xref: /openbmc/linux/mm/memory_hotplug.c (revision aac5987a)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 /* The same as the cpu_hotplug lock, but for memory hotplug. */
56 static struct {
57 	struct task_struct *active_writer;
58 	struct mutex lock; /* Synchronizes accesses to refcount, */
59 	/*
60 	 * Also blocks the new readers during
61 	 * an ongoing mem hotplug operation.
62 	 */
63 	int refcount;
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 	struct lockdep_map dep_map;
67 #endif
68 } mem_hotplug = {
69 	.active_writer = NULL,
70 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
71 	.refcount = 0,
72 #ifdef CONFIG_DEBUG_LOCK_ALLOC
73 	.dep_map = {.name = "mem_hotplug.lock" },
74 #endif
75 };
76 
77 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
78 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
79 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
80 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
81 
82 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
83 bool memhp_auto_online;
84 #else
85 bool memhp_auto_online = true;
86 #endif
87 EXPORT_SYMBOL_GPL(memhp_auto_online);
88 
89 static int __init setup_memhp_default_state(char *str)
90 {
91 	if (!strcmp(str, "online"))
92 		memhp_auto_online = true;
93 	else if (!strcmp(str, "offline"))
94 		memhp_auto_online = false;
95 
96 	return 1;
97 }
98 __setup("memhp_default_state=", setup_memhp_default_state);
99 
100 void get_online_mems(void)
101 {
102 	might_sleep();
103 	if (mem_hotplug.active_writer == current)
104 		return;
105 	memhp_lock_acquire_read();
106 	mutex_lock(&mem_hotplug.lock);
107 	mem_hotplug.refcount++;
108 	mutex_unlock(&mem_hotplug.lock);
109 
110 }
111 
112 void put_online_mems(void)
113 {
114 	if (mem_hotplug.active_writer == current)
115 		return;
116 	mutex_lock(&mem_hotplug.lock);
117 
118 	if (WARN_ON(!mem_hotplug.refcount))
119 		mem_hotplug.refcount++; /* try to fix things up */
120 
121 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
122 		wake_up_process(mem_hotplug.active_writer);
123 	mutex_unlock(&mem_hotplug.lock);
124 	memhp_lock_release();
125 
126 }
127 
128 void mem_hotplug_begin(void)
129 {
130 	assert_held_device_hotplug();
131 
132 	mem_hotplug.active_writer = current;
133 
134 	memhp_lock_acquire();
135 	for (;;) {
136 		mutex_lock(&mem_hotplug.lock);
137 		if (likely(!mem_hotplug.refcount))
138 			break;
139 		__set_current_state(TASK_UNINTERRUPTIBLE);
140 		mutex_unlock(&mem_hotplug.lock);
141 		schedule();
142 	}
143 }
144 
145 void mem_hotplug_done(void)
146 {
147 	mem_hotplug.active_writer = NULL;
148 	mutex_unlock(&mem_hotplug.lock);
149 	memhp_lock_release();
150 }
151 
152 /* add this memory to iomem resource */
153 static struct resource *register_memory_resource(u64 start, u64 size)
154 {
155 	struct resource *res;
156 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
157 	if (!res)
158 		return ERR_PTR(-ENOMEM);
159 
160 	res->name = "System RAM";
161 	res->start = start;
162 	res->end = start + size - 1;
163 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
164 	if (request_resource(&iomem_resource, res) < 0) {
165 		pr_debug("System RAM resource %pR cannot be added\n", res);
166 		kfree(res);
167 		return ERR_PTR(-EEXIST);
168 	}
169 	return res;
170 }
171 
172 static void release_memory_resource(struct resource *res)
173 {
174 	if (!res)
175 		return;
176 	release_resource(res);
177 	kfree(res);
178 	return;
179 }
180 
181 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
182 void get_page_bootmem(unsigned long info,  struct page *page,
183 		      unsigned long type)
184 {
185 	page->freelist = (void *)type;
186 	SetPagePrivate(page);
187 	set_page_private(page, info);
188 	page_ref_inc(page);
189 }
190 
191 void put_page_bootmem(struct page *page)
192 {
193 	unsigned long type;
194 
195 	type = (unsigned long) page->freelist;
196 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
197 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
198 
199 	if (page_ref_dec_return(page) == 1) {
200 		page->freelist = NULL;
201 		ClearPagePrivate(page);
202 		set_page_private(page, 0);
203 		INIT_LIST_HEAD(&page->lru);
204 		free_reserved_page(page);
205 	}
206 }
207 
208 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
209 #ifndef CONFIG_SPARSEMEM_VMEMMAP
210 static void register_page_bootmem_info_section(unsigned long start_pfn)
211 {
212 	unsigned long *usemap, mapsize, section_nr, i;
213 	struct mem_section *ms;
214 	struct page *page, *memmap;
215 
216 	section_nr = pfn_to_section_nr(start_pfn);
217 	ms = __nr_to_section(section_nr);
218 
219 	/* Get section's memmap address */
220 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
221 
222 	/*
223 	 * Get page for the memmap's phys address
224 	 * XXX: need more consideration for sparse_vmemmap...
225 	 */
226 	page = virt_to_page(memmap);
227 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
228 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
229 
230 	/* remember memmap's page */
231 	for (i = 0; i < mapsize; i++, page++)
232 		get_page_bootmem(section_nr, page, SECTION_INFO);
233 
234 	usemap = __nr_to_section(section_nr)->pageblock_flags;
235 	page = virt_to_page(usemap);
236 
237 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
238 
239 	for (i = 0; i < mapsize; i++, page++)
240 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
241 
242 }
243 #else /* CONFIG_SPARSEMEM_VMEMMAP */
244 static void register_page_bootmem_info_section(unsigned long start_pfn)
245 {
246 	unsigned long *usemap, mapsize, section_nr, i;
247 	struct mem_section *ms;
248 	struct page *page, *memmap;
249 
250 	if (!pfn_valid(start_pfn))
251 		return;
252 
253 	section_nr = pfn_to_section_nr(start_pfn);
254 	ms = __nr_to_section(section_nr);
255 
256 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
257 
258 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
259 
260 	usemap = __nr_to_section(section_nr)->pageblock_flags;
261 	page = virt_to_page(usemap);
262 
263 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
264 
265 	for (i = 0; i < mapsize; i++, page++)
266 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
267 }
268 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
269 
270 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
271 {
272 	unsigned long i, pfn, end_pfn, nr_pages;
273 	int node = pgdat->node_id;
274 	struct page *page;
275 
276 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
277 	page = virt_to_page(pgdat);
278 
279 	for (i = 0; i < nr_pages; i++, page++)
280 		get_page_bootmem(node, page, NODE_INFO);
281 
282 	pfn = pgdat->node_start_pfn;
283 	end_pfn = pgdat_end_pfn(pgdat);
284 
285 	/* register section info */
286 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
287 		/*
288 		 * Some platforms can assign the same pfn to multiple nodes - on
289 		 * node0 as well as nodeN.  To avoid registering a pfn against
290 		 * multiple nodes we check that this pfn does not already
291 		 * reside in some other nodes.
