xref: /openbmc/linux/mm/memory_hotplug.c (revision b34081f1)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 
35 #include <asm/tlbflush.h>
36 
37 #include "internal.h"
38 
39 /*
40  * online_page_callback contains pointer to current page onlining function.
41  * Initially it is generic_online_page(). If it is required it could be
42  * changed by calling set_online_page_callback() for callback registration
43  * and restore_online_page_callback() for generic callback restore.
44  */
45 
46 static void generic_online_page(struct page *page);
47 
48 static online_page_callback_t online_page_callback = generic_online_page;
49 
50 DEFINE_MUTEX(mem_hotplug_mutex);
51 
52 void lock_memory_hotplug(void)
53 {
54 	mutex_lock(&mem_hotplug_mutex);
55 
56 	/* for exclusive hibernation if CONFIG_HIBERNATION=y */
57 	lock_system_sleep();
58 }
59 
60 void unlock_memory_hotplug(void)
61 {
62 	unlock_system_sleep();
63 	mutex_unlock(&mem_hotplug_mutex);
64 }
65 
66 
67 /* add this memory to iomem resource */
68 static struct resource *register_memory_resource(u64 start, u64 size)
69 {
70 	struct resource *res;
71 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
72 	BUG_ON(!res);
73 
74 	res->name = "System RAM";
75 	res->start = start;
76 	res->end = start + size - 1;
77 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
78 	if (request_resource(&iomem_resource, res) < 0) {
79 		pr_debug("System RAM resource %pR cannot be added\n", res);
80 		kfree(res);
81 		res = NULL;
82 	}
83 	return res;
84 }
85 
86 static void release_memory_resource(struct resource *res)
87 {
88 	if (!res)
89 		return;
90 	release_resource(res);
91 	kfree(res);
92 	return;
93 }
94 
95 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
96 void get_page_bootmem(unsigned long info,  struct page *page,
97 		      unsigned long type)
98 {
99 	page->lru.next = (struct list_head *) type;
100 	SetPagePrivate(page);
101 	set_page_private(page, info);
102 	atomic_inc(&page->_count);
103 }
104 
105 void put_page_bootmem(struct page *page)
106 {
107 	unsigned long type;
108 
109 	type = (unsigned long) page->lru.next;
110 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
111 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
112 
113 	if (atomic_dec_return(&page->_count) == 1) {
114 		ClearPagePrivate(page);
115 		set_page_private(page, 0);
116 		INIT_LIST_HEAD(&page->lru);
117 		free_reserved_page(page);
118 	}
119 }
120 
121 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
122 #ifndef CONFIG_SPARSEMEM_VMEMMAP
123 static void register_page_bootmem_info_section(unsigned long start_pfn)
124 {
125 	unsigned long *usemap, mapsize, section_nr, i;
126 	struct mem_section *ms;
127 	struct page *page, *memmap;
128 
129 	section_nr = pfn_to_section_nr(start_pfn);
130 	ms = __nr_to_section(section_nr);
131 
132 	/* Get section's memmap address */
133 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
134 
135 	/*
136 	 * Get page for the memmap's phys address
137 	 * XXX: need more consideration for sparse_vmemmap...
138 	 */
139 	page = virt_to_page(memmap);
140 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
141 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
142 
143 	/* remember memmap's page */
144 	for (i = 0; i < mapsize; i++, page++)
145 		get_page_bootmem(section_nr, page, SECTION_INFO);
146 
147 	usemap = __nr_to_section(section_nr)->pageblock_flags;
148 	page = virt_to_page(usemap);
149 
150 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
151 
152 	for (i = 0; i < mapsize; i++, page++)
153 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
154 
155 }
156 #else /* CONFIG_SPARSEMEM_VMEMMAP */
157 static void register_page_bootmem_info_section(unsigned long start_pfn)
158 {
159 	unsigned long *usemap, mapsize, section_nr, i;
160 	struct mem_section *ms;
161 	struct page *page, *memmap;
162 
163 	if (!pfn_valid(start_pfn))
164 		return;
165 
166 	section_nr = pfn_to_section_nr(start_pfn);
167 	ms = __nr_to_section(section_nr);
168 
169 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
170 
171 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
172 
173 	usemap = __nr_to_section(section_nr)->pageblock_flags;
174 	page = virt_to_page(usemap);
175 
176 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
177 
178 	for (i = 0; i < mapsize; i++, page++)
179 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
180 }
181 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
182 
183 void register_page_bootmem_info_node(struct pglist_data *pgdat)
184 {
185 	unsigned long i, pfn, end_pfn, nr_pages;
186 	int node = pgdat->node_id;
187 	struct page *page;
188 	struct zone *zone;
189 
190 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
191 	page = virt_to_page(pgdat);
192 
193 	for (i = 0; i < nr_pages; i++, page++)
194 		get_page_bootmem(node, page, NODE_INFO);
195 
196 	zone = &pgdat->node_zones[0];
197 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
198 		if (zone_is_initialized(zone)) {
199 			nr_pages = zone->wait_table_hash_nr_entries
200 				* sizeof(wait_queue_head_t);
201 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
202 			page = virt_to_page(zone->wait_table);
203 
204 			for (i = 0; i < nr_pages; i++, page++)
205 				get_page_bootmem(node, page, NODE_INFO);
206 		}
207 	}
208 
209 	pfn = pgdat->node_start_pfn;
210 	end_pfn = pgdat_end_pfn(pgdat);
211 
212 	/* register section info */
213 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
214 		/*
215 		 * Some platforms can assign the same pfn to multiple nodes - on
216 		 * node0 as well as nodeN.  To avoid registering a pfn against
217 		 * multiple nodes we check that this pfn does not already
218 		 * reside in some other nodes.
