1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 u64 max_mem_size = U64_MAX; 100 101 /* add this memory to iomem resource */ 102 static struct resource *register_memory_resource(u64 start, u64 size) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 char *resource_name = "System RAM"; 107 108 if (start + size > max_mem_size) 109 return ERR_PTR(-E2BIG); 110 111 /* 112 * Request ownership of the new memory range. This might be 113 * a child of an existing resource that was present but 114 * not marked as busy. 115 */ 116 res = __request_region(&iomem_resource, start, size, 117 resource_name, flags); 118 119 if (!res) { 120 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 121 start, start + size); 122 return ERR_PTR(-EEXIST); 123 } 124 return res; 125 } 126 127 static void release_memory_resource(struct resource *res) 128 { 129 if (!res) 130 return; 131 release_resource(res); 132 kfree(res); 133 } 134 135 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 136 void get_page_bootmem(unsigned long info, struct page *page, 137 unsigned long type) 138 { 139 page->freelist = (void *)type; 140 SetPagePrivate(page); 141 set_page_private(page, info); 142 page_ref_inc(page); 143 } 144 145 void put_page_bootmem(struct page *page) 146 { 147 unsigned long type; 148 149 type = (unsigned long) page->freelist; 150 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 151 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 152 153 if (page_ref_dec_return(page) == 1) { 154 page->freelist = NULL; 155 ClearPagePrivate(page); 156 set_page_private(page, 0); 157 INIT_LIST_HEAD(&page->lru); 158 free_reserved_page(page); 159 } 160 } 161 162 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 163 #ifndef CONFIG_SPARSEMEM_VMEMMAP 164 static void register_page_bootmem_info_section(unsigned long start_pfn) 165 { 166 unsigned long mapsize, section_nr, i; 167 struct mem_section *ms; 168 struct page *page, *memmap; 169 struct mem_section_usage *usage; 170 171 section_nr = pfn_to_section_nr(start_pfn); 172 ms = __nr_to_section(section_nr); 173 174 /* Get section's memmap address */ 175 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 176 177 /* 178 * Get page for the memmap's phys address 179 * XXX: need more consideration for sparse_vmemmap... 180 */ 181 page = virt_to_page(memmap); 182 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 183 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 184 185 /* remember memmap's page */ 186 for (i = 0; i < mapsize; i++, page++) 187 get_page_bootmem(section_nr, page, SECTION_INFO); 188 189 usage = ms->usage; 190 page = virt_to_page(usage); 191 192 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 193 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 196 197 } 198 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 199 static void register_page_bootmem_info_section(unsigned long start_pfn) 200 { 201 unsigned long mapsize, section_nr, i; 202 struct mem_section *ms; 203 struct page *page, *memmap; 204 struct mem_section_usage *usage; 205 206 section_nr = pfn_to_section_nr(start_pfn); 207 ms = __nr_to_section(section_nr); 208 209 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 210 211 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 212 213 usage = ms->usage; 214 page = virt_to_page(usage); 215 216 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 217 218 for (i = 0; i < mapsize; i++, page++) 219 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 220 } 221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 222 223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 224 { 225 unsigned long i, pfn, end_pfn, nr_pages; 226 int node = pgdat->node_id; 227 struct page *page; 228 229 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 230 page = virt_to_page(pgdat); 231 232 for (i = 0; i < nr_pages; i++, page++) 233 get_page_bootmem(node, page, NODE_INFO); 234 235 pfn = pgdat->node_start_pfn; 236 end_pfn = pgdat_end_pfn(pgdat); 237 238 /* register section info */ 239 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 240 /* 241 * Some platforms can assign the same pfn to multiple nodes - on 242 * node0 as well as nodeN. To avoid registering a pfn against 243 * multiple nodes we check that this pfn does not already 244 * reside in some other nodes. 245 */ 246 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 247 register_page_bootmem_info_section(pfn); 248 } 249 } 250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 251 252 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 253 const char *reason) 254 { 255 /* 256 * Disallow all operations smaller than a sub-section and only 257 * allow operations smaller than a section for 258 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 259 * enforces a larger memory_block_size_bytes() granularity for 260 * memory that will be marked online, so this check should only 261 * fire for direct arch_{add,remove}_memory() users outside of 262 * add_memory_resource(). 263 */ 264 unsigned long min_align; 265 266 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 267 min_align = PAGES_PER_SUBSECTION; 268 else 269 min_align = PAGES_PER_SECTION; 270 if (!IS_ALIGNED(pfn, min_align) 271 || !IS_ALIGNED(nr_pages, min_align)) { 272 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 273 reason, pfn, pfn + nr_pages - 1); 274 return -EINVAL; 275 } 276 return 0; 277 } 278 279 static int check_hotplug_memory_addressable(unsigned long pfn, 280 unsigned long nr_pages) 281 { 282 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1; 283 284 if (max_addr >> MAX_PHYSMEM_BITS) { 285 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1; 286 WARN(1, 287 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n", 288 (u64)PFN_PHYS(pfn), max_addr, max_allowed); 289 return -E2BIG; 290 } 291 292 return 0; 293 } 294 295 /* 296 * Reasonably generic function for adding memory. It is 297 * expected that archs that support memory hotplug will 298 * call this function after deciding the zone to which to 299 * add the new pages. 