292 		 */
293 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
294 			register_page_bootmem_info_section(pfn);
295 	}
296 }
297 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
298 
299 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
300 				     unsigned long end_pfn)
301 {
302 	unsigned long old_zone_end_pfn;
303 
304 	zone_span_writelock(zone);
305 
306 	old_zone_end_pfn = zone_end_pfn(zone);
307 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
308 		zone->zone_start_pfn = start_pfn;
309 
310 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
311 				zone->zone_start_pfn;
312 
313 	zone_span_writeunlock(zone);
314 }
315 
316 static void resize_zone(struct zone *zone, unsigned long start_pfn,
317 		unsigned long end_pfn)
318 {
319 	zone_span_writelock(zone);
320 
321 	if (end_pfn - start_pfn) {
322 		zone->zone_start_pfn = start_pfn;
323 		zone->spanned_pages = end_pfn - start_pfn;
324 	} else {
325 		/*
326 		 * make it consist as free_area_init_core(),
327 		 * if spanned_pages = 0, then keep start_pfn = 0
328 		 */
329 		zone->zone_start_pfn = 0;
330 		zone->spanned_pages = 0;
331 	}
332 
333 	zone_span_writeunlock(zone);
334 }
335 
336 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
337 		unsigned long end_pfn)
338 {
339 	enum zone_type zid = zone_idx(zone);
340 	int nid = zone->zone_pgdat->node_id;
341 	unsigned long pfn;
342 
343 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
344 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
345 }
346 
347 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
348  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
349 static int __ref ensure_zone_is_initialized(struct zone *zone,
350 			unsigned long start_pfn, unsigned long num_pages)
351 {
352 	if (!zone_is_initialized(zone))
353 		return init_currently_empty_zone(zone, start_pfn, num_pages);
354 
355 	return 0;
356 }
357 
358 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
359 		unsigned long start_pfn, unsigned long end_pfn)
360 {
361 	int ret;
362 	unsigned long flags;
363 	unsigned long z1_start_pfn;
364 
365 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
366 	if (ret)
367 		return ret;
368 
369 	pgdat_resize_lock(z1->zone_pgdat, &flags);
370 
371 	/* can't move pfns which are higher than @z2 */
372 	if (end_pfn > zone_end_pfn(z2))
373 		goto out_fail;
374 	/* the move out part must be at the left most of @z2 */
375 	if (start_pfn > z2->zone_start_pfn)
376 		goto out_fail;
377 	/* must included/overlap */
378 	if (end_pfn <= z2->zone_start_pfn)
379 		goto out_fail;
380 
381 	/* use start_pfn for z1's start_pfn if z1 is empty */
382 	if (!zone_is_empty(z1))
383 		z1_start_pfn = z1->zone_start_pfn;
384 	else
385 		z1_start_pfn = start_pfn;
386 
387 	resize_zone(z1, z1_start_pfn, end_pfn);
388 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
389 
390 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
391 
392 	fix_zone_id(z1, start_pfn, end_pfn);
393 
394 	return 0;
395 out_fail:
396 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
397 	return -1;
398 }
399 
400 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
401 		unsigned long start_pfn, unsigned long end_pfn)
402 {
403 	int ret;
404 	unsigned long flags;
405 	unsigned long z2_end_pfn;
406 
407 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
408 	if (ret)
409 		return ret;
410 
411 	pgdat_resize_lock(z1->zone_pgdat, &flags);
412 
413 	/* can't move pfns which are lower than @z1 */
414 	if (z1->zone_start_pfn > start_pfn)
415 		goto out_fail;
416 	/* the move out part mast at the right most of @z1 */
417 	if (zone_end_pfn(z1) >  end_pfn)
418 		goto out_fail;
419 	/* must included/overlap */
420 	if (start_pfn >= zone_end_pfn(z1))
421 		goto out_fail;
422 
423 	/* use end_pfn for z2's end_pfn if z2 is empty */
424 	if (!zone_is_empty(z2))
425 		z2_end_pfn = zone_end_pfn(z2);
426 	else
427 		z2_end_pfn = end_pfn;
428 
429 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
430 	resize_zone(z2, start_pfn, z2_end_pfn);
431 
432 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
433 
434 	fix_zone_id(z2, start_pfn, end_pfn);
435 
436 	return 0;
437 out_fail:
438 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
439 	return -1;
440 }
441 
442 static struct zone * __meminit move_pfn_range(int zone_shift,
443 		unsigned long start_pfn, unsigned long end_pfn)
444 {
445 	struct zone *zone = page_zone(pfn_to_page(start_pfn));
446 	int ret = 0;
447 
448 	if (zone_shift < 0)
449 		ret = move_pfn_range_left(zone + zone_shift, zone,
450 					  start_pfn, end_pfn);
451 	else if (zone_shift)
452 		ret = move_pfn_range_right(zone, zone + zone_shift,
453 					   start_pfn, end_pfn);
454 
455 	if (ret)
456 		return NULL;
457 
458 	return zone + zone_shift;
459 }
460 
461 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
462 				      unsigned long end_pfn)
463 {
464 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
465 
466 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
467 		pgdat->node_start_pfn = start_pfn;
468 
469 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
470 					pgdat->node_start_pfn;
471 }
472 
473 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
474 {
475 	struct pglist_data *pgdat = zone->zone_pgdat;
476 	int nr_pages = PAGES_PER_SECTION;
477 	int nid = pgdat->node_id;
478 	int zone_type;
479 	unsigned long flags, pfn;
480 	int ret;
481 
482 	zone_type = zone - pgdat->node_zones;
483 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
484 	if (ret)
485 		return ret;
486 
487 	pgdat_resize_lock(zone->zone_pgdat, &flags);
488 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
489 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
490 			phys_start_pfn + nr_pages);
491 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
492 	memmap_init_zone(nr_pages, nid, zone_type,
493 			 phys_start_pfn, MEMMAP_HOTPLUG);
494 
495 	/* online_page_range is called later and expects pages reserved */
496 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
497 		if (!pfn_valid(pfn))
498 			continue;
499 
500 		SetPageReserved(pfn_to_page(pfn));
501 	}
502 	return 0;
503 }
504 
505 static int __meminit __add_section(int nid, struct zone *zone,
506 					unsigned long phys_start_pfn)
507 {
508 	int ret;
509 
510 	if (pfn_valid(phys_start_pfn))
511 		return -EEXIST;
512 
513 	ret = sparse_add_one_section(zone, phys_start_pfn);
514 
515 	if (ret < 0)
516 		return ret;
517 
518 	ret = __add_zone(zone, phys_start_pfn);
519 
520 	if (ret < 0)
521 		return ret;
522 
523 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
524 }
525 
526 /*
527  * Reasonably generic function for adding memory.  It is
528  * expected that archs that support memory hotplug will
529  * call this function after deciding the zone to which to
530  * add the new pages.
531  */
532 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
533 			unsigned long nr_pages)
534 {
535 	unsigned long i;
536 	int err = 0;
537 	int start_sec, end_sec;
538 	struct vmem_altmap *altmap;
539 
540 	clear_zone_contiguous(zone);
541 
542 	/* during initialize mem_map, align hot-added range to section */
543 	start_sec = pfn_to_section_nr(phys_start_pfn);
544 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
545 
546 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
547 	if (altmap) {
548 		/*
549 		 * Validate altmap is within bounds of the total request
550 		 */
551 		if (altmap->base_pfn != phys_start_pfn
552 				|| vmem_altmap_offset(altmap) > nr_pages) {
553 			pr_warn_once("memory add fail, invalid altmap\n");
554 			err = -EINVAL;
555 			goto out;
556 		}
557 		altmap->alloc = 0;
558 	}
559 
560 	for (i = start_sec; i <= end_sec; i++) {
561 		err = __add_section(nid, zone, section_nr_to_pfn(i));
562 
563 		/*
564 		 * EEXIST is finally dealt with by ioresource collision
565 		 * check. see add_memory() => register_memory_resource()
566 		 * Warning will be printed if there is collision.
567 		 */
568 		if (err && (err != -EEXIST))
569 			break;
570 		err = 0;
571 	}
572 	vmemmap_populate_print_last();
573 out:
574 	set_zone_contiguous(zone);
575 	return err;
576 }
577 EXPORT_SYMBOL_GPL(__add_pages);
578 
579 #ifdef CONFIG_MEMORY_HOTREMOVE
580 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
581 static int find_smallest_section_pfn(int nid, struct zone *zone,
582 				     unsigned long start_pfn,
583 				     unsigned long end_pfn)
584 {
585 	struct mem_section *ms;
586 
587 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
588 		ms = __pfn_to_section(start_pfn);
589 
590 		if (unlikely(!valid_section(ms)))
591 			continue;
592 
593 		if (unlikely(pfn_to_nid(start_pfn) != nid))
594 			continue;
595 
596 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
597 			continue;
598 
599 		return start_pfn;
600 	}
601 
602 	return 0;
603 }
604 
605 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
606 static int find_biggest_section_pfn(int nid, struct zone *zone,
607 				    unsigned long start_pfn,
608 				    unsigned long end_pfn)
609 {
610 	struct mem_section *ms;
611 	unsigned long pfn;
612 
613 	/* pfn is the end pfn of a memory section. */
614 	pfn = end_pfn - 1;
615 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
616 		ms = __pfn_to_section(pfn);
617 
618 		if (unlikely(!valid_section(ms)))
619 			continue;
620 
621 		if (unlikely(pfn_to_nid(pfn) != nid))
622 			continue;
623 
624 		if (zone && zone != page_zone(pfn_to_page(pfn)))
625 			continue;
626 
627 		return pfn;
628 	}
629 
630 	return 0;
631 }
632 
633 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
634 			     unsigned long end_pfn)
635 {
636 	unsigned long zone_start_pfn = zone->zone_start_pfn;
637 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
638 	unsigned long zone_end_pfn = z;
639 	unsigned long pfn;
640 	struct mem_section *ms;
641 	int nid = zone_to_nid(zone);
642 
643 	zone_span_writelock(zone);
644 	if (zone_start_pfn == start_pfn) {
645 		/*
646 		 * If the section is smallest section in the zone, it need
647 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
648 		 * In this case, we find second smallest valid mem_section
649 		 * for shrinking zone.