219 		 */
220 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
221 			register_page_bootmem_info_section(pfn);
222 	}
223 }
224 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
225 
226 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
227 			   unsigned long end_pfn)
228 {
229 	unsigned long old_zone_end_pfn;
230 
231 	zone_span_writelock(zone);
232 
233 	old_zone_end_pfn = zone_end_pfn(zone);
234 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
235 		zone->zone_start_pfn = start_pfn;
236 
237 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
238 				zone->zone_start_pfn;
239 
240 	zone_span_writeunlock(zone);
241 }
242 
243 static void resize_zone(struct zone *zone, unsigned long start_pfn,
244 		unsigned long end_pfn)
245 {
246 	zone_span_writelock(zone);
247 
248 	if (end_pfn - start_pfn) {
249 		zone->zone_start_pfn = start_pfn;
250 		zone->spanned_pages = end_pfn - start_pfn;
251 	} else {
252 		/*
253 		 * make it consist as free_area_init_core(),
254 		 * if spanned_pages = 0, then keep start_pfn = 0
255 		 */
256 		zone->zone_start_pfn = 0;
257 		zone->spanned_pages = 0;
258 	}
259 
260 	zone_span_writeunlock(zone);
261 }
262 
263 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
264 		unsigned long end_pfn)
265 {
266 	enum zone_type zid = zone_idx(zone);
267 	int nid = zone->zone_pgdat->node_id;
268 	unsigned long pfn;
269 
270 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
271 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
272 }
273 
274 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
275  * alloc_bootmem_node_nopanic() */
276 static int __ref ensure_zone_is_initialized(struct zone *zone,
277 			unsigned long start_pfn, unsigned long num_pages)
278 {
279 	if (!zone_is_initialized(zone))
280 		return init_currently_empty_zone(zone, start_pfn, num_pages,
281 						 MEMMAP_HOTPLUG);
282 	return 0;
283 }
284 
285 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
286 		unsigned long start_pfn, unsigned long end_pfn)
287 {
288 	int ret;
289 	unsigned long flags;
290 	unsigned long z1_start_pfn;
291 
292 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
293 	if (ret)
294 		return ret;
295 
296 	pgdat_resize_lock(z1->zone_pgdat, &flags);
297 
298 	/* can't move pfns which are higher than @z2 */
299 	if (end_pfn > zone_end_pfn(z2))
300 		goto out_fail;
301 	/* the move out part must be at the left most of @z2 */
302 	if (start_pfn > z2->zone_start_pfn)
303 		goto out_fail;
304 	/* must included/overlap */
305 	if (end_pfn <= z2->zone_start_pfn)
306 		goto out_fail;
307 
308 	/* use start_pfn for z1's start_pfn if z1 is empty */
309 	if (!zone_is_empty(z1))
310 		z1_start_pfn = z1->zone_start_pfn;
311 	else
312 		z1_start_pfn = start_pfn;
313 
314 	resize_zone(z1, z1_start_pfn, end_pfn);
315 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
316 
317 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
318 
319 	fix_zone_id(z1, start_pfn, end_pfn);
320 
321 	return 0;
322 out_fail:
323 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
324 	return -1;
325 }
326 
327 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
328 		unsigned long start_pfn, unsigned long end_pfn)
329 {
330 	int ret;
331 	unsigned long flags;
332 	unsigned long z2_end_pfn;
333 
334 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
335 	if (ret)
336 		return ret;
337 
338 	pgdat_resize_lock(z1->zone_pgdat, &flags);
339 
340 	/* can't move pfns which are lower than @z1 */
341 	if (z1->zone_start_pfn > start_pfn)
342 		goto out_fail;
343 	/* the move out part mast at the right most of @z1 */
344 	if (zone_end_pfn(z1) >  end_pfn)
345 		goto out_fail;
346 	/* must included/overlap */
347 	if (start_pfn >= zone_end_pfn(z1))
348 		goto out_fail;
349 
350 	/* use end_pfn for z2's end_pfn if z2 is empty */
351 	if (!zone_is_empty(z2))
352 		z2_end_pfn = zone_end_pfn(z2);
353 	else
354 		z2_end_pfn = end_pfn;
355 
356 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
357 	resize_zone(z2, start_pfn, z2_end_pfn);
358 
359 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
360 
361 	fix_zone_id(z2, start_pfn, end_pfn);
362 
363 	return 0;
364 out_fail:
365 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
366 	return -1;
367 }
368 
369 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
370 			    unsigned long end_pfn)
371 {
372 	unsigned long old_pgdat_end_pfn =
373 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
374 
375 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
376 		pgdat->node_start_pfn = start_pfn;
377 
378 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
379 					pgdat->node_start_pfn;
380 }
381 
382 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
383 {
384 	struct pglist_data *pgdat = zone->zone_pgdat;
385 	int nr_pages = PAGES_PER_SECTION;
386 	int nid = pgdat->node_id;
387 	int zone_type;
388 	unsigned long flags;
389 	int ret;
390 
391 	zone_type = zone - pgdat->node_zones;
392 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
393 	if (ret)
394 		return ret;
395 
396 	pgdat_resize_lock(zone->zone_pgdat, &flags);
397 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
398 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
399 			phys_start_pfn + nr_pages);
400 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
401 	memmap_init_zone(nr_pages, nid, zone_type,
402 			 phys_start_pfn, MEMMAP_HOTPLUG);
403 	return 0;
404 }
405 
406 static int __meminit __add_section(int nid, struct zone *zone,
407 					unsigned long phys_start_pfn)
408 {
409 	int nr_pages = PAGES_PER_SECTION;
410 	int ret;
411 
412 	if (pfn_valid(phys_start_pfn))
413 		return -EEXIST;
414 
415 	ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
416 
417 	if (ret < 0)
418 		return ret;
419 
420 	ret = __add_zone(zone, phys_start_pfn);
421 
422 	if (ret < 0)
423 		return ret;
424 
425 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
426 }
427 
428 /*
429  * Reasonably generic function for adding memory.  It is
430  * expected that archs that support memory hotplug will
431  * call this function after deciding the zone to which to
432  * add the new pages.
433  */
434 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
435 			unsigned long nr_pages)
436 {
437 	unsigned long i;
438 	int err = 0;
439 	int start_sec, end_sec;
440 	/* during initialize mem_map, align hot-added range to section */
441 	start_sec = pfn_to_section_nr(phys_start_pfn);
442 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
443 
444 	for (i = start_sec; i <= end_sec; i++) {
445 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
446 
447 		/*
448 		 * EEXIST is finally dealt with by ioresource collision
449 		 * check. see add_memory() => register_memory_resource()
450 		 * Warning will be printed if there is collision.
451 		 */
452 		if (err && (err != -EEXIST))
453 			break;
454 		err = 0;
455 	}
456 
457 	return err;
458 }
459 EXPORT_SYMBOL_GPL(__add_pages);
460 
461 #ifdef CONFIG_MEMORY_HOTREMOVE
462 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
463 static int find_smallest_section_pfn(int nid, struct zone *zone,
464 				     unsigned long start_pfn,
465 				     unsigned long end_pfn)
466 {
467 	struct mem_section *ms;
468 
469 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
470 		ms = __pfn_to_section(start_pfn);
471 
472 		if (unlikely(!valid_section(ms)))
473 			continue;
474 
475 		if (unlikely(pfn_to_nid(start_pfn) != nid))
476 			continue;
477 
478 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
479 			continue;
480 
481 		return start_pfn;
482 	}
483 
484 	return 0;
485 }
486 
487 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
488 static int find_biggest_section_pfn(int nid, struct zone *zone,
489 				    unsigned long start_pfn,
490 				    unsigned long end_pfn)
491 {
492 	struct mem_section *ms;
493 	unsigned long pfn;
494 
495 	/* pfn is the end pfn of a memory section. */
496 	pfn = end_pfn - 1;
497 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
498 		ms = __pfn_to_section(pfn);
499 
500 		if (unlikely(!valid_section(ms)))
501 			continue;
502 
503 		if (unlikely(pfn_to_nid(pfn) != nid))
504 			continue;
505 
506 		if (zone && zone != page_zone(pfn_to_page(pfn)))
507 			continue;
508 
509 		return pfn;
510 	}
511 
512 	return 0;
513 }
514 
515 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
516 			     unsigned long end_pfn)
517 {
518 	unsigned long zone_start_pfn = zone->zone_start_pfn;
519 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
520 	unsigned long zone_end_pfn = z;
521 	unsigned long pfn;
522 	struct mem_section *ms;
523 	int nid = zone_to_nid(zone);
524 
525 	zone_span_writelock(zone);
526 	if (zone_start_pfn == start_pfn) {
527 		/*
528 		 * If the section is smallest section in the zone, it need
529 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
530 		 * In this case, we find second smallest valid mem_section
531 		 * for shrinking zone.