300 */ 301 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 302 struct mhp_restrictions *restrictions) 303 { 304 int err; 305 unsigned long nr, start_sec, end_sec; 306 struct vmem_altmap *altmap = restrictions->altmap; 307 308 err = check_hotplug_memory_addressable(pfn, nr_pages); 309 if (err) 310 return err; 311 312 if (altmap) { 313 /* 314 * Validate altmap is within bounds of the total request 315 */ 316 if (altmap->base_pfn != pfn 317 || vmem_altmap_offset(altmap) > nr_pages) { 318 pr_warn_once("memory add fail, invalid altmap\n"); 319 return -EINVAL; 320 } 321 altmap->alloc = 0; 322 } 323 324 err = check_pfn_span(pfn, nr_pages, "add"); 325 if (err) 326 return err; 327 328 start_sec = pfn_to_section_nr(pfn); 329 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 330 for (nr = start_sec; nr <= end_sec; nr++) { 331 unsigned long pfns; 332 333 pfns = min(nr_pages, PAGES_PER_SECTION 334 - (pfn & ~PAGE_SECTION_MASK)); 335 err = sparse_add_section(nid, pfn, pfns, altmap); 336 if (err) 337 break; 338 pfn += pfns; 339 nr_pages -= pfns; 340 cond_resched(); 341 } 342 vmemmap_populate_print_last(); 343 return err; 344 } 345 346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 348 unsigned long start_pfn, 349 unsigned long end_pfn) 350 { 351 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 352 if (unlikely(!pfn_to_online_page(start_pfn))) 353 continue; 354 355 if (unlikely(pfn_to_nid(start_pfn) != nid)) 356 continue; 357 358 if (zone != page_zone(pfn_to_page(start_pfn))) 359 continue; 360 361 return start_pfn; 362 } 363 364 return 0; 365 } 366 367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 369 unsigned long start_pfn, 370 unsigned long end_pfn) 371 { 372 unsigned long pfn; 373 374 /* pfn is the end pfn of a memory section. */ 375 pfn = end_pfn - 1; 376 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 377 if (unlikely(!pfn_to_online_page(pfn))) 378 continue; 379 380 if (unlikely(pfn_to_nid(pfn) != nid)) 381 continue; 382 383 if (zone != page_zone(pfn_to_page(pfn))) 384 continue; 385 386 return pfn; 387 } 388 389 return 0; 390 } 391 392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 393 unsigned long end_pfn) 394 { 395 unsigned long pfn; 396 int nid = zone_to_nid(zone); 397 398 zone_span_writelock(zone); 399 if (zone->zone_start_pfn == start_pfn) { 400 /* 401 * If the section is smallest section in the zone, it need 402 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 403 * In this case, we find second smallest valid mem_section 404 * for shrinking zone. 405 */ 406 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 407 zone_end_pfn(zone)); 408 if (pfn) { 409 zone->spanned_pages = zone_end_pfn(zone) - pfn; 410 zone->zone_start_pfn = pfn; 411 } else { 412 zone->zone_start_pfn = 0; 413 zone->spanned_pages = 0; 414 } 415 } else if (zone_end_pfn(zone) == end_pfn) { 416 /* 417 * If the section is biggest section in the zone, it need 418 * shrink zone->spanned_pages. 419 * In this case, we find second biggest valid mem_section for 420 * shrinking zone. 421 */ 422 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 423 start_pfn); 424 if (pfn) 425 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 426 else { 427 zone->zone_start_pfn = 0; 428 zone->spanned_pages = 0; 429 } 430 } 431 zone_span_writeunlock(zone); 432 } 433 434 static void update_pgdat_span(struct pglist_data *pgdat) 435 { 436 unsigned long node_start_pfn = 0, node_end_pfn = 0; 437 struct zone *zone; 438 439 for (zone = pgdat->node_zones; 440 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 441 unsigned long zone_end_pfn = zone->zone_start_pfn + 442 zone->spanned_pages; 443 444 /* No need to lock the zones, they can't change. */ 445 if (!zone->spanned_pages) 446 continue; 447 if (!node_end_pfn) { 448 node_start_pfn = zone->zone_start_pfn; 449 node_end_pfn = zone_end_pfn; 450 continue; 451 } 452 453 if (zone_end_pfn > node_end_pfn) 454 node_end_pfn = zone_end_pfn; 455 if (zone->zone_start_pfn < node_start_pfn) 456 node_start_pfn = zone->zone_start_pfn; 457 } 458 459 pgdat->node_start_pfn = node_start_pfn; 460 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 461 } 462 463 void __ref remove_pfn_range_from_zone(struct zone *zone, 464 unsigned long start_pfn, 465 unsigned long nr_pages) 466 { 467 struct pglist_data *pgdat = zone->zone_pgdat; 468 unsigned long flags; 469 470 /* Poison struct pages because they are now uninitialized again. */ 471 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages); 472 473 #ifdef CONFIG_ZONE_DEVICE 474 /* 475 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 476 * we will not try to shrink the zones - which is okay as 477 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 478 */ 479 if (zone_idx(zone) == ZONE_DEVICE) 480 return; 481 #endif 482 483 clear_zone_contiguous(zone); 484 485 pgdat_resize_lock(zone->zone_pgdat, &flags); 486 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 487 update_pgdat_span(pgdat); 488 pgdat_resize_unlock(zone->zone_pgdat, &flags); 489 490 set_zone_contiguous(zone); 491 } 492 493 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 494 unsigned long map_offset, 495 struct vmem_altmap *altmap) 496 { 497 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn)); 498 499 if (WARN_ON_ONCE(!valid_section(ms))) 500 return; 501 502 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 503 } 504 505 /** 506 * __remove_pages() - remove sections of pages 507 * @pfn: starting pageframe (must be aligned to start of a section) 508 * @nr_pages: number of pages to remove (must be multiple of section size) 509 * @altmap: alternative device page map or %NULL if default memmap is used 510 * 511 * Generic helper function to remove section mappings and sysfs entries 512 * for the section of the memory we are removing. Caller needs to make 513 * sure that pages are marked reserved and zones are adjust properly by 514 * calling offline_pages(). 