650 		 */
651 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
652 						zone_end_pfn);
653 		if (pfn) {
654 			zone->zone_start_pfn = pfn;
655 			zone->spanned_pages = zone_end_pfn - pfn;
656 		}
657 	} else if (zone_end_pfn == end_pfn) {
658 		/*
659 		 * If the section is biggest section in the zone, it need
660 		 * shrink zone->spanned_pages.
661 		 * In this case, we find second biggest valid mem_section for
662 		 * shrinking zone.
663 		 */
664 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
665 					       start_pfn);
666 		if (pfn)
667 			zone->spanned_pages = pfn - zone_start_pfn + 1;
668 	}
669 
670 	/*
671 	 * The section is not biggest or smallest mem_section in the zone, it
672 	 * only creates a hole in the zone. So in this case, we need not
673 	 * change the zone. But perhaps, the zone has only hole data. Thus
674 	 * it check the zone has only hole or not.
675 	 */
676 	pfn = zone_start_pfn;
677 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
678 		ms = __pfn_to_section(pfn);
679 
680 		if (unlikely(!valid_section(ms)))
681 			continue;
682 
683 		if (page_zone(pfn_to_page(pfn)) != zone)
684 			continue;
685 
686 		 /* If the section is current section, it continues the loop */
687 		if (start_pfn == pfn)
688 			continue;
689 
690 		/* If we find valid section, we have nothing to do */
691 		zone_span_writeunlock(zone);
692 		return;
693 	}
694 
695 	/* The zone has no valid section */
696 	zone->zone_start_pfn = 0;
697 	zone->spanned_pages = 0;
698 	zone_span_writeunlock(zone);
699 }
700 
701 static void shrink_pgdat_span(struct pglist_data *pgdat,
702 			      unsigned long start_pfn, unsigned long end_pfn)
703 {
704 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
705 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
706 	unsigned long pgdat_end_pfn = p;
707 	unsigned long pfn;
708 	struct mem_section *ms;
709 	int nid = pgdat->node_id;
710 
711 	if (pgdat_start_pfn == start_pfn) {
712 		/*
713 		 * If the section is smallest section in the pgdat, it need
714 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
715 		 * In this case, we find second smallest valid mem_section
716 		 * for shrinking zone.
717 		 */
718 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
719 						pgdat_end_pfn);
720 		if (pfn) {
721 			pgdat->node_start_pfn = pfn;
722 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
723 		}
724 	} else if (pgdat_end_pfn == end_pfn) {
725 		/*
726 		 * If the section is biggest section in the pgdat, it need
727 		 * shrink pgdat->node_spanned_pages.
728 		 * In this case, we find second biggest valid mem_section for
729 		 * shrinking zone.
730 		 */
731 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
732 					       start_pfn);
733 		if (pfn)
734 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
735 	}
736 
737 	/*
738 	 * If the section is not biggest or smallest mem_section in the pgdat,
739 	 * it only creates a hole in the pgdat. So in this case, we need not
740 	 * change the pgdat.
741 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
742 	 * has only hole or not.
743 	 */
744 	pfn = pgdat_start_pfn;
745 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
746 		ms = __pfn_to_section(pfn);
747 
748 		if (unlikely(!valid_section(ms)))
749 			continue;
750 
751 		if (pfn_to_nid(pfn) != nid)
752 			continue;
753 
754 		 /* If the section is current section, it continues the loop */
755 		if (start_pfn == pfn)
756 			continue;
757 
758 		/* If we find valid section, we have nothing to do */
759 		return;
760 	}
761 
762 	/* The pgdat has no valid section */
763 	pgdat->node_start_pfn = 0;
764 	pgdat->node_spanned_pages = 0;
765 }
766 
767 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
768 {
769 	struct pglist_data *pgdat = zone->zone_pgdat;
770 	int nr_pages = PAGES_PER_SECTION;
771 	int zone_type;
772 	unsigned long flags;
773 
774 	zone_type = zone - pgdat->node_zones;
775 
776 	pgdat_resize_lock(zone->zone_pgdat, &flags);
777 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
778 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
779 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
780 }
781 
782 static int __remove_section(struct zone *zone, struct mem_section *ms,
783 		unsigned long map_offset)
784 {
785 	unsigned long start_pfn;
786 	int scn_nr;
787 	int ret = -EINVAL;
788 
789 	if (!valid_section(ms))
790 		return ret;
791 
792 	ret = unregister_memory_section(ms);
793 	if (ret)
794 		return ret;
795 
796 	scn_nr = __section_nr(ms);
797 	start_pfn = section_nr_to_pfn(scn_nr);
798 	__remove_zone(zone, start_pfn);
799 
800 	sparse_remove_one_section(zone, ms, map_offset);
801 	return 0;
802 }
803 
804 /**
805  * __remove_pages() - remove sections of pages from a zone
806  * @zone: zone from which pages need to be removed
807  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
808  * @nr_pages: number of pages to remove (must be multiple of section size)
809  *
810  * Generic helper function to remove section mappings and sysfs entries
811  * for the section of the memory we are removing. Caller needs to make
812  * sure that pages are marked reserved and zones are adjust properly by
813  * calling offline_pages().