532 		 */
533 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
534 						zone_end_pfn);
535 		if (pfn) {
536 			zone->zone_start_pfn = pfn;
537 			zone->spanned_pages = zone_end_pfn - pfn;
538 		}
539 	} else if (zone_end_pfn == end_pfn) {
540 		/*
541 		 * If the section is biggest section in the zone, it need
542 		 * shrink zone->spanned_pages.
543 		 * In this case, we find second biggest valid mem_section for
544 		 * shrinking zone.
545 		 */
546 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
547 					       start_pfn);
548 		if (pfn)
549 			zone->spanned_pages = pfn - zone_start_pfn + 1;
550 	}
551 
552 	/*
553 	 * The section is not biggest or smallest mem_section in the zone, it
554 	 * only creates a hole in the zone. So in this case, we need not
555 	 * change the zone. But perhaps, the zone has only hole data. Thus
556 	 * it check the zone has only hole or not.
557 	 */
558 	pfn = zone_start_pfn;
559 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
560 		ms = __pfn_to_section(pfn);
561 
562 		if (unlikely(!valid_section(ms)))
563 			continue;
564 
565 		if (page_zone(pfn_to_page(pfn)) != zone)
566 			continue;
567 
568 		 /* If the section is current section, it continues the loop */
569 		if (start_pfn == pfn)
570 			continue;
571 
572 		/* If we find valid section, we have nothing to do */
573 		zone_span_writeunlock(zone);
574 		return;
575 	}
576 
577 	/* The zone has no valid section */
578 	zone->zone_start_pfn = 0;
579 	zone->spanned_pages = 0;
580 	zone_span_writeunlock(zone);
581 }
582 
583 static void shrink_pgdat_span(struct pglist_data *pgdat,
584 			      unsigned long start_pfn, unsigned long end_pfn)
585 {
586 	unsigned long pgdat_start_pfn =  pgdat->node_start_pfn;
587 	unsigned long pgdat_end_pfn =
588 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
589 	unsigned long pfn;
590 	struct mem_section *ms;
591 	int nid = pgdat->node_id;
592 
593 	if (pgdat_start_pfn == start_pfn) {
594 		/*
595 		 * If the section is smallest section in the pgdat, it need
596 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
597 		 * In this case, we find second smallest valid mem_section
598 		 * for shrinking zone.
599 		 */
600 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
601 						pgdat_end_pfn);
602 		if (pfn) {
603 			pgdat->node_start_pfn = pfn;
604 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
605 		}
606 	} else if (pgdat_end_pfn == end_pfn) {
607 		/*
608 		 * If the section is biggest section in the pgdat, it need
609 		 * shrink pgdat->node_spanned_pages.
610 		 * In this case, we find second biggest valid mem_section for
611 		 * shrinking zone.
612 		 */
613 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
614 					       start_pfn);
615 		if (pfn)
616 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
617 	}
618 
619 	/*
620 	 * If the section is not biggest or smallest mem_section in the pgdat,
621 	 * it only creates a hole in the pgdat. So in this case, we need not
622 	 * change the pgdat.
623 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
624 	 * has only hole or not.
625 	 */
626 	pfn = pgdat_start_pfn;
627 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
628 		ms = __pfn_to_section(pfn);
629 
630 		if (unlikely(!valid_section(ms)))
631 			continue;
632 
633 		if (pfn_to_nid(pfn) != nid)
634 			continue;
635 
636 		 /* If the section is current section, it continues the loop */
637 		if (start_pfn == pfn)
638 			continue;
639 
640 		/* If we find valid section, we have nothing to do */
641 		return;
642 	}
643 
644 	/* The pgdat has no valid section */
645 	pgdat->node_start_pfn = 0;
646 	pgdat->node_spanned_pages = 0;
647 }
648 
649 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
650 {
651 	struct pglist_data *pgdat = zone->zone_pgdat;
652 	int nr_pages = PAGES_PER_SECTION;
653 	int zone_type;
654 	unsigned long flags;
655 
656 	zone_type = zone - pgdat->node_zones;
657 
658 	pgdat_resize_lock(zone->zone_pgdat, &flags);
659 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
660 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
661 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
662 }
663 
664 static int __remove_section(struct zone *zone, struct mem_section *ms)
665 {
666 	unsigned long start_pfn;
667 	int scn_nr;
668 	int ret = -EINVAL;
669 
670 	if (!valid_section(ms))
671 		return ret;
672 
673 	ret = unregister_memory_section(ms);
674 	if (ret)
675 		return ret;
676 
677 	scn_nr = __section_nr(ms);
678 	start_pfn = section_nr_to_pfn(scn_nr);
679 	__remove_zone(zone, start_pfn);
680 
681 	sparse_remove_one_section(zone, ms);
682 	return 0;
683 }
684 
685 /**
686  * __remove_pages() - remove sections of pages from a zone
687  * @zone: zone from which pages need to be removed
688  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
689  * @nr_pages: number of pages to remove (must be multiple of section size)
690  *
691  * Generic helper function to remove section mappings and sysfs entries
692  * for the section of the memory we are removing. Caller needs to make
693  * sure that pages are marked reserved and zones are adjust properly by
694  * calling offline_pages().