515 */ 516 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 517 struct vmem_altmap *altmap) 518 { 519 const unsigned long end_pfn = pfn + nr_pages; 520 unsigned long cur_nr_pages; 521 unsigned long map_offset = 0; 522 523 map_offset = vmem_altmap_offset(altmap); 524 525 if (check_pfn_span(pfn, nr_pages, "remove")) 526 return; 527 528 for (; pfn < end_pfn; pfn += cur_nr_pages) { 529 cond_resched(); 530 /* Select all remaining pages up to the next section boundary */ 531 cur_nr_pages = min(end_pfn - pfn, -(pfn | PAGE_SECTION_MASK)); 532 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 533 map_offset = 0; 534 } 535 } 536 537 int set_online_page_callback(online_page_callback_t callback) 538 { 539 int rc = -EINVAL; 540 541 get_online_mems(); 542 mutex_lock(&online_page_callback_lock); 543 544 if (online_page_callback == generic_online_page) { 545 online_page_callback = callback; 546 rc = 0; 547 } 548 549 mutex_unlock(&online_page_callback_lock); 550 put_online_mems(); 551 552 return rc; 553 } 554 EXPORT_SYMBOL_GPL(set_online_page_callback); 555 556 int restore_online_page_callback(online_page_callback_t callback) 557 { 558 int rc = -EINVAL; 559 560 get_online_mems(); 561 mutex_lock(&online_page_callback_lock); 562 563 if (online_page_callback == callback) { 564 online_page_callback = generic_online_page; 565 rc = 0; 566 } 567 568 mutex_unlock(&online_page_callback_lock); 569 put_online_mems(); 570 571 return rc; 572 } 573 EXPORT_SYMBOL_GPL(restore_online_page_callback); 574 575 void generic_online_page(struct page *page, unsigned int order) 576 { 577 /* 578 * Freeing the page with debug_pagealloc enabled will try to unmap it, 579 * so we should map it first. This is better than introducing a special 580 * case in page freeing fast path. 581 */ 582 if (debug_pagealloc_enabled_static()) 583 kernel_map_pages(page, 1 << order, 1); 584 __free_pages_core(page, order); 585 totalram_pages_add(1UL << order); 586 #ifdef CONFIG_HIGHMEM 587 if (PageHighMem(page)) 588 totalhigh_pages_add(1UL << order); 589 #endif 590 } 591 EXPORT_SYMBOL_GPL(generic_online_page); 592 593 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 594 void *arg) 595 { 596 const unsigned long end_pfn = start_pfn + nr_pages; 597 unsigned long pfn; 598 int order; 599 600 /* 601 * Online the pages. The callback might decide to keep some pages 602 * PG_reserved (to add them to the buddy later), but we still account 603 * them as being online/belonging to this zone ("present"). 604 */ 605 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) { 606 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn))); 607 /* __free_pages_core() wants pfns to be aligned to the order */ 608 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order))) 609 order = 0; 610 (*online_page_callback)(pfn_to_page(pfn), order); 611 } 612 613 /* mark all involved sections as online */ 614 online_mem_sections(start_pfn, end_pfn); 615 616 *(unsigned long *)arg += nr_pages; 617 return 0; 618 } 619 620 /* check which state of node_states will be changed when online memory */ 621 static void node_states_check_changes_online(unsigned long nr_pages, 622 struct zone *zone, struct memory_notify *arg) 623 { 624 int nid = zone_to_nid(zone); 625 626 arg->status_change_nid = NUMA_NO_NODE; 627 arg->status_change_nid_normal = NUMA_NO_NODE; 628 arg->status_change_nid_high = NUMA_NO_NODE; 629 630 if (!node_state(nid, N_MEMORY)) 631 arg->status_change_nid = nid; 632 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 633 arg->status_change_nid_normal = nid; 634 #ifdef CONFIG_HIGHMEM 635 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 636 arg->status_change_nid_high = nid; 637 #endif 638 } 639 640 static void node_states_set_node(int node, struct memory_notify *arg) 641 { 642 if (arg->status_change_nid_normal >= 0) 643 node_set_state(node, N_NORMAL_MEMORY); 644 645 if (arg->status_change_nid_high >= 0) 646 node_set_state(node, N_HIGH_MEMORY); 647 648 if (arg->status_change_nid >= 0) 649 node_set_state(node, N_MEMORY); 650 } 651 652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 653 unsigned long nr_pages) 654 { 655 unsigned long old_end_pfn = zone_end_pfn(zone); 656 657 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 658 zone->zone_start_pfn = start_pfn; 659 660 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 661 } 662 663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 664 unsigned long nr_pages) 665 { 666 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 667 668 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 669 pgdat->node_start_pfn = start_pfn; 670 671 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 672 673 } 674 /* 675 * Associate the pfn range with the given zone, initializing the memmaps 676 * and resizing the pgdat/zone data to span the added pages. After this 677 * call, all affected pages are PG_reserved. 678 */ 679 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 680 unsigned long nr_pages, struct vmem_altmap *altmap) 681 { 682 struct pglist_data *pgdat = zone->zone_pgdat; 683 int nid = pgdat->node_id; 684 unsigned long flags; 685 686 clear_zone_contiguous(zone); 687 688 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 689 pgdat_resize_lock(pgdat, &flags); 690 zone_span_writelock(zone); 691 if (zone_is_empty(zone)) 692 init_currently_empty_zone(zone, start_pfn, nr_pages); 693 resize_zone_range(zone, start_pfn, nr_pages); 694 zone_span_writeunlock(zone); 695 resize_pgdat_range(pgdat, start_pfn, nr_pages); 696 pgdat_resize_unlock(pgdat, &flags); 697 698 /* 699 * TODO now we have a visible range of pages which are not associated 700 * with their zone properly. Not nice but set_pfnblock_flags_mask 701 * expects the zone spans the pfn range. All the pages in the range 702 * are reserved so nobody should be touching them so we should be safe 703 */ 704 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 705 MEMMAP_HOTPLUG, altmap); 706 707 set_zone_contiguous(zone); 708 } 709 710 /* 711 * Returns a default kernel memory zone for the given pfn range. 712 * If no kernel zone covers this pfn range it will automatically go 713 * to the ZONE_NORMAL. 