814  */
815 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
816 		 unsigned long nr_pages)
817 {
818 	unsigned long i;
819 	unsigned long map_offset = 0;
820 	int sections_to_remove, ret = 0;
821 
822 	/* In the ZONE_DEVICE case device driver owns the memory region */
823 	if (is_dev_zone(zone)) {
824 		struct page *page = pfn_to_page(phys_start_pfn);
825 		struct vmem_altmap *altmap;
826 
827 		altmap = to_vmem_altmap((unsigned long) page);
828 		if (altmap)
829 			map_offset = vmem_altmap_offset(altmap);
830 	} else {
831 		resource_size_t start, size;
832 
833 		start = phys_start_pfn << PAGE_SHIFT;
834 		size = nr_pages * PAGE_SIZE;
835 
836 		ret = release_mem_region_adjustable(&iomem_resource, start,
837 					size);
838 		if (ret) {
839 			resource_size_t endres = start + size - 1;
840 
841 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
842 					&start, &endres, ret);
843 		}
844 	}
845 
846 	clear_zone_contiguous(zone);
847 
848 	/*
849 	 * We can only remove entire sections
850 	 */
851 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
852 	BUG_ON(nr_pages % PAGES_PER_SECTION);
853 
854 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
855 	for (i = 0; i < sections_to_remove; i++) {
856 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
857 
858 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
859 		map_offset = 0;
860 		if (ret)
861 			break;
862 	}
863 
864 	set_zone_contiguous(zone);
865 
866 	return ret;
867 }
868 #endif /* CONFIG_MEMORY_HOTREMOVE */
869 
870 int set_online_page_callback(online_page_callback_t callback)
871 {
872 	int rc = -EINVAL;
873 
874 	get_online_mems();
875 	mutex_lock(&online_page_callback_lock);
876 
877 	if (online_page_callback == generic_online_page) {
878 		online_page_callback = callback;
879 		rc = 0;
880 	}
881 
882 	mutex_unlock(&online_page_callback_lock);
883 	put_online_mems();
884 
885 	return rc;
886 }
887 EXPORT_SYMBOL_GPL(set_online_page_callback);
888 
889 int restore_online_page_callback(online_page_callback_t callback)
890 {
891 	int rc = -EINVAL;
892 
893 	get_online_mems();
894 	mutex_lock(&online_page_callback_lock);
895 
896 	if (online_page_callback == callback) {
897 		online_page_callback = generic_online_page;
898 		rc = 0;
899 	}
900 
901 	mutex_unlock(&online_page_callback_lock);
902 	put_online_mems();
903 
904 	return rc;
905 }
906 EXPORT_SYMBOL_GPL(restore_online_page_callback);
907 
908 void __online_page_set_limits(struct page *page)
909 {
910 }
911 EXPORT_SYMBOL_GPL(__online_page_set_limits);
912 
913 void __online_page_increment_counters(struct page *page)
914 {
915 	adjust_managed_page_count(page, 1);
916 }
917 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
918 
919 void __online_page_free(struct page *page)
920 {
921 	__free_reserved_page(page);
922 }
923 EXPORT_SYMBOL_GPL(__online_page_free);
924 
925 static void generic_online_page(struct page *page)
926 {
927 	__online_page_set_limits(page);
928 	__online_page_increment_counters(page);
929 	__online_page_free(page);
930 }
931 
932 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
933 			void *arg)
934 {
935 	unsigned long i;
936 	unsigned long onlined_pages = *(unsigned long *)arg;
937 	struct page *page;
938 	if (PageReserved(pfn_to_page(start_pfn)))
939 		for (i = 0; i < nr_pages; i++) {
940 			page = pfn_to_page(start_pfn + i);
941 			(*online_page_callback)(page);
942 			onlined_pages++;
943 		}
944 	*(unsigned long *)arg = onlined_pages;
945 	return 0;
946 }
947 
948 #ifdef CONFIG_MOVABLE_NODE
949 /*
950  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
951  * normal memory.
952  */
953 static bool can_online_high_movable(struct zone *zone)
954 {
955 	return true;
956 }
957 #else /* CONFIG_MOVABLE_NODE */
958 /* ensure every online node has NORMAL memory */
959 static bool can_online_high_movable(struct zone *zone)
960 {
961 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
962 }
963 #endif /* CONFIG_MOVABLE_NODE */
964 
965 /* check which state of node_states will be changed when online memory */
966 static void node_states_check_changes_online(unsigned long nr_pages,
967 	struct zone *zone, struct memory_notify *arg)
968 {
969 	int nid = zone_to_nid(zone);
970 	enum zone_type zone_last = ZONE_NORMAL;
971 
972 	/*
973 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
974 	 * contains nodes which have zones of 0...ZONE_NORMAL,
975 	 * set zone_last to ZONE_NORMAL.
976 	 *
977 	 * If we don't have HIGHMEM nor movable node,
978 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
979 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
980 	 */
981 	if (N_MEMORY == N_NORMAL_MEMORY)
982 		zone_last = ZONE_MOVABLE;
983 
984 	/*
985 	 * if the memory to be online is in a zone of 0...zone_last, and
986 	 * the zones of 0...zone_last don't have memory before online, we will
987 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
988 	 * the memory is online.
989 	 */
990 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
991 		arg->status_change_nid_normal = nid;
992 	else
993 		arg->status_change_nid_normal = -1;
994 
995 #ifdef CONFIG_HIGHMEM
996 	/*
997 	 * If we have movable node, node_states[N_HIGH_MEMORY]
998 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
999 	 * set zone_last to ZONE_HIGHMEM.
1000 	 *
1001 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1002 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1003 	 * set zone_last to ZONE_MOVABLE.
1004 	 */
1005 	zone_last = ZONE_HIGHMEM;
1006 	if (N_MEMORY == N_HIGH_MEMORY)
1007 		zone_last = ZONE_MOVABLE;
1008 
1009 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1010 		arg->status_change_nid_high = nid;
1011 	else
1012 		arg->status_change_nid_high = -1;
1013 #else
1014 	arg->status_change_nid_high = arg->status_change_nid_normal;
1015 #endif
1016 
1017 	/*
1018 	 * if the node don't have memory befor online, we will need to
1019 	 * set the node to node_states[N_MEMORY] after the memory
1020 	 * is online.
1021 	 */
1022 	if (!node_state(nid, N_MEMORY))
1023 		arg->status_change_nid = nid;
1024 	else
1025 		arg->status_change_nid = -1;
1026 }
1027 
1028 static void node_states_set_node(int node, struct memory_notify *arg)
1029 {
1030 	if (arg->status_change_nid_normal >= 0)
1031 		node_set_state(node, N_NORMAL_MEMORY);
1032 
1033 	if (arg->status_change_nid_high >= 0)
1034 		node_set_state(node, N_HIGH_MEMORY);
1035 
1036 	node_set_state(node, N_MEMORY);
1037 }
1038 
1039 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1040 		   enum zone_type target, int *zone_shift)
1041 {
1042 	struct zone *zone = page_zone(pfn_to_page(pfn));
1043 	enum zone_type idx = zone_idx(zone);
1044 	int i;
1045 
1046 	*zone_shift = 0;
1047 
1048 	if (idx < target) {
1049 		/* pages must be at end of current zone */
1050 		if (pfn + nr_pages != zone_end_pfn(zone))
1051 			return false;
1052 
1053 		/* no zones in use between current zone and target */
1054 		for (i = idx + 1; i < target; i++)
1055 			if (zone_is_initialized(zone - idx + i))
1056 				return false;
1057 	}
1058 
1059 	if (target < idx) {
1060 		/* pages must be at beginning of current zone */
1061 		if (pfn != zone->zone_start_pfn)
1062 			return false;
1063 
1064 		/* no zones in use between current zone and target */
1065 		for (i = target + 1; i < idx; i++)
1066 			if (zone_is_initialized(zone - idx + i))
1067 				return false;
1068 	}
1069 
1070 	*zone_shift = target - idx;
1071 	return true;
1072 }
1073 
1074 /* Must be protected by mem_hotplug_begin() */
1075 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1076 {
1077 	unsigned long flags;
1078 	unsigned long onlined_pages = 0;
1079 	struct zone *zone;
1080 	int need_zonelists_rebuild = 0;
1081 	int nid;
1082 	int ret;
1083 	struct memory_notify arg;
1084 	int zone_shift = 0;
1085 
1086 	/*
1087 	 * This doesn't need a lock to do pfn_to_page().
1088 	 * The section can't be removed here because of the
1089 	 * memory_block->state_mutex.
1090 	 */
1091 	zone = page_zone(pfn_to_page(pfn));
1092 
1093 	if ((zone_idx(zone) > ZONE_NORMAL ||
1094 	    online_type == MMOP_ONLINE_MOVABLE) &&
1095 	    !can_online_high_movable(zone))
1096 		return -EINVAL;
1097 
1098 	if (online_type == MMOP_ONLINE_KERNEL) {
1099 		if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1100 			return -EINVAL;
1101 	} else if (online_type == MMOP_ONLINE_MOVABLE) {
1102 		if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1103 			return -EINVAL;
1104 	}
1105 
1106 	zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1107 	if (!zone)
1108 		return -EINVAL;
1109 
1110 	arg.start_pfn = pfn;
1111 	arg.nr_pages = nr_pages;
1112 	node_states_check_changes_online(nr_pages, zone, &arg);
1113 
1114 	nid = zone_to_nid(zone);
1115 
1116 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1117 	ret = notifier_to_errno(ret);
1118 	if (ret)
1119 		goto failed_addition;
1120 
1121 	/*
1122 	 * If this zone is not populated, then it is not in zonelist.
1123 	 * This means the page allocator ignores this zone.
1124 	 * So, zonelist must be updated after online.
