline_parse_movable_node); 1375 1376 /* check which state of node_states will be changed when offline memory */ 1377 static void node_states_check_changes_offline(unsigned long nr_pages, 1378 struct zone *zone, struct memory_notify *arg) 1379 { 1380 struct pglist_data *pgdat = zone->zone_pgdat; 1381 unsigned long present_pages = 0; 1382 enum zone_type zt; 1383 1384 arg->status_change_nid = NUMA_NO_NODE; 1385 arg->status_change_nid_normal = NUMA_NO_NODE; 1386 arg->status_change_nid_high = NUMA_NO_NODE; 1387 1388 /* 1389 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1390 * If the memory to be offline is within the range 1391 * [0..ZONE_NORMAL], and it is the last present memory there, 1392 * the zones in that range will become empty after the offlining, 1393 * thus we can determine that we need to clear the node from 1394 * node_states[N_NORMAL_MEMORY]. 1395 */ 1396 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1397 present_pages += pgdat->node_zones[zt].present_pages; 1398 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1399 arg->status_change_nid_normal = zone_to_nid(zone); 1400 1401 #ifdef CONFIG_HIGHMEM 1402 /* 1403 * node_states[N_HIGH_MEMORY] contains nodes which 1404 * have normal memory or high memory. 1405 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1406 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1407 * we determine that the zones in that range become empty, 1408 * we need to clear the node for N_HIGH_MEMORY. 1409 */ 1410 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1411 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1412 arg->status_change_nid_high = zone_to_nid(zone); 1413 #endif 1414 1415 /* 1416 * We have accounted the pages from [0..ZONE_NORMAL), and 1417 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1418 * as well. 1419 * Here we count the possible pages from ZONE_MOVABLE. 1420 * If after having accounted all the pages, we see that the nr_pages 1421 * to be offlined is over or equal to the accounted pages, 1422 * we know that the node will become empty, and so, we can clear 1423 * it for N_MEMORY as well. 1424 */ 1425 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1426 1427 if (nr_pages >= present_pages) 1428 arg->status_change_nid = zone_to_nid(zone); 1429 } 1430 1431 static void node_states_clear_node(int node, struct memory_notify *arg) 1432 { 1433 if (arg->status_change_nid_normal >= 0) 1434 node_clear_state(node, N_NORMAL_MEMORY); 1435 1436 if (arg->status_change_nid_high >= 0) 1437 node_clear_state(node, N_HIGH_MEMORY); 1438 1439 if (arg->status_change_nid >= 0) 1440 node_clear_state(node, N_MEMORY); 1441 } 1442 1443 static int count_system_ram_pages_cb(unsigned long start_pfn, 1444 unsigned long nr_pages, void *data) 1445 { 1446 unsigned long *nr_system_ram_pages = data; 1447 1448 *nr_system_ram_pages += nr_pages; 1449 return 0; 1450 } 1451 1452 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1453 { 1454 const unsigned long end_pfn = start_pfn + nr_pages; 1455 unsigned long pfn, system_ram_pages = 0; 1456 unsigned long flags; 1457 struct zone *zone; 1458 struct memory_notify arg; 1459 int ret, node; 1460 char *reason; 1461 1462 /* We can only offline full sections (e.g., SECTION_IS_ONLINE) */ 1463 if (WARN_ON_ONCE(!nr_pages || 1464 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION))) 1465 return -EINVAL; 1466 1467 mem_hotplug_begin(); 1468 1469 /* 1470 * Don't allow to offline memory blocks that contain holes. 1471 * Consequently, memory blocks with holes can never get onlined 1472 * via the hotplug path - online_pages() - as hotplugged memory has 1473 * no holes. This way, we e.g., don't have to worry about marking 1474 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1475 * avoid using walk_system_ram_range() later. 1476 */ 1477 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1478 count_system_ram_pages_cb); 1479 if (system_ram_pages != nr_pages) { 1480 ret = -EINVAL; 1481 reason = "memory holes"; 1482 goto failed_removal; 1483 } 1484 1485 /* This makes hotplug much easier...and readable. 1486 we assume this for now. .