714 */ 715 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 716 unsigned long nr_pages) 717 { 718 struct pglist_data *pgdat = NODE_DATA(nid); 719 int zid; 720 721 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 722 struct zone *zone = &pgdat->node_zones[zid]; 723 724 if (zone_intersects(zone, start_pfn, nr_pages)) 725 return zone; 726 } 727 728 return &pgdat->node_zones[ZONE_NORMAL]; 729 } 730 731 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 732 unsigned long nr_pages) 733 { 734 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 735 nr_pages); 736 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 737 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 738 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 739 740 /* 741 * We inherit the existing zone in a simple case where zones do not 742 * overlap in the given range 743 */ 744 if (in_kernel ^ in_movable) 745 return (in_kernel) ? kernel_zone : movable_zone; 746 747 /* 748 * If the range doesn't belong to any zone or two zones overlap in the 749 * given range then we use movable zone only if movable_node is 750 * enabled because we always online to a kernel zone by default. 751 */ 752 return movable_node_enabled ? movable_zone : kernel_zone; 753 } 754 755 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 756 unsigned long nr_pages) 757 { 758 if (online_type == MMOP_ONLINE_KERNEL) 759 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 760 761 if (online_type == MMOP_ONLINE_MOVABLE) 762 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 763 764 return default_zone_for_pfn(nid, start_pfn, nr_pages); 765 } 766 767 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 768 int online_type, int nid) 769 { 770 unsigned long flags; 771 unsigned long onlined_pages = 0; 772 struct zone *zone; 773 int need_zonelists_rebuild = 0; 774 int ret; 775 struct memory_notify arg; 776 777 mem_hotplug_begin(); 778 779 /* associate pfn range with the zone */ 780 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 781 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL); 782 783 arg.start_pfn = pfn; 784 arg.nr_pages = nr_pages; 785 node_states_check_changes_online(nr_pages, zone, &arg); 786 787 ret = memory_notify(MEM_GOING_ONLINE, &arg); 788 ret = notifier_to_errno(ret); 789 if (ret) 790 goto failed_addition; 791 792 /* 793 * If this zone is not populated, then it is not in zonelist. 794 * This means the page allocator ignores this zone. 795 * So, zonelist must be updated after online. 796 */ 797 if (!populated_zone(zone)) { 798 need_zonelists_rebuild = 1; 799 setup_zone_pageset(zone); 800 } 801 802 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 803 online_pages_range); 804 if (ret) { 805 /* not a single memory resource was applicable */ 806 if (need_zonelists_rebuild) 807 zone_pcp_reset(zone); 808 goto failed_addition; 809 } 810 811 zone->present_pages += onlined_pages; 812 813 pgdat_resize_lock(zone->zone_pgdat, &flags); 814 zone->zone_pgdat->node_present_pages += onlined_pages; 815 pgdat_resize_unlock(zone->zone_pgdat, &flags); 816 817 shuffle_zone(zone); 818 819 node_states_set_node(nid, &arg); 820 if (need_zonelists_rebuild) 821 build_all_zonelists(NULL); 822 else 823 zone_pcp_update(zone); 824 825 init_per_zone_wmark_min(); 826 827 kswapd_run(nid); 828 kcompactd_run(nid); 829 830 vm_total_pages = nr_free_pagecache_pages(); 831 832 writeback_set_ratelimit(); 833 834 memory_notify(MEM_ONLINE, &arg); 835 mem_hotplug_done(); 836 return 0; 837 838 failed_addition: 839 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 840 (unsigned long long) pfn << PAGE_SHIFT, 841 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 842 memory_notify(MEM_CANCEL_ONLINE, &arg); 843 remove_pfn_range_from_zone(zone, pfn, nr_pages); 844 mem_hotplug_done(); 845 return ret; 846 } 847 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 848 849 static void reset_node_present_pages(pg_data_t *pgdat) 850 { 851 struct zone *z; 852 853 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 854 z->present_pages = 0; 855 856 pgdat->node_present_pages = 0; 857 } 858 859 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 860 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 861 { 862 struct pglist_data *pgdat; 863 unsigned long start_pfn = PFN_DOWN(start); 864 865 pgdat = NODE_DATA(nid); 866 if (!pgdat) { 867 pgdat = arch_alloc_nodedata(nid); 868 if (!pgdat) 869 return NULL; 870 871 pgdat->per_cpu_nodestats = 872 alloc_percpu(struct per_cpu_nodestat); 873 arch_refresh_nodedata(nid, pgdat); 874 } else { 875 int cpu; 876 /* 877 * Reset the nr_zones, order and classzone_idx before reuse. 878 * Note that kswapd will init kswapd_classzone_idx properly 879 * when it starts in the near future. 880 */ 881 pgdat->nr_zones = 0; 882 pgdat->kswapd_order = 0; 883 pgdat->kswapd_classzone_idx = 0; 884 for_each_online_cpu(cpu) { 885 struct per_cpu_nodestat *p; 886 887 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 888 memset(p, 0, sizeof(*p)); 889 } 890 } 891 892 /* we can use NODE_DATA(nid) from here */ 893 894 pgdat->node_id = nid; 895 pgdat->node_start_pfn = start_pfn; 896 897 /* init node's zones as empty zones, we don't have any present pages.*/ 898 free_area_init_core_hotplug(nid); 899 900 /* 901 * The node we allocated has no zone fallback lists. For avoiding 902 * to access not-initialized zonelist, build here. 903 */ 904 build_all_zonelists(pgdat); 905 906 /* 907 * When memory is hot-added, all the memory is in offline state. So 908 * clear all zones' present_pages because they will be updated in 909 * online_pages() and offline_pages(). 910 */ 911 reset_node_managed_pages(pgdat); 912 reset_node_present_pages(pgdat); 913 914 return pgdat; 915 } 916 917 static void rollback_node_hotadd(int nid) 918 { 919 pg_data_t *pgdat = NODE_DATA(nid); 920 921 arch_refresh_nodedata(nid, NULL); 922 free_percpu(pgdat->per_cpu_nodestats); 923 arch_free_nodedata(pgdat); 924 } 925 926 927 /** 928 * try_online_node - online a node if offlined 929 * @nid: the node ID 930 * @start: start addr of the node 931 * @set_node_online: Whether we want to online the node 932 * called by cpu_up() to online a node without onlined memory. 