1125 	 */
1126 	mutex_lock(&zonelists_mutex);
1127 	if (!populated_zone(zone)) {
1128 		need_zonelists_rebuild = 1;
1129 		build_all_zonelists(NULL, zone);
1130 	}
1131 
1132 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1133 		online_pages_range);
1134 	if (ret) {
1135 		if (need_zonelists_rebuild)
1136 			zone_pcp_reset(zone);
1137 		mutex_unlock(&zonelists_mutex);
1138 		goto failed_addition;
1139 	}
1140 
1141 	zone->present_pages += onlined_pages;
1142 
1143 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1144 	zone->zone_pgdat->node_present_pages += onlined_pages;
1145 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1146 
1147 	if (onlined_pages) {
1148 		node_states_set_node(nid, &arg);
1149 		if (need_zonelists_rebuild)
1150 			build_all_zonelists(NULL, NULL);
1151 		else
1152 			zone_pcp_update(zone);
1153 	}
1154 
1155 	mutex_unlock(&zonelists_mutex);
1156 
1157 	init_per_zone_wmark_min();
1158 
1159 	if (onlined_pages) {
1160 		kswapd_run(nid);
1161 		kcompactd_run(nid);
1162 	}
1163 
1164 	vm_total_pages = nr_free_pagecache_pages();
1165 
1166 	writeback_set_ratelimit();
1167 
1168 	if (onlined_pages)
1169 		memory_notify(MEM_ONLINE, &arg);
1170 	return 0;
1171 
1172 failed_addition:
1173 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1174 		 (unsigned long long) pfn << PAGE_SHIFT,
1175 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1176 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1177 	return ret;
1178 }
1179 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1180 
1181 static void reset_node_present_pages(pg_data_t *pgdat)
1182 {
1183 	struct zone *z;
1184 
1185 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1186 		z->present_pages = 0;
1187 
1188 	pgdat->node_present_pages = 0;
1189 }
1190 
1191 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1192 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1193 {
1194 	struct pglist_data *pgdat;
1195 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1196 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1197 	unsigned long start_pfn = PFN_DOWN(start);
1198 
1199 	pgdat = NODE_DATA(nid);
1200 	if (!pgdat) {
1201 		pgdat = arch_alloc_nodedata(nid);
1202 		if (!pgdat)
1203 			return NULL;
1204 
1205 		arch_refresh_nodedata(nid, pgdat);
1206 	} else {
1207 		/* Reset the nr_zones, order and classzone_idx before reuse */
1208 		pgdat->nr_zones = 0;
1209 		pgdat->kswapd_order = 0;
1210 		pgdat->kswapd_classzone_idx = 0;
1211 	}
1212 
1213 	/* we can use NODE_DATA(nid) from here */
1214 
1215 	/* init node's zones as empty zones, we don't have any present pages.*/
1216 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1217 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1218 
1219 	/*
1220 	 * The node we allocated has no zone fallback lists. For avoiding
1221 	 * to access not-initialized zonelist, build here.
1222 	 */
1223 	mutex_lock(&zonelists_mutex);
1224 	build_all_zonelists(pgdat, NULL);
1225 	mutex_unlock(&zonelists_mutex);
1226 
1227 	/*
1228 	 * zone->managed_pages is set to an approximate value in
1229 	 * free_area_init_core(), which will cause
1230 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1231 	 * So reset it to 0 before any memory is onlined.
1232 	 */
1233 	reset_node_managed_pages(pgdat);
1234 
1235 	/*
1236 	 * When memory is hot-added, all the memory is in offline state. So
1237 	 * clear all zones' present_pages because they will be updated in
1238 	 * online_pages() and offline_pages().
1239 	 */
1240 	reset_node_present_pages(pgdat);
1241 
1242 	return pgdat;
1243 }
1244 
1245 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1246 {
1247 	arch_refresh_nodedata(nid, NULL);
1248 	free_percpu(pgdat->per_cpu_nodestats);
1249 	arch_free_nodedata(pgdat);
1250 	return;
1251 }
1252 
1253 
1254 /**
1255  * try_online_node - online a node if offlined
1256  *
1257  * called by cpu_up() to online a node without onlined memory.
1258  */
1259 int try_online_node(int nid)
1260 {
1261 	pg_data_t	*pgdat;
1262 	int	ret;
1263 
1264 	if (node_online(nid))
1265 		return 0;
1266 
1267 	mem_hotplug_begin();
1268 	pgdat = hotadd_new_pgdat(nid, 0);
1269 	if (!pgdat) {
1270 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1271 		ret = -ENOMEM;
1272 		goto out;
1273 	}
1274 	node_set_online(nid);
1275 	ret = register_one_node(nid);
1276 	BUG_ON(ret);
1277 
1278 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1279 		mutex_lock(&zonelists_mutex);
1280 		build_all_zonelists(NULL, NULL);
1281 		mutex_unlock(&zonelists_mutex);
1282 	}
1283 
1284 out:
1285 	mem_hotplug_done();
1286 	return ret;
1287 }
1288 
1289 static int check_hotplug_memory_range(u64 start, u64 size)
1290 {
1291 	u64 start_pfn = PFN_DOWN(start);
1292 	u64 nr_pages = size >> PAGE_SHIFT;
1293 
1294 	/* Memory range must be aligned with section */
1295 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1296 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1297 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1298 				(unsigned long long)start,
1299 				(unsigned long long)size);
1300 		return -EINVAL;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * If movable zone has already been setup, newly added memory should be check.
1308  * If its address is higher than movable zone, it should be added as movable.
1309  * Without this check, movable zone may overlap with other zone.
1310  */
1311 static int should_add_memory_movable(int nid, u64 start, u64 size)
1312 {
1313 	unsigned long start_pfn = start >> PAGE_SHIFT;
1314 	pg_data_t *pgdat = NODE_DATA(nid);
1315 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1316 
1317 	if (zone_is_empty(movable_zone))
1318 		return 0;
1319 
1320 	if (movable_zone->zone_start_pfn <= start_pfn)
1321 		return 1;
1322 
1323 	return 0;
1324 }
1325 
1326 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1327 		bool for_device)
1328 {
1329 #ifdef CONFIG_ZONE_DEVICE
1330 	if (for_device)
1331 		return ZONE_DEVICE;
1332 #endif
1333 	if (should_add_memory_movable(nid, start, size))
1334 		return ZONE_MOVABLE;
1335 
1336 	return zone_default;
1337 }
1338 
1339 static int online_memory_block(struct memory_block *mem, void *arg)
1340 {
1341 	return device_online(&mem->dev);
1342 }
1343 
1344 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1345 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1346 {
1347 	u64 start, size;
1348 	pg_data_t *pgdat = NULL;
1349 	bool new_pgdat;
1350 	bool new_node;
1351 	int ret;
1352 
1353 	start = res->start;
1354 	size = resource_size(res);
1355 
1356 	ret = check_hotplug_memory_range(start, size);
1357 	if (ret)
1358 		return ret;
1359 
1360 	{	/* Stupid hack to suppress address-never-null warning */
1361 		void *p = NODE_DATA(nid);
1362 		new_pgdat = !p;
1363 	}
1364 
1365 	mem_hotplug_begin();
1366 
1367 	/*
1368 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1369 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1370 	 * this new range and calculate total pages correctly.  The range will
1371 	 * be removed at hot-remove time.
1372 	 */
1373 	memblock_add_node(start, size, nid);
1374 
1375 	new_node = !node_online(nid);
1376 	if (new_node) {
1377 		pgdat = hotadd_new_pgdat(nid, start);
1378 		ret = -ENOMEM;
1379 		if (!pgdat)
1380 			goto error;
1381 	}
1382 
1383 	/* call arch's memory hotadd */
1384 	ret = arch_add_memory(nid, start, size, false);
1385 
1386 	if (ret < 0)
1387 		goto error;
1388 
1389 	/* we online node here. we can't roll back from here. */
1390 	node_set_online(nid);
1391 
1392 	if (new_node) {
1393 		ret = register_one_node(nid);
1394 		/*
1395 		 * If sysfs file of new node can't create, cpu on the node
1396 		 * can't be hot-added. There is no rollback way now.
1397 		 * So, check by BUG_ON() to catch it reluctantly..