695  */
696 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
697 		 unsigned long nr_pages)
698 {
699 	unsigned long i;
700 	int sections_to_remove;
701 	resource_size_t start, size;
702 	int ret = 0;
703 
704 	/*
705 	 * We can only remove entire sections
706 	 */
707 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
708 	BUG_ON(nr_pages % PAGES_PER_SECTION);
709 
710 	start = phys_start_pfn << PAGE_SHIFT;
711 	size = nr_pages * PAGE_SIZE;
712 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
713 	if (ret) {
714 		resource_size_t endres = start + size - 1;
715 
716 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
717 				&start, &endres, ret);
718 	}
719 
720 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
721 	for (i = 0; i < sections_to_remove; i++) {
722 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
723 		ret = __remove_section(zone, __pfn_to_section(pfn));
724 		if (ret)
725 			break;
726 	}
727 	return ret;
728 }
729 EXPORT_SYMBOL_GPL(__remove_pages);
730 #endif /* CONFIG_MEMORY_HOTREMOVE */
731 
732 int set_online_page_callback(online_page_callback_t callback)
733 {
734 	int rc = -EINVAL;
735 
736 	lock_memory_hotplug();
737 
738 	if (online_page_callback == generic_online_page) {
739 		online_page_callback = callback;
740 		rc = 0;
741 	}
742 
743 	unlock_memory_hotplug();
744 
745 	return rc;
746 }
747 EXPORT_SYMBOL_GPL(set_online_page_callback);
748 
749 int restore_online_page_callback(online_page_callback_t callback)
750 {
751 	int rc = -EINVAL;
752 
753 	lock_memory_hotplug();
754 
755 	if (online_page_callback == callback) {
756 		online_page_callback = generic_online_page;
757 		rc = 0;
758 	}
759 
760 	unlock_memory_hotplug();
761 
762 	return rc;
763 }
764 EXPORT_SYMBOL_GPL(restore_online_page_callback);
765 
766 void __online_page_set_limits(struct page *page)
767 {
768 }
769 EXPORT_SYMBOL_GPL(__online_page_set_limits);
770 
771 void __online_page_increment_counters(struct page *page)
772 {
773 	adjust_managed_page_count(page, 1);
774 }
775 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
776 
777 void __online_page_free(struct page *page)
778 {
779 	__free_reserved_page(page);
780 }
781 EXPORT_SYMBOL_GPL(__online_page_free);
782 
783 static void generic_online_page(struct page *page)
784 {
785 	__online_page_set_limits(page);
786 	__online_page_increment_counters(page);
787 	__online_page_free(page);
788 }
789 
790 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
791 			void *arg)
792 {
793 	unsigned long i;
794 	unsigned long onlined_pages = *(unsigned long *)arg;
795 	struct page *page;
796 	if (PageReserved(pfn_to_page(start_pfn)))
797 		for (i = 0; i < nr_pages; i++) {
798 			page = pfn_to_page(start_pfn + i);
799 			(*online_page_callback)(page);
800 			onlined_pages++;
801 		}
802 	*(unsigned long *)arg = onlined_pages;
803 	return 0;
804 }
805 
806 #ifdef CONFIG_MOVABLE_NODE
807 /*
808  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
809  * normal memory.
810  */
811 static bool can_online_high_movable(struct zone *zone)
812 {
813 	return true;
814 }
815 #else /* CONFIG_MOVABLE_NODE */
816 /* ensure every online node has NORMAL memory */
817 static bool can_online_high_movable(struct zone *zone)
818 {
819 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
820 }
821 #endif /* CONFIG_MOVABLE_NODE */
822 
823 /* check which state of node_states will be changed when online memory */
824 static void node_states_check_changes_online(unsigned long nr_pages,
825 	struct zone *zone, struct memory_notify *arg)
826 {
827 	int nid = zone_to_nid(zone);
828 	enum zone_type zone_last = ZONE_NORMAL;
829 
830 	/*
831 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
832 	 * contains nodes which have zones of 0...ZONE_NORMAL,
833 	 * set zone_last to ZONE_NORMAL.
834 	 *
835 	 * If we don't have HIGHMEM nor movable node,
836 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
837 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
838 	 */
839 	if (N_MEMORY == N_NORMAL_MEMORY)
840 		zone_last = ZONE_MOVABLE;
841 
842 	/*
843 	 * if the memory to be online is in a zone of 0...zone_last, and
844 	 * the zones of 0...zone_last don't have memory before online, we will
845 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
846 	 * the memory is online.
847 	 */
848 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
849 		arg->status_change_nid_normal = nid;
850 	else
851 		arg->status_change_nid_normal = -1;
852 
853 #ifdef CONFIG_HIGHMEM
854 	/*
855 	 * If we have movable node, node_states[N_HIGH_MEMORY]
856 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
857 	 * set zone_last to ZONE_HIGHMEM.
858 	 *
859 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
860 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
861 	 * set zone_last to ZONE_MOVABLE.
862 	 */
863 	zone_last = ZONE_HIGHMEM;
864 	if (N_MEMORY == N_HIGH_MEMORY)
865 		zone_last = ZONE_MOVABLE;
866 
867 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
868 		arg->status_change_nid_high = nid;
869 	else
870 		arg->status_change_nid_high = -1;
871 #else
872 	arg->status_change_nid_high = arg->status_change_nid_normal;
873 #endif
874 
875 	/*
876 	 * if the node don't have memory befor online, we will need to
877 	 * set the node to node_states[N_MEMORY] after the memory
878 	 * is online.
879 	 */
880 	if (!node_state(nid, N_MEMORY))
881 		arg->status_change_nid = nid;
882 	else
883 		arg->status_change_nid = -1;
884 }
885 
886 static void node_states_set_node(int node, struct memory_notify *arg)
887 {
888 	if (arg->status_change_nid_normal >= 0)
889 		node_set_state(node, N_NORMAL_MEMORY);
890 
891 	if (arg->status_change_nid_high >= 0)
892 		node_set_state(node, N_HIGH_MEMORY);
893 
894 	node_set_state(node, N_MEMORY);
895 }
896 
897 
898 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
899 {
900 	unsigned long flags;
901 	unsigned long onlined_pages = 0;
902 	struct zone *zone;
903 	int need_zonelists_rebuild = 0;
904 	int nid;
905 	int ret;
906 	struct memory_notify arg;
907 
908 	lock_memory_hotplug();
909 	/*
910 	 * This doesn't need a lock to do pfn_to_page().
911 	 * The section can't be removed here because of the
912 	 * memory_block->state_mutex.
913 	 */
914 	zone = page_zone(pfn_to_page(pfn));
915 
916 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
917 	    !can_online_high_movable(zone)) {
918 		unlock_memory_hotplug();
919 		return -EINVAL;
920 	}
921 
922 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
923 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
924 			unlock_memory_hotplug();
925 			return -EINVAL;
926 		}
927 	}
928 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
929 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
930 			unlock_memory_hotplug();
931 			return -EINVAL;
932 		}
933 	}
934 
935 	/* Previous code may changed the zone of the pfn range */
936 	zone = page_zone(pfn_to_page(pfn));
937 
938 	arg.start_pfn = pfn;
939 	arg.nr_pages = nr_pages;
940 	node_states_check_changes_online(nr_pages, zone, &arg);
941 
942 	nid = page_to_nid(pfn_to_page(pfn));
943 
944 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
945 	ret = notifier_to_errno(ret);
946 	if (ret) {
947 		memory_notify(MEM_CANCEL_ONLINE, &arg);
948 		unlock_memory_hotplug();
949 		return ret;
950 	}
951 	/*
952 	 * If this zone is not populated, then it is not in zonelist.
953 	 * This means the page allocator ignores this zone.
954 	 * So, zonelist must be updated after online.