933 * 934 * Returns: 935 * 1 -> a new node has been allocated 936 * 0 -> the node is already online 937 * -ENOMEM -> the node could not be allocated 938 */ 939 static int __try_online_node(int nid, u64 start, bool set_node_online) 940 { 941 pg_data_t *pgdat; 942 int ret = 1; 943 944 if (node_online(nid)) 945 return 0; 946 947 pgdat = hotadd_new_pgdat(nid, start); 948 if (!pgdat) { 949 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 950 ret = -ENOMEM; 951 goto out; 952 } 953 954 if (set_node_online) { 955 node_set_online(nid); 956 ret = register_one_node(nid); 957 BUG_ON(ret); 958 } 959 out: 960 return ret; 961 } 962 963 /* 964 * Users of this function always want to online/register the node 965 */ 966 int try_online_node(int nid) 967 { 968 int ret; 969 970 mem_hotplug_begin(); 971 ret = __try_online_node(nid, 0, true); 972 mem_hotplug_done(); 973 return ret; 974 } 975 976 static int check_hotplug_memory_range(u64 start, u64 size) 977 { 978 /* memory range must be block size aligned */ 979 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 980 !IS_ALIGNED(size, memory_block_size_bytes())) { 981 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 982 memory_block_size_bytes(), start, size); 983 return -EINVAL; 984 } 985 986 return 0; 987 } 988 989 static int online_memory_block(struct memory_block *mem, void *arg) 990 { 991 return device_online(&mem->dev); 992 } 993 994 /* 995 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 996 * and online/offline operations (triggered e.g. by sysfs). 997 * 998 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 999 */ 1000 int __ref add_memory_resource(int nid, struct resource *res) 1001 { 1002 struct mhp_restrictions restrictions = {}; 1003 u64 start, size; 1004 bool new_node = false; 1005 int ret; 1006 1007 start = res->start; 1008 size = resource_size(res); 1009 1010 ret = check_hotplug_memory_range(start, size); 1011 if (ret) 1012 return ret; 1013 1014 mem_hotplug_begin(); 1015 1016 /* 1017 * Add new range to memblock so that when hotadd_new_pgdat() is called 1018 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1019 * this new range and calculate total pages correctly. The range will 1020 * be removed at hot-remove time. 1021 */ 1022 memblock_add_node(start, size, nid); 1023 1024 ret = __try_online_node(nid, start, false); 1025 if (ret < 0) 1026 goto error; 1027 new_node = ret; 1028 1029 /* call arch's memory hotadd */ 1030 ret = arch_add_memory(nid, start, size, &restrictions); 1031 if (ret < 0) 1032 goto error; 1033 1034 /* create memory block devices after memory was added */ 1035 ret = create_memory_block_devices(start, size); 1036 if (ret) { 1037 arch_remove_memory(nid, start, size, NULL); 1038 goto error; 1039 } 1040 1041 if (new_node) { 1042 /* If sysfs file of new node can't be created, cpu on the node 1043 * can't be hot-added. There is no rollback way now. 1044 * So, check by BUG_ON() to catch it reluctantly.. 1045 * We online node here. We can't roll back from here. 1046 */ 1047 node_set_online(nid); 1048 ret = __register_one_node(nid); 1049 BUG_ON(ret); 1050 } 1051 1052 /* link memory sections under this node.*/ 1053 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1054 BUG_ON(ret); 1055 1056 /* create new memmap entry */ 1057 firmware_map_add_hotplug(start, start + size, "System RAM"); 1058 1059 /* device_online() will take the lock when calling online_pages() */ 1060 mem_hotplug_done(); 1061 1062 /* online pages if requested */ 1063 if (memhp_auto_online) 1064 walk_memory_blocks(start, size, NULL, online_memory_block); 1065 1066 return ret; 1067 error: 1068 /* rollback pgdat allocation and others */ 1069 if (new_node) 1070 rollback_node_hotadd(nid); 1071 memblock_remove(start, size); 1072 mem_hotplug_done(); 1073 return ret; 1074 } 1075 1076 /* requires device_hotplug_lock, see add_memory_resource() */ 1077 int __ref __add_memory(int nid, u64 start, u64 size) 1078 { 1079 struct resource *res; 1080 int ret; 1081 1082 res = register_memory_resource(start, size); 1083 if (IS_ERR(res)) 1084 return PTR_ERR(res); 1085 1086 ret = add_memory_resource(nid, res); 1087 if (ret < 0) 1088 release_memory_resource(res); 1089 return ret; 1090 } 1091 1092 int add_memory(int nid, u64 start, u64 size) 1093 { 1094 int rc; 1095 1096 lock_device_hotplug(); 1097 rc = __add_memory(nid, start, size); 1098 unlock_device_hotplug(); 1099 1100 return rc; 1101 } 1102 EXPORT_SYMBOL_GPL(add_memory); 1103 1104 #ifdef CONFIG_MEMORY_HOTREMOVE 1105 /* 1106 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1107 * set and the size of the free page is given by page_order(). Using this, 1108 * the function determines if the pageblock contains only free pages. 1109 * Due to buddy contraints, a free page at least the size of a pageblock will 1110 * be located at the start of the pageblock 1111 */ 1112 static inline int pageblock_free(struct page *page) 1113 { 1114 return PageBuddy(page) && page_order(page) >= pageblock_order; 1115 } 1116 1117 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1118 static unsigned long next_active_pageblock(unsigned long pfn) 1119 { 1120 struct page *page = pfn_to_page(pfn); 1121 1122 /* Ensure the starting page is pageblock-aligned */ 1123 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1124 1125 /* If the entire pageblock is free, move to the end of free page */ 1126 if (pageblock_free(page)) { 1127 int order; 1128 /* be careful. we don't have locks, page_order can be changed.*/ 1129 order = page_order(page); 1130 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1131 return pfn + (1 << order); 1132 } 1133 1134 return pfn + pageblock_nr_pages; 1135 } 1136 1137 static bool is_pageblock_removable_nolock(unsigned long pfn) 1138 { 1139 struct page *page = pfn_to_page(pfn); 1140 struct zone *zone; 1141 1142 /* 1143 * We have to be careful here because we are iterating over memory 1144 * sections which are not zone aware so we might end up outside of 1145 * the zone but still within the section. 