1398 		 */
1399 		BUG_ON(ret);
1400 	}
1401 
1402 	/* create new memmap entry */
1403 	firmware_map_add_hotplug(start, start + size, "System RAM");
1404 
1405 	/* online pages if requested */
1406 	if (online)
1407 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1408 				  NULL, online_memory_block);
1409 
1410 	goto out;
1411 
1412 error:
1413 	/* rollback pgdat allocation and others */
1414 	if (new_pgdat)
1415 		rollback_node_hotadd(nid, pgdat);
1416 	memblock_remove(start, size);
1417 
1418 out:
1419 	mem_hotplug_done();
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(add_memory_resource);
1423 
1424 int __ref add_memory(int nid, u64 start, u64 size)
1425 {
1426 	struct resource *res;
1427 	int ret;
1428 
1429 	res = register_memory_resource(start, size);
1430 	if (IS_ERR(res))
1431 		return PTR_ERR(res);
1432 
1433 	ret = add_memory_resource(nid, res, memhp_auto_online);
1434 	if (ret < 0)
1435 		release_memory_resource(res);
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL_GPL(add_memory);
1439 
1440 #ifdef CONFIG_MEMORY_HOTREMOVE
1441 /*
1442  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1443  * set and the size of the free page is given by page_order(). Using this,
1444  * the function determines if the pageblock contains only free pages.
1445  * Due to buddy contraints, a free page at least the size of a pageblock will
1446  * be located at the start of the pageblock
1447  */
1448 static inline int pageblock_free(struct page *page)
1449 {
1450 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1451 }
1452 
1453 /* Return the start of the next active pageblock after a given page */
1454 static struct page *next_active_pageblock(struct page *page)
1455 {
1456 	/* Ensure the starting page is pageblock-aligned */
1457 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1458 
1459 	/* If the entire pageblock is free, move to the end of free page */
1460 	if (pageblock_free(page)) {
1461 		int order;
1462 		/* be careful. we don't have locks, page_order can be changed.*/
1463 		order = page_order(page);
1464 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1465 			return page + (1 << order);
1466 	}
1467 
1468 	return page + pageblock_nr_pages;
1469 }
1470 
1471 /* Checks if this range of memory is likely to be hot-removable. */
1472 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1473 {
1474 	struct page *page = pfn_to_page(start_pfn);
1475 	struct page *end_page = page + nr_pages;
1476 
1477 	/* Check the starting page of each pageblock within the range */
1478 	for (; page < end_page; page = next_active_pageblock(page)) {
1479 		if (!is_pageblock_removable_nolock(page))
1480 			return false;
1481 		cond_resched();
1482 	}
1483 
1484 	/* All pageblocks in the memory block are likely to be hot-removable */
1485 	return true;
1486 }
1487 
1488 /*
1489  * Confirm all pages in a range [start, end) belong to the same zone.
1490  * When true, return its valid [start, end).
1491  */
1492 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1493 			 unsigned long *valid_start, unsigned long *valid_end)
1494 {
1495 	unsigned long pfn, sec_end_pfn;
1496 	unsigned long start, end;
1497 	struct zone *zone = NULL;
1498 	struct page *page;
1499 	int i;
1500 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1501 	     pfn < end_pfn;
1502 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1503 		/* Make sure the memory section is present first */
1504 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1505 			continue;
1506 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1507 		     pfn += MAX_ORDER_NR_PAGES) {
1508 			i = 0;
1509 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1510 			while ((i < MAX_ORDER_NR_PAGES) &&
1511 				!pfn_valid_within(pfn + i))
1512 				i++;
1513 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1514 				continue;
1515 			page = pfn_to_page(pfn + i);
1516 			if (zone && page_zone(page) != zone)
1517 				return 0;
1518 			if (!zone)
1519 				start = pfn + i;
1520 			zone = page_zone(page);
1521 			end = pfn + MAX_ORDER_NR_PAGES;
1522 		}
1523 	}
1524 
1525 	if (zone) {
1526 		*valid_start = start;
1527 		*valid_end = min(end, end_pfn);
1528 		return 1;
1529 	} else {
1530 		return 0;
1531 	}
1532 }
1533 
1534 /*
1535  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1536  * non-lru movable pages and hugepages). We scan pfn because it's much
1537  * easier than scanning over linked list. This function returns the pfn
1538  * of the first found movable page if it's found, otherwise 0.
1539  */
1540 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1541 {
1542 	unsigned long pfn;
1543 	struct page *page;
1544 	for (pfn = start; pfn < end; pfn++) {
1545 		if (pfn_valid(pfn)) {
1546 			page = pfn_to_page(pfn);
1547 			if (PageLRU(page))
1548 				return pfn;
1549 			if (__PageMovable(page))
1550 				return pfn;
1551 			if (PageHuge(page)) {
1552 				if (page_huge_active(page))
1553 					return pfn;
1554 				else
1555 					pfn = round_up(pfn + 1,
1556 						1 << compound_order(page)) - 1;
1557 			}
1558 		}
1559 	}
1560 	return 0;
1561 }
1562 
1563 static struct page *new_node_page(struct page *page, unsigned long private,
1564 		int **result)
1565 {
1566 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1567 	int nid = page_to_nid(page);
1568 	nodemask_t nmask = node_states[N_MEMORY];
1569 	struct page *new_page = NULL;
1570 
1571 	/*
1572 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
1573 	 * accordance with memory policy of the user process if possible. For
1574 	 * now as a simple work-around, we use the next node for destination.
1575 	 */
1576 	if (PageHuge(page))
1577 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1578 					next_node_in(nid, nmask));
1579 
1580 	node_clear(nid, nmask);
1581 
1582 	if (PageHighMem(page)
1583 	    || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1584 		gfp_mask |= __GFP_HIGHMEM;
1585 
1586 	if (!nodes_empty(nmask))
1587 		new_page = __alloc_pages_nodemask(gfp_mask, 0,
1588 					node_zonelist(nid, gfp_mask), &nmask);
1589 	if (!new_page)
1590 		new_page = __alloc_pages(gfp_mask, 0,
1591 					node_zonelist(nid, gfp_mask));
1592 
1593 	return new_page;
1594 }
1595 
1596 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1597 static int
1598 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1599 {
1600 	unsigned long pfn;
1601 	struct page *page;
1602 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1603 	int not_managed = 0;
1604 	int ret = 0;
1605 	LIST_HEAD(source);
1606 
1607 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1608 		if (!pfn_valid(pfn))
1609 			continue;
1610 		page = pfn_to_page(pfn);
1611 
1612 		if (PageHuge(page)) {
1613 			struct page *head = compound_head(page);
1614 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1615 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1616 				ret = -EBUSY;
1617 				break;
1618 			}
1619 			if (isolate_huge_page(page, &source))
1620 				move_pages -= 1 << compound_order(head);
1621 			continue;
1622 		}
1623 
1624 		if (!get_page_unless_zero(page))
1625 			continue;
1626 		/*
1627 		 * We can skip free pages. And we can deal with pages on
1628 		 * LRU and non-lru movable pages.
1629 		 */
1630 		if (PageLRU(page))
1631 			ret = isolate_lru_page(page);
1632 		else
1633 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1634 		if (!ret) { /* Success */
1635 			put_page(page);
1636 			list_add_tail(&page->lru, &source);
1637 			move_pages--;
1638 			if (!__PageMovable(page))
1639 				inc_node_page_state(page, NR_ISOLATED_ANON +
1640 						    page_is_file_cache(page));
1641 
1642 		} else {
1643 #ifdef CONFIG_DEBUG_VM
1644 			pr_alert("failed to isolate pfn %lx\n", pfn);
1645 			dump_page(page, "isolation failed");
1646 #endif
1647 			put_page(page);
1648 			/* Because we don't have big zone->lock. we should
1649 			   check this again here. */
1650 			if (page_count(page)) {
1651 				not_managed++;
1652 				ret = -EBUSY;
1653 				break;
1654 			}
1655 		}
1656 	}
1657 	if (!list_empty(&source)) {
1658 		if (not_managed) {
1659 			putback_movable_pages(&source);
1660 			goto out;
1661 		}
1662 
1663 		/* Allocate a new page from the nearest neighbor node */
1664 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1665 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1666 		if (ret)
1667 			putback_movable_pages(&source);
1668 	}
1669 out:
1670 	return ret;
1671 }
1672 
1673 /*
1674  * remove from free_area[] and mark all as Reserved.