*/ 1487 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1488 if (!zone) { 1489 ret = -EINVAL; 1490 reason = "multizone range"; 1491 goto failed_removal; 1492 } 1493 node = zone_to_nid(zone); 1494 1495 /* set above range as isolated */ 1496 ret = start_isolate_page_range(start_pfn, end_pfn, 1497 MIGRATE_MOVABLE, 1498 MEMORY_OFFLINE | REPORT_FAILURE); 1499 if (ret) { 1500 reason = "failure to isolate range"; 1501 goto failed_removal; 1502 } 1503 1504 arg.start_pfn = start_pfn; 1505 arg.nr_pages = nr_pages; 1506 node_states_check_changes_offline(nr_pages, zone, &arg); 1507 1508 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1509 ret = notifier_to_errno(ret); 1510 if (ret) { 1511 reason = "notifier failure"; 1512 goto failed_removal_isolated; 1513 } 1514 1515 do { 1516 pfn = start_pfn; 1517 do { 1518 if (signal_pending(current)) { 1519 ret = -EINTR; 1520 reason = "signal backoff"; 1521 goto failed_removal_isolated; 1522 } 1523 1524 cond_resched(); 1525 lru_add_drain_all(); 1526 1527 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1528 if (!ret) { 1529 /* 1530 * TODO: fatal migration failures should bail 1531 * out 1532 */ 1533 do_migrate_range(pfn, end_pfn); 1534 } 1535 } while (!ret); 1536 1537 if (ret != -ENOENT) { 1538 reason = "unmovable page"; 1539 goto failed_removal_isolated; 1540 } 1541 1542 /* 1543 * Dissolve free hugepages in the memory block before doing 1544 * offlining actually in order to make hugetlbfs's object 1545 * counting consistent. 1546 */ 1547 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1548 if (ret) { 1549 reason = "failure to dissolve huge pages"; 1550 goto failed_removal_isolated; 1551 } 1552 1553 /* 1554 * per-cpu pages are drained in start_isolate_page_range, but if 1555 * there are still pages that are not free, make sure that we 1556 * drain again, because when we isolated range we might 1557 * have raced with another thread that was adding pages to pcp 1558 * list. 1559 * 1560 * Forward progress should be still guaranteed because 1561 * pages on the pcp list can only belong to MOVABLE_ZONE 1562 * because has_unmovable_pages explicitly checks for 1563 * PageBuddy on freed pages on other zones. 1564 */ 1565 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1566 if (ret) 1567 drain_all_pages(zone); 1568 } while (ret); 1569 1570 /* Mark all sections offline and remove free pages from the buddy. */ 1571 __offline_isolated_pages(start_pfn, end_pfn); 1572 pr_info("Offlined Pages %ld\n", nr_pages); 1573 1574 /* 1575 * The memory sections are marked offline, and the pageblock flags 1576 * effectively stale; nobody should be touching them. Fixup the number 1577 * of isolated pageblocks, memory onlining will properly revert this. 1578 */ 1579 spin_lock_irqsave(&zone->lock, flags); 1580 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1581 spin_unlock_irqrestore(&zone->lock, flags); 1582 1583 /* removal success */ 1584 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1585 zone->present_pages -= nr_pages; 1586 1587 pgdat_resize_lock(zone->zone_pgdat, &flags); 1588 zone->zone_pgdat->node_present_pages -= nr_pages; 1589 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1590 1591 init_per_zone_wmark_min(); 1592 1593 if (!populated_zone(zone)) { 1594 zone_pcp_reset(zone); 1595 build_all_zonelists(NULL); 1596 } else 1597 zone_pcp_update(zone); 1598 1599 node_states_clear_node(node, &arg); 1600 if (arg.status_change_nid >= 0) { 1601 kswapd_stop(node); 1602 kcompactd_stop(node); 1603 } 1604 1605 writeback_set_ratelimit(); 1606 1607 memory_notify(MEM_OFFLINE, &arg); 1608 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1609 mem_hotplug_done(); 1610 return 0; 1611 1612 failed_removal_isolated: 1613 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1614 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1615 failed_removal: 1616 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1617 (unsigned long long) start_pfn << PAGE_SHIFT, 1618 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1619 reason); 1620 /* pushback to free area */ 1621 mem_hotplug_done(); 1622 return ret; 1623 } 1624 1625 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1626 { 1627 int ret = !is_memblock_offlined(mem); 1628 1629 if (unlikely(ret)) { 1630 phys_addr_t beginpa, endpa; 1631 1632 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1633 endpa = beginpa + memory_block_size_bytes() - 1; 1634 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1635 &beginpa, &endpa); 1636 1637 return -EBUSY; 1638 } 1639 return 0; 1640 } 1641 1642 static int check_cpu_on_node(pg_data_t *pgdat) 1643 { 1644 int cpu; 1645 1646 for_each_present_cpu(cpu) { 1647 if (cpu_to_node(cpu) == pgdat->node_id) 1648 /* 1649 * the cpu on this node isn't removed, and we can't 1650 * offline this node. 1651 */ 1652 return -EBUSY; 1653 } 1654 1655 return 0; 1656 } 1657 1658 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1659 { 1660 int nid = *(int *)arg; 1661 1662 /* 1663 * If a memory block belongs to multiple nodes, the stored nid is not 1664 * reliable. However, such blocks are always online (e.g., cannot get 1665 * offlined) and, therefore, are still spanned by the node. 1666 */ 1667 return mem->nid == nid ? -EEXIST : 0; 1668 } 1669 1670 /** 1671 * try_offline_node 1672 * @nid: the node ID 1673 * 1674 * Offline a node if all memory sections and cpus of the node are removed. 