1146 * We have to take care about the node as well. If the node is offline 1147 * its NODE_DATA will be NULL - see page_zone. 1148 */ 1149 if (!node_online(page_to_nid(page))) 1150 return false; 1151 1152 zone = page_zone(page); 1153 pfn = page_to_pfn(page); 1154 if (!zone_spans_pfn(zone, pfn)) 1155 return false; 1156 1157 return !has_unmovable_pages(zone, page, MIGRATE_MOVABLE, 1158 MEMORY_OFFLINE); 1159 } 1160 1161 /* Checks if this range of memory is likely to be hot-removable. */ 1162 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1163 { 1164 unsigned long end_pfn, pfn; 1165 1166 end_pfn = min(start_pfn + nr_pages, 1167 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1168 1169 /* Check the starting page of each pageblock within the range */ 1170 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1171 if (!is_pageblock_removable_nolock(pfn)) 1172 return false; 1173 cond_resched(); 1174 } 1175 1176 /* All pageblocks in the memory block are likely to be hot-removable */ 1177 return true; 1178 } 1179 1180 /* 1181 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1182 * memory holes). When true, return the zone. 1183 */ 1184 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1185 unsigned long end_pfn) 1186 { 1187 unsigned long pfn, sec_end_pfn; 1188 struct zone *zone = NULL; 1189 struct page *page; 1190 int i; 1191 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1192 pfn < end_pfn; 1193 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1194 /* Make sure the memory section is present first */ 1195 if (!present_section_nr(pfn_to_section_nr(pfn))) 1196 continue; 1197 for (; pfn < sec_end_pfn && pfn < end_pfn; 1198 pfn += MAX_ORDER_NR_PAGES) { 1199 i = 0; 1200 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1201 while ((i < MAX_ORDER_NR_PAGES) && 1202 !pfn_valid_within(pfn + i)) 1203 i++; 1204 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1205 continue; 1206 /* Check if we got outside of the zone */ 1207 if (zone && !zone_spans_pfn(zone, pfn + i)) 1208 return NULL; 1209 page = pfn_to_page(pfn + i); 1210 if (zone && page_zone(page) != zone) 1211 return NULL; 1212 zone = page_zone(page); 1213 } 1214 } 1215 1216 return zone; 1217 } 1218 1219 /* 1220 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1221 * non-lru movable pages and hugepages). We scan pfn because it's much 1222 * easier than scanning over linked list. This function returns the pfn 1223 * of the first found movable page if it's found, otherwise 0. 1224 */ 1225 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1226 { 1227 unsigned long pfn; 1228 1229 for (pfn = start; pfn < end; pfn++) { 1230 struct page *page, *head; 1231 unsigned long skip; 1232 1233 if (!pfn_valid(pfn)) 1234 continue; 1235 page = pfn_to_page(pfn); 1236 if (PageLRU(page)) 1237 return pfn; 1238 if (__PageMovable(page)) 1239 return pfn; 1240 1241 if (!PageHuge(page)) 1242 continue; 1243 head = compound_head(page); 1244 if (page_huge_active(head)) 1245 return pfn; 1246 skip = compound_nr(head) - (page - head); 1247 pfn += skip - 1; 1248 } 1249 return 0; 1250 } 1251 1252 static struct page *new_node_page(struct page *page, unsigned long private) 1253 { 1254 int nid = page_to_nid(page); 1255 nodemask_t nmask = node_states[N_MEMORY]; 1256 1257 /* 1258 * try to allocate from a different node but reuse this node if there 1259 * are no other online nodes to be used (e.g. we are offlining a part 1260 * of the only existing node) 1261 */ 1262 node_clear(nid, nmask); 1263 if (nodes_empty(nmask)) 1264 node_set(nid, nmask); 1265 1266 return new_page_nodemask(page, nid, &nmask); 1267 } 1268 1269 static int 1270 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1271 { 1272 unsigned long pfn; 1273 struct page *page; 1274 int ret = 0; 1275 LIST_HEAD(source); 1276 1277 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1278 if (!pfn_valid(pfn)) 1279 continue; 1280 page = pfn_to_page(pfn); 1281 1282 if (PageHuge(page)) { 1283 struct page *head = compound_head(page); 1284 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1285 isolate_huge_page(head, &source); 1286 continue; 1287 } else if (PageTransHuge(page)) 1288 pfn = page_to_pfn(compound_head(page)) 1289 + hpage_nr_pages(page) - 1; 1290 1291 /* 1292 * HWPoison pages have elevated reference counts so the migration would 1293 * fail on them. It also doesn't make any sense to migrate them in the 1294 * first place. Still try to unmap such a page in case it is still mapped 1295 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1296 * the unmap as the catch all safety net). 1297 */ 1298 if (PageHWPoison(page)) { 1299 if (WARN_ON(PageLRU(page))) 1300 isolate_lru_page(page); 1301 if (page_mapped(page)) 1302 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1303 continue; 1304 } 1305 1306 if (!get_page_unless_zero(page)) 1307 continue; 1308 /* 1309 * We can skip free pages. And we can deal with pages on 1310 * LRU and non-lru movable pages. 1311 */ 1312 if (PageLRU(page)) 1313 ret = isolate_lru_page(page); 1314 else 1315 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1316 if (!ret) { /* Success */ 1317 list_add_tail(&page->lru, &source); 1318 if (!__PageMovable(page)) 1319 inc_node_page_state(page, NR_ISOLATED_ANON + 1320 page_is_file_cache(page)); 1321 1322 } else { 1323 pr_warn("failed to isolate pfn %lx\n", pfn); 1324 dump_page(page, "isolation failed"); 1325 } 1326 put_page(page); 1327 } 1328 if (!list_empty(&source)) { 1329 /* Allocate a new page from the nearest neighbor node */ 1330 ret = migrate_pages(&source, new_node_page, NULL, 0, 1331 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1332 if (ret) { 1333 list_for_each_entry(page, &source, lru) { 1334 pr_warn("migrating pfn %lx failed ret:%d ", 1335 page_to_pfn(page), ret); 1336 dump_page(page, "migration failure"); 1337 } 1338 putback_movable_pages(&source); 1339 } 1340 } 1341 1342 return ret; 1343 } 1344 1345 /* Mark all sections offline and remove all free pages from the buddy. */ 1346 static int 1347 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1348 void *data) 1349 { 1350 unsigned long *offlined_pages = (unsigned long *)data; 1351 1352 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1353 return 0; 1354 } 1355 1356 /* 1357 * Check all pages in range, recoreded as memory resource, are isolated. 1358 */ 1359 static int 1360 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1361 void *data) 1362 { 1363 return test_pages_isolated(start_pfn, start_pfn + nr_pages, 1364 MEMORY_OFFLINE); 1365 } 1366 1367 static int __init cmdline_parse_movable_node(char *p) 1368 { 1369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1370 movable_node_enabled = true; 1371 #else 1372 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1373 #endif 1374 return 0; 1375 } 1376 early_param("movable_node", cmdline_parse_movable_node); 1377 1378 /* check which state of node_states will be changed when offline memory */ 1379 static void node_states_check_changes_offline(unsigned long nr_pages, 1380 struct zone *zone, struct memory_notify *arg) 1381 { 1382 struct pglist_data *pgdat = zone->zone_pgdat; 1383 unsigned long present_pages = 0; 1384 enum zone_type zt; 1385 1386 arg->status_change_nid = NUMA_NO_NODE; 1387 arg->status_change_nid_normal = NUMA_NO_NODE; 1388 arg->status_change_nid_high = NUMA_NO_NODE; 1389 1390 /* 1391 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1392 * If the memory to be offline is within the range 1393 * [0..ZONE_NORMAL], and it is the last present memory there, 1394 * the zones in that range will become empty after the offlining, 1395 * thus we can determine that we need to clear the node from 1396 * node_states[N_NORMAL_MEMORY]. 