1675  */
1676 static int
1677 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1678 			void *data)
1679 {
1680 	__offline_isolated_pages(start, start + nr_pages);
1681 	return 0;
1682 }
1683 
1684 static void
1685 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1686 {
1687 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1688 				offline_isolated_pages_cb);
1689 }
1690 
1691 /*
1692  * Check all pages in range, recoreded as memory resource, are isolated.
1693  */
1694 static int
1695 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1696 			void *data)
1697 {
1698 	int ret;
1699 	long offlined = *(long *)data;
1700 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1701 	offlined = nr_pages;
1702 	if (!ret)
1703 		*(long *)data += offlined;
1704 	return ret;
1705 }
1706 
1707 static long
1708 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1709 {
1710 	long offlined = 0;
1711 	int ret;
1712 
1713 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1714 			check_pages_isolated_cb);
1715 	if (ret < 0)
1716 		offlined = (long)ret;
1717 	return offlined;
1718 }
1719 
1720 #ifdef CONFIG_MOVABLE_NODE
1721 /*
1722  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1723  * normal memory.
1724  */
1725 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1726 {
1727 	return true;
1728 }
1729 #else /* CONFIG_MOVABLE_NODE */
1730 /* ensure the node has NORMAL memory if it is still online */
1731 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1732 {
1733 	struct pglist_data *pgdat = zone->zone_pgdat;
1734 	unsigned long present_pages = 0;
1735 	enum zone_type zt;
1736 
1737 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1738 		present_pages += pgdat->node_zones[zt].present_pages;
1739 
1740 	if (present_pages > nr_pages)
1741 		return true;
1742 
1743 	present_pages = 0;
1744 	for (; zt <= ZONE_MOVABLE; zt++)
1745 		present_pages += pgdat->node_zones[zt].present_pages;
1746 
1747 	/*
1748 	 * we can't offline the last normal memory until all
1749 	 * higher memory is offlined.
1750 	 */
1751 	return present_pages == 0;
1752 }
1753 #endif /* CONFIG_MOVABLE_NODE */
1754 
1755 static int __init cmdline_parse_movable_node(char *p)
1756 {
1757 #ifdef CONFIG_MOVABLE_NODE
1758 	movable_node_enabled = true;
1759 #else
1760 	pr_warn("movable_node option not supported\n");
1761 #endif
1762 	return 0;
1763 }
1764 early_param("movable_node", cmdline_parse_movable_node);
1765 
1766 /* check which state of node_states will be changed when offline memory */
1767 static void node_states_check_changes_offline(unsigned long nr_pages,
1768 		struct zone *zone, struct memory_notify *arg)
1769 {
1770 	struct pglist_data *pgdat = zone->zone_pgdat;
1771 	unsigned long present_pages = 0;
1772 	enum zone_type zt, zone_last = ZONE_NORMAL;
1773 
1774 	/*
1775 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1776 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1777 	 * set zone_last to ZONE_NORMAL.
1778 	 *
1779 	 * If we don't have HIGHMEM nor movable node,
1780 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1781 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1782 	 */
1783 	if (N_MEMORY == N_NORMAL_MEMORY)
1784 		zone_last = ZONE_MOVABLE;
1785 
1786 	/*
1787 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1788 	 * If the memory to be offline is in a zone of 0...zone_last,
1789 	 * and it is the last present memory, 0...zone_last will
1790 	 * become empty after offline , thus we can determind we will
1791 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1792 	 */
1793 	for (zt = 0; zt <= zone_last; zt++)
1794 		present_pages += pgdat->node_zones[zt].present_pages;
1795 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1796 		arg->status_change_nid_normal = zone_to_nid(zone);
1797 	else
1798 		arg->status_change_nid_normal = -1;
1799 
1800 #ifdef CONFIG_HIGHMEM
1801 	/*
1802 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1803 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1804 	 * set zone_last to ZONE_HIGHMEM.
1805 	 *
1806 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1807 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1808 	 * set zone_last to ZONE_MOVABLE.
1809 	 */
1810 	zone_last = ZONE_HIGHMEM;
1811 	if (N_MEMORY == N_HIGH_MEMORY)
1812 		zone_last = ZONE_MOVABLE;
1813 
1814 	for (; zt <= zone_last; zt++)
1815 		present_pages += pgdat->node_zones[zt].present_pages;
1816 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1817 		arg->status_change_nid_high = zone_to_nid(zone);
1818 	else
1819 		arg->status_change_nid_high = -1;
1820 #else
1821 	arg->status_change_nid_high = arg->status_change_nid_normal;
1822 #endif
1823 
1824 	/*
1825 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1826 	 */
1827 	zone_last = ZONE_MOVABLE;
1828 
1829 	/*
1830 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1831 	 * If we try to offline the last present @nr_pages from the node,
1832 	 * we can determind we will need to clear the node from
1833 	 * node_states[N_HIGH_MEMORY].
1834 	 */
1835 	for (; zt <= zone_last; zt++)
1836 		present_pages += pgdat->node_zones[zt].present_pages;
1837 	if (nr_pages >= present_pages)
1838 		arg->status_change_nid = zone_to_nid(zone);
1839 	else
1840 		arg->status_change_nid = -1;
1841 }
1842 
1843 static void node_states_clear_node(int node, struct memory_notify *arg)
1844 {
1845 	if (arg->status_change_nid_normal >= 0)
1846 		node_clear_state(node, N_NORMAL_MEMORY);
1847 
1848 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1849 	    (arg->status_change_nid_high >= 0))
1850 		node_clear_state(node, N_HIGH_MEMORY);
1851 
1852 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1853 	    (arg->status_change_nid >= 0))
1854 		node_clear_state(node, N_MEMORY);
1855 }
1856 
1857 static int __ref __offline_pages(unsigned long start_pfn,
1858 		  unsigned long end_pfn, unsigned long timeout)
1859 {
1860 	unsigned long pfn, nr_pages, expire;
1861 	long offlined_pages;
1862 	int ret, drain, retry_max, node;
1863 	unsigned long flags;
1864 	unsigned long valid_start, valid_end;
1865 	struct zone *zone;
1866 	struct memory_notify arg;
1867 
1868 	/* at least, alignment against pageblock is necessary */
1869 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1870 		return -EINVAL;
1871 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1872 		return -EINVAL;
1873 	/* This makes hotplug much easier...and readable.
1874 	   we assume this for now. .*/
1875 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1876 		return -EINVAL;
1877 
1878 	zone = page_zone(pfn_to_page(valid_start));
1879 	node = zone_to_nid(zone);
1880 	nr_pages = end_pfn - start_pfn;
1881 
1882 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1883 		return -EINVAL;
1884 
1885 	/* set above range as isolated */
1886 	ret = start_isolate_page_range(start_pfn, end_pfn,
1887 				       MIGRATE_MOVABLE, true);
1888 	if (ret)
1889 		return ret;
1890 
1891 	arg.start_pfn = start_pfn;
1892 	arg.nr_pages = nr_pages;
1893 	node_states_check_changes_offline(nr_pages, zone, &arg);
1894 
1895 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1896 	ret = notifier_to_errno(ret);
1897 	if (ret)
1898 		goto failed_removal;
1899 
1900 	pfn = start_pfn;
1901 	expire = jiffies + timeout;
1902 	drain = 0;
1903 	retry_max = 5;
1904 repeat:
1905 	/* start memory hot removal */
1906 	ret = -EAGAIN;
1907 	if (time_after(jiffies, expire))
1908 		goto failed_removal;
1909 	ret = -EINTR;
1910 	if (signal_pending(current))
1911 		goto failed_removal;
1912 	ret = 0;
1913 	if (drain) {
1914 		lru_add_drain_all();
1915 		cond_resched();
1916 		drain_all_pages(zone);
1917 	}
1918 
1919 	pfn = scan_movable_pages(start_pfn, end_pfn);
1920 	if (pfn) { /* We have movable pages */
1921 		ret = do_migrate_range(pfn, end_pfn);
1922 		if (!ret) {
1923 			drain = 1;
1924 			goto repeat;
1925 		} else {
1926 			if (ret < 0)
1927 				if (--retry_max == 0)
1928 					goto failed_removal;
1929 			yield();
1930 			drain = 1;
1931 			goto repeat;
1932 		}
1933 	}
1934 	/* drain all zone's lru pagevec, this is asynchronous... */
1935 	lru_add_drain_all();
1936 	yield();
1937 	/* drain pcp pages, this is synchronous. */
1938 	drain_all_pages(zone);
1939 	/*
1940 	 * dissolve free hugepages in the memory block before doing offlining
1941 	 * actually in order to make hugetlbfs's object counting consistent.