955 	 */
956 	mutex_lock(&zonelists_mutex);
957 	if (!populated_zone(zone)) {
958 		need_zonelists_rebuild = 1;
959 		build_all_zonelists(NULL, zone);
960 	}
961 
962 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
963 		online_pages_range);
964 	if (ret) {
965 		if (need_zonelists_rebuild)
966 			zone_pcp_reset(zone);
967 		mutex_unlock(&zonelists_mutex);
968 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
969 		       (unsigned long long) pfn << PAGE_SHIFT,
970 		       (((unsigned long long) pfn + nr_pages)
971 			    << PAGE_SHIFT) - 1);
972 		memory_notify(MEM_CANCEL_ONLINE, &arg);
973 		unlock_memory_hotplug();
974 		return ret;
975 	}
976 
977 	zone->present_pages += onlined_pages;
978 
979 	pgdat_resize_lock(zone->zone_pgdat, &flags);
980 	zone->zone_pgdat->node_present_pages += onlined_pages;
981 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
982 
983 	if (onlined_pages) {
984 		node_states_set_node(zone_to_nid(zone), &arg);
985 		if (need_zonelists_rebuild)
986 			build_all_zonelists(NULL, NULL);
987 		else
988 			zone_pcp_update(zone);
989 	}
990 
991 	mutex_unlock(&zonelists_mutex);
992 
993 	init_per_zone_wmark_min();
994 
995 	if (onlined_pages)
996 		kswapd_run(zone_to_nid(zone));
997 
998 	vm_total_pages = nr_free_pagecache_pages();
999 
1000 	writeback_set_ratelimit();
1001 
1002 	if (onlined_pages)
1003 		memory_notify(MEM_ONLINE, &arg);
1004 	unlock_memory_hotplug();
1005 
1006 	return 0;
1007 }
1008 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1009 
1010 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1011 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1012 {
1013 	struct pglist_data *pgdat;
1014 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1015 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1016 	unsigned long start_pfn = start >> PAGE_SHIFT;
1017 
1018 	pgdat = NODE_DATA(nid);
1019 	if (!pgdat) {
1020 		pgdat = arch_alloc_nodedata(nid);
1021 		if (!pgdat)
1022 			return NULL;
1023 
1024 		arch_refresh_nodedata(nid, pgdat);
1025 	}
1026 
1027 	/* we can use NODE_DATA(nid) from here */
1028 
1029 	/* init node's zones as empty zones, we don't have any present pages.*/
1030 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1031 
1032 	/*
1033 	 * The node we allocated has no zone fallback lists. For avoiding
1034 	 * to access not-initialized zonelist, build here.
1035 	 */
1036 	mutex_lock(&zonelists_mutex);
1037 	build_all_zonelists(pgdat, NULL);
1038 	mutex_unlock(&zonelists_mutex);
1039 
1040 	return pgdat;
1041 }
1042 
1043 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1044 {
1045 	arch_refresh_nodedata(nid, NULL);
1046 	arch_free_nodedata(pgdat);
1047 	return;
1048 }
1049 
1050 
1051 /*
1052  * called by cpu_up() to online a node without onlined memory.
1053  */
1054 int mem_online_node(int nid)
1055 {
1056 	pg_data_t	*pgdat;
1057 	int	ret;
1058 
1059 	lock_memory_hotplug();
1060 	pgdat = hotadd_new_pgdat(nid, 0);
1061 	if (!pgdat) {
1062 		ret = -ENOMEM;
1063 		goto out;
1064 	}
1065 	node_set_online(nid);
1066 	ret = register_one_node(nid);
1067 	BUG_ON(ret);
1068 
1069 out:
1070 	unlock_memory_hotplug();
1071 	return ret;
1072 }
1073 
1074 static int check_hotplug_memory_range(u64 start, u64 size)
1075 {
1076 	u64 start_pfn = start >> PAGE_SHIFT;
1077 	u64 nr_pages = size >> PAGE_SHIFT;
1078 
1079 	/* Memory range must be aligned with section */
1080 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1081 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1082 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1083 				(unsigned long long)start,
1084 				(unsigned long long)size);
1085 		return -EINVAL;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1092 int __ref add_memory(int nid, u64 start, u64 size)
1093 {
1094 	pg_data_t *pgdat = NULL;
1095 	bool new_pgdat;
1096 	bool new_node;
1097 	struct resource *res;
1098 	int ret;
1099 
1100 	ret = check_hotplug_memory_range(start, size);
1101 	if (ret)
1102 		return ret;
1103 
1104 	lock_memory_hotplug();
1105 
1106 	res = register_memory_resource(start, size);
1107 	ret = -EEXIST;
1108 	if (!res)
1109 		goto out;
1110 
1111 	{	/* Stupid hack to suppress address-never-null warning */
1112 		void *p = NODE_DATA(nid);
1113 		new_pgdat = !p;
1114 	}
1115 	new_node = !node_online(nid);
1116 	if (new_node) {
1117 		pgdat = hotadd_new_pgdat(nid, start);
1118 		ret = -ENOMEM;
1119 		if (!pgdat)
1120 			goto error;
1121 	}
1122 
1123 	/* call arch's memory hotadd */
1124 	ret = arch_add_memory(nid, start, size);
1125 
1126 	if (ret < 0)
1127 		goto error;
1128 
1129 	/* we online node here. we can't roll back from here. */
1130 	node_set_online(nid);
1131 
1132 	if (new_node) {
1133 		ret = register_one_node(nid);
1134 		/*
1135 		 * If sysfs file of new node can't create, cpu on the node
1136 		 * can't be hot-added. There is no rollback way now.
1137 		 * So, check by BUG_ON() to catch it reluctantly..
1138 		 */
1139 		BUG_ON(ret);
1140 	}
1141 
1142 	/* create new memmap entry */
1143 	firmware_map_add_hotplug(start, start + size, "System RAM");
1144 
1145 	goto out;
1146 
1147 error:
1148 	/* rollback pgdat allocation and others */
1149 	if (new_pgdat)
1150 		rollback_node_hotadd(nid, pgdat);
1151 	release_memory_resource(res);
1152 
1153 out:
1154 	unlock_memory_hotplug();
1155 	return ret;
1156 }
1157 EXPORT_SYMBOL_GPL(add_memory);
1158 
1159 #ifdef CONFIG_MEMORY_HOTREMOVE
1160 /*
1161  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1162  * set and the size of the free page is given by page_order(). Using this,
1163  * the function determines if the pageblock contains only free pages.
1164  * Due to buddy contraints, a free page at least the size of a pageblock will
1165  * be located at the start of the pageblock
1166  */
1167 static inline int pageblock_free(struct page *page)
1168 {
1169 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1170 }
1171 
1172 /* Return the start of the next active pageblock after a given page */
1173 static struct page *next_active_pageblock(struct page *page)
1174 {
1175 	/* Ensure the starting page is pageblock-aligned */
1176 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1177 
1178 	/* If the entire pageblock is free, move to the end of free page */
1179 	if (pageblock_free(page)) {
1180 		int order;
1181 		/* be careful. we don't have locks, page_order can be changed.*/
1182 		order = page_order(page);
1183 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1184 			return page + (1 << order);
1185 	}
1186 
1187 	return page + pageblock_nr_pages;
1188 }
1189 
1190 /* Checks if this range of memory is likely to be hot-removable. */
1191 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1192 {
1193 	struct page *page = pfn_to_page(start_pfn);
1194 	struct page *end_page = page + nr_pages;
1195 
1196 	/* Check the starting page of each pageblock within the range */
1197 	for (; page < end_page; page = next_active_pageblock(page)) {
1198 		if (!is_pageblock_removable_nolock(page))
1199 			return 0;
1200 		cond_resched();
1201 	}
1202 
1203 	/* All pageblocks in the memory block are likely to be hot-removable */
1204 	return 1;
1205 }
1206 
1207 /*
1208  * Confirm all pages in a range [start, end) is belongs to the same zone.