1397 */ 1398 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1399 present_pages += pgdat->node_zones[zt].present_pages; 1400 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1401 arg->status_change_nid_normal = zone_to_nid(zone); 1402 1403 #ifdef CONFIG_HIGHMEM 1404 /* 1405 * node_states[N_HIGH_MEMORY] contains nodes which 1406 * have normal memory or high memory. 1407 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1408 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1409 * we determine that the zones in that range become empty, 1410 * we need to clear the node for N_HIGH_MEMORY. 1411 */ 1412 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1413 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1414 arg->status_change_nid_high = zone_to_nid(zone); 1415 #endif 1416 1417 /* 1418 * We have accounted the pages from [0..ZONE_NORMAL), and 1419 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1420 * as well. 1421 * Here we count the possible pages from ZONE_MOVABLE. 1422 * If after having accounted all the pages, we see that the nr_pages 1423 * to be offlined is over or equal to the accounted pages, 1424 * we know that the node will become empty, and so, we can clear 1425 * it for N_MEMORY as well. 1426 */ 1427 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1428 1429 if (nr_pages >= present_pages) 1430 arg->status_change_nid = zone_to_nid(zone); 1431 } 1432 1433 static void node_states_clear_node(int node, struct memory_notify *arg) 1434 { 1435 if (arg->status_change_nid_normal >= 0) 1436 node_clear_state(node, N_NORMAL_MEMORY); 1437 1438 if (arg->status_change_nid_high >= 0) 1439 node_clear_state(node, N_HIGH_MEMORY); 1440 1441 if (arg->status_change_nid >= 0) 1442 node_clear_state(node, N_MEMORY); 1443 } 1444 1445 static int count_system_ram_pages_cb(unsigned long start_pfn, 1446 unsigned long nr_pages, void *data) 1447 { 1448 unsigned long *nr_system_ram_pages = data; 1449 1450 *nr_system_ram_pages += nr_pages; 1451 return 0; 1452 } 1453 1454 static int __ref __offline_pages(unsigned long start_pfn, 1455 unsigned long end_pfn) 1456 { 1457 unsigned long pfn, nr_pages = 0; 1458 unsigned long offlined_pages = 0; 1459 int ret, node, nr_isolate_pageblock; 1460 unsigned long flags; 1461 struct zone *zone; 1462 struct memory_notify arg; 1463 char *reason; 1464 1465 mem_hotplug_begin(); 1466 1467 /* 1468 * Don't allow to offline memory blocks that contain holes. 1469 * Consequently, memory blocks with holes can never get onlined 1470 * via the hotplug path - online_pages() - as hotplugged memory has 1471 * no holes. This way, we e.g., don't have to worry about marking 1472 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1473 * avoid using walk_system_ram_range() later. 1474 */ 1475 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages, 1476 count_system_ram_pages_cb); 1477 if (nr_pages != end_pfn - start_pfn) { 1478 ret = -EINVAL; 1479 reason = "memory holes"; 1480 goto failed_removal; 1481 } 1482 1483 /* This makes hotplug much easier...and readable. 1484 we assume this for now. .*/ 1485 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1486 if (!zone) { 1487 ret = -EINVAL; 1488 reason = "multizone range"; 1489 goto failed_removal; 1490 } 1491 node = zone_to_nid(zone); 1492 1493 /* set above range as isolated */ 1494 ret = start_isolate_page_range(start_pfn, end_pfn, 1495 MIGRATE_MOVABLE, 1496 MEMORY_OFFLINE | REPORT_FAILURE); 1497 if (ret < 0) { 1498 reason = "failure to isolate range"; 1499 goto failed_removal; 1500 } 1501 nr_isolate_pageblock = ret; 1502 1503 arg.start_pfn = start_pfn; 1504 arg.nr_pages = nr_pages; 1505 node_states_check_changes_offline(nr_pages, zone, &arg); 1506 1507 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1508 ret = notifier_to_errno(ret); 1509 if (ret) { 1510 reason = "notifier failure"; 1511 goto failed_removal_isolated; 1512 } 1513 1514 do { 1515 for (pfn = start_pfn; pfn;) { 1516 if (signal_pending(current)) { 1517 ret = -EINTR; 1518 reason = "signal backoff"; 1519 goto failed_removal_isolated; 1520 } 1521 1522 cond_resched(); 1523 lru_add_drain_all(); 1524 1525 pfn = scan_movable_pages(pfn, end_pfn); 1526 if (pfn) { 1527 /* 1528 * TODO: fatal migration failures should bail 1529 * out 1530 */ 1531 do_migrate_range(pfn, end_pfn); 1532 } 1533 } 1534 1535 /* 1536 * Dissolve free hugepages in the memory block before doing 1537 * offlining actually in order to make hugetlbfs's object 1538 * counting consistent. 1539 */ 1540 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1541 if (ret) { 1542 reason = "failure to dissolve huge pages"; 1543 goto failed_removal_isolated; 1544 } 1545 /* check again */ 1546 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1547 NULL, check_pages_isolated_cb); 1548 } while (ret); 1549 1550 /* Ok, all of our target is isolated. 