1675 * 1676 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1677 * and online/offline operations before this call. 1678 */ 1679 void try_offline_node(int nid) 1680 { 1681 pg_data_t *pgdat = NODE_DATA(nid); 1682 int rc; 1683 1684 /* 1685 * If the node still spans pages (especially ZONE_DEVICE), don't 1686 * offline it. A node spans memory after move_pfn_range_to_zone(), 1687 * e.g., after the memory block was onlined. 1688 */ 1689 if (pgdat->node_spanned_pages) 1690 return; 1691 1692 /* 1693 * Especially offline memory blocks might not be spanned by the 1694 * node. They will get spanned by the node once they get onlined. 1695 * However, they link to the node in sysfs and can get onlined later. 1696 */ 1697 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 1698 if (rc) 1699 return; 1700 1701 if (check_cpu_on_node(pgdat)) 1702 return; 1703 1704 /* 1705 * all memory/cpu of this node are removed, we can offline this 1706 * node now. 1707 */ 1708 node_set_offline(nid); 1709 unregister_one_node(nid); 1710 } 1711 EXPORT_SYMBOL(try_offline_node); 1712 1713 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1714 { 1715 int rc = 0; 1716 1717 BUG_ON(check_hotplug_memory_range(start, size)); 1718 1719 /* 1720 * All memory blocks must be offlined before removing memory. Check 1721 * whether all memory blocks in question are offline and return error 1722 * if this is not the case. 1723 */ 1724 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1725 if (rc) 1726 return rc; 1727 1728 /* remove memmap entry */ 1729 firmware_map_remove(start, start + size, "System RAM"); 1730 1731 /* 1732 * Memory block device removal under the device_hotplug_lock is 1733 * a barrier against racing online attempts. 1734 */ 1735 remove_memory_block_devices(start, size); 1736 1737 mem_hotplug_begin(); 1738 1739 arch_remove_memory(nid, start, size, NULL); 1740 1741 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1742 memblock_free(start, size); 1743 memblock_remove(start, size); 1744 } 1745 1746 release_mem_region_adjustable(start, size); 1747 1748 try_offline_node(nid); 1749 1750 mem_hotplug_done(); 1751 return 0; 1752 } 1753 1754 /** 1755 * remove_memory 1756 * @nid: the node ID 1757 * @start: physical address of the region to remove 1758 * @size: size of the region to remove 1759 * 1760 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1761 * and online/offline operations before this call, as required by 1762 * try_offline_node(). 1763 */ 1764 void __remove_memory(int nid, u64 start, u64 size) 1765 { 1766 1767 /* 1768 * trigger BUG() if some memory is not offlined prior to calling this 1769 * function 1770 */ 1771 if (try_remove_memory(nid, start, size)) 1772 BUG(); 1773 } 1774 1775 /* 1776 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1777 * some memory is not offline 1778 */ 1779 int remove_memory(int nid, u64 start, u64 size) 1780 { 1781 int rc; 1782 1783 lock_device_hotplug(); 1784 rc = try_remove_memory(nid, start, size); 1785 unlock_device_hotplug(); 1786 1787 return rc; 1788 } 1789 EXPORT_SYMBOL_GPL(remove_memory); 1790 1791 /* 1792 * Try to offline and remove a memory block. Might take a long time to 1793 * finish in case memory is still in use. Primarily useful for memory devices 1794 * that logically unplugged all memory (so it's no longer in use) and want to 1795 * offline + remove the memory block. 1796 */ 1797 int offline_and_remove_memory(int nid, u64 start, u64 size) 1798 { 1799 struct memory_block *mem; 1800 int rc = -EINVAL; 1801 1802 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 1803 size != memory_block_size_bytes()) 1804 return rc; 1805 1806 lock_device_hotplug(); 1807 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start))); 1808 if (mem) 1809 rc = device_offline(&mem->dev); 1810 /* Ignore if the device is already offline. */ 1811 if (rc > 0) 1812 rc = 0; 1813 1814 /* 1815 * In case we succeeded to offline the memory block, remove it. 1816 * This cannot fail as it cannot get onlined in the meantime. 1817 */ 1818 if (!rc) { 1819 rc = try_remove_memory(nid, start, size); 1820 WARN_ON_ONCE(rc); 1821 } 1822 unlock_device_hotplug(); 1823 1824 return rc; 1825 } 1826 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 1827 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1828