1209  */
1210 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1211 {
1212 	unsigned long pfn;
1213 	struct zone *zone = NULL;
1214 	struct page *page;
1215 	int i;
1216 	for (pfn = start_pfn;
1217 	     pfn < end_pfn;
1218 	     pfn += MAX_ORDER_NR_PAGES) {
1219 		i = 0;
1220 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1221 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1222 			i++;
1223 		if (i == MAX_ORDER_NR_PAGES)
1224 			continue;
1225 		page = pfn_to_page(pfn + i);
1226 		if (zone && page_zone(page) != zone)
1227 			return 0;
1228 		zone = page_zone(page);
1229 	}
1230 	return 1;
1231 }
1232 
1233 /*
1234  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1235  * and hugepages). We scan pfn because it's much easier than scanning over
1236  * linked list. This function returns the pfn of the first found movable
1237  * page if it's found, otherwise 0.
1238  */
1239 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1240 {
1241 	unsigned long pfn;
1242 	struct page *page;
1243 	for (pfn = start; pfn < end; pfn++) {
1244 		if (pfn_valid(pfn)) {
1245 			page = pfn_to_page(pfn);
1246 			if (PageLRU(page))
1247 				return pfn;
1248 			if (PageHuge(page)) {
1249 				if (is_hugepage_active(page))
1250 					return pfn;
1251 				else
1252 					pfn = round_up(pfn + 1,
1253 						1 << compound_order(page)) - 1;
1254 			}
1255 		}
1256 	}
1257 	return 0;
1258 }
1259 
1260 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1261 static int
1262 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1263 {
1264 	unsigned long pfn;
1265 	struct page *page;
1266 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1267 	int not_managed = 0;
1268 	int ret = 0;
1269 	LIST_HEAD(source);
1270 
1271 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1272 		if (!pfn_valid(pfn))
1273 			continue;
1274 		page = pfn_to_page(pfn);
1275 
1276 		if (PageHuge(page)) {
1277 			struct page *head = compound_head(page);
1278 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1279 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1280 				ret = -EBUSY;
1281 				break;
1282 			}
1283 			if (isolate_huge_page(page, &source))
1284 				move_pages -= 1 << compound_order(head);
1285 			continue;
1286 		}
1287 
1288 		if (!get_page_unless_zero(page))
1289 			continue;
1290 		/*
1291 		 * We can skip free pages. And we can only deal with pages on
1292 		 * LRU.
1293 		 */
1294 		ret = isolate_lru_page(page);
1295 		if (!ret) { /* Success */
1296 			put_page(page);
1297 			list_add_tail(&page->lru, &source);
1298 			move_pages--;
1299 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1300 					    page_is_file_cache(page));
1301 
1302 		} else {
1303 #ifdef CONFIG_DEBUG_VM
1304 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1305 			       pfn);
1306 			dump_page(page);
1307 #endif
1308 			put_page(page);
1309 			/* Because we don't have big zone->lock. we should
1310 			   check this again here. */
1311 			if (page_count(page)) {
1312 				not_managed++;
1313 				ret = -EBUSY;
1314 				break;
1315 			}
1316 		}
1317 	}
1318 	if (!list_empty(&source)) {
1319 		if (not_managed) {
1320 			putback_movable_pages(&source);
1321 			goto out;
1322 		}
1323 
1324 		/*
1325 		 * alloc_migrate_target should be improooooved!!
1326 		 * migrate_pages returns # of failed pages.
1327 		 */
1328 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1329 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1330 		if (ret)
1331 			putback_movable_pages(&source);
1332 	}
1333 out:
1334 	return ret;
1335 }
1336 
1337 /*
1338  * remove from free_area[] and mark all as Reserved.
1339  */
1340 static int
1341 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1342 			void *data)
1343 {
1344 	__offline_isolated_pages(start, start + nr_pages);
1345 	return 0;
1346 }
1347 
1348 static void
1349 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1350 {
1351 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1352 				offline_isolated_pages_cb);
1353 }
1354 
1355 /*
1356  * Check all pages in range, recoreded as memory resource, are isolated.
1357  */
1358 static int
1359 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1360 			void *data)
1361 {
1362 	int ret;
1363 	long offlined = *(long *)data;
1364 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1365 	offlined = nr_pages;
1366 	if (!ret)
1367 		*(long *)data += offlined;
1368 	return ret;
1369 }
1370 
1371 static long
1372 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1373 {
1374 	long offlined = 0;
1375 	int ret;
1376 
1377 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1378 			check_pages_isolated_cb);
1379 	if (ret < 0)
1380 		offlined = (long)ret;
1381 	return offlined;
1382 }
1383 
1384 #ifdef CONFIG_MOVABLE_NODE
1385 /*
1386  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1387  * normal memory.
1388  */
1389 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1390 {
1391 	return true;
1392 }
1393 #else /* CONFIG_MOVABLE_NODE */
1394 /* ensure the node has NORMAL memory if it is still online */
1395 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1396 {
1397 	struct pglist_data *pgdat = zone->zone_pgdat;
1398 	unsigned long present_pages = 0;
1399 	enum zone_type zt;
1400 
1401 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1402 		present_pages += pgdat->node_zones[zt].present_pages;
1403 
1404 	if (present_pages > nr_pages)
1405 		return true;
1406 
1407 	present_pages = 0;
1408 	for (; zt <= ZONE_MOVABLE; zt++)
1409 		present_pages += pgdat->node_zones[zt].present_pages;
1410 
1411 	/*
1412 	 * we can't offline the last normal memory until all
1413 	 * higher memory is offlined.
1414 	 */
1415 	return present_pages == 0;
1416 }
1417 #endif /* CONFIG_MOVABLE_NODE */
1418 
1419 /* check which state of node_states will be changed when offline memory */
1420 static void node_states_check_changes_offline(unsigned long nr_pages,
1421 		struct zone *zone, struct memory_notify *arg)
1422 {
1423 	struct pglist_data *pgdat = zone->zone_pgdat;
1424 	unsigned long present_pages = 0;
1425 	enum zone_type zt, zone_last = ZONE_NORMAL;
1426 
1427 	/*
1428 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1429 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1430 	 * set zone_last to ZONE_NORMAL.