1942 	 */
1943 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1944 	if (ret)
1945 		goto failed_removal;
1946 	/* check again */
1947 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1948 	if (offlined_pages < 0) {
1949 		ret = -EBUSY;
1950 		goto failed_removal;
1951 	}
1952 	pr_info("Offlined Pages %ld\n", offlined_pages);
1953 	/* Ok, all of our target is isolated.
1954 	   We cannot do rollback at this point. */
1955 	offline_isolated_pages(start_pfn, end_pfn);
1956 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1957 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1958 	/* removal success */
1959 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1960 	zone->present_pages -= offlined_pages;
1961 
1962 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1963 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1964 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1965 
1966 	init_per_zone_wmark_min();
1967 
1968 	if (!populated_zone(zone)) {
1969 		zone_pcp_reset(zone);
1970 		mutex_lock(&zonelists_mutex);
1971 		build_all_zonelists(NULL, NULL);
1972 		mutex_unlock(&zonelists_mutex);
1973 	} else
1974 		zone_pcp_update(zone);
1975 
1976 	node_states_clear_node(node, &arg);
1977 	if (arg.status_change_nid >= 0) {
1978 		kswapd_stop(node);
1979 		kcompactd_stop(node);
1980 	}
1981 
1982 	vm_total_pages = nr_free_pagecache_pages();
1983 	writeback_set_ratelimit();
1984 
1985 	memory_notify(MEM_OFFLINE, &arg);
1986 	return 0;
1987 
1988 failed_removal:
1989 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1990 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1991 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1992 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1993 	/* pushback to free area */
1994 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1995 	return ret;
1996 }
1997 
1998 /* Must be protected by mem_hotplug_begin() */
1999 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
2000 {
2001 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2002 }
2003 #endif /* CONFIG_MEMORY_HOTREMOVE */
2004 
2005 /**
2006  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2007  * @start_pfn: start pfn of the memory range
2008  * @end_pfn: end pfn of the memory range
2009  * @arg: argument passed to func
2010  * @func: callback for each memory section walked
2011  *
2012  * This function walks through all present mem sections in range
2013  * [start_pfn, end_pfn) and call func on each mem section.
2014  *
2015  * Returns the return value of func.
2016  */
2017 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2018 		void *arg, int (*func)(struct memory_block *, void *))
2019 {
2020 	struct memory_block *mem = NULL;
2021 	struct mem_section *section;
2022 	unsigned long pfn, section_nr;
2023 	int ret;
2024 
2025 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2026 		section_nr = pfn_to_section_nr(pfn);
2027 		if (!present_section_nr(section_nr))
2028 			continue;
2029 
2030 		section = __nr_to_section(section_nr);
2031 		/* same memblock? */
2032 		if (mem)
2033 			if ((section_nr >= mem->start_section_nr) &&
2034 			    (section_nr <= mem->end_section_nr))
2035 				continue;
2036 
2037 		mem = find_memory_block_hinted(section, mem);
2038 		if (!mem)
2039 			continue;
2040 
2041 		ret = func(mem, arg);
2042 		if (ret) {
2043 			kobject_put(&mem->dev.kobj);
2044 			return ret;
2045 		}
2046 	}
2047 
2048 	if (mem)
2049 		kobject_put(&mem->dev.kobj);
2050 
2051 	return 0;
2052 }
2053 
2054 #ifdef CONFIG_MEMORY_HOTREMOVE
2055 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2056 {
2057 	int ret = !is_memblock_offlined(mem);
2058 
2059 	if (unlikely(ret)) {
2060 		phys_addr_t beginpa, endpa;
2061 
2062 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2063 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2064 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2065 			&beginpa, &endpa);
2066 	}
2067 
2068 	return ret;
2069 }
2070 
2071 static int check_cpu_on_node(pg_data_t *pgdat)
2072 {
2073 	int cpu;
2074 
2075 	for_each_present_cpu(cpu) {
2076 		if (cpu_to_node(cpu) == pgdat->node_id)
2077 			/*
2078 			 * the cpu on this node isn't removed, and we can't
2079 			 * offline this node.
2080 			 */
2081 			return -EBUSY;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 static void unmap_cpu_on_node(pg_data_t *pgdat)
2088 {
2089 #ifdef CONFIG_ACPI_NUMA
2090 	int cpu;
2091 
2092 	for_each_possible_cpu(cpu)
2093 		if (cpu_to_node(cpu) == pgdat->node_id)
2094 			numa_clear_node(cpu);
2095 #endif
2096 }
2097 
2098 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2099 {
2100 	int ret;
2101 
2102 	ret = check_cpu_on_node(pgdat);
2103 	if (ret)
2104 		return ret;
2105 
2106 	/*
2107 	 * the node will be offlined when we come here, so we can clear
2108 	 * the cpu_to_node() now.
2109 	 */
2110 
2111 	unmap_cpu_on_node(pgdat);
2112 	return 0;
2113 }
2114 
2115 /**
2116  * try_offline_node
2117  *
2118  * Offline a node if all memory sections and cpus of the node are removed.
2119  *
2120  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2121  * and online/offline operations before this call.
2122  */
2123 void try_offline_node(int nid)
2124 {
2125 	pg_data_t *pgdat = NODE_DATA(nid);
2126 	unsigned long start_pfn = pgdat->node_start_pfn;
2127 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2128 	unsigned long pfn;
2129 
2130 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2131 		unsigned long section_nr = pfn_to_section_nr(pfn);
2132 
2133 		if (!present_section_nr(section_nr))
2134 			continue;
2135 
2136 		if (pfn_to_nid(pfn) != nid)
2137 			continue;
2138 
2139 		/*
2140 		 * some memory sections of this node are not removed, and we
2141 		 * can't offline node now.
2142 		 */
2143 		return;
2144 	}
2145 
2146 	if (check_and_unmap_cpu_on_node(pgdat))
2147 		return;
2148 
2149 	/*
2150 	 * all memory/cpu of this node are removed, we can offline this
2151 	 * node now.
2152 	 */
2153 	node_set_offline(nid);
2154 	unregister_one_node(nid);
2155 }
2156 EXPORT_SYMBOL(try_offline_node);
2157 
2158 /**
2159  * remove_memory
2160  *
2161  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2162  * and online/offline operations before this call, as required by
2163  * try_offline_node().
2164  */
2165 void __ref remove_memory(int nid, u64 start, u64 size)
2166 {
2167 	int ret;
2168 
2169 	BUG_ON(check_hotplug_memory_range(start, size));
2170 
2171 	mem_hotplug_begin();
2172 
2173 	/*
2174 	 * All memory blocks must be offlined before removing memory.  Check
2175 	 * whether all memory blocks in question are offline and trigger a BUG()
2176 	 * if this is not the case.
2177 	 */
2178 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2179 				check_memblock_offlined_cb);
2180 	if (ret)
2181 		BUG();
2182 
2183 	/* remove memmap entry */
2184 	firmware_map_remove(start, start + size, "System RAM");
2185 	memblock_free(start, size);
2186 	memblock_remove(start, size);
2187 
2188 	arch_remove_memory(start, size);
2189 
2190 	try_offline_node(nid);
2191 
2192 	mem_hotplug_done();
2193 }
2194 EXPORT_SYMBOL_GPL(remove_memory);
2195 #endif /* CONFIG_MEMORY_HOTREMOVE */
2196