1551 We cannot do rollback at this point. */ 1552 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1553 &offlined_pages, offline_isolated_pages_cb); 1554 pr_info("Offlined Pages %ld\n", offlined_pages); 1555 /* 1556 * Onlining will reset pagetype flags and makes migrate type 1557 * MOVABLE, so just need to decrease the number of isolated 1558 * pageblocks zone counter here. 1559 */ 1560 spin_lock_irqsave(&zone->lock, flags); 1561 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1562 spin_unlock_irqrestore(&zone->lock, flags); 1563 1564 /* removal success */ 1565 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1566 zone->present_pages -= offlined_pages; 1567 1568 pgdat_resize_lock(zone->zone_pgdat, &flags); 1569 zone->zone_pgdat->node_present_pages -= offlined_pages; 1570 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1571 1572 init_per_zone_wmark_min(); 1573 1574 if (!populated_zone(zone)) { 1575 zone_pcp_reset(zone); 1576 build_all_zonelists(NULL); 1577 } else 1578 zone_pcp_update(zone); 1579 1580 node_states_clear_node(node, &arg); 1581 if (arg.status_change_nid >= 0) { 1582 kswapd_stop(node); 1583 kcompactd_stop(node); 1584 } 1585 1586 vm_total_pages = nr_free_pagecache_pages(); 1587 writeback_set_ratelimit(); 1588 1589 memory_notify(MEM_OFFLINE, &arg); 1590 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1591 mem_hotplug_done(); 1592 return 0; 1593 1594 failed_removal_isolated: 1595 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1596 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1597 failed_removal: 1598 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1599 (unsigned long long) start_pfn << PAGE_SHIFT, 1600 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1601 reason); 1602 /* pushback to free area */ 1603 mem_hotplug_done(); 1604 return ret; 1605 } 1606 1607 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1608 { 1609 return __offline_pages(start_pfn, start_pfn + nr_pages); 1610 } 1611 1612 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1613 { 1614 int ret = !is_memblock_offlined(mem); 1615 1616 if (unlikely(ret)) { 1617 phys_addr_t beginpa, endpa; 1618 1619 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1620 endpa = beginpa + memory_block_size_bytes() - 1; 1621 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1622 &beginpa, &endpa); 1623 1624 return -EBUSY; 1625 } 1626 return 0; 1627 } 1628 1629 static int check_cpu_on_node(pg_data_t *pgdat) 1630 { 1631 int cpu; 1632 1633 for_each_present_cpu(cpu) { 1634 if (cpu_to_node(cpu) == pgdat->node_id) 1635 /* 1636 * the cpu on this node isn't removed, and we can't 1637 * offline this node. 1638 */ 1639 return -EBUSY; 1640 } 1641 1642 return 0; 1643 } 1644 1645 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1646 { 1647 int nid = *(int *)arg; 1648 1649 /* 1650 * If a memory block belongs to multiple nodes, the stored nid is not 1651 * reliable. However, such blocks are always online (e.g., cannot get 1652 * offlined) and, therefore, are still spanned by the node. 1653 */ 1654 return mem->nid == nid ? -EEXIST : 0; 1655 } 1656 1657 /** 1658 * try_offline_node 1659 * @nid: the node ID 1660 * 1661 * Offline a node if all memory sections and cpus of the node are removed. 1662 * 1663 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1664 * and online/offline operations before this call. 1665 */ 1666 void try_offline_node(int nid) 1667 { 1668 pg_data_t *pgdat = NODE_DATA(nid); 1669 int rc; 1670 1671 /* 1672 * If the node still spans pages (especially ZONE_DEVICE), don't 1673 * offline it. A node spans memory after move_pfn_range_to_zone(), 1674 * e.g., after the memory block was onlined. 1675 */ 1676 if (pgdat->node_spanned_pages) 1677 return; 1678 1679 /* 1680 * Especially offline memory blocks might not be spanned by the 1681 * node. They will get spanned by the node once they get onlined. 1682 * However, they link to the node in sysfs and can get onlined later. 1683 */ 1684 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 1685 if (rc) 1686 return; 1687 1688 if (check_cpu_on_node(pgdat)) 1689 return; 1690 1691 /* 1692 * all memory/cpu of this node are removed, we can offline this 1693 * node now. 1694 */ 1695 node_set_offline(nid); 1696 unregister_one_node(nid); 1697 } 1698 EXPORT_SYMBOL(try_offline_node); 1699 1700 static void __release_memory_resource(resource_size_t start, 1701 resource_size_t size) 1702 { 1703 int ret; 1704 1705 /* 1706 * When removing memory in the same granularity as it was added, 1707 * this function never fails. It might only fail if resources 1708 * have to be adjusted or split. We'll ignore the error, as 1709 * removing of memory cannot fail. 1710 */ 1711 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1712 if (ret) { 1713 resource_size_t endres = start + size - 1; 1714 1715 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1716 &start, &endres, ret); 1717 } 1718 } 1719 1720 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1721 { 1722 int rc = 0; 1723 1724 BUG_ON(check_hotplug_memory_range(start, size)); 1725 1726 /* 1727 * All memory blocks must be offlined before removing memory. Check 1728 * whether all memory blocks in question are offline and return error 1729 * if this is not the case. 1730 */ 1731 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1732 if (rc) 1733 goto done; 1734 1735 /* remove memmap entry */ 1736 firmware_map_remove(start, start + size, "System RAM"); 1737 1738 /* 1739 * Memory block device removal under the device_hotplug_lock is 1740 * a barrier against racing online attempts. 1741 */ 1742 remove_memory_block_devices(start, size); 1743 1744 mem_hotplug_begin(); 1745 1746 arch_remove_memory(nid, start, size, NULL); 1747 memblock_free(start, size); 1748 memblock_remove(start, size); 1749 __release_memory_resource(start, size); 1750 1751 try_offline_node(nid); 1752 1753 done: 1754 mem_hotplug_done(); 1755 return rc; 1756 } 1757 1758 /** 1759 * remove_memory 1760 * @nid: the node ID 1761 * @start: physical address of the region to remove 1762 * @size: size of the region to remove 1763 * 1764 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1765 * and online/offline operations before this call, as required by 1766 * try_offline_node(). 1767 */ 1768 void __remove_memory(int nid, u64 start, u64 size) 1769 { 1770 1771 /* 1772 * trigger BUG() if some memory is not offlined prior to calling this 1773 * function 1774 */ 1775 if (try_remove_memory(nid, start, size)) 1776 BUG(); 1777 } 1778 1779 /* 1780 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1781 * some memory is not offline 1782 */ 1783 int remove_memory(int nid, u64 start, u64 size) 1784 { 1785 int rc; 1786 1787 lock_device_hotplug(); 1788 rc = try_remove_memory(nid, start, size); 1789 unlock_device_hotplug(); 1790 1791 return rc; 1792 } 1793 EXPORT_SYMBOL_GPL(remove_memory); 1794 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1795