1431 	 *
1432 	 * If we don't have HIGHMEM nor movable node,
1433 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1434 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1435 	 */
1436 	if (N_MEMORY == N_NORMAL_MEMORY)
1437 		zone_last = ZONE_MOVABLE;
1438 
1439 	/*
1440 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1441 	 * If the memory to be offline is in a zone of 0...zone_last,
1442 	 * and it is the last present memory, 0...zone_last will
1443 	 * become empty after offline , thus we can determind we will
1444 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1445 	 */
1446 	for (zt = 0; zt <= zone_last; zt++)
1447 		present_pages += pgdat->node_zones[zt].present_pages;
1448 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1449 		arg->status_change_nid_normal = zone_to_nid(zone);
1450 	else
1451 		arg->status_change_nid_normal = -1;
1452 
1453 #ifdef CONFIG_HIGHMEM
1454 	/*
1455 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1456 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1457 	 * set zone_last to ZONE_HIGHMEM.
1458 	 *
1459 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1460 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1461 	 * set zone_last to ZONE_MOVABLE.
1462 	 */
1463 	zone_last = ZONE_HIGHMEM;
1464 	if (N_MEMORY == N_HIGH_MEMORY)
1465 		zone_last = ZONE_MOVABLE;
1466 
1467 	for (; zt <= zone_last; zt++)
1468 		present_pages += pgdat->node_zones[zt].present_pages;
1469 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1470 		arg->status_change_nid_high = zone_to_nid(zone);
1471 	else
1472 		arg->status_change_nid_high = -1;
1473 #else
1474 	arg->status_change_nid_high = arg->status_change_nid_normal;
1475 #endif
1476 
1477 	/*
1478 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1479 	 */
1480 	zone_last = ZONE_MOVABLE;
1481 
1482 	/*
1483 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1484 	 * If we try to offline the last present @nr_pages from the node,
1485 	 * we can determind we will need to clear the node from
1486 	 * node_states[N_HIGH_MEMORY].
1487 	 */
1488 	for (; zt <= zone_last; zt++)
1489 		present_pages += pgdat->node_zones[zt].present_pages;
1490 	if (nr_pages >= present_pages)
1491 		arg->status_change_nid = zone_to_nid(zone);
1492 	else
1493 		arg->status_change_nid = -1;
1494 }
1495 
1496 static void node_states_clear_node(int node, struct memory_notify *arg)
1497 {
1498 	if (arg->status_change_nid_normal >= 0)
1499 		node_clear_state(node, N_NORMAL_MEMORY);
1500 
1501 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1502 	    (arg->status_change_nid_high >= 0))
1503 		node_clear_state(node, N_HIGH_MEMORY);
1504 
1505 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1506 	    (arg->status_change_nid >= 0))
1507 		node_clear_state(node, N_MEMORY);
1508 }
1509 
1510 static int __ref __offline_pages(unsigned long start_pfn,
1511 		  unsigned long end_pfn, unsigned long timeout)
1512 {
1513 	unsigned long pfn, nr_pages, expire;
1514 	long offlined_pages;
1515 	int ret, drain, retry_max, node;
1516 	unsigned long flags;
1517 	struct zone *zone;
1518 	struct memory_notify arg;
1519 
1520 	/* at least, alignment against pageblock is necessary */
1521 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1522 		return -EINVAL;
1523 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1524 		return -EINVAL;
1525 	/* This makes hotplug much easier...and readable.
1526 	   we assume this for now. .*/
1527 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1528 		return -EINVAL;
1529 
1530 	lock_memory_hotplug();
1531 
1532 	zone = page_zone(pfn_to_page(start_pfn));
1533 	node = zone_to_nid(zone);
1534 	nr_pages = end_pfn - start_pfn;
1535 
1536 	ret = -EINVAL;
1537 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1538 		goto out;
1539 
1540 	/* set above range as isolated */
1541 	ret = start_isolate_page_range(start_pfn, end_pfn,
1542 				       MIGRATE_MOVABLE, true);
1543 	if (ret)
1544 		goto out;
1545 
1546 	arg.start_pfn = start_pfn;
1547 	arg.nr_pages = nr_pages;
1548 	node_states_check_changes_offline(nr_pages, zone, &arg);
1549 
1550 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1551 	ret = notifier_to_errno(ret);
1552 	if (ret)
1553 		goto failed_removal;
1554 
1555 	pfn = start_pfn;
1556 	expire = jiffies + timeout;
1557 	drain = 0;
1558 	retry_max = 5;
1559 repeat:
1560 	/* start memory hot removal */
1561 	ret = -EAGAIN;
1562 	if (time_after(jiffies, expire))
1563 		goto failed_removal;
1564 	ret = -EINTR;
1565 	if (signal_pending(current))
1566 		goto failed_removal;
1567 	ret = 0;
1568 	if (drain) {
1569 		lru_add_drain_all();
1570 		cond_resched();
1571 		drain_all_pages();
1572 	}
1573 
1574 	pfn = scan_movable_pages(start_pfn, end_pfn);
1575 	if (pfn) { /* We have movable pages */
1576 		ret = do_migrate_range(pfn, end_pfn);
1577 		if (!ret) {
1578 			drain = 1;
1579 			goto repeat;
1580 		} else {
1581 			if (ret < 0)
1582 				if (--retry_max == 0)
1583 					goto failed_removal;
1584 			yield();
1585 			drain = 1;
1586 			goto repeat;
1587 		}
1588 	}
1589 	/* drain all zone's lru pagevec, this is asynchronous... */
1590 	lru_add_drain_all();
1591 	yield();
1592 	/* drain pcp pages, this is synchronous. */
1593 	drain_all_pages();
1594 	/*
1595 	 * dissolve free hugepages in the memory block before doing offlining
1596 	 * actually in order to make hugetlbfs's object counting consistent.
1597 	 */
1598 	dissolve_free_huge_pages(start_pfn, end_pfn);
1599 	/* check again */
1600 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1601 	if (offlined_pages < 0) {
1602 		ret = -EBUSY;
1603 		goto failed_removal;
1604 	}
1605 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1606 	/* Ok, all of our target is isolated.
1607 	   We cannot do rollback at this point. */
1608 	offline_isolated_pages(start_pfn, end_pfn);
1609 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1610 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1611 	/* removal success */
1612 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1613 	zone->present_pages -= offlined_pages;
1614 
1615 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1616 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1617 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1618 
1619 	init_per_zone_wmark_min();
1620 
1621 	if (!populated_zone(zone)) {
1622 		zone_pcp_reset(zone);
1623 		mutex_lock(&zonelists_mutex);
1624 		build_all_zonelists(NULL, NULL);
1625 		mutex_unlock(&zonelists_mutex);
1626 	} else
1627 		zone_pcp_update(zone);
1628 
1629 	node_states_clear_node(node, &arg);
1630 	if (arg.status_change_nid >= 0)
1631 		kswapd_stop(node);
1632 
1633 	vm_total_pages = nr_free_pagecache_pages();
1634 	writeback_set_ratelimit();
1635 
1636 	memory_notify(MEM_OFFLINE, &arg);
1637 	unlock_memory_hotplug();
1638 	return 0;
1639 
1640 failed_removal:
1641 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1642 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1643 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1644 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1645 	/* pushback to free area */
1646 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1647 
1648 out:
1649 	unlock_memory_hotplug();
1650 	return ret;
1651 }
1652 
1653 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1654 {
1655 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1656 }
1657 #endif /* CONFIG_MEMORY_HOTREMOVE */
1658 
1659 /**
1660  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1661  * @start_pfn: start pfn of the memory range
1662  * @end_pfn: end pfn of the memory range
1663  * @arg: argument passed to func
1664  * @func: callback for each memory section walked
1665  *
1666  * This function walks through all present mem sections in range
1667  * [start_pfn, end_pfn) and call func on each mem section.
1668  *
1669  * Returns the return value of func.
1670  */
1671 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1672 		void *arg, int (*func)(struct memory_block *, void *))
1673 {
1674 	struct memory_block *mem = NULL;
1675 	struct mem_section *section;
1676 	unsigned long pfn, section_nr;
1677 	int ret;
1678 
1679 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1680 		section_nr = pfn_to_section_nr(pfn);
1681 		if (!present_section_nr(section_nr))
1682 			continue;
1683 
1684 		section = __nr_to_section(section_nr);
1685 		/* same memblock? */
1686 		if (mem)
1687 			if ((section_nr >= mem->start_section_nr) &&
1688 			    (section_nr <= mem->end_section_nr))
1689 				continue;
1690 
1691 		mem = find_memory_block_hinted(section, mem);
1692 		if (!mem)
1693 			continue;
1694 
1695 		ret = func(mem, arg);
1696 		if (ret) {
1697 			kobject_put(&mem->dev.kobj);
1698 			return ret;
1699 		}
1700 	}
1701 
1702 	if (mem)
1703 		kobject_put(&mem->dev.kobj);
1704 
1705 	return 0;
1706 }
1707 
1708 #ifdef CONFIG_MEMORY_HOTREMOVE
1709 static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
1710 {
1711 	int ret = !is_memblock_offlined(mem);
1712 
1713 	if (unlikely(ret)) {
1714 		phys_addr_t beginpa, endpa;
1715 
1716 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1717 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1718 		pr_warn("removing memory fails, because memory "
1719 			"[%pa-%pa] is onlined\n",
1720 			&beginpa, &endpa);
1721 	}
1722 
1723 	return ret;
1724 }
1725 
1726 static int check_cpu_on_node(pg_data_t *pgdat)
1727 {
1728 	int cpu;
1729 
1730 	for_each_present_cpu(cpu) {
1731 		if (cpu_to_node(cpu) == pgdat->node_id)
1732 			/*
1733 			 * the cpu on this node isn't removed, and we can't
1734 			 * offline this node.
1735 			 */
1736 			return -EBUSY;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static void unmap_cpu_on_node(pg_data_t *pgdat)
1743 {
1744 #ifdef CONFIG_ACPI_NUMA
1745 	int cpu;
1746 
1747 	for_each_possible_cpu(cpu)
1748 		if (cpu_to_node(cpu) == pgdat->node_id)
1749 			numa_clear_node(cpu);
1750 #endif
1751 }
1752 
1753 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1754 {
1755 	int ret;
1756 
1757 	ret = check_cpu_on_node(pgdat);
1758 	if (ret)
1759 		return ret;
1760 
1761 	/*
1762 	 * the node will be offlined when we come here, so we can clear
1763 	 * the cpu_to_node() now.
1764 	 */
1765 
1766 	unmap_cpu_on_node(pgdat);
1767 	return 0;
1768 }
1769 
1770 /**
1771  * try_offline_node
1772  *
1773  * Offline a node if all memory sections and cpus of the node are removed.
1774  *
1775  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1776  * and online/offline operations before this call.
1777  */
1778 void try_offline_node(int nid)
1779 {
1780 	pg_data_t *pgdat = NODE_DATA(nid);
1781 	unsigned long start_pfn = pgdat->node_start_pfn;
1782 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1783 	unsigned long pfn;
1784 	struct page *pgdat_page = virt_to_page(pgdat);
1785 	int i;
1786 
1787 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1788 		unsigned long section_nr = pfn_to_section_nr(pfn);
1789 
1790 		if (!present_section_nr(section_nr))
1791 			continue;
1792 
1793 		if (pfn_to_nid(pfn) != nid)
1794 			continue;
1795 
1796 		/*
1797 		 * some memory sections of this node are not removed, and we
1798 		 * can't offline node now.
1799 		 */
1800 		return;
1801 	}
1802 
1803 	if (check_and_unmap_cpu_on_node(pgdat))
1804 		return;
1805 
1806 	/*
1807 	 * all memory/cpu of this node are removed, we can offline this
1808 	 * node now.
1809 	 */
1810 	node_set_offline(nid);
1811 	unregister_one_node(nid);
1812 
1813 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1814 		/* node data is allocated from boot memory */
1815 		return;
1816 
1817 	/* free waittable in each zone */
1818 	for (i = 0; i < MAX_NR_ZONES; i++) {
1819 		struct zone *zone = pgdat->node_zones + i;
1820 
1821 		/*
1822 		 * wait_table may be allocated from boot memory,
1823 		 * here only free if it's allocated by vmalloc.
1824 		 */
1825 		if (is_vmalloc_addr(zone->wait_table))
1826 			vfree(zone->wait_table);
1827 	}
1828 
1829 	/*
1830 	 * Since there is no way to guarentee the address of pgdat/zone is not
1831 	 * on stack of any kernel threads or used by other kernel objects
1832 	 * without reference counting or other symchronizing method, do not
1833 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1834 	 * the memory when the node is online again.
1835 	 */
1836 	memset(pgdat, 0, sizeof(*pgdat));
1837 }
1838 EXPORT_SYMBOL(try_offline_node);
1839 
1840 /**
1841  * remove_memory
1842  *
1843  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1844  * and online/offline operations before this call, as required by
1845  * try_offline_node().
1846  */
1847 void __ref remove_memory(int nid, u64 start, u64 size)
1848 {
1849 	int ret;
1850 
1851 	BUG_ON(check_hotplug_memory_range(start, size));
1852 
1853 	lock_memory_hotplug();
1854 
1855 	/*
1856 	 * All memory blocks must be offlined before removing memory.  Check
1857 	 * whether all memory blocks in question are offline and trigger a BUG()
1858 	 * if this is not the case.
1859 	 */
1860 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1861 				is_memblock_offlined_cb);
1862 	if (ret) {
1863 		unlock_memory_hotplug();
1864 		BUG();
1865 	}
1866 
1867 	/* remove memmap entry */
1868 	firmware_map_remove(start, start + size, "System RAM");
1869 
1870 	arch_remove_memory(start, size);
1871 
1872 	try_offline_node(nid);
1873 
1874 	unlock_memory_hotplug();
1875 }
1876 EXPORT_SYMBOL_GPL(remove_memory);
1877 #endif /* CONFIG_MEMORY_